Qualitative Independent Variables

In our treatment of both the simple and multiple regression we have used independent variables, which were measurable quantities such as advertizing dollars, certain short-term interest rates etc.  In certain applications, we may wish to include variables that are not quantitative but qualitative.  For instance, in a model designed to explore the relation between total cholesterol and incidences of heart disease we may wish to include gender to see if sex plays a role in the response variable. In other words, we may wish to determine if heart disease strikes men and women differently as a result of high levels of cholesterol. Or in the example of predicting long term interest rates based on federal funds rate and 3-month treasure bill rate, we may suspect that investment managers’ opinions about the state of the economy (either favorable or unfavorable) may have a bearing on the response variable. 
These qualitative factors can be included in a multiple regression by use of dummy (or indicator) variables. These variables, sometimes referred to as binary, can assume either the value of one or zero.  In the case of cholesterol, for instance, we may code males in our sample as one and females as zero; in the second example one may code favorable as one and unfavorable as zero.   Which of the qualitative level is coded one and which as zero is completely arbitrary.  Although the examples we used involve qualitative variables with two levels (male vs. female and favorable vs. unfavorable), they can also be used to represent qualitative factors that can assume more than two levels.  A qualitative variable that can assume q distinct levels can be represented by (q - 1) dummy variables. Suppose in the advertising example we suspect the demand is seasonal and we would like to take the seasonality into consideration. The four seasons, in addition to the only quantitative variable, X1 (advertizing),  can be represented by three dummy variables: X2 = 1 if winter, 0 otherwise; X3 = 1 if spring, 0 otherwise; X4 = 1 if summer, zero otherwise. For a given observation, if all three dummy variables are coded as zero, it must be fall because the observation has to be in one of the four seasons. The level that is implicitly used as default (fall, in this example) is referred to as the ‘base case’; the level chosen as the ‘base case’ is completely arbitrary.  Notice, we could have just as well chosen winter, summer or spring as the base case without affecting the results. With the seasons represented as another explanatory factor, the model becomes:

Y = A + B1X1 + B2X2 + B3X3+ B4X4 + ε

This model can be estimated as a multiple regression and the results are interpreted as previously discussed.  

Example: In the model we used to predict long-term interest rates based on the Fed Funds rate and three-month treasury bill rate, let’s say we also have accumulated information regarding the opinions of investment managers regarding the economy at the time of the observation, categorized as either “favorable” or “unfavorable”. We can introduce this factor by coding a binary variable X3 = 1 if ‘favorable,’ and 0 if ‘unfavorable;’ notice that this implies ‘unfavorable’ is the base case. 




	Year
	Y
	X1
	X2
	X3

	1980
	11.43
	13.35
	11.39
	0

	1981
	13.92
	16.39
	14.04
	0

	1982
	13.01
	12.24
	10.6
	1

	1983
	11.1
	9.09
	8.62
	0

	1984
	12.46
	10.23
	9.54
	1

	1985
	10.62
	8.1
	7.47
	1

	1986
	7.67
	6.8
	5.97
	0

	1987
	8.39
	6.66
	5.78
	1

	1988
	8.85
	7.57
	6.67
	1

	1989
	8.49
	9.21
	8.11
	0

	1990
	8.55
	8.1
	7.5
	0

	1991
	7.86
	5.69
	5.38
	0

	1992
	7.01
	3.52
	3.43
	1

	1993
	5.87
	3.02
	3
	0

	1994
	7.69
	4.21
	4.25
	1

	1995
	6.57
	5.83
	5.49
	0



Estimating the true model Y = A + B1X1 + B2X2 + B3X3 + ε  by OLS we obtain:
	
SUMMARY OUTPUT
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Regression Statistics
	
	
	
	
	
	
	

	Multiple R
	0.980585
	
	
	
	
	
	
	

	R Square
	0.961548
	
	
	
	
	
	
	

	Adjusted R Square
	0.951935
	
	
	
	
	
	
	

	Standard Error
	0.532881
	
	
	
	
	
	
	

	Observations
	16
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	ANOVA
	
	
	
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F
	
	
	

	Regression
	3
	85.2098
	28.40327
	100.0249
	9.32E-09
	
	
	

	Residual
	12
	3.407545
	0.283962
	
	
	
	
	

	Total
	15
	88.61734
	 
	 
	 
	
	
	

	
	
	
	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%
	Lower 95.0%
	

	Intercept
	2.089921
	0.51292
	4.074554
	0.001541
	0.972364
	3.207478
	0.972364
	

	X1
	-1.28108
	0.460842
	-2.77988
	0.016654
	-2.28517
	-0.277
	-2.28517
	

	X2
	2.329628
	0.557213
	4.180855
	0.001275
	1.115564
	3.543691
	1.115564
	

	x3
	1.354212
	0.271919
	4.980206
	0.00032
	0.761752
	1.946673
	0.761752
	



Notice that with the addition of the new binary variable we have improved the ‘fit’: the error of estimate se is smaller and both r2 and adjusted r2 are larger. Notice also that the new qualitative variable is highly significant as judged by its p-value, which is 0.0032.  This means had the true value of B3 been zero (opinions did not matter) a b3 value as large as 1. 354212 or larger would be very unlikely to occur.  The model estimates that a favorable opinion of the investment managers increases the yield on ten-year treasuries by 1.35%.  Methods of inferences (i.e., testing hypotheses, stating confidence intervals, etc.) on B3 could be done exactly the same way as for qualitative independent variables.  
A dummy variable operates by actually modifying the intercept. To see this, consider the fact that for all cases in which the opinion has been unfavorable, the X3 term falls out and the model is:

Y = 2.0899 -1.28108X1 +2.3296X2;

While for all cases with a favorable opinion, because X3 =1, the model becomes: 

    	Y = 2.089921 - 1.28108X1 + 2.3296X2+ 1.354212 or

	Y = 3.444133 - 1.28108X1 + 2.3296X2

As you can see, the two models are identical except for their intercept. Geometrically, this means that this model can be represented in Y, X1 and the X2 space by one plane for the ‘favorable’ cases and another for the ‘unfavorable’ cases, whose heights (i.e., Y values) differ by the fixed quantity of 1.13542. 

Second Order Regression Models 


	We have seen, while discussing multiple regression models, that by adding additional independent (explanatory) variables into a regression model we can reduce the standard deviation of the response (dependent) variable and thus increase its predictive power. Intuitively, this is by virtue of the fact that the new variables explain some of the hitherto unexplained deviations of the observed (Yi) versus the estimated () Y values. One can also use the power of multiple regression to improve the fit without introducing any new independent variables, but by allowing a more complex relationship (e.g., non- linear) between the existing independent variables and the response variable. In this note, instead of identifying new explanatory variables, we are going to introduce some extensions to the linear model that allow “curvature” in the response surface. These extensions use the existing independent variables to derive new variables (such as X2 or X1X2) and thus increase the number of factors in the regression model. Therefore here is a caution before we proceed.
As we mentioned before, it is a mathematical fact that the more independent variables used in a regression model, the smaller the deviations between the actual and the predicted response variables and thus higher r2. In fact, if you have n observations, n-1 independent variables (even if they may have no bearing on the dependent variable) will result in a perfect fit with no deviations. If you have one independent variable, in a two dimensional XY space you can draw a line that passes perfectly through n = 2 sample points. Likewise with two independent variables, a perfect plane can be fitted to three observations.  The more variables are used, the more degrees of freedom are lost however.  If n-1 independent variables are used to fit a model to a data of n observations, the result is 0 degrees of freedom, making the model completely useless for predicting the dependent variable. Therefore we need to be judicious when deciding whether to include an additional factor (either a new variable or a derived variable such as the square of an existing one) as an independent variable, because there is a “cost.” Recall that the “adjusted r2” tries to account for this cost. The principle of parsimony requires that only those variables that theoretically explain significant variability in the response variable should be used, but those that have insignificant or no explanatory power should be left out to preserve degrees of freedom. The contribution of an independent variable should be judged on the basis of its effect on the adjusted r2:  In general, if the addition of some new variable increases the adjusted r2, it is worth to have that variable in the model.  

I. Second order Models 
Look at the plot of the sample observations of income versus consumption below. 

	[image: ]
It is fairly obvious that the relationship between consumption (dependent variable) and income (independent variable) is not best described by a straight line. As economic theory predicts, it appears that as income increases the rate of increase in consumption tapers off; as your income increases you tend to consume more but the increase in your consumption begins to slow.  The linear model Y = A + BX + ε would yield a poor fit to this data, because it essentially would be forcing a round peg in a square hole. Obviously a better fitting model would allow a curvature in the response surface. In this case the addition of a square term as Y = A + B1X + B2X2 + ε, may capture the apparent non-linearity.  We can estimate this model by adding the X2 values as a second “independent” variable and run it as a multiple regression. The parameter B2 is called the rate of curvature and its significance can be tested in the usual way. That is one can test the null hypothesis Ho: B2 = 0 versus B2 < 0 (or B2 > 0, or B ≠ 0), using the t-statistic.  If B2 is significant and < 0 then as shown in the above example the curvature is concave--the impact of the independent variable on the dependent variable decreases as X increases. If, on the other hand, B2 is significant and > 0, we have a convex relationship, where the rate of change of the dependent variable strengthens as X increases. Obviously, if we can not reject the null hypothesis, the relationship is linear with no significant curvature.  Mathematically, this conclusion is based on the sign of the derivative of Y with respect to X, which is B1 + 2B2X.  A negative B2 will reduce the derivative as X increases and vice versa.  Notice further that in a model in which B1 is zero implies a U shape relationship if B2 > 0 (inverted U if B2 < 0).  Finally even higher order models can be constructed by including a cubic term, fourth power term etc. 







Example:  assume X is the household weekly income and Y the weekly consumption

	[bookmark: _Hlk208037600]Y
	X

	252.71
	300

	  271.81
	350

	333.73
	450

	238.08
	235

	361.16
	1020

	383.60
	880

	359.20
	567

	209.23
	230

	324.49
	470

	344.93
	905

	297.71
	468

	367.60
	750



                


 The first order model Y = A + BX + ε   is estimated as

	Regression Statistics
	
	
	
	
	

	Multiple R
	0.856799
	
	
	
	
	

	R Square
	0.734104
	
	
	
	
	

	Adjusted R Square
	0.707515
	
	
	
	
	

	Standard Error
	30.91203
	
	
	
	
	

	Observations
	12
	
	
	
	
	

	
	
	
	
	
	
	

	ANOVA
	
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F
	

	Regression
	1
	26381.61
	26381.61
	27.60872
	0.000371
	

	Residual
	10
	9555.536
	955.5536
	
	
	

	Total
	11
	35937.15
	 
	 
	 
	

	
	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%

	Intercept
	213.1951
	20.81785
	10.24098
	1.28E-06
	166.81007
	259.58019

	X
	0.179006
	0.034068
	5.2544
	0.000371
	0.1030984
	0.2549145



The coefficient of determination of .734 indicated a good fit with 73.4% of the observed differences in consumption being attributed to variations in income. The independent variable, income is highly significant with a p-value of .00037 (in other words we would be able to reject the null hypothesis that B = 0 at any level of significance > 0.00037). The error of estimate, se is about 31. However, from the graph of the points above it is apparent that the fit may be improved by a second-order model which includes X2 as another independent variable: 

	
Y
	
X
	
X2

	 252.71
	300
	90000

	271.81
	350
	122500

	333.73
	450
	202500

	238.08
	235
	55225

	361.16
	1020
	1040400

	383.60
	880
	774400

	359.20
	567
	321489

	209.23
	230
	52900

	324.49
	470
	220900

	344.93
	905
	819025

	297.71
	468
	219024

	367.60
	750
	562500




Y = A + B1X + B2X2 +  ε  is estimated below
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	Regression Statistics
	
	
	
	
	

	Multiple R
	0.968032
	
	
	
	
	

	R Square
	0.937087
	
	
	
	
	

	Adjusted R Square
	0.923106
	
	
	
	
	

	Standard Error
	15.84973
	
	
	
	
	

	Observations
	12
	
	
	
	
	

	
	
	
	
	
	
	

	ANOVA
	
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F
	

	Regression
	2
	33676.22
	16838.11
	67.02694
	3.93E-06
	

	Residual
	9
	2260.927
	251.2141
	
	
	

	Total
	11
	35937.15
	 
	 
	 
	

	
	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%

	Intercept
	75.98443
	27.60975
	2.752087
	0.0224
	13.526787
	138.44207

	X
	0.735177
	0.104679
	7.023129
	6.17E-05
	0.4983753
	0.9719781

	X2
	-0.00045
	8.44E-05
	-5.38864
	0.000439
	-0.0006458
	-0.0002639



Compared to the first-order model this is a much better model of the consumption as a function of income. Coefficient of determination is now about 93.7%, both B1 and B2 highly significant. Negative B2 indicates that the relationship between income and consumption moderates as income increases. Caution: for sufficiently high income levels an increase in income may reduce consumption i.e., the slope may become negative.  Remember, however that predictions of the dependent variable for values of the independent variable outside of the range in the sample (here from 230 to 1020) will give misleading results. 

	

II. Interaction Models 
	Consider the linear model with two independent variables
Y = A + B1X1 + B2X2 + ε.  Say Y is compensation ($000), X1 education and X2 experience of bank tellers both in years. Suppose the estimated linear model is Y = 42 + 4.86X1 + 3.02X2 + ε.  We can examine the relationship between pay (Y) and education (X1) for any fixed value of experience (X2).  For instance, for X2 = 1 or 2, i.e., we are looking for the impact of education for the population of all tellers with one versus two years of experience. Substituting 1 for X2, the equation becomes Y = 45.02 + 4.86X1 + ε, while for X2 = 2, it is Y = 48.04 + 4.86X1 + ε.   Therefore in this model, regardless of the experience (X2), pay tends to increase by 4.86 ($000) for every additional year of education (X1). This relationship between Y and X1 for various levels of X2 (1, 2, and 3 years) can be graphed as follows. 

[image: ]
The slope of the line does not change as X2 changes, only the intercept changes. In this type of a relationship X1 and X2 are said not to interact—in the sense that the impact of education on pay remains at 4.86 ($000) per year regardless of the experience.  It is plausible however to suspect that the impact of education on pay for those with little experience might be stronger than those with a lot of experience. Namely we might think that the impact of education on pay might moderate as experience increases and we may want our model to reflect this possibility as graphed below:

[image: ] 

For a person with little experience (X2 = 1) the rate of increase in pay as education increases is stronger (the line is steeper) than for a more experienced person (X2 = 3). In a model that allows this type of relationship, X1 and X2 are said to interact. We can model the interaction by including a term X1X2 in the model. With this term included the model becomes Y = A + B1X1 + B2X2 + B3 X1 X2 + ε.   This model can be estimated and the significance of the interaction term X1 X2 can be questioned by testing Ho: B3 = 0 versus H1: B3 ≠ 0 (or B3 > 0, or B3 < 0) using student’s t.  If B3 < 0 and significant, then the interaction is negative. This means that as one of the independent variable’s value increases, the effect of the other variable on the dependent variable moderates. This is the case in the above example. If however,  B3 > 0 and significant, the interaction is positive and the two variables reinforce one another. This conclusion is reached by examining the derivatives of Y with respect to X1 and X2. dY/dX1 = B1 +  B3 X2   and  dY/dX2 = B2 +  B3 X1.  If B3 > 0 and significant, either derivative will be larger (mutually reinforcing) as the other variable increases and vice versa. 

Example; Y is pay ($000), X1 education (yrs) and X2 experience (yrs)  
	Y
	X1
	X2
	X1X2

	53
	1
	3
	3

	64.2
	2
	2
	4

	42.8
	1
	2
	2

	66.4
	4
	1
	4

	81.5
	5
	4
	20

	63.8
	2
	3
	6

	66.2
	1
	5
	5

	57.2
	3
	2
	6

	77.8
	6
	3
	18

	97.5
	8
	6
	48

	84.3
	4
	8
	32

	68.1
	3
	2
	6



The first order model is Y = A + B1X1 + B2X2 + ε  (disregarding the X1X2 term) and estimated as 
	Regression Statistics
	
	
	
	
	

	Multiple R
	0.944482
	
	
	
	
	

	R Square
	0.892047
	
	
	
	
	

	Adjusted R Square
	0.868057
	
	
	
	
	

	Standard Error
	5.393216
	
	
	
	
	

	Observations
	12
	
	
	
	
	

	
	
	
	
	
	
	

	ANOVA
	
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F
	

	Regression
	2
	2163.166
	1081.583
	37.18469
	4.46E-05
	

	Residual
	9
	261.781
	29.08678
	
	
	

	Total
	11
	2424.947
	 
	 
	 
	

	
	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%

	Intercept
	42.04253
	3.542825
	11.86695
	8.47E-07
	34.0281
	50.05696

	X1
	4.859923
	0.795379
	6.110198
	0.000177
	3.060651
	6.659194

	X2
	3.021774
	0.861268
	3.508518
	0.006634
	1.073451
	4.970097



The regression is highly significant (p-value 4.46E-05), coefficient of determination is better than 89%, both X1 and X2 are significant. Estimate of the standard deviation of pay is about $5,393. Suspecting significant interaction between education and experience and estimating the interactive model: Y = A + B1X1 + B2X2 + B3 X1 X2  + ε yields:

	Regression Statistics
	
	
	
	
	

	Multiple R
	0.951435
	
	
	
	
	

	R Square
	0.905228
	
	
	
	
	

	Adjusted R Square
	0.869689
	
	
	
	
	

	Standard Error
	5.35976
	
	
	
	
	

	Observations
	12
	
	
	
	
	

	
	
	
	
	
	
	

	ANOVA
	
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F
	

	Regression
	3
	2195.13
	731.7101
	25.47114
	0.000191
	

	Residual
	8
	229.8162
	28.72703
	
	
	

	Total
	11
	2424.947
	 
	 
	 
	

	
	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%

	Intercept
	34.24439
	8.188269
	4.182128
	0.003071
	15.36221
	53.12657

	X1
	7.177251
	2.334712
	3.074149
	0.015252
	1.793396
	12.56111

	X2
	5.100153
	2.14819
	2.374162
	0.044953
	0.146417
	10.05389

	X1X2
	-0.54759
	0.519117
	-1.05485
	0.322307
	-1.74468
	0.649496



Is this a better fit?  The answer is found by testing the null hypothesis: Ho: B3 = 0 versus B3 < 0. We can not reject the null hypothesis (there is no significant interaction) at even a modest level of significance of α = .10 (p-value is .322). Despite the fact that the coefficient of determination improved to 90.5% and standard deviation is reduced by a small amount (due to another independent variable which cost a degree of freedom), there is no compelling evidence that the inclusion of the interaction improves the model. 
	An interesting application of interaction among variables is when one of the variables suspected to interact with another happens to be a qualitative variable such as gender. Suppose in the above example we differentiate between male and female observations by coding a new dummy variable, X3 (1 for males and 0 for females). We can add an interaction term B4 X1X3  to the model to investigate whether or not the length of education affects pay for males differently than it does for females. In this extended model the derivative of Y with respect to education is B1 + B4X3.  If B4 is significant then we can conclude that the impact of education on pay for males (X3 = 1) is B1 + B4 while for females (X3 = 0) is simply B1. Further, if B4 > 0 then education impacts male pay more strongly than it does female pay and vice versa. 

III. General second order model
Suppose we have two independent variables to use for predicting the value of a dependent variable. A complete second order model can be formed by including both the squared variables as well as the interaction term as follows:
Y = A + B1X1 + B2X2 + B3X1X2 + B4X12 + B5X22 + ε.  One way to test the appropriateness of this complex model compared to the simpler alternative first-order model 
Y = A + B1X1 + B2X2 + ε is to use the ordinary t- test the significance of B3, B4 or B5 one at a time. However, this will not always give a reliable diagnosis. To see why not, suppose for a moment that none of B3, B4 and B5 is significant.  If we test each of these null hypotheses individually (that Bi = 0) at α = .05, there will be 95% chance we’ll make the correct decision for B3 (that it is zero); 95% chance with respect to B4 and 95% chance with respect to B5.  Thus the probability of correctly finding all of the second order terms insignificant (i.e., B3 =B4 = B5 =0) will be .953 = .857 leading to a type I error (probability of rejecting the null when it is true) of about 14.3%. Obviously the more additional terms we test the larger this error will be.

Partial F test
 To avoid this we need to test the contribution of these second order terms collectively as 
	Ho: B3 = B4 = B5 = 0
	H1: at least one is not zero 
Notice how similar this is to the F-test used for the general significance of the entire multiple regression model. As you may guess, the appropriate test statistic for this test is the F distribution and the test is called the partial F-test for we are testing a subset of all the parameters, and not all of them.  Let us refer to the simpler model

Y = A + B1X1 + B2X2 + ε as the reduced model (as opposed to the complete model). For a general case let g to denote the number of B parameters in the reduced model (in our case g = 2) and k to denote the number of B parameters in the complete model (5 here). Let SSER and SSEC be the sum of squared errors for the reduced and the complete models respectively given in the Excel output for the two models. Then the test statistic for the partial F test is given by:  with k - g degrees of freedom for the numerator and  n - k - 1 degrees of freedom for the denominator, where n is the sample size as before.  If the computed test statistic exceeds the critical F (for the appropriate α with k - g and  n - k - 1 degrees of freedom) the null is rejected and the significant contribution of the square terms and the interaction term to the predictive power of the model is acknowledged.  To conduct this test in order to choose between the simpler (parsimonious) and the more complex model we need to estimate both models first and then do the partial F-test to choose between them. 

Example  
In the previous example of  Y = pay; X1 = education and X2 = experience  we can construct the complete model as Y = A + B1X1 + B2X2 + B3X1X2 + B4X12 + B5X22 + ε and define the model Y = A + B1X1 + B2X2 + ε  as the reduced model. The data to estimate both models is:









	Y
	X1
	X2
	X1X2
	X12 
	X22

	53
	1
	3
	3
	1
	9

	64.2
	2
	2
	4
	4
	4

	42.8
	1
	2
	2
	1
	4

	66.4
	4
	1
	4
	16
	1

	81.5
	5
	4
	20
	25
	16

	63.8
	2
	3
	6
	4
	9

	66.2
	1
	5
	5
	1
	25

	57.2
	3
	2
	6
	9
	4

	77.8
	6
	3
	18
	36
	9

	97.5
	8
	6
	48
	64
	36

	84.3
	4
	8
	32
	16
	64

	68.1
	3
	2
	6
	9
	4



We had already estimate the first order model Y = A + B1X1 + B2X2 + ε above.

The estimate of Y = A + B1X1 + B2X2 + B3X1X2 + B4X12 + B5X22 + ε

	Regression Statistics
	
	
	
	
	

	Multiple R
	0.954852
	
	
	
	
	

	R Square
	0.911742
	
	
	
	
	

	Adjusted R Square
	0.838194
	
	
	
	
	

	Standard Error
	5.972436
	
	
	
	
	

	Observations
	12
	
	
	
	
	

	
	
	
	
	
	
	

	ANOVA
	
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F
	

	Regression
	5
	2210.927
	442.1853
	12.39656
	0.004072
	

	Residual
	6
	214.02
	35.67
	
	
	

	Total
	11
	2424.947
	 
	 
	 
	

	
	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%

	Intercept
	29.03369
	12.49285
	2.324025
	0.059122
	-1.53521
	59.60259

	X1
	8.691706
	3.630475
	2.394096
	0.053725
	-0.19175
	17.57516

	X2
	7.108731
	4.789042
	1.484374
	0.188244
	-4.60963
	18.8271

	X1X2
	-0.18994
	0.823781
	-0.23057
	0.825313
	-2.20565
	1.825784

	X12 
	-0.37711
	0.62401
	-0.60433
	0.567755
	-1.90401
	1.149787

	X22
	-0.35318
	0.581485
	-0.60737
	0.565865
	-1.77602
	1.069665



The coefficient of determination is marginally better for the complete model, 91.1% versus 89.2% (i.e., the complete model accounts for 91.1% of the variation in the pay, the parsimonious model accounts for 89.2%). However, the complete model is not a better model-- none of the Bs appears to be significant. This happens as a result of two factors. First, since the sample size is relatively small the complete model has very few degrees of freedom (six as opposed to nine for the reduced model); and second, since the derived variables   X1X2 , X12 and X22 are mathematically related to the original variables X1 and  X2 , in general, second order models tend to be susceptible to multi-co linearity. 
Although with these observations we can easily see that the parsimonious model is superior, let’s do the formal partial F-test to verify that the second order terms are not contributing significantly to the power of the model in predicting pay based on education and experience.

SSEC = 214.02; SSER = 261.78; k =5; g = 2; n = 12

	Ho: B3 = B4 = B5 = 0
	H1: at least one is not zero 
	α = .05



	 = 

The critical F value with (k-g = 3 and (k-n-1= 6) degrees of freedom for α = .05 is 4.757055 therefore, as we suspected, we can not reject the null hypothesis that the interaction and square terms are all insignificant. 
	The use of the partial F-test is not confined to test the significance of the interaction and/or squared terms; it can be used to choose between any two alternative models in which one model contains all the B parameters of the other model and then some. 
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