MULTIPLE REGRESSION
In simple regression, the smaller the value of the standard error of estimate, se, the better the predictive power of the model. All confidence intervals obtained from the estimated model will be narrower if se is smaller.  Remember that se, in fact, is an estimate for the common standard deviation of all conditional distributions, namely σ.  Remember also that σ measures the scatter around the regression line or the effect of the factors not considered in the model on the dependent variable.  Thus, one way to improve the model’s predictive power is to reduce, σ by explicitly considering additional factors as independent variables. 

  
In the model Y = A + BX + ε where the dependent variable, Y is the sales and the independent variable X is the advertising expenditures, perhaps another determinant of the sales Y might be size of the sales force (# of number of salespeople used).  If we plotted the estimated line and the actual observations and found that the points above the line are generally associated with “high” sales force levels and vice versa, this approach (using number of sales people) as a second independent variable in addition to the advertising budget becomes a viable way of improving the model fit, i.e., Y = A + B1X1 + B2X2 + ε where now X1 is the advertising budget and X2 is the size of the sales force.  
Think this way: with only one independent variable, X1, the vertical distances of the points from the line are interpreted as “unexplained” variations or as errors, however adding the size of the sales force, X2 as an additional independent variable will now attribute part of these unexplained differences to a known factor, leaving smaller unexplained differences (errors). And this is the main idea of multiple regression. 
[image: image1.wmf]

In general the true (not observable) multiple regression model with k independent (explanatory variables has the form: Y = A + B1X1 + B2X2. . . ..+ BkXk +  ε which is estimated from a sample set of observations as 
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y = 1.3681x + 689.65
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.  Notice that geometrically this represents a “hyper plane”, rather than a linear line which can easily be drawn on a two dimensional space such as your notebook.  
As before, we refer to the distribution of sales revenue for any fixed X1 = advertising expenditure and fixed X2 = size of the sales force, the conditional distribution. The assumptions that we made in the case of simple regression apply in the multiple egression as well: 1) each conditional distribution is normal, e.g., the sales revenue in all cases when the advertising has been 500 and 3 sales people have been used is normally distributed; 2) the variance of the independent variable does not depend on the values of the independent variables, e.g., the variance of the conditional distribution, say with 500 advertising expenditure and 3 sales people is the same as the conditional distribution of sales volume with advertising expenditures of 600 and 2 sales people.  These are the normality and the homoscedasticity assumptions respectively. 
The estimation of the regression coefficients A, B1, B2, . . . , Bk by the least square method is based on the same principle of choosing the estimators a, b1, b2, . . . , bk in a way that the sum of the squares of the  vertical differences between the observed Ys in the sample and the estimated Ys , i.e.,
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 will be minimum. We will rely on computer packages such as Excel, SAS, SPSS, MINITAB to do the estimation and emphasize the use of the output from such packages. 
Example:
 Suppose it is believed that the 10-year Treasury bond rates can be predicted by the prevailing overnight federal funds rate and 3-month Treasury bill rate. Thus we have Y = 10-year Treasury bond rate (response variable); and two independent variables X1 = Federal funds rate X2 = 3-month Treasury bill rate. The true model considered to be estimated is Y = A + B1X1 + B2X2 +  on the basis of a sample of 16 observations obtained between 1980 and 1995 inclusive.  
	MULTIPLE REGREESION EXAMPLE
	
	
	
	
	

	Year
	Y
	X1
	X2
	
	
	
	

	1980
	11.43
	13.35
	11.39
	
	
	
	

	1981
	13.92
	16.39
	14.04
	
	
	
	

	1982
	13.01
	12.24
	10.6
	
	
	
	

	1983
	11.1
	9.09
	8.62
	
	
	
	

	1984
	12.46
	10.23
	9.54
	
	
	
	

	1985
	10.62
	8.1
	7.47
	
	
	
	

	1986
	7.67
	6.8
	5.97
	
	
	
	

	1987
	8.39
	6.66
	5.78
	
	
	
	

	1988
	8.85
	7.57
	6.67
	
	
	
	

	1989
	8.49
	9.21
	8.11
	
	
	
	

	1990
	8.55
	8.1
	7.5
	
	
	
	

	1991
	7.86
	5.69
	5.38
	
	
	
	

	1992
	7.01
	3.52
	3.43
	
	
	
	

	1993
	5.87
	3.02
	3
	
	
	
	

	1994
	7.69
	4.21
	4.25
	
	
	
	

	1995
	6.57
	5.83
	5.49


Here we have n = 16 (sample size) and k = 2 (number of independent variables). 
Running a multiple regression using Excel regression tool we obtain the following results:

	SUMMARY OUTPUT
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Regression Statistics
	
	
	
	
	
	
	

	Multiple R
	0.93918668
	
	
	
	
	
	
	

	R Square
	0.88207162
	
	
	
	
	
	
	

	Adjusted R Square
	0.8639288
	
	
	
	
	
	
	

	Standard Error
	0.8965961
	
	
	
	
	
	
	

	Observations
	16
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	ANOVA
	
	
	
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F
	
	
	

	Regression
	2
	78.16684427
	39.0834221
	48.6182013
	9.2367E-07
	
	
	

	Residual
	13
	10.45049948
	0.80388458
	
	
	
	
	

	Total
	15
	88.61734375
	 
	 
	 
	
	
	

	
	
	
	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%
	
	

	Intercept
	2.89591344
	0.818926109
	3.53623289
	0.00365145
	1.12673115
	4.66509573
	
	

	X1
	-1.3491821
	0.775045719
	-1.7407774
	0.10532142
	-3.02356656
	0.32520239
	
	

	X2
	2.37600263
	0.937405473
	2.53465837
	0.02490471
	0.35086123
	4.40114403
	
	


The estimated model is 
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 = 2.8959 - 1.3492X1 + 2.3760X2.  The estimated standard deviation (of all the conditional distributions) is .8966. A brief explanation of the regression output follows.
A.  Regression Statistics:
· R-Square: r2 is, as before, the coefficient of determination and measures the proportion of variation in 10-year Treasury rates, Y that is explained (by federal funds rate and 3-year treasury bill rate). In other words, it is
1- SSE/SST =1 - {
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}. In this case the regression accounts for about 94% of the variation in the 10-year treasury Bond rate  and about 6% is unaccounted for (due to possibly other factors, perhaps the state of the economy, exchange rates, etc.)

· Multiple R: as before, is the positive square root of R-square and measures the strength of correlation between 10-year Treasury bond rate and the federal Funds rate and 3-month Treasury Bill rate combination.
· Adjusted R2:  Adjusts R2 based on the number of independent variables. Since the more independent variables you have, the higher the R2 will be, an adjustment is made to the R2 based on the number of explanatory variables used.  The adjustment is given by 1 – {(n-1)/(n-k-1)}(1-R2).  Notice that the bigger the k, the smaller the adjusted R2.

· Standard Error (se) =
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:  is the estimate of the common standard deviation, (. 
B. ANOVA:

· Regression: 

· df degrees of freedom = k (number of independent variables)
· SSR (Sum of squares -- regression) 
[image: image7.wmf]2

ˆ

()

i

i

YY

-

å


· MSR (mean Squares – regression) = SS/df

· Residual:

· df degrees of freedom = n – 1 - k 

· SSE (Sum of squares – error) 
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· MSE (Mean Squares – error) = SS/df

· Total:

· df degrees of freedom = n – 1 
· SST (Sum of squares – total) 
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· MST (Mean Squares – total) = SS/df
Note that SST = SSR + SSE and df (total) = df (regression) + df (error). F:
· F-statistic as in ANOVA (analysis of variance) portion of the output – the ratio of MS-regression to MS-error.
· Significance: p-value of the F statistic (explained more fully later)
C. Estimated Model
The last section of the output includes the details of the estimated regression model.  The first line is for the estimated intercept, and is followed by one line per independent variable. So there will always be k+1 lines in this part of the output. In each line the first figure is the estimated coefficient, in this case a, b1 and b2 respectively. The next column is the standard errors of the estimated parameters, i.e., sa, sb1, and sb2.   As before, the t-stat is the ratio of the estimated coefficient to its standard error e.g., b1/sb1.  p-value is the probability of observing a value as low or high (extreme) as the one we have (e.g., b1 = -1.349) if indeed B1 = 0, i.e., we cannot state at .05 level of significance, that X1 (federal funds rate) is a significant factor  on determining the 10-year Treasury Bond Rate.  Finally, the last two columns give the lower and upper limits of the confidence interval for estimated parameter. i.e., there is a 95% chance that the true B2 is between a low of 0.7159 and a high of 4.4011.  
Inferences with the Estimated Model:

After a model is estimated from a sample, it can be used to make certain general and specific inferences about the population from which the sample observations came from.

Obviously, these inferences will carry a measure of risk (statistician’s curse!) in the form of sampling errors. 

A. Inference about the estimated model in full.  The question here is simply whether the estimated regression equation has any predictive power i.e., is there any underlying relationship between the dependent variable and one, some or all of the independent variables allowing better predictions about the response variable with the knowledge of the independent variables? More formally this question is answered by the following test of hypothesis:
Ho: B1 = B2 = . . . . =Bk = 0

H1:  at least one Bi ≠ 0.

Notice that the null hypothesis says none of the independent variables has any bearing on the dependent variable, while the alternative asserts there is at least one that has some impact on the dependent variable. The appropriate test statistic is the F-stat in the print out with k and n-k-1 degrees of freedom. 
In the example the computed F-stat is 48.6182; the critical F-value (at .05 significance level) from the F- table with k = 2 and n-k-1 = 13 degrees of freedom is 3.81. Since the computed F-statistic of 48.6182 and far exceeds the critical F-value, we reject the null hypothesis. The same conclusion can be reached by simply looking at the p-value of the F-stat which is virtually 0 (9.2367 -7) -- much smaller than the default level of significance of  .05.  This simply says that if the null hypothesis had been true (no underlying relationship) an F-value as large as 48.6182 would be very unlikely (only 9.2367 -7 probability) allowing us to conclude that either the Federal Funds Rate or 3-month Treasury Bill rate or both have statistically significant impacts on the 10-year Treasury bond rate. 
B. Inferences About the Individual Regression Parameters, Bi. Here we make inferences about the impact of each of the independent variables individually (captured by Bi) on the dependent variable. 
Ho: Bi = 0

H1:  Bi ≠ 0. (Two-tail—we do not care if the relationship is direct or inverse)

The appropriate test statistic is t = (bk – Bk)/sbk with n-k-1degrees of freedom. Notice that since the hypothesized value Bk = 0, the observed t = bk/sbk.  If the computed t-value is more extreme than the critical value, we reject the null and conclude that there is some “real” relationship between the ith independent variable and the dependent variable; and that the non-zero value calculated for bi is not likely to be due to random chance. 

In the example, if we wanted to judge whether Federal Funds Rate was a reliable predictor of 10-year Treasury Bond Rate one way or the other i.e., B1 ≠  0 we would test the hypothesis:


Ho: B1 = 0
H1:  B1≠ 0. (Two-tail. We want to conclude any impact)

The t-stat is given in the printout (second row, third value) as -1.7408, the critical t-value from the t-table for .05 (.025 on either side for a two-tail test) with n-k-1 = 13 degrees of freedom is +/- 2.160. Since the computed t-value is not extreme enough, we cannot reject the null hypothesis. Thus there is insufficient evidence in the sample to allow us to conclude a real impact of the Federal Funds rate on the 10-year Treasury Bond Rates.  The same conclusion can be reached without looking at the critical t-value, based on the p-value. In the print-out the p-value is .1053 which does not allow us to reject the null a level of significance of .05. If indeed there was no relationship between the 10-year Rate and the federal Funds rate, the chances of t-values as small as -1.7408 is more than 10%-- not so improbable.

If we knew a priori that a high Federal Funds Rate cannot reasonably be a sign of high 10-year Treasury Bond Rate (or Bi > 0 is not reasonable), we would then do a one-tail test.  The test now would be: 
Ho: B1 = 0

H1:  B1< 0

Notice that the negative sign for the computed b2 does indicate an inverse relationship between 10-yeare treasury bond rate and Federal Funds Rate, but we want to see if the evidence is strong enough to beat the standard of proof of .05 level of significance. The critical t-value with 13 degrees of freedom is now under .10 which is +/- 1.771, and the p-value is half of .1053 or .052.  This obviously is an easier “standard of proof” due to the a priori assumption made about B1, yet the sample still does not have enough power (although close) to meet this standard in this case either. The t-value is still less extreme than the critical t of +/- 1.771 (-1.74078 versus -1.1771) and the p-value is still above .05. Based on either of these comparisons we cannot rule out the null hypothesis.
C. Prediction of a Specific Y given X1, X2, . . . . ,Xk. 

Known values of the independent variables allow one to make a point estimate of the dependent variable by simply plugging in the known values of the independent variables into the estimated equation to obtain
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. However, since the sampling errors in the estimation of the regression parameters are present, a more useful estimate might be in the form of a confidence interval. An approximate confidence interval for Y (for a specific instance, year in this case) can be obtained as 
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 where α is 1- the confidence interval, and tα/2  is the corresponding t value with n-k-1 degrees of freedom.  In the example, say, one is trying to predict the 10-year Treasury Bond Rates with the knowledge that the federal Funds Rate is 9% and the 3-month Treasury Bill rate is 6.67% . What is the best estimate of the 10-year Treasury Bill Rate?  The point estimate is 
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= 2.8959 - 1.3492 (9%) + 2.376 (6.67%) = 6.6012 %. An approximate 95% confidence interval can be stated using t-value for α = .05 with 13 degrees of freedom which is 2.160.  Thus the confidence interval extends from a low of 6.6012 - 2.160 * 0.8965 = 4.6647 to a high of 6.6012 + 2.160 * 0.8965 = 8.5376. This is an approximate interval because it ignores the sampling errors in the estimation of A, B1 and B2 respectively by a, b1 and b2.  More advanced computer packages have the capability to calculate the exact confidence intervals for various combinations of independent variable levels. 
D. The Problem of Multi-colinearity.  A problem that may afflict a multiple regression analysis is the so-called multi-colinearity. This condition exists when some of the independent variables are highly correlated among themselves. In the example, if the Federal Funds rate was very highly correlated with the 3-month Treasury bill rate, it would not contribute any independent additional information to predict 10-year Treasury bond rate, it would rather be duplicate (and superficial) information. Multi-colinearity does not make the regression totally useless but makes the interpretation of the results less straightforward. 
When multi-colinearity exists

·  The regression will still predict okay if the F-stat in the ANOVA part is still significant.
·  The t-stats for the highly correlated variables may turn out to be insignificant even though the regression as a whole is significant.
·  The estimated b coefficients may turn out to have the wrong (unexpected) sign, 
·  The model can be improved by simply determining the highly correlated variables and dropping one from the regression. 
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