First constraint is acreage constraint: so we must calculate
acres per ton of alfalfa raised.
4 tons/acre => 1/4=.25 acres per ton.
The second constraint is in acre-feet: so we must calculate
acre-feet per ton of AR.
.25 acres/ton * 3 acre-feet per acre = .75 acre-feet per ton.
MAX Y1 + 1.42699 Y2 + 0.37998 Y4 + 0.1236 Y3 + 0.00444 Y5
SUBJECT TO
2)Y1 - 1.425 X21 - 0.1234 X31 - 0.3793 X41 - 0.00443 X51
+ X12 + X13 + X14 + X15 = 2
3)Y2 - 0.6998 X12 - 0.08647 X32 - 0.2662 X42 -0.0031 X52
+ X21 + X23 + X24 + X25 = 5
4)Y3 - 8.078 X13 - 11.55 X23 - 3.073 X43 - 0.03586 X53
+ X31 + X32 + X34 + X35 = 0
5)Y4 - 2.627 X14 - 3.754 X24 - 0.325 X34 - 0.01163 X54
+ X41 + X42 + X43 + X45 = 3
6) Y5 - 224.7 X15 - 320.7 X25 - 27.76 X35 - 85.51X 45
+ X51 + X52 + X53 + X54 = 0
7) Y3 >= 8
8) Y5 >= 1280
END
LP OPTIMUM FOUND AT STEP 3
OBJECTIVE FUNCTION VALUE
1) 10.269500
VARIABLE VALUE REDUCED COST
Y1 2.000000 .000000
Y2 .000000 .000590
Y4 .000000 .000302
X21 .000000 .002580
X31 .000000 .000200
X41 .000000 .000982
X51 .000000 .000017
X12 .000000 .000979
X13 .000000 .001559
X14 .000000 .000998
X15 .000000 .000708
X32 .000000 .000157
X42 .000000 .000261
X52 .000000 .000022
X23 1.811665 .000000
X24 3.188335 .000000
X25 .000000 .001354
Y3 20.924730 .000000
X43 .000000 .000460
X53 .000000 .000015
X34 .000000 .000008
X35 .000000 .000145
X54 .000000 .000025
X45 14.969010 .000000
Y5 1280.000000 .000000
ROW SLACK OR SURPLUS DUAL PRICES
2) .000000 1.000000
3) .000000 1.427580
4) .000000 .123600
5) .000000 .380282
6) .000000 .004447
7) 12.924730 .000000
8) .000000 -.000007
NO. ITERATIONS= 3
RANGES IN WHICH THE BASIS IS UNCHANGED:
OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE ALLOWABLE
COEF INCREASE DECREASE
Y1 1.000000 .001621 .000708
Y2 1.426990 .000590 INFINITY
Y4 .379980 .000302 INFINITY
X21 .000000 .002580 INFINITY
X31 .000000 .000200 INFINITY
X41 .000000 .000982 INFINITY
X51 .000000 .000017 INFINITY
X12 .000000 .000979 INFINITY
X13 .000000 .001559 INFINITY
X14 .000000 .000998 INFINITY
X15 .000000 .000708 INFINITY
X32 .000000 .000157 INFINITY
X42 .000000 .000261 INFINITY
X52 .000000 .000022 INFINITY
X23 .000000 .000095 .000590
X24 .000000 .000978 .000095
X25 .000000 .001354 INFINITY
Y3 .123600 .000088 .000051
X43 .000000 .000460 INFINITY
X53 .000000 .000015 INFINITY
X34 .000000 .000008 INFINITY
X35 .000000 .000145 INFINITY
X54 .000000 .000025 INFINITY
X45 .000000 .000618 .000269
Y5 .004440 .000007 INFINITY
RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE
RHS INCREASE DECREASE
2 2.000000 INFINITY 2.000000
3 5.000000 INFINITY 1.119024
4 .000000 INFINITY 12.924730
5 3.000000 11.969010 4.200818
6 .000000 1023.470000 359.211900
7 8.000000 12.924730 INFINITY
8 1280.000000 359.211900 1023.470000
OBJECTIVE FUNCTION VALUE
1) 10.269500
VARIABLE VALUE REDUCED COST
Y1 2.000000 .000000
X23 1.811665 .000000
X24 3.188335 .000000
Y3 20.924730 .000000
X45 14.969010 .000000
Y5 1280.000000 .000000
ROW SLACK OR SURPLUS DUAL PRICES
2) .000000 1.000000
3) .000000 1.427580
4) .000000 .123600
5) .000000 .380282
6) .000000 .004447
8) .000000 -.000007
The optimal solution calls for exchanging 1.812M pounds into
Francs, 3.188M pounds into Marks, and 14.969M Marks into Yens.
The final holding will consist of 2M Dollars, 20.92M Francs and
1280M Yens. The total dollar value of this bundle is 10.2695$.