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The effective action associated with the trace anomaly provides a general algorithm for approximating
the expectation value of the stress tensor of conformal matter fields in arbitrary curved spacetimes. In
static, spherically symmetric spacetimes, the algorithm involves solving a fourth order linear differential
equation in the radial coordinate r for the two scalar auxiliary fields appearing in the anomaly action, and
its corresponding stress tensor. By appropriate choice of the homogeneous solutions of the auxiliary field
equations, we show that it is possible to obtain finite stress tensors on all Reissner-Nordström event
horizons, including the extreme Q � M case. We compare these finite results to previous analytic
approximation methods, which yield invariably an infinite stress energy on charged black hole horizons,
as well as with detailed numerical calculations that indicate the contrary. The approximation scheme
based on the auxiliary field effective action reproduces all physically allowed behaviors of the quantum
stress tensor, in a variety of quantum states, for fields of any spin, in the vicinity of the entire family
(0 � Q � M) of RN horizons.
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I. INTRODUCTION

The evaluation of the energy-momentum-stress tensor
Tab of quantum matter in curved spacetimes is important
for understanding the possible backreaction effects of mat-
ter on the large scale geometry of spacetime. Quantitative
control of the stress tensor is needed especially in black
hole and cosmological spacetimes with event horizons,
where general considerations indicate that vacuum polar-
ization and particle creation may lead to significant quan-
tum effects which are cumulative with time. Such secular,
macroscopic effects of quantum matter on the geometry of
spacetime provide the intriguing possibility of observable
consequences of quantum gravity at accessible energy
scales, far below the Planck scale.

In the direct method of computing the quantum expec-
tation value of the stress tensor, the first step is to solve the
appropriate matter field equations, for a complete set of
normal modes. With these solutions in hand, the Fock
space of the quantum theory is constructed, a specific
‘‘vacuum’’ state j�i in the Fock space chosen, and the
expectation value h�jTabj�i evaluated in the selected
state, component by component, as a sum over the normal
modes of the field. Since Tab is a dimension four operator
in four spacetime dimensions, the mode sum for its expec-
tation value is quartically divergent. Hence a delicate

regularization procedure, such as point splitting must be
employed in order to identify and remove the short dis-
tance divergences in the mode sum, absorbing them into
appropriate counterterms up to dimension four in the
gravitational effective action [1]. Only after this regulari-
zation and subtraction procedure is performed can finite
results for the renormalized hTabi of physical interest be
extracted.

Since the wave equation, mode functions, and stress
tensors are different for fields with different spin, this
procedure must be carried out independently for each
quantum field of interest. Likewise, if one wishes to con-
sider different quantum states in the Fock space, with
different boundary conditions on the mode functions, the
calculation must be repeated for each state. Because of the
intricacy of the subtraction procedure, together with the
numerical solution of the mode equations, which is usually
required, it is often difficult to anticipate the general physi-
cal features of the result. Finally, if the geometry is modi-
fied, or allowed to respond dynamically, the entire
calculation of hTabi would have to be repeated for each
new geometry and/or at each new time step. This direct
method of calculating hTabi is thus both time and compu-
tation intensive, and has limited the number of results for
the stress tensor in fixed backgrounds to only a handful of
special cases, rendering the consideration of dynamical
black hole spacetimes varying with time in response to
hTabi prohibitively difficult, even in the case of exact
spherical symmetry.
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Because of the difficulties involved in direct evaluation
methods, considerable interest attaches to developing gen-
eral and reliable algorithms for approximating hTabi in
general curved spacetimes. An approximate method that
can capture the secular, macroscopic quantum effects on
the geometry would be particularly interesting for applica-
tions to both cosmological and black hole spacetimes.

In a previous article a general approximation scheme
based on the effective action and stress tensor obtained
from the conformal or trace anomaly was introduced [2].
Although the effective action associated with the trace
anomaly is not unique, as it is defined only up to arbitrary
conformally invariant terms, a minimal generally covariant
action can be found by direct integration of the anomaly
[3,4]. The logarithmic scaling behavior of the effective
action associated with the anomaly separates it from any
of the other possible local or nonlocal Weyl invariant terms
in the exact effective action, which do not share this
logarithmic scaling property. The nonlocal anomaly action
may be cast into a local form in a standard way by the
introduction of one or more scalar auxiliary degree(s) of
freedom [3–6]. Since there are two distinct cocycles in the
nontrivial cohomology of the Weyl group in four dimen-
sions [7], the most general representation of the anomaly
action is in terms of two auxiliary scalar degrees of free-
dom, each satisfying fourth order linear differential equa-
tions of motion (2.8). These are two new scalar degrees of
freedom in the low energy effective theory of gravity not
present in the classical Einstein theory. Since the effective
action expressed in terms of the auxiliary fields is a space-
time scalar, variation with respect to the metric yields a
covariantly conserved stress tensor, which not only repro-
duces the trace anomaly but also yields nontrivial tracefree
components as well.

In the auxiliary field approach, computation of the
quantum expectation value hTabi is reduced to the solution
of linear, classical equations for the auxiliary fields, by-
passing completely any summation over modes, and the
regularization and renormalization that requires. Different
states of the underlying quantum field(s) are associated
with the choice of specific homogeneous solutions to the
linear differential equations satisfied by the auxiliary fields.
This allows for states obeying different boundary condi-
tions on the horizon to be studied simultaneously. In addi-
tion, matter fields of every spin are treated in a unified
manner, since the auxiliary field equations do not depend
on the spin of the underlying quantum field. The stress
tensor depends on the spin of the fields only through the
known spin dependence of the two numerical coefficients
appearing in the anomaly in Eqs. (2.3) below. Finally, the
auxiliary field action and the stress tensor derived from it
can be evaluated in principle in any spacetime, dynamical
or not, without regard to special symmetries. Thus the
scalar effective action of the anomaly furnishes a general
classical algorithm for approximating the expectation

value of the full stress tensor of quantum matter of any
spin in an arbitrary curved spacetime.

The auxiliary fields are sensitive to macroscopic bound-
ary conditions and the presence of causal horizons, so it is
particularly interesting to apply the approximation algo-
rithm based on them to spacetimes with event horizons,
where quantum fluctuations are expected to play an im-
portant role, and comparison with existing numerical re-
sults is possible. Even when the quantum matter fields are
not strictly massless, their fluctuations and stress tensor in
the vicinity of an event horizon can exhibit conformal
behavior. In particular, quantum states with diverging
hTabi on the Schwarzschild horizon, for which the back-
reaction on the classical geometry is significant, have
precisely those diverging behaviors prescribed by the stress
tensor derived from the effective action of the anomaly [2].

In Ref. [6] a study of the stress tensor obtained from the
anomaly in Schwarzschild spacetime was undertaken. In
Ref. [2] the general form of the stress tensor due to the
conformal anomaly in an arbitrary spacetime was given
and applied to a few special cases, such as Schwarzschild
and de Sitter spacetimes. A detailed comparison of the two
studies is given in Sec. IV.

In the present article we extend and develop the classical
approximation technique of Ref. [2] for the quantum stress
tensor based on the trace anomaly to static, spherically
symmetric spacetimes, focusing specifically on electrically
charged Reissner-Nordström (RN) black hole spacetimes,
and states with regular stress tensors on the RN horizon.
Since direct computations of the renormalized stress tensor
expectation value hTabi have been carried out in both
Schwarzschild and Reissner-Nordström (RN) spacetimes
for free fields of various spin [8–18], we will be able to
compare the results of the new approximation scheme to
these direct computations of hTabi. Since the exact one-
loop effective action of quantum matter generally contains
terms which are not determined by the anomaly, using it to
compute the stress tensor expectation value is certainly an
approximation, which will differ from the direct evaluation
of hTabi in terms of mode sums in general. It is therefore a
nontrivial check of the approximation scheme if all of the
allowed behaviors of the traceless parts of the exact hTabi
on event horizons can be reproduced by the auxiliary field
method based on the trace anomaly.

Several approaches to approximating hTabi have been
discussed previously in the literature, developed with im-
portant special cases in mind, such as spherically symmet-
ric geometries with a timelike Killing field [16,19–25].
These approximations are quite successful for regular
states in the Schwarzschild geometry, but fail when com-
pared to the numerical results for hTabi in the charged RN
spacetimes. Specifically, the previous approximations in-
variably yield a renormalized hTabi which grows logarith-
mically without bound as the horizon of any charged RN
black hole is approached. For the case of an extreme
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Reissner-Nordström black hole there is an even stronger
linear divergence. On the other hand direct numerical
evaluation of hTabi in the Hartle-Hawking-Israel [26] ther-
mal state shows no evidence for any of these divergences
[16–18]. We review the previous approximation methods
and compare them both to the auxiliary field method and
the direct evaluations of hTabi in Sec. IV.

Our main purpose in this paper is to show that the
auxiliary field effective action and stress tensor determined
by the trace anomaly leads to a practical semianalytic
approximation technique which allows for a finite hTabi
on the event horizons of all electrically charged black
holes, including the extreme Reissner-Nordström (ERN)
case of Q � M. Although the stress tensor diverges on the
horizon for generic solutions of the auxiliary field equa-
tions, it is possible to adjust the homogeneous solutions of
these linear equations to remove the divergences. The ERN
case is particularly interesting, since its Hawking tempera-
ture vanishes and its degenerate horizon structure leads to
potentially more severely divergent terms in the stress
tensor. These leading divergent behaviors can be deter-
mined analytically by a power series expansion of the
auxiliary fields in the local vicinity of the horizon, and
explicitly cancelled, if desired.

The paper is organized as follows. In the next section we
review the effective action and stress tensor of the trace
anomaly in the auxiliary field form introduced in [2]. In
Sec. III, we apply the general approximation algorithm to
static, spherically symmetric spacetimes, reviewing briefly
the uncharged Schwarzschild case, and then extending the
analysis to the generic charged Q<M, RN cases, and the
ERN, Q � M case. We determine in each case the con-
ditions on the series expansion coefficients of the auxiliary
fields necessary for a regular hTabi on the horizon. In
Sec. IV we solve the regularity conditions and compare
them to previous analytic approximation schemes, and
direct numerical evaluations of hTabi. Section V contains
our conclusions, while the appendix catalogs the complete
list of solutions to the regularity conditions.

II. STRESS TENSOR FROM THE TRACE
ANOMALY

Classical fields satisfying wave equations with zero
mass, which are invariant under conformal transformations
of the spacetime metric, gab ! e2�gab have stress tensors
with zero classical trace, Taa � 0. Because the corre-
sponding quantum theory requires an ultraviolet (UV)
regulator, classical conformal invariance cannot be main-
tained at the quantum level. The trace of the stress tensor is
generally nonzero when @ � 0, and any UV regulator
which preserves the covariant conservation of Tab, a nec-
essary requirement of any theory respecting general coor-
dinate invariance, yields an expectation value of the
quantum stress tensor with a nonzero trace: hTaai � 0.
This conformal or trace anomaly is therefore a general

feature of quantum theory in gravitational fields, on the
same footing as the chiral anomaly in QCD responsible for
the experimentally measured decay of the �0 meson into
two photons [27].

In four spacetime dimensions the trace anomaly takes
the general form [1,28],

 hTaai � bF� b0
�
E�

2

3
�R

�
� b00�R�

X
i

�iHi: (2.1)

In Eq. (2.1) we employ the notation,

 E � �Rabcd
�Rabcd � RabcdR

abcd � 4RabR
ab � R2;

(2.2a)

and

 F � CabcdCabcd � RabcdRabcd � 2RabRab �
R2

3
: (2.2b)

with Rabcd the Riemann curvature tensor, �Rabcd �
1
2"abefR

ef
cd its dual, and Cabcd the Weyl conformal tensor.

The coefficients b, b0, and b00 are dimensionless parameters
proportional to @. Additional terms denoted by the sumP
i�iHi in (2.1) may also appear in the general form of the

trace anomaly, if the massless field in question couples to
additional long range gauge fields. Thus in the case of
massless fermions coupled to a background gauge field,
the invariant H � tr�FabF

ab� appears in (2.1) with a coef-
ficient � determined by the beta function of the relevant
gauge coupling [29].

The form of (2.1) and coefficients b and b0 do not depend
on the state in which the expectation value of the stress
tensor is computed. Instead they are determined only by
the number of massless fields and their spin via
 

b �
@

120�4��2
�NS � 6NF � 12NV�; (2.3a)

b0 � �
@

360�4��2
�NS � 11NF � 62NV�; (2.3b)

with NS the number of spin 0 fields, NF the number of
spin 1

2 Dirac fields, and NV the number of spin 1 fields [1].
Henceforth we shall set @ � 1, although it should be
remembered that any effect of the anomaly in which the
b, b0 and �i coefficients appear is a one-loop quantum
effect.

The trace anomaly determines the conformal variation
of the one-loop effective action of the matter fields in a
general curved background. A covariant, nonlocal form of
this effective action was first given in Ref. [3]. One con-
sequence of the effective action due to the anomaly is that
the scalar or conformal part of the metric becomes dynami-
cal, and its fluctuations provide a mechanism for the
screening of the cosmological vacuum energy [30–32].
The stress tensor, canonical quantization of the conformal
degree of freedom, and physical states of the quantum
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conformal factor in the absence of the Einstein-Hilbert
term were studied in Ref. [33].

That the nonlocal action of the anomaly could be ren-
dered local by the introduction of scalar auxiliary field(s),
was noted in Refs. [3–6]. Partial forms of the stress tensor
due to this effective action were given in [6,7,33], with the
authors of [6] initiating the study of the stress tensor
obtained from the effective action of the anomaly with
auxiliary fields as an approximation scheme in the Ricci

flat case of Schwarzschild spacetime. The general, com-
plete form of the stress tensor in terms of two auxiliary
fields in an arbitrary curved spacetime was given in [2].
This auxiliary field effective action is of the form,

 Sanom � b0S�E�anom	g;’
 � bS�F�anom	g;’; 
; (2.4)

with

 

S�E�anom	g;’
 �
1

2

Z
d4x

�������
�g
p

�
���’�2 � 2

�
Rab �

R
3
gab

�
�ra’��rb’� �

�
E�

2

3
�R

�
’
�
;

S�F�anom	g;’; 
 �
Z
d4x

�������
�g
p

�
���’��� � � 2

�
Rab �

R
3
gab

�
�ra’��rb � �

1

2
F’�

1

2

�
E�

2

3
�R

�
 
�
;

(2.5)

in terms of the two scalar auxiliary fields ’ and  , corresponding to the two nontrivial cocycles of the Weyl group in four
dimensions [7].

The effective action (2.4) and (2.5) is a spacetime scalar integral over local fields. Hence varying it with respect to the
metric yields two covariantly conserved stress tensors Eab and Fab, bilinear in the scalar auxiliary fields. Explicitly, these
are [2]

 

Eab � �2�r�a’��rb��’� � 2rc	�rc’��rarb’�
 �
2

3
rarb	�rc’��r

c’�
 �
2

3
Rab�rc’��r

c’� � 4Rc�a�rb�’��rc’�

�
2

3
R�ra’��rb’� �

1

6
gabf�3��’�2 ��	�rc’��rc’�
 � 2�3Rcd � Rgcd��rc’��rd’�g �

2

3
rarb�’

� 4Ca
c
b
drcrd’� 4Rc

�arb�rc’�
8

3
Rab�’�

4

3
Rrarb’�

2

3
�r�aR�rb�’

�
1

3
gabf2�2’� 6Rcdrcrd’� 4R�’� �rcR�rc’g; (2.6)

and
 

Fab � �2�r�a’��rb�� � � 2�r�a ��rb��’� � 2rc	�rc’��rarb � � �rc ��rarb’�
 �
4

3
rarb	�rc’��r

c �


�
4

3
Rab�rc’��rc � � 4Rc

�a	�rb�’��rc � � �rb� ��rc’�
 �
4

3
R�r�a’��rb� �

�
1

3
gabf�3��’��� � ��	�rc’��rc �
 � 2�3Rcd � Rgcd��rc’��rd �g � 4rcrd�C�a

c
b�
d’� � 2Ca

c
b
dRcd’

�
2

3
rarb� � 4Ca

c
b
drcrd � 4Rc

�a�rb�rc � �
8

3
Rab� �

4

3
Rrarb �

2

3
�r�aR�rb� 

�
1

3
gabf2�2 � 6Rcdrcrd � 4R� � �rcR��rc �g: (2.7)

These tensors have the local geometrical traces,
 

Eaa � 2�4’ � E�
2

3
�R; (2.8a)

Faa � 2�4 � F � CabcdC
abcd; (2.8b)

where the latter half of these two equations follows from
the independent Euler-Lagrange variation of (2.4) and (2.5)
with respect to the two auxiliary scalar degrees of freedom,
’ and  .

The fourth order scalar differential operator appearing in
these expressions is [2,3,33]

 �4 � �2 � 2Rabrarb �
2

3
R��

1

3
�raR�ra

� ra

�
rarb � 2Rab �

2

3
Rgab

�
rb: (2.9)

By solving the fourth order linear Eqs. (2.8) determined by
this �4 for the two auxiliary fields, ’ and  , and substitut-
ing the results into the stress tensors (2.6) and (2.7) we
obtain a general approximation algorithm for hT��i for
conformal matter fields of any spin in an arbitrary curved
spacetime. That is,
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 hT��i ’ T��	’; 
 � b0E�� � bF��: (2.10)

is an approximation to the exact stress tensor expectation
value. Since the dependence of the stress tensor T��	’; 

on the spin of the underlying quantum matter fields arises
purely through the numerical coefficients b and b0 through
(2.3), and �i, there are no new equations to be solved for
quantum fields of different spin.

The freedom to add homogeneous solutions of (2.8) to
any given inhomogeneous solution allows the tracefree
components of the stress tensor (2.10) to be changed
without altering its trace. This corresponds to the freedom
to change the boundary conditions and the state of the
underlying quantum field theory without changing its state
independent trace anomaly. As shown in [2] the auxiliary
fields and traceless terms in the stress tensor (2.10) gen-
erally diverge on event horizons, which provides a coor-
dinate invariant meaning to large quantum backreaction
effects on horizons. These state-dependent divergences can
be analyzed and removed by specifying boundary condi-
tions for the auxiliary fields on the horizon. One then has an
approximation scheme for the expectation value hT��i in
regular states as well.

In order to characterize the nature of the approximation
(2.10), we recall the general decomposition of the exact
quantum effective action into three parts,

 Sexact � Slocal � Sinv � Sanom; (2.11)

according to its transformation properties under global
Weyl transformations [7]. The local action Slocal can be
expressed purely in terms of local contractions of the
Riemann curvature tensor and its derivatives. In addition
to the classical Einstein-Hilbert action Slocal consists of an
infinite series of higher dimension curvature invariants
multiplied by increasing powers of an inverse mass scale.
These terms, consistent with a general effective field theory
analysis of gravity, give higher order geometric contribu-
tions to the stress tensor, which remain bounded and small
for small curvatures. The two remaining terms in (2.11) are
generally nonlocal. Any nonlocal terms involving a non-
zero fixed mass parameter can be expanded in a series of
higher derivative local terms multiplied by powers of the
inverse mass and regrouped into Slocal. Hence we need
consider only those nonlocal terms which are not associ-
ated with any fixed mass or length scale in the remaining
terms of Sexact. These must be either strictly Weyl invariant,
denoted by Sinv in (2.11), or break local Weyl invariance,
yet without introducing any explicit mass or length scale.
Up to possible surface terms, these are just the geometric
terms required by the trace anomaly (2.1). The associated
terms in Sanom scale logarithmically with distance or en-
ergy, and are composed of the two distinct cocycles of the
Weyl group, given by (2.4).

When the background spacetime is conformally flat or
approximately so, the Weyl invariant action Sinv may be
neglected, since it vanishes in the conformally related flat

spacetime, in the usual Poincaré invariant vacuum state. In
that case we expect Sanom to become a good approximation
to the nonlocal terms in the exact effective action (2.11),
and the corresponding stress tensor (2.10) to become a
good approximation to the exact quantum stress tensor,
up to well-known local terms. Thus the approximation
(2.10) amounts to the neglect of Sinv, or more precisely,
those parts of Sinv which cannot be expressed in terms of
local terms or parametrized by homogeneous solutions to
the auxiliary field Eqs. (2.8).

Because of the conformal behavior of fields near an
event horizon, where the effects of mass terms become
subdominant, one might expect the leading behavior of the
stress tensor (2.10) also to match that of the exact hTabi in
the vicinity of the horizon. In [2] we tested this hypothesis
in Schwarzschild and de Sitter spacetimes, finding that the
freedom to choose homogeneous solutions to the auxiliary
field equations (2.8) allows for all possible allowed behav-
iors of the exact stress tensor near the horizon. Indeed for
states with diverging stress tensor on the horizon, the
anomalous stress tensor (2.10) gives the correct leading
and subleading behaviors of the exact hTabi.

When attention is restricted to states with regular be-
havior on the horizon, which from the point of view of
conformal invariance are subleading with respect to the
divergent terms, then the stress tensor (2.10) can often be
adjusted to give the exact finite value of hTabi on the
horizon as well. However, the global fit of (2.10) is in
only fair quantitative agreement with the numerically com-
puted expectation value hTabi far from the horizon for the
Hartle-Hawking-Israel state in Schwarzschild spacetime.
In regular states the neglected terms in Sexact, which remain
bounded at the horizon, are comparable in magnitude to
subleading terms of Sanom. Hence neglect of Sinv is ex-
pected to yield a poorer global approximation to the stress
tensor of such regular states even when it is possible to
match the exact behavior of hTabi at the horizon.

The Schwarzschild and de Sitter cases considered in [2]
are special in that the auxiliary field Eqs. (2.8) may be
solved analytically. However, the approximation (2.10)
does not require this, and in the following we extend the
auxiliary field method to general static, spherically sym-
metric geometries, focusing specifically on the RN family
of charged black holes. These black hole spacetimes pro-
vide an interesting test bed for the auxiliary field stress
tensor, whose qualitative and quantitative features may be
compared with both previous approximation methods and
direct numerical evaluation of hTabi.

III. REGULAR STRESS TENSORS IN REISSNER-
NORDSTRÖM SPACETIMES

The effective action and stress tensor of the auxiliary
fields (2.10) is defined in any spacetime, regardless of
special symmetries. However it becomes particularly sim-
ple as a method of approximating the expectation value of
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the quantum stress tensor in spacetimes with a high degree
of symmetry, such as spherical symmetry. The line element
for a general static, spherically symmetric spacetime can
be expressed in terms of two functions of the radius in the
form,

 ds2 � �f�r�dt2 �
dr2

h�r�
� r2d�2: (3.1)

Assuming that the state in which we evaluate the stress
tensor is also spherically symmetric and stationary in time,
we may make a static, spherically symmetric ansatz for the
auxiliary fields as well, i.e.
 

’ � ’�r� (3.2a)

 �  �r�; (3.2b)

so that Eqs. (2.8) become ordinary differential equations in
r. In some cases it is possible also to add terms with linear
time dependence to the auxiliary fields, i.e. ’ � ’�r� � �t
and  �  �r� � �0t in order to allow for the possibility of
nonvanishing Trt flux components which are also indepen-
dent of the Killing time t. Higher powers of t or more
complicated time dependence in the auxiliary fields lead to
nonstationary stress tensors.

For a general static, spherically symmetric spacetime,
with the fields in a spherically symmetric quantum state,
the stress tensor is given by its three independent diagonal
components,

 Ttt � ���r� (3.3)

 Trr � p�r� (3.4)

 T�� � p?�r�; (3.5)

together with a possible nonzero off-diagonal flux compo-
nent Trt. These components obey the covariant conserva-
tion conditions,

 raT
a
r �

dp
dr
�

1

2f
df
dr
�p� �� �

2

r
�p� p?� � 0 (3.6)

and

 raTat �
1�������
�g
p

d
dr
�
�������
�g
p

Trt� � 0: (3.7)

Equation (3.7) can be integrated immediately to obtain

 Trt � �
L

4�r2

���
h
f

s
; (3.8)

with the integration constant L the luminosity of a local-
ized source.

The approximation of (2.10) can be applied to arbitrary
spacetimes, spherically symmetric or not, with or without
an horizon. For definiteness we restrict our attention in this
paper to the family of Reissner-Nordström spacetimes with
the equal metric functions,

 f�r� � h�r� � 1�
2M
r
�
Q2

r2 ; (3.9)

depending uponM, the mass andQ, the electric charge. We
then can distinguish three cases:

(i) Q � 0, Schwarzschild spacetime;
(ii) 0<Q<M, generic Reissner-Nordström (RN)

spacetime;
(iii) Q � M, extreme Reissner-Nordström (ERN)

spacetime.

We shall discuss each of these cases in detail separately.
Since (3.9) is quadratic in 1=r there are two values of r at

which f�r� vanishes. These are

 r� � M�
�������������������
M2 �Q2

q
: (3.10)

When Q � 0, r� � 2M is the usual Schwarzschild hori-
zon. In the ERN case of Q � M, the two values r�
coincide and the horizon becomes degenerate. The char-
acter of the spacetime, the solutions to the auxiliary field
equations and the corresponding stress tensors derived
from them are quite different in each of the three cases.
Henceforth we reserve the designation RN for the generic,
charged black hole solution of case (ii).

For conformal field theories, the trace of the stress tensor
is given purely by the trace anomaly. This provides us with
another relation for the diagonal components of the tensor,
namely

 Taa � ��� p� 2p? � b0E� bF: (3.11)

Furthermore, defining

 ��r� � p? �
Taa
4
; (3.12)

and integrating (3.6) with (3.11) gives [34]
 

p�r� �
1

r2f

Z r

r�
dr�2rf� r2f0���

1

4r2f

Z r

r�
dr
d�r2f�
dr

Taa

�
C�L

4�r2f
; (3.13)

where C� L denotes an overall constant of integration.
From Eq. (3.8) with h�r� � f�r�, the off-diagonal flux
component is

 Trt � �
L

4�r2 : (3.14)

The only unknown function in these expressions is ��r�.
Thus it is sufficient to compute ��r� and determine the
integration constantsC and L from the auxiliary field stress
tensor to determine subsequently all the nonzero compo-
nents of the stress tensor, p�r�, p?�r�, ��r�, and Trt in a
stationary state in static coordinates (3.1) from Eqs. (3.11),
(3.12), (3.13), and (3.14) respectively.

Since the curvature invariants in the trace (3.11) remain
finite as the horizon at r � r� is approached, it is clear
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from (3.12) that p? is finite on the horizon, provided ��r�
remains finite there. Moreover if f�r� possesses an isolated
simple zero at r � r�, vanishing linearly in1

 s � �r� r��=r� (3.15)

as r! r�, so that the event horizon is nondegenerate, then
(3.13) shows that a divergent term in the other components
of the stationary stress tensor can arise only if C� L � 0.
Hence ��r� remaining finite as r! r�, and C � L, are
necessary and sufficient conditions for finiteness of all
components of hTabi in the static Killing frame of (3.1)
for the nondegenerate Reissner-Nordström horizons (0 �
Q<M).

On the other hand if one requires finiteness of the stress
tensor in the frame of a freely falling observer then [34]

 

jTuuj

f2
�

1

4f2

����������� p�f� L

2�r2

��������<1: (3.16)

If ��r� is regular at r � r� and can be expanded in a
Taylor series in s near s � 0, then it is easy to see that
the condition (3.16) is satisfied automatically if C � 0. In
the case of the past horizon one should demand finiteness
of jTvvj=f2 instead of (3.16). This forces the integration
constant to be C � 2L instead. Thus regularity on both the
past and future horizon requires ��r��<1 and C � L �
0. This is the only case for which finiteness of Tab in both
the static Killing frame (3.1) and the frame of freely falling
observers (3.16) can be maintained. In particular, although
��r�� finite and C � 0 are sufficient to guarantee that
(3.16) is satisfied, any L � 0 leads to divergent behavior
of p�r� and hence ��r� from (3.13). Although the auxiliary
field method allows for L � 0, we shall focus in this paper
on stationary states with completely finite stress tensors,
for which C � L � 0. In this case the regularity condition
(3.16) is equivalent to the condition,

 jTuuj �
1

f
j�� pj<1; C � L � 0: (3.17)

In some cases, i.e. those with logarithmic terms in the
auxiliary fields, ��r� is not analytic at r � r� and cannot
be expanded in a Taylor series there. In those cases, the
finiteness condition (3.16) will give additional conditions
on the behavior of the auxiliary fields on the horizon.
Equation (3.17) also shows that finiteness of Tuu on the
horizon requires Trr � p � �� � Ttt there.

Before restricting our attention to the static, completely
regular class of stress tensors, let us emphasize that this is
not the generic case, as a different choice of the free
integration constants C and L would lead to different
physical behavior on the horizon. It is well known that
the coordinate singularity of the metric (3.1) at the horizon
r � r� where f � h vanishes may be removed by a (sin-

gular) coordinate transformation, producing the complex
analytic extension of the Reissner-Nordström geometry
[35]. Although any regular transformation of coordinates
is allowed by the equivalence principle, and cannot lead to
physical effects, singular coordinate transformations, like
singular gauge transformations in gauge theory, must be
treated with some care. New topological configurations
such as monopoles or vortices are associated with such
singular gauge transformations. Thus, although the com-
plex analytic extension of a black hole spacetime may
seem quite natural mathematically, analytic continuation
actually involves a physical assumption, namely, that there
are no stress tensor sources to the Einstein equations
localized on or near the horizon. Because of the hyperbolic
nature of Einstein’s equations such stress sources with
effects transmitted along a null surface are perfectly allow-
able, even classically. When the expectation value of the
stress tensor of quantum fields is considered, with its
sensitivity to the wavelike, nonlocal coherence effects of
quantum matter, the assumption of analyticity on the hori-
zon is not at all automatic, and is not required by any
general principles of quantum theory.

The effective action of the conformal anomaly, and its
associated auxiliary fields indicate that nonregularity of the
stress tensor on the horizon is to be expected in the generic
case as well [2]. A tuning of the integration constants of the
solutions of the linear equations (2.8) for ’ and  is
necessary to prevent ��r� from diverging as r! r�,
with the generic behavior of all the stress tensor compo-
nents near the horizon being proportional to f�2 as f ! 0
in the Schwarzschild case. Since the auxiliary fields are
spacetime scalars, it is clear that this behavior is in no
contradiction to the equivalence principle. In fact, the
divergences have a perfectly coordinate invariant origin
in terms of the homogeneous solutions to Eqs. (2.8),

 ’h �  h � ln��KaKa� � lnf�r� (3.18)

where K � @
@t is the Killing field of the static

Schwarzschild or Reissner-Nordström geometries, time-
like for r > r�. This defines the rest frame of the configu-
ration, which is independent of coordinate redefinitions.
The allowed divergences in the stress tensor on the horizon
as f�r� ! 0 and ’,  ! �1 are related therefore to the
behavior of this Killing invariant of the global geometry
becoming null. The state of the quantum matter fields,
specified on a complete Cauchy surface of the spacetime
is necessarily defined in a nonlocal way, and hence expec-
tation values of Tab can be sensitive to the divergences of
(3.18) at this null surface, notwithstanding the finiteness of
the local Riemann curvature at r � r�.

By choosing suitably restricted solutions of the auxiliary
field equations (2.8) it is possible to cancel the lnf behavior
in ’ and  , thereby guaranteeing that ��r�� is finite.
When the electric charge satisfies 0<Q<M, i.e. exclud-
ing the uncharged Schwarzschild and maximally charged

1Note that this is a slightly different definition of s than used in
Refs. [17,18] where s � �r� r��=M.
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ERN cases, the stress tensor will have subleading lns and
ln2s divergences as s! 0 as well. Then ��r� is not ex-
pandable as a Taylor series around r � r� and the loga-
rithmic terms do not drop out entirely from the condition
(3.16). This leads to additional conditions on the coeffi-
cients of the expansion around s � 0 for a fully regular
stress tensor.

A. Schwarzschild spacetime

In the Schwarzschild case, f�r� � 1� 2M=r, and the
fourth order linear Eqs. (2.8) can be integrated explicitly
for auxiliary fields which are functions only of r. The result
is [2,6]

 

d’
dr

��������S
�
q� 2

6M

�
r

2M
� 1�

2M
r

�
ln
�
1�

2M
r

�
�
q
6r

�
4M

r� 2M
ln
�
r

2M

�
�

r
2M
� 3

�
�

1

3M
�

1

r

�
2McH

r�r� 2M�
�
c1
2M

�
r

2M
� 1�

2M
r

�
(3.19)

in terms of the three dimensionless constants of integration, cH, c1, and q. A fourth integration constant would be
introduced by integrating (3.19) once further, but as the stress tensor in the Schwarzschild case depends only upon
derivatives of ’, a constant shift in ’ plays no role in this case.

The role of the three integration constants appearing in (3.19) is best exposed by examining the limits,2

 

d’
dr

��������S
!

cH
r� 2M

�
q� 2

2M
ln
�
r

2M
� 1

�
�

1

2M

�
3c1 � cH � q�

5

3

�
� . . . ; r! 2M; (3.20a)

d’
dr

��������S
!

c1r

4M2 �
2c1 � q

4M
�
c1
r
�

2M

3r2 q ln
�
r

2M

�
�

2M

r2

�
cH �

7

18
�q� 2�

�
� . . . ; r! 1: (3.20b)

Hence cH controls the leading behavior as r approaches the
horizon, corresponding to the homogeneous solution of
(3.18). It is this leading behavior that gives rise to the
generic f�2 behavior of the stress tensor as r! r�. The
second integration constant c1 controls the leading behav-
ior of ’�r� as r! 1, which is the same as in flat space.
Nonzero values of c1 correspond to nontrivial boundary
conditions at some large but finite volume, such as may be
appropriate in the Casimir effect, or if the black hole is
enclosed in a box. The constant q is the topological charge
of the auxiliary field configuration, associated with the
conserved current generated by the Noether symmetry of
the effective action (2.4),  !  � const [2]. It is respon-
sible for the lnr terms in (3.20b) and the corresponding
stress tensor (2.6).

To the general spherically symmetric static solution
(3.19) we may add also a term linear in t, i.e. we may
replace ’�r� by

 ’�r; t� � ’�r� �
	

2M
t; (3.21)

with 	 an additional free constant of integration. Linear
time dependence in the auxiliary fields is the only allowed
time dependence that leads to a time-independent
stress energy, and this only in the Ricci flat
Schwarzschild case. The solution for  �  �r; t� is of the
same form as (3.19) and (3.21) with four new integration
constants, dH, d1, q0 and 	0 replacing cH, c1, q, and 	 in
’�r; t�. Adding terms with any higher powers of t or more
complicated t dependence produces a time dependent
stress-energy tensor.

The stress energy diverges on the horizon in an entire
family of states for generic values of the eight auxiliary
field parameters �cH; q; c1; 	; dH; q0; d1; 	0�. Hence in the
general allowed parameter space of spherically symmetric
macroscopic states, horizon divergences of the
stress energy are quite generic, and not restricted to the
Boulware state [36]. In addition to the leading s�2 behav-
ior, there are subleading s�1, ln2s and lns divergences in
general. It turns out that only three of these four are
independent, and the three conditions,

 

� �b0cH � 2bdH�cH � 	�b0	� 2b	0� � 0 �s�2 in �� (3.22a)

�q� 2�	b0�q� 2� � 2b�q0 � 2�
 � 0 �ln2s in �� (3.22b)

b	�q� 2��18d1 � 30dH � 40� � �q0 � 2��18c1 � 30cH � 40�
 � b0�q� 2��18c1 � 30cH � 40� � 0

�lns in �� (3.22c)

2The last term of Eq. (3.20a) corrects a sign error in Eq. 5.9a of Ref. [2].

PAUL R. ANDERSON, EMIL MOTTOLA, AND RUSLAN VAULIN PHYSICAL REVIEW D 76, 124028 (2007)

124028-8



are all that are required to remove the divergent behaviors
in �, indicated in parentheses as s! 0, including a pos-
sible s�1 divergence at the horizon. The first of these
conditions, (3.22a) corrects a sign error in Eq. (5.14b) of
Ref. [2] (where the notations p, p0 were used in place of the
present 	, 	0 for the parameters of the linear time depen-
dent terms in ’,  respectively). The last two conditions of
(3.22) remove the leading logarithmic behavior of ��r� at
the horizon.

The luminosity in the general stationary state described
by the auxiliary fields is

 L �
�

M2 	b
0q	� b�q	0 � q0	�
: (3.23)

This shows that if we wish to obtain a state with L � 0 then
one or both of the linear time dependences of the auxiliary
fields 	, 	0 must be nonzero.

The regularity condition (3.16) gives in addition,

 

b
�
2� q0

3
� 2cH � 2dH

�
� b0

�
2� q

3
� 2cH

�
� b0q	� b�q	0 � q0	� �C � 0� (3.24a)

b	cH�q
0 � 2� � dH�q� 2�
 � b0cH�q� 2� � 0

�
lns in

Tuu
f2

�
(3.24b)

The first of these two conditions is also equivalent to the
condition that a possible s�2 leading behavior in Tuu=f2

vanish. Notice that the right-hand side of this condition is
proportional to L from (3.23). The second condition
(3.24b) eliminates a possible subleading logarithmic diver-
gence in Tuu=f2 on the horizon. With (3.22) and (3.24)
satisfied there is no additional condition required for a
possible ln2s term in Tuu=f2 to vanish on the horizon as
well.

If we restrict out interest to strictly static, regular states
with C � L � 0 in (3.13) and (3.14), then (3.23) and hence
(3.24a) vanishes. Also inspection of (3.24b) shows that the
choice q � q0 � 2 satisfies this condition as well as
(3.22b) and (3.22c). This illustrates the general property
that when all logarithmic terms are taken to vanish on the
horizon, the conditions that ��r�� be finite andC � L � 0
are sufficient to yield a fully regular static stress tensor, and
the number of independent conditions is reduced.

B. Generic charged RN spacetimes

The generic Q> 0 charged Reissner-Nordström space-
times are not Ricci flat and an analytic solution of the
fourth order Eqs. (2.8) in closed form no longer appears
possible. In addition, another difference from the
Schwarzschild case, stemming from the same nonvanish-
ing of the Ricci tensor when Q> 0, is that the linear time
dependence (3.21) in the auxiliary field ’ now produces
time dependence in the stress tensor (2.7), and hence is
disallowed for a static state. Linear time dependence in  is
still allowed, and parametrizes a nonzero flux, L � 0. For
strictly static states with L � 0 we must set 	 � 	0 � 0.
Hence we apparently have one fewer integration constant
than in the Schwarzschild case. However, the non-Ricci
flatness means also that a possible constant term in ’
which drops out of the stress tensor (2.10) in the case
Rab � 0 now survives as a nontrivial free parameter in
the general RN case. Hence we have seven remaining
integration constants in all for completely regular static
stress tensors in the charged RN case, exactly the same

number as in the Schwarzschild case after (3.23) is set to
zero.

Since the fourth order differential operator, �4 involves
a total derivative, cf. Eq. (2.9), Eqs. (2.8) can be integrated
once, to obtain the second order equation for ’0�r�,

 fr2 d
dr

�
1

r2

d
dr
�fr2’0�

�
� 2Q2 f

r2 ’
0 � e0 �

1

2

Z r

r�
r2drE;

(3.25)

where e0 is an integration constant. Here we have used the
facts that

 Rrr � �
Q2

r4 (3.26)

and R � 0 in a general RN spacetime.
A power series representation of the general solution of

the second order Eq. (3.25) for ’0 in powers of s � �r�
r��=r� is easily derived. Since the right side of (3.25) is
regular at s � 0, it can be expressed as a Taylor series in
the form,

 e0 �
1

2

Z r

r�
r2drE �

X
n�0

ens
n: (3.27)

To find the leading behavior of ’0 near s � 0 let ’0 � s


for some 
, and thereby obtain from (3.25) and (3.27),
 

�2
�
� 1�s
 � 2��1� ��
�
� 2�s
�1

� f
�
� 3��1� 4�� � �2�3
2 � 9
� 2�gs
�2

�O�s
�3� �
X
n�0

ensn; (3.28)

where

 � �
r� � r�
r�

�
2
�������������������
M2 �Q2

p
M�

�������������������
M2 �Q2

p (3.29)

in the general case. From (3.28) we observe that 
 � �1
gives the most singular behavior allowed for ’0 as s! 0
for general e0 � 0, and r� > r�. Note that ’0 � s�1
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agrees also with the leading behavior in (3.20a) for the
exact solution in the uncharged Schwarzschild case.

Because the singular s�1 behavior is allowed for ’0 for
all 0 � Q<M, ’ has at most logarithmically singular
behavior near the RN horizon, and its general series ex-
pansion is of the form,

 ’�r� �
X
n�0

ans
n �

X
n�0

‘ns
n lns: (3.30)

Note that the general logarithmic behavior near s � 0 is
that expected from (3.18) on geometrical grounds, since
e�’h with ’h � lnf is proportional to the conformal trans-
formation needed to bring the RN metric to the ultrastatic
optical metric, and remove the singularity caused by the
Killing field changing character from timelike to null.

Substitution of the expansion (3.30) into the differential
Eq. (3.25) gives recursion relations for the coefficients
fan; ‘ng. The set of four coefficients, �a0; a1; ‘0; ‘1� are
free integration constants for ’, parametrizing the general
solution of the fourth order equation, with all higher
order an>1 and bn>1 determined by the recursion relations
in terms of these four integration constants. In the
Schwarzschild limit, ‘0 ! cH, ‘1 ! q� 2, a1 ! 3c1 �
2q� cH �

1
3 respectively. The constant e0 is also deter-

mined in terms of ‘0 and � by (3.25) or (3.28) to be

 e0 � �2�‘0
Q2

r2
�

� �2��1� ��‘0: (3.31)

In like manner substitution of the series expansion,

  �r� �
X
n�0

cnsn �
X
n�0

�nsn lns; (3.32)

into the equation for  shows that �c0; c1; �0; �1� are the
four free integration constants parametrizing the general
solution of (2.8b). However, since a constant shift in  is an

exact symmetry of the action (2.4), c0 does not appear in
the stress tensor (2.10), and we are left with the seven
effective free integration constants, �a0; a1; ‘0; ‘1;
c1; �0; �1� in total.

The general form of the divergences of the anomalous
stress tensor at the RN event horizon may be found from
the power series expansions of the auxiliary fields there. In
the T�� component there are s�2, s�1, ln2s and lns diver-
gences. The leading s�2 behavior in all components of Tab
in coordinates (3.1) may be understood from the approxi-
mate conformal symmetry which applies near the horizon
and the conformal weight of the stress tensor. Namely,
since the near horizon geometry is conformally flat, with
e�’h�t=r� the conformal transformation to locally flat
space, distances scale like e�’h=2� � f1=2, while energies
scale like f��1=2�, and energy densities like f�2 � s�2 near
the nondegenerate RN event horizon.

Requiring the coefficients of the leading s�2 and sub-
leading ln2s and lns possible divergences in � to be zero
gives three conditions on the integration constants of the
auxiliary fields, just as in the Schwarzschild case, (3.22). A
possible s�1 divergence in � turns out to be linearly
dependent on the first three, and is canceled automatically
when these three conditions are imposed. Again as in the
Schwarzschild case with L � 0 there remains a possible
s�1 divergence in p and � unless C � 0. Setting C � 0
also removes a possible leading s�2 behavior in Tuu. A fifth
and final condition comes from the necessity of canceling
the lns divergence in the freely falling frame, Tuu of (3.17).
A possible ln2s term in Tuu drops out after we have
satisfied the first three conditions for finiteness of ��r��,
and gives no further condition. Hence we end up finally
with five algebraic relations on the seven constants of
integration for a completely regular static stress tensor in
the general RN case, viz.,

 

‘0�b0‘0 � 2b�0� � 0 �s�2 in �� (3.33a)

‘1�b
0‘1 � 2b�1� � 0 �ln2s in �� (3.33b)

�b0‘1 � b�1�	3� ��a1 � ‘1� � 2�3�� 1�‘0
 � b‘1	3�� ��c1 � �1� � 2�3�� 1��0
 � 0 �lns in �� (3.33c)

b�6�‘0 � 6�0 � 4�‘1�0 � 4�‘0�1 � ��1� � b0�6‘0 � �‘1 � 4�‘0‘1� � 0 �C � 0� (3.33d)

b	18��1� ��‘0 � 9���� 1�‘1 � 3�1� 4�� 3�2��1 � �3� 12�� 20�2��‘1�0 � ‘0�1�


� b0	3�1� 4�� 3�2�‘1 � �3� 12�� 20�2�‘1‘0
 � 0 �lns in Tuu� (3.33e)

where � is given by (3.29). The solutions of these condi-
tions will be discussed in the next section.

C. ERN spacetime

When Q � M, r� � r� � M, the horizon becomes
degenerate, and the RN metric function f�r� goes to zero
quadratically as r! r�, (s! 0). This quite different be-
havior of the spacetime near the horizon is reflected also in

the behavior of the conformal differential operator �4 and
its solutions. Referring back to (3.28) we observe that when
� � 0 the first two terms vanish identically, and the coef-
ficient of the s
�2 term becomes the leading one, with
coefficient 
�
� 3�. Thus the more singular behavior 
 �
�3 is allowed by (3.28), and the structure of the divergent
terms in the solutions to the auxiliary field equations and
stress tensor (2.10) becomes quite different in the ERN
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limit. For this reason the number of conditions necessary
for the stress tensor (2.10) to remain finite increases, and
the regularity conditions become more stringent.

Because of the s�3 leading behavior allowed by (3.25)
for ’0 and  0, the power series expansions of the auxiliary
fields in the ERN case are of the form,

 

’ �
X
n��2

ansn �
X
n�0

‘nsn lns (3.34a)

 �
X
n��2

cns
n �

X
n�0

�ns
n lns (3.34b)

instead of (3.30) and (3.32). Substitution of these series into
the differential equations for ’ and  shows that
�a�2; a�1; a0; a1� and �c�2; c�1; c0; c1� are eight free inte-
gration constants, with c0 again playing no role. As in the
previousQ<M case, although ’must be strictly static for
a time-independent stress tensor, we could allow for non-
zero flux by allowing for a nonvanishing linear time de-
pendence 	0 in  . Restricting to static states with L � 0

requires 	0 � 0. The logarithmic terms and all the other
coefficients are related to the set of seven remaining co-
efficients �a�2; a�1; a0; a1; c�2; c�1; c1� by recursion rela-
tions. Hence we have again the same number of free
parameters as in the previous two cases with Q<M.
However, since the leading behaviors of ’ and  are
now s�2 as s! 0, the stress tensor (2.10) generally yields
a � with s�4, s�3, s�2, s�1, s�1 lns, ln2s and lns divergent
terms. Hence the requirements of a completely regular
static stress tensor are more restrictive in the ERN case
compared to the previous two cases. The leading s�4

behavior again can be understood from the conformal
weight of the stress tensor under conformal transforma-
tions near the horizon, since f�2 � s�4 in the ERN case.

It turns out that the conditions for removing the leading
and all subleading divergent behaviors in the auxiliary field
Tab are not independent, and only four independent con-
ditions on the integration constants are sufficient. We can
choose these four to be:

 

a�2�2bc�2 � b
0a�2� � 0 �s�4 in �� (3.35a)

b��10a�2c�2 � a�2c�1 � a�1c�2� � b
0��5a2

�2 � a�2a�1� � 0 �s�3 in �� (3.35b)

b	3c�1 � 2a�2�9� 3c1 � 4c�1 � 64c�2� � c�2�36� 6a1 � 8a�1�


� b0	3a�1 � a�2�36� 8a�1 � 6a1 � 64a�2�
 � 0 �s�1 in �� (3.35c)

a�1�2bc�1 � b
0a�1� � 0 �lns in �; C � 0� (3.35d)

In particular the last of these conditions removes all logarithmically divergent terms from �, and automatically sets C � 0
at the same time.

The requirement (3.17) that Tuu be finite with L � 0 gives two additional conditions, viz.,

 

b��15� 15a�1 � 96a�2 � 13c�1 � 104c�2� � b
0�13a�1 � 104a�2� � 0 �s�1 in Tuu� (3.36a)

b	a�2�486� 32c�1� � a�1�3c1 � 72� 8c�1 � 32c�2� � 27� 3c�1�a1 � 10� � 288c�2


� b0	4a2
�1 � 288a�2 � a�1�30� 3a1 � 32a�2�
 � 0 �lns in Tuu�: (3.36b)

Hence we have six apparently independent conditions on
the seven active integration constants of the auxiliary fields
in order to obtain a fully finite stress tensor from the trace
anomaly in the ERN case. We shall find that in fact all six
conditions can be satisfied with the choice of only five
independent constants. Thus, despite the discontinuously
singular behavior of the geometry as Q! M, the more
singular behavior of the auxiliary fields in this limit, and
the greater restrictiveness of the finiteness conditions
(3.35) and (3.36) compared to (3.33), it is still possible
for the approximation algorithm for the stress tensor based
on the anomalous effective action (2.4) to yield a fully
finite stress tensor on the ERN horizon. This is qualita-
tively different from all previous approximation schemes.

IV. COMPARISON WITH PREVIOUS
APPROXIMATIONS AND NUMERICAL RESULTS

Since the method of computing the stress tensor from the
anomaly action with the use of auxiliary fields is relatively
new, it is interesting to compare it to previous approxima-
tion methods, as well as direct numerical evaluations of the
renormalized hTabi whenever the latter are available. An
analytic approximation to hTabi for thermal states of con-
formal fields in nonconformally flat static spacetimes was
derived by Page [19], Brown and Ottewill [20], and Brown,
Ottewill and Page [21]. This approximation is based upon
the semiclassical approximation to the proper time heat
kernel [37], and the properties of the exact one-loop effec-
tive action under the conformal transformation,
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 gab � e2!~gab: (4.1)

For a classical conformal field the dependence of the exact
effective action upon ! is determined completely by the
trace anomaly in the form,

 Sexact	g
 � Sexact	~g
 � bA	!; g
 � b0B	!; g
; (4.2)

where A	!; g
 and B	!; g
 are known (nonlinear) func-
tionals of ! and gab which are given in [20,21]. If the
conformal transformation e2! is chosen to be f�r�, for the
static, spherically symmetric line element (3.1), then the
conformally transformed metric ~gab becomes the ultra-
static, optical metric, for which ~gtt � �1. If, in addition,
the original physical metric gab is that of a static Einstein
space (i.e. one for which Rab � �gab), then the invariants
appearing in the anomaly,
 

2�������
�g
p gab


A

gab

�

�
F�

2

3
�R

�
g�~g
� 0; (4.3a)

2�������
�g
p gab


B

gab

� Ejg�~g � 0; (4.3b)

vanish for the conformally related ultrastatic metric ~gab,
and the A and B terms in (4.2) reproduce the correct trace
for the physical metric gab. Thus, with this choice of! it is
consistent simply to neglect Sexact	~g
 in (4.2), and approxi-
mate the full hTabi by the terms coming from A	!; g
 and
B	!; g
 which are known analytically.

Because it is also based on the form of the trace anom-
aly, the Page-Brown-Ottewill (PBO) approximation is re-
lated to the approximation scheme based on the auxiliary
field effective action of the anomaly (2.10). Indeed, by
making use of the conformal transformation property,

 

�������
�~g

p
~R2 �

�������
�g
p

	R� 6��!� gab@a!@b!�
2 (4.4)

it is not difficult to show that
 

bA	!; g
 � b0B	!; g


� ��WZ	g;�!
 �
�b� b0�

18

Z
d4x�

�������
�~g

p
~R2 �

�������
�g
p

R2�;

(4.5)

where

 �WZ	g;�!
 � Sanom	g
 � Sanom	~g � e�2!g
 (4.6)

is the Wess-Zumino effective action for the anomaly ob-
tained in [2,7]. Since �WZ is a quadratic functional of !,
the relation (4.5) shows that the complicated cubic and
quartic terms of the PBO effective action are simply the
result of adding an R2 term to �WZ, with a corresponding
b00�R term in the trace anomaly (2.1). The PBO effective
action WPBO	g
 is related then to the anomaly effective
action Sanom of (2.4) by

 

WPBO	g
 � WPBO	~g


�
�b� b0�

18

Z
d4x

�������
�~g

p
~R2 � Sanom	~g


� Sanom	g
 �
�b� b0�

18

Z
d4x

�������
�g
p

R2: (4.7)

This is consistent with the decomposition (2.11), in which
all terms that depend only upon ~gab are viewed as invariant
under the local Weyl transformation (4.1). Because of the
different linear combination of invariants in (4.3) from the
b and b0 terms in (2.1), the PBO conformal transformation
is given by an ! which satisfies

 4�4! � E� F�
2

3
�R; (4.8)

and therefore corresponds to a particular linear combina-
tion (i.e. ’�  ) of the auxiliary fields, with a particular
choice of homogeneous solution.

Although the PBO approximation is related to the one
based on Sanom, there are two important differences. First,
in the PBO approximation the conformal transformation
e2! to the ultrastatic metric is fixed up to a linearly time
dependent term in!, by the requirement that the invariants
in (4.3) vanish in the conformally transformed spacetime.
Hence it contains only one free parameter, namely, the
coefficient of linear time dependence free in !, which is
far fewer than the seven integration constants correspond-
ing to the freedom to adjust the state-dependent and Weyl
invariant part of the effective action in the auxiliary field
method. Second, and even more importantly, the invariants
in (4.3) vanish in the conformally transformed spacetime
only in rather special cases, such as if the original metric
gab is that of a static Einstein space. Although Zannias
suggested a modification of the PBO ansatz to account for
the correct trace in non-Einstein spaces [22], the nonvan-
ishing of the trace in the conformally related space with
metric ~gab means that the original PBO rationale for ignor-
ing Sexact	~g
 in (4.2) no longer applies. Hence there is no
especially good reason why this modification of the PBO
approximation should be accurate, or even finite on the
event horizon. If one tries instead to find a spacetime where
the conditions (4.3) for the vanishing of the trace are
satisfied, then one is faced with solving two nonlinear
conditions for a single !. Hence one would not expect
that a simultaneous solution of both conditions (4.3) exists
at all for ~gab � e�2!gab, for general gab.

In the auxiliary field method, these difficulties are re-
moved completely. The two independent ’ and  fields
satisfy the linear equations (2.8), for which solutions are
guaranteed to exist and can be found in any spacetime.
Although e�’ may be regarded as a conformal transforma-
tion to a spacetime where E� 2

3 �R vanishes, there is no
such conformal interpretation for the second auxiliary field
 , and none is required. The auxiliary scalars and their
stress tensor simply encode the same information about the
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full nonlocal trace anomaly in a local, generally covariant
form, and there is no conformally related ~gab enjoying a
privileged status over any other. This is clear also from the
freedom to add arbitrary homogeneous solutions to (2.8),
corresponding to different choices for the conformal image
~gab, and different Weyl invariant parts of the effective
action. This additional freedom in the linear system (2.8)
makes an exploration of a much wider class of states
possible with the auxiliary field algorithm, with different
state-dependent traceless contributions to the stress tensor,
all consistent with the correct trace anomaly. It is of course
the much larger parameter space available in the auxiliary
field method which makes it possible to find regular stress
tensors on both the RN and ERN event horizons.

The PBO approximation was later rederived in a differ-
ent way by Frolov and Zel’nikov (FZ), by carrying out an
analysis of possible terms in the effective action in general
spacetimes with a static Killing vector field, K � @

@t [23].
Although rather different in methodology, the FZ approach
also applies only to static spacetimes and makes use of the
conformal transformation properties (conformal weights)
of the various terms in the stress tensor. As a result,
although the FZ approach is not limited a priori to
Einstein spaces, the effective action they obtain is in fact
equivalent to that of PBO (as modified by Zannias), up to
local F � CabcdCabcd and the (

�������
�~g
p ~R2 �

�������
�g
p

R2) terms
appearing in (4.5), which are allowed to have arbitrary
coefficients unrelated to the anomaly. The first of these
particular Weyl invariant terms is mildly behaved on the
event horizon whereas divergences in the second amounts
to readjustment of the coefficient of linear time depen-
dence in! of the PBO approximation. Therefore neither of
the terms can be used to cancel any divergences present in
the PBO approach. Hence when applied to the non-Ricci
flat Reissner-Nordström geometry, the FZ approximation
suffers from the same limitation as that of PBO, namely,
both predict a logarithmically divergent stress tensor on the
RN event horizon, and both a linear and a logarithmic
divergence on the ERN horizon.

From our present vantage point, the interesting feature
of the FZ approach is the central role of the static Killing
field Ka. The FZ approach underlines the fact that hTabi
generally depends upon global invariant functions of Ka as
in (3.18), in addition to strictly local invariants such as F, E
and R2. Since global invariants such as (3.18) may diverge
on the event horizon, and hTabi generally is a function of
these invariants, explicitly so in the FZ approach, it is clear
that requiring such divergences to be absent in hTabi is a
dynamical restriction on the quantum state, not at all
required by general coordinate invariance.

It was shown by Howard and Candelas [12,13] for the
conformally invariant spin 0 field in Schwarzschild space-
time that the WKB approximation can be used to write the
stress-energy tensor in terms of the PBO approximation for
each field plus a term containing mode sums that must be

computed numerically. A similar result was obtained for
the massless spin 1 field by Jensen and Ottewill [14].
Anderson, Hiscock, and Samuel [16] (AHS) showed that
if the WKB approximation in the high frequency limit is
used for the radial modes of the Euclidean Green’s function
for a massless scalar field with arbitrary curvature coupling
in a general static spherically symmetric spacetime, then a
conserved stress-energy tensor results which in the case of
conformal coupling has a trace equal to the trace anomaly.
For the case of conformal coupling this stress-energy ten-
sor is equivalent to that derived by FZ if the three arbitrary
constants in their derivation are set to zero. A similar
approximation was derived by Groves, Anderson, and
Carlson [24] (GAC) for the massless spin 1=2 field. In
this case the approximation is equivalent to that of FZ if
their arbitrary constants have the values q�0�1 � q�0�2 � 0

and q�2�1 � 1=144.
Huang’s evaluation of the stress tensor for a conformally

invariant scalar field in the PBO/FZ approximation [38],
apparently correcting an error in [22] for the ERN case,
shows this same logarithmic divergence of (3.16) for Q<
M, which becomes a combination of a linear and logarith-
mic divergence in the ERN case.3 Not surprisingly the
same divergences were found for the AHS and GAC ap-
proximations [16,18]. Thus all preexisting analytic approx-
imations to hTabi diverge at least logarithmically in the
general RN spacetime, and linearly in the ERN case.

A. Schwarzschild spacetime

The six conditions (3.24) guaranteeing finiteness of the
stress tensor on the Schwarzschild horizon can be satisfied
in several different ways. The simplest possibility is [2]
 

�2b� b0�c2
H � 	�2b	

0 � b0	� � 0; (4.9a)

bdH � ��b� b
0�cH; (4.9b)

q � q0 � 2; (4.9c)

b0q	� b�q	0 � q0	� � 0; (4.9d)

which requires fixing only five parameters to satisfy all six
conditions (3.22), (3.23), and (3.24), with L � 0. This is
because the choice q � q0 � 2 eliminates all the logarith-
mic terms in the auxiliary fields at the horizon (hence all
ln2s and lns terms in Tab) and simplifies the remaining
conditions considerably. The three parameter subset of the
original eight parameter family of spherically symmetric
auxiliary fields is certainly not generic, but still leaves
considerable freedom to fit the finite values of the stress
tensor at r � 2M and/or r � 1 in the regular Hartle-
Hawking-Israel state [26]. This is the choice which was

3The third footnote of Ref. [38] gives an incorrect criterion for
finiteness of the stress tensor on the horizon in freely falling
coordinates, replacing one factor of f�r� in (3.16) by f1=2�r�. For
this reason the conclusions drawn in [38] are not warranted by
the evaluation of Tab given.
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studied in some detail in [2]. The other possible ways of
solving the finiteness conditions are listed in the appendix.
Approximate stress tensors for the Unruh state [39] may be
obtained as well by replacing the L � 0 condition with the
properly normalized luminosity (3.23), choosing 	 and 	0

appropriately in the Schwarzschild case, and just 	 � 0,
	0 � 0 in the Q> 0 cases.

The PBO/FZ approximation works quite well for the
conformally invariant scalar field in the Hartle-Hawking-
Israel state in Schwarzschild spacetime, although the
method based on the auxiliary field effective action of
the anomaly accounts for the behavior of the stress tensor
more accurately in states with divergent stress tensors on
the horizon, such as the Boulware state in Schwarzschild
spacetime. For the spin 1=2 and spin 1 fields the PBO/FZ
approximation works less well [14,18].

Balbinot, Fabbri, and Shapiro [6] (BFS) also used
two auxiliary fields to study the properties of the approxi-
mate stress-energy tensor based on the anomaly in
Schwarzschild spacetime. Thus their approach comes the
closest of any previous one to the present work. Their two
auxiliary fields ��; � are related to ours by the linear
combinations, �

���������
�b0
p

’� b =
���������
�b0
p

and b=
���������
�b0
p

 re-
spectively. However, BFS applied conditions to each of
these two linear combinations of auxiliary fields sepa-
rately, rather than searching for the more general solutions
of the finiteness conditions (3.22) and (3.24) on the
Schwarzschild horizon. This amounts to fixing the trace-
less terms in the stress tensor with fewer free parameters
than in the present approach. For this reason they were not
able to reproduce some features of the exact stress tensor in
the Hartle-Hawking-Israel state, such as the correct value
of hTabi on the Schwarzschild event horizon or at infinity.
In the case of the present formulation, after all four finite-
ness conditions (3.22) and (3.24) are satisfied, there re-
mains a three parameter family of finite stress tensors.
Hence both the values on the horizon and at infinity can
be adjusted to their correct values by a suitable choice of
the integration constants.

As pointed out by BFS, the subdominant terms in the
stress tensor at infinity are also not reproduced by the stress
tensor of the anomaly, and this undesirable feature persists
in our approach. Clearly this is because the anomaly action
is not equal to the full quantum effective action, differing
from it by Weyl invariant terms, as in (2.11). In regular
states these give rise to additional traceless terms in the
stress tensor, which would be expected to be of the same
order as those in (2.10). One possibility for improvement is
to add the Weyl invariant term,

 Sinv	g;�
 � k
Z �������
�g
p

d4x
�
�

1

2
��4�� F�

�
(4.10)

to the total effective action. If we added this term to Sanom,
we would have a third auxiliary field, denoted here by �,

with four more integration constants to serve as free pa-
rameters in the stress tensors of the RN and ERN space-
times. Although this may allow for more accurate fitting of
the numerical results for hTabi in the RN and ERN cases,
we do not pursue this possibility here, and thus set k � 0 in
our approximation.

B. General RN spacetime

When the PBO/FZ, AHS, and GAC approximations are
applied to the Q> 0 RN spacetimes, they predict that
hTabi diverges logarithmically on the RN event horizon
for Q<M and linearly and logarithmically for jQj � M.
The reason for the divergence of the PBO/FZ approxima-
tion is that the semiclassical approximation for the heat
kernel of [37] fails as r! r�. Thus for massless fields all
previous approximations are both highly specialized to
certain specific classes of spacetimes, and also lead inevi-
tably to divergences on the event horizons of non-Einstein
static spaces, such as the Reissner-Nordström metric. The
present approach based on the auxiliary field form of the
effective action of the anomaly does not rely on a WKB
approximation, and hence does not suffer from these
limitations.

The direct method of evaluating hTabi from the wave
equations of the underlying conformal field theory has
been carried out for both scalar and spinor fields in RN
spacetimes with 0<Q � M [16–18]. These direct evalu-
ations show no evidence of a divergence as the horizon is
approached. In the following plots we show the results of
these exact numerical evaluations of hTabi and the approxi-
mation of the present paper for RN spacetimes with
jQj=M � 0:99 and 0.8.

The approximation based on the auxiliary field effective
action is qualitatively better than that of PBO/FZ in allQ>
0 RN regular states in that it allows for a finite stress tensor
on the event horizon, showing roughly comparable features
to those already encountered in the Schwarzschild case in
[2]. The main difference from the Q � 0 Schwarzschild
case compared to the 0<Q � M RN cases is the loss of
the integration constant 	 in the latter cases, since such a
linear time dependence in ’ leads to time dependence in
the stress tensor (2.10) in the non-Ricci flat RN geometries.
Since a constant a0 in ’ appears in the stress tensor when
Rab � 0, there are exactly seven free integration constants
for regular static stress tensors in all RN cases with vanish-
ing flux, L � 0.

In the present approximation algorithm there are various
possible ways of solving the five finiteness conditions
(3.33). For example, the first condition (3.33a) is solved
by either

 ‘0 � 0 (4.11a)

or
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 ‘0 � �
2b
b0
�0: (4.11b)

Likewise, independently of this choice, the second condi-
tion (3.33b) is solved by either

 ‘1 � 0 (4.12a)

or

 ‘1 � �
2b
b0
�1: (4.12b)

When the remaining three conditions are considered, it
becomes apparent that either �0 and �1 are both zero, or
they are both nonzero. The first option, viz.

 ‘0 � �0 � ‘1 � �1 � 0; �minimal� (4.13)

we term ‘‘minimal’’ because it requires only four integra-
tion constants be set to zero in order to satisfy all five
finiteness conditions (3.33). Since this leaves the most
integration constants still free to adjust, we consider this
minimal solution of the finiteness conditions in order to
compare the auxiliary field algorithm to the direct evalu-
ation of hTabi. The other possibilities for solving the con-
ditions (3.33) are catalogued in the appendix.

The remaining three nontrivial integration constants are
a0, a1, and c1. If the stress tensor is finite on the horizon
then Trr � Ttt there. So once the value of Ttt is known, the
value of T�� on the horizon is fixed by the value of the trace
anomaly there. One can compute the components of the
approximate stress tensor on the horizon from the general
expressions (2.6), (2.7), and (2.10) by using the metric (3.1)

and metric functions (3.9) along with the expansions (3.30)
and (3.32). One finds that the value of Ttt on the horizon
depends on a1 and c1 and the value of Tuu on the horizon
depends on a0, a1 and c1.

A numerical code was developed which for a given value
of a1 chose the values of a0 and c1, so that Ttt and Tuu

matched the values previously obtained [16,18] from exact
numerical computations of the stress tensor on the horizon
for the spin 0 and spin 1=2 fields. This code then solves the
equations for the auxiliary fields� and  and computes the
analytic approximation (2.10) for the stress tensor for
various values of the radial coordinate r. Different values
of a1 lead to different behaviors at large values of r. The
goal is to find the value of a1 which gives the same energy
density at large r as the field has if it is in the Hartle-
Hawking-Israel state. This is the best that one can do to find
an approximation for the stress energy which is finite on
the horizon and has the correct energy density at large
values of r. Of course one could take the opposite approach
and fix the behavior at large rmore accurately, but then the
stress energy would not be regular on the event horizon.

We have examined the cases jQj � 0:99M and 0:8M for
the conformal scalar and spin 1=2 fields, and found in each
case two values of a1 that satisfy the above criterion. In
each case one of these values gives results in closer agree-
ment with the numerically computed stress-energy tensor,
so we have chosen that one. The results for the spin 0 field
are shown in Fig. 1 and the corresponding comparisons for
the massless spin 1=2 Dirac field are shown in Figs. 2. It
can be seen that the approximation based on the pure
anomaly action is quite accurate close to the horizon, for

〈
〉

〈
〉

〈
〉

〈
〉

FIG. 1. The top two plots show the expectation values hTtti and hTrri for the conformally invariant scalar field in the Reissner-
Nordström geometry with jQj � 0:99M. The bottom two plots show these components for the case jQj � 0:8M. In all plots the solid
line corresponds to the auxiliary field stress tensor and the dashed line to the numerically computed exact one.
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r & 1:2r�, becoming less accurate at intermediate values
of r� 2r�. At larger values of r, the components of the
approximate stress tensor do not approach their asymptotic
values nearly as quickly as the numerically computed
values. All the plots should be viewed as qualitative, for
illustration purposes only. We have not performed a sys-
tematic quantitative study of the stress tensor based on the
anomaly as a function of r for a fixed value of jQj=M,
studied the detailed dependence on spin, nor attempted to
quantify the trends as a function of jQj=M.

C. ERN spacetime

Finally in the ERN case of jQj � M the tensor (2.10) is
still able to return a completely finite approximation to
hTabi at s � 0, provided that all six conditions in
Eqs. (3.35) and (3.36) are fulfilled. There are three alge-
braically distinct ways of solving these equations, which
are described in detail in the appendix. The simplest pos-
sibility is to require that Eab andFab be separately finite. In
that case we find that the five values of the coefficients in
terms of rational fractions,
 

a�2 � 0; (4.14a)

a�1 � 0; (4.14b)

a1 � �
9

5
; (4.14c)

c�2 �
75

26
; (4.14d)

c�1 �
315

13
; (4.14e)

satisfy all six finiteness conditions (3.35) and (3.36).

Despite having two remaining integration constants free,
this and the other two solutions of the finiteness conditions
(3.35) and (3.36) in the ERN case are rather restrictive. It
turns out that for all three of the distinct solutions cata-
logued in the appendix, the diagonal components Ttt, Trr,
and T�� on the horizon are all fixed (for fixed values of b
and b0) to definite finite values. For example, in the case of
the solution (4.14) these components have the specific
finite values,
 

Ttt � Trr �
178

13M4 b�
2

M4 b
0 (4.15a)

T�� � �
178

13M4 b�
2

M4 b
0: (4.15b)

On the other hand the exact values of these components on
the ERN horizon in regular states are [40]

 Ttt � Trr � T�� � �
2

M4 b
0: (4.16)

The mismatch of the first term proportional to b in both
members of (4.15) accounts for the large discrepancy of the
approximation from the numerical data apparent in Figs. 3
and 4. This indicates that we are certainly lacking a term
from Sinv in the exact effective action in our minimal
approximation based on the anomaly, which is needed to
give the correct finite coefficient of the stress tensor on the
ERN horizon. The term (4.10) is an example of a possible
term which we have not considered. That the missing term
of Sinv is apparently related to the b coefficient of the
anomaly, as suggested by the comparison of (4.15) with

〈
〉

〈
〉

〈
〉

〈
〉

FIG. 2. The top two plots show the expectation values hTtti and hTrri for the massless spin 1=2 field in the Reissner-Nordström
geometry with jQj � 0:99M. The bottom two plots show these components for the case jQj � 0:8M. In all plots the solid line
corresponds to the auxiliary field stress tensor and the dashed line to the numerically computed exact one.
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(4.16), with the latter determined by a conformal mapping
from flat space, suggests that the additional term might be
determined by an extension of our effective action Sanom

based on the conformal anomaly.
On the other hand, the value of the Tuu component on the

horizon is not fully determined by (4.14) and instead
depends on a0 and c1 via

 Tuu �
1

585M4 �306 856� 9360a0 � 12 168c1�b

�
4484

75M4 b
0 (4.17)

which are the still remaining two free parameters. Hence it
is possible to adjust the value of the Tuu component on the

〈
〉

〈
〉

〈
〉

〈
〉

FIG. 3. The top two plots show the expectation values hTtti and hTrri for the conformally invariant scalar field in the Reissner-
Nordström geometry with jQj � M. The bottom two plots show the hT��i and hTuui components. In all plots the solid line corresponds
to the auxiliary field stress tensor and the dashed line to the numerically computed exact one.

〈
〉

〈
〉

〈
〉

〈
〉

FIG. 4. The top two plots show the expectation values hTtti and hTrri for the massless spin 1=2 field in the Reissner-Nordström
geometry with jQj � M. The bottom two plots show the hT��i and hTuui components. In all plots the solid line corresponds to the
auxiliary field stress tensor and the dashed line to the numerically computed exact one.
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horizon to any finite value and still have one free parameter
left unspecified. This last parameter can be fixed by requir-
ing that the behavior of all components of the stress tensor
vanish as r!1, consistent with a zero temperature state
in an asymptotically flat spacetime.

A numerical code was developed which for a given value
of c1 chooses the value of a0 so that Tuu matched the values
previously obtained [16,18] from exact numerical compu-
tations of the stress tensor on the horizon for the spin 0 and
spin 1

2 fields. As in the RN case described above, this code
then solves the equations for the auxiliary fields � and  
and computes the analytic approximation (2.10) for the
stress tensor for various values of the radial coordinate r.

Our results for the conformally invariant spin 0 field are
shown in Fig. 3 and those for the massless spin 1

2 field are
shown in Fig. 4. Since (4.15) and (4.16) shows that the Ttt,
Trr, and T�� components are not accurate at the horizon,
the plots show that this inaccuracy persists at intermediate
values of r. Since it is possible to choose parameters to fit
the correct value of Tuu on the horizon, the approximation
works better for that component. Because of the more
severe horizon divergences possible in the ERN case, the
finiteness conditions (3.35) and (3.36) eliminating them are
restrictive enough to lead to stress tensors which are not
very good approximations to the numerical results ob-
tained by the direct method. One may consider relaxing
the finiteness condition on the logarithmic terms in Tuu,
still requiring no power law divergences in s as s! 0. In
this case it is possible to obtain the correct values of Ttt,
Trr, and T�� very near the horizon. However we have
found that the approximation remains poor at intermediate
and large values of r and of course it also gives a diver-
gence in Tuu on the horizon, for which the numerics shows
no evidence.

A more promising approach is to add additional terms in
Sinv, as for example (4.10), in an attempt to find a better
approximation that is finite on the horizon. Although a
modification such as this is very likely to introduce enough
new parameters to allow for significant improvement of the
comparisons with the numerical results in Figs. 3 and 4, we
did not pursue this possibility, preferring to put the mini-
mal two field anomaly action and stress tensor to its most
stringent test. We also did not add other possible terms to
the effective action, such as the last term in Eq. (4.5), which
gives contributions to hTabi of the same order as the
anomaly action in regular states (where all contributions
are of order M�4 and small for M
 MPl). While the
approximation based solely on the anomaly action (2.4)
and (2.5) itself is not uniformly accurate for RN spacetimes
in such regular states, it is worth emphasizing that it is the
first finite approximation that has been obtained for mass-
less quantized fields in these spacetimes, and therefore
captures an element of the exact effective action lacking
in previous approaches, even without the improvements
possible with the addition of specific Weyl invariant terms.

V. CONCLUSIONS

The effective action associated with the trace anomaly
provides a general algorithm for approximating the expec-
tation value of the stress tensor of conformal matter fields
in arbitrary curved spacetimes. It successfully classifies the
leading and subleading divergent behaviors of the quantum
stress tensor components in the vicinity of all spherically
symmetric event horizons, and the conformal properties of
horizons. These behaviors follow from an analysis of the
allowed singular behaviors of the auxiliary fields as the
event horizon is approached, which are determined by
solutions of the conformally invariant differential operator
(2.9).

A numerical solution of the auxiliary field equations is
necessary to construct the stress tensor at points arbitrarily
distant from the horizon, except for the uncharged
Schwarzschild case which admits a completely analytic
solution. Because of the possibility of adding homogene-
ous solutions to the auxiliary field equations of motion
(2.8), the generic divergent behaviors may be canceled,
and finite approximations to hTabi obtained on all charged
RN event horizons, including also the extremal case of
jQj � M.

Although it is possible to constrain the solutions of the
auxiliary field equations by the requirement that the stress
tensor should be regular on the horizon for all Q, we
emphasize that the fine tuning of integration constants
that is necessary to achieve this suggests that a regular
stress tensor is very much the nongeneric case. This is in
accord with the well-known fact that to have a completely
regular static stress-energy tensor in a static black hole
spacetime it is necessary for the field to be in a Hartle-
Hawking-Israel state [26] which is a thermal state at the
black hole temperature. What may be less well known is
that this is also true for the zero temperature ERN black
hole [17] for which the Hartle-Hawking-Israel and
Boulware [36] states coincide. Also the fact of having a
thermal state at a given temperature (including zero) does
not completely specify the state. For example one can put
boundary conditions on the mode functions at some par-
ticular value of the radial coordinate r as is done when a
spherical mirror surrounding the black hole is present
[11,41].

The generic diverging behavior of the scalar auxiliary
fields and their associated stress tensor near the event
horizon has a geometric origin in the behavior of the
Killing field of the static geometry becoming null on the
horizon, through (3.18). Thus, possible divergences of the
stress tensor on the horizon are perfectly consistent with
the equivalence principle, notwithstanding the finiteness of
local curvature invariants such as R or RabcdRabcd there.

The comparison of the anomaly induced stress tensor,
viewed as an approximation to hTabi in Eq. (2.10), with the
direct evaluation of the renormalized expectation value for
fields of spin 0 and 1

2 shows that it yields a fair approxima-
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tion for states which are regular on the horizon, becoming
less accurate quantitatively both away from the horizon
and in the case of the degenerate horizon of the extreme
jQj � M case. Although the finite terms may be more
accurately obtained by a better understanding of the
Weyl invariant nonlocal terms in the quantum effective
action, such as (4.10), the fact that the minimal anomalous
terms can give all the possible divergent or regular behav-
iors of the stress tensor in the vicinities of all RN black hole
event horizons allows us to regard it as a candidate geo-
metrical action for meaningful backreaction calculations.
Since the effective action and auxiliary field stress tensor of
the anomaly can be computed in principle in any spacetime
without regard to special symmetries, backreaction calcu-
lations are possible with Sanom of (2.4) added to the clas-
sical Einstein-Hilbert and matter field actions. Moreover,
since the resulting system of equations can be treated by
classical methods, dynamical backreaction calculations in
time dependent and even nonspherically symmetric space-
times undergoing gravitational collapse, taking into ac-
count one-loop vacuum polarization and particle creation
effects, would seem to be practically feasible by this
approach for the first time.
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APPENDIX: GENERAL SOLUTIONS OF THE
STRESS TENSOR FINITENESS CONDITIONS

In this appendix we list the possible ways for solving the
horizon finiteness conditions in each of the three cases
considered in the text.

1. Schwarzschild spacetime

The solution of the regularity conditions in
Schwarzschild spacetime can be classified into three differ-
ent groups, depending upon the way one solves (3.22b).

The first group is special, because one can satisfy the
three conditions (3.22), by specifying only two of the free
constants, namely q � q0 � 2. This is the solution consid-
ered in [2]. All of the finiteness conditions can be satisfied
by specifying only five integration constants viz.,
 

q � 2 (A1a)

q0 � 2 (A1b)

2bdH � �bq	
0 � bq0	� b0q	� � 2�b� b0�cH (A1c)

2b	0 � �bq	0 � bq0	� b0q	� � 2�b� b0�	 (A1d)

cH � 	 or cH �
�bq	0 � bq0	� b0q	�

2b� b0
� 	:

(A1e)

The other two groups of solutions use six instead of five
constants to satisfy the regularity conditions:
 

q � 2 (A2a)

cH � 0 (A2b)

c1 �
20

9
(A2c)

dH �
�bq	0 � bq0	� b0q	�

2b
�
q0 � 2

6
(A2d)

	0 �
�bq	0 � bq0	� b0q	�

2b
�

2b0 � bq0

2b
	 (A2e)

	 � 0 or 	 �
�bq	0 � bq0	� b0q	�

b0 � bq0
(A2f)

and
 

q � 2�
2b
b0
�q0 � 2� (A3a)

cH � �
2b
b0
dH (A3b)

c1 �
20

9
�

2b
b0

�
d1 �

20

9

�
(A3c)

dH � �
b0

2b�2b� b0�
�bq	0 � bq0	� b0q	� �

b0�q0 � 2�

6�2b� b0�

(A3d)

	0 �
b0

2b

�
�bq	0 � bq0	� b0q	� � 	�4b� 2b0 � bq0�

2b� b0 � bq0

�
(A3e)

	 � 0 or 	 �
�bq	0 � bq0	� b0q	�

2b� b0
: (A3f)

In the last two groups it is assumed that q0 � 2. Note that
with all of the above set of constants the regularity con-
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ditions for the stress-energy tensor are satisfied for any
luminosity L, which is given by

 L �
�

M2 �bq	
0 � bq0	� b0q	�: (A4)

This combination of parameters appears in several places
in the above solutions, so that if L is set equal to zero, as it
is in the Hartle-Hawking-Israel state, considerable simpli-
fication of the relations above results.

2. General RN spacetime

The simplest possibility for solving all five conditions
(3.33) in the 0<Q<M cases is the minimal one (4.13). It
requires the fixing of only four integration constants whose
values are given in Eq. (4.13). The other two distinct
possibilities are:
 

‘0 � 0 (A5a)

‘1 � �
2b
b0
�1 (A5b)

�1 �
6b0�0

��8b�0 � b
0�

(A5c)

a1 �
3

�
�

2b
b0�
	�c1 � 3��� 2�0�1� 3��
 (A5d)

�0 �
3�1� ����6b�� �1� 3��b0�

2b�3� 12�� 20�2�
(A5e)

and

 

‘0 � �
2b
b0
�0 (A6a)

‘1 � 0 (A6b)

�1 � �
6�2b�� b0��0

��8b�0 � b
0�

(A6c)

a1 �
3

�
�

4b
b0�

�0�1� 3�� (A6d)

�0 � �
3b0�1� ��	2b��1� 2�� � b0�1� 3��


2b	2b��8�2 � 3� � b0�3� 12�� 20�2�

: (A6e)

These latter two solutions use five constants and are more
restrictive than the first minimal one in terms of four
integration constants. In particular the values of the com-
ponents Ttt, Trr and T�� are all fixed on the horizon in the
latter two solutions. There remains the freedom to adjust
Tuu on the horizon, which depends upon the value of a0.

3. ERN spacetime

In addition to the solution (4.14) to the regularity con-
ditions (3.35) and (3.36) given in the text, which yield finite
Eab and Fab tensors separately, two other distinct solutions
of these conditions are possible, viz.

 

a�2 � �
2b
b0
c�2 (A7a)

a�1 � �
2b
b0
c�1 (A7b)

a1 � �
60b2�3� c1�c�1 � 2bb0�45� 15c1 � 81c�1 � 13c1c�1� � 2b02�45� 13c�1�

30bb0c�1 � b02�15� 13c�1�
(A7c)

c�2 �
30bc�1 � b

0�15� 13c�1�

8�24b� 13b0�
(A7d)

c�1 �
3510b2b0 � 1329b02b� 13b03 � jb0�24b� 13b0�j

������������������������������������������������������
32400b2 � 4320bb0 � b02
p

1620b3 � 3156b2b0 � 1105b02b
: (A7e)

The two solutions involve a cancellation of divergences
on the horizon between the Eab and Fab terms of the
anomaly, and consequently have a more complicated de-
pendence on b and b0. They differ only in the sign of the
square root in the expression for c�1. The common feature
of these two additional solutions and the one studied in
more detail in the text is that only five out seven available
integration constants are used. Nevertheless, as in the
previous RN case, the values of the components Ttt, Trr
and T�� are fixed on the horizon for all the finite solutions.
The values on the horizon for this second set of solutions
(A7) are

 

Ttt � Trr � 	13275b2b02 � 7740bb03 � 1170b04

� 31500b3b0c�1 � 27870b2b02c�1 � 2808bb03c�1

� 1014b04c�1 � 9900b4c2
�1 � 10668b3b0c2

�1

� 2639b2b02c2
�1
	3b

0�24b� 13b0��15b0 � 30bc�1

� 13b0c�1�

�1 (A8a)

T�� � �
4

M4 b
0 � Ttt; (A8b)

with c�1 determined in terms of b and b0 by (A7e).
Because of the appearance of the square root in (A7e)
the dependence of the stress tensor components on b and
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b0 is not simply linear as in (4.15) or (4.16) of the known
exact behavior on the ERN horizon. The numerical values
of the coefficients for spin 0 and spin 1=2 fields are also no
better approximations to the numerical results than in the

simpler solution considered in the text. As for that solution
(4.14) there remains the freedom to adjust Tuu which still
depends on a0 and c1, both of which are still free.
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