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It is shown that the gray-body factor for a one-dimensional elongated Bose-Einstein condensate (BEC)
acoustic black hole with one horizon does not vanish in the low-frequency (ω → 0) limit. This implies that
the analog Hawking radiation is dominated by the emission of an infinite number (1ω) of soft phonons in
contrast with the case of a Schwarzschild black hole where the gray-body factor vanishes as ω → 0 and the
spectrum is not dominated by low-energy particles. The infrared behaviors of certain correlation functions
are also discussed.
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One of the most exciting results of modern theoretical
physics is the prediction made by Hawking in 1974 [1] that
black holes are not “black,” but should emit particles with a
thermal spectrum at a temperature

TH ¼ ℏ
8πGMkB

; ð1Þ

where M is the mass of the black hole. Unfortunately, at
present, an experimental verification of this emission seems
out of reach: the emission temperature for a solar mass
black hole (BH) is of the order of 10−7 K. For this reason
growing interest has been manifested in recent years on
analog black holes consisting of condensed matter systems
that are expected to show phenomena analogous to
Hawking radiation [2]. Of these, Bose-Einstein conden-
sates (BECs) provide one of the most promising settings for
the experimental detection of these effects [3,4].
The Hawking effect for BHs in asymptotically flat

spacetimes engenders an interesting interplay between
thermal effects, infrared divergences, and gray-body fac-
tors. First one should note that a Planckian distribution for
the number of created particles has an infrared divergence
with the result that the spectrum is dominated by low-
energy particles. However, the Planckian distribution is
filtered by a “gray-body” factor ΓðjÞðωÞ due to an effective
potential which takes into account the scattering of the
particles by the spacetime geometry. The potential has the

shape of a barrier whose height increases with the angular
quantum number l, so that the emission is dominated by
(massless) particles in the l ¼ 0 mode [5].
The number of particles emitted at frequency ω and

quantum number j is

NðjÞ
ω ¼ ΓðjÞðωÞ

e
ω

kBTH − 1
: ð2Þ

For BHs in asymptotically flat spaces at low ω the
characteristic leading order behavior is

ΓðjÞ
ω ∼ AHω

2; ð3Þ

where AH is the area of the BH horizon. Because of this,
low-energy modes are suppressed and the gray-body factor
regularizes the infrared divergence (1=ω) of the Planckian
distribution.
In this paper we calculate the low-frequency behavior of

the gray-body factors for BEC acoustic BHs and show that
they do not remove the infrared divergences of the
Planckian distribution. We also investigate the question
of whether and under what circumstances infrared diver-
gences occur in certain correlation functions for these
models.
Following a by now standard procedure, we begin by

splitting the fundamental bosonic operator for the atoms, Ψ̂,
into a c-field part, Ψ0, which describes the condensate in
the mean field approximation, and an operator part, ϕ̂,
which describes the quantum fluctuations about the mean.
Ψ0 satisfies the Gross-Pitaevski equation, while ϕ̂ satisfies
the Bogoliubov–de Gennes equation. Using a density-
phase representation for Ψ̂ [6]
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Ψ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ n̂1

p
eiðθþθ̂1Þ ð4Þ

the fluctuations equation can be written as1

ℏ∂tθ̂1 ¼ −ℏ~v0 ~∇θ̂1 −
mc2

n
n̂1 þ

mc2

4n
ξ2 ~∇

�
n ~∇

�
n̂1
n

��
; ð5Þ

∂tn̂1 ¼ − ~∇
�
~v0n̂1 þ

ℏn
m

~∇θ̂1

�
ð6Þ

where ~v0 ¼ ℏ ~∇θ
m is the condensate velocity, n ¼ jΨ0j2 the

condensate density, c≡ ffiffiffiffing
m

p
the speed of sound, g the

atomic interaction coupling, and ξ ¼ ℏ
mc the healing length.

On scales much larger than ξ one can neglect the last
term in (5) which then becomes

n̂1 ¼ −
ℏn
mc2

½~v0 ~∇θ̂1 þ ∂tθ1�: ð7Þ

This is the so-called hydrodynamical approximation.
Inserting Eq. (7) into Eq. (6) one gets a decoupled equation
for the phase fluctuations

−ð∂t þ ~∇~v0Þ
n

mc2
ð∂t þ ~v0 ~∇Þθ̂1 þ∇

�
n
m

~∇θ̂1

�
¼ 0: ð8Þ

This equation can be rewritten as a covariant equation

□θ̂1 ¼ 0 ð9Þ

in a fictitious curved four-dimensional space-time with the
following metric:

gμν ¼
n
mc

�−ðc2 − ~v20Þ −vi0
−vj0 δij

�
: ð10Þ

The covariant d’Alembertian operator is

□≡ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞ; ð11Þ

where g≡ det gμν.
For the sake of simplicity we shall make a set of

assumptions (see [4]). First we assume that the condensate
is infinite and elongated along the x axis with transverse
size l⊥ constant and much smaller than ξ. So the dynamics
is frozen along the transverse direction and the system
becomes effectively one dimensional. We further assume
that the flow is stationary and directed along x from right to

left with a constant velocity, i.e. ~v0 ¼ −vx̂, with v a
positive constant. This implies that the density n of the
atoms is also constant. Nontrivial configurations are
obtained by allowing g and hence the sound speed c to
vary with x. The profile cðxÞ is chosen so that c > v for
x > 0 and c < v for x < 0. We have therefore a supersonic
region (x < 0) separated at x ¼ 0 from a subsonic one
(x > 0). This configuration describes a so-called “acoustic
BH” and x ¼ 0 (where c ¼ v) is the sonic horizon. The
profile cðxÞ is assumed to vary smoothly (i.e. on scales
≫ ξ) from an asymptotic value cL (< v) for x → −∞ to cR
(> v) for x → þ∞.
To proceed with quantization, we neglect the transverse

modes and expand θ̂1 using a basis constructed from mode
solutions to

□ψðt; xÞ ¼ 0: ð12Þ

It is useful to rescale the modes so that

ψ ¼
ffiffiffiffiffiffiffiffiffiffi
mc
nℏl2⊥

r
χ; ð13Þ

and then to rewrite (12) as

ð□ð2Þ − VÞχðt; xÞ ¼ 0; ð14Þ

where □ð2Þ is the covariant d’Alembertian associated with
the two-dimensional (t; x) section of the acoustic metric
(10) and

V ≡ −
1

2

d2c
dx2

�
1 −

v2

c2

�
þ 1

4c

�
1 −

5v2

c2

��
dc
dx

�
2

: ð15Þ

In order to find the solutions to this equation, we apply
two coordinate transformations. First we introduce a
“Schwarzschild” time ts as

ts ¼ t −
Z

x
dy

v
c2ðyÞ − v2

ð16Þ

and then a “tortoise” spatial coordinate x� as

x� ¼
Z

x
dy

cðyÞ
c2ðyÞ − v2

: ð17Þ

The second one maps the subsonic region 0 < x < ∞ to
−∞ < x� < þ∞; i.e. the horizon corresponds to the
asymptote x� → −∞.2 The utility of these transformations
is to bring the mode equation into the simple form

1This approximation is valid in a regime, denoted as “1D mean
field” in [7], where the system is accurately described by a single
order parameter obeying an effective 1D Gross-Pitaevskii equa-
tion.

2In this paper we concentrate only on the region exterior to the
horizon, the subsonic (x > 0) one. A similar analysis can be
performed in the interior, supersonic, x < 0 region.
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�
−
∂2

∂t2s þ
∂2

∂x�2 − Veff

�
χ ¼ 0 ð18Þ

where Veff ¼ c2−v2
c V. We look for stationary solutions

χ ¼ e−iωtsχωðx�Þ ¼ e−iωtφωðxÞ ð19Þ
where φω is the spatial part of the mode function in the
original coordinates (10) and χω satisfies

�
ω2 þ ∂2

∂x�2 − Veff

�
χω ¼ 0: ð20Þ

In the asymptotic regions, x� → �∞, Veff vanishes and the
solutions of (18) are simply plane waves

χ ∼ e−iωðt�x�Þ ¼ e−iω½ts∓
R

x dy
c∓v�: ð21Þ

A complete basis for the solutions of (18) is formed by
two sets of modes, χI and χH. These are easily pictured in
the diagrams of Figs. 1 and 2 representing the causal
structure (Penrose diagram) of the exterior (subsonic)
region. Details on how to construct such diagrams can
be found in [8]. The modes χI originate at past null infinity
(I−) and because of the potential term in Eq. (18) are
partially transmitted towards the future horizon (Hþ) and
partially reflected to future null infinity (Iþ); see Fig. 1. The
modes χH can be thought of as originating on the past
horizon (H−) of the analytically extended manifold of the
effective space-time. They are partially transmitted to future
null infinity (Iþ) and partially reflected to the future
horizon (Hþ); see Fig. 2. More specifically

χI ¼
1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωtsχIω; ð22Þ

χH ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωtsχHω ; ð23Þ

where χIω and χHω are solutions of Eq. (20) with the
following asymptotic behaviors:

χI ¼
�
e−iωðtsþx�Þ þ RIðωÞe−iωðts−x�Þ; x� → þ∞

TðωÞe−iωðtsþx�Þ; x� → −∞
ð24Þ

and

χH ¼
�

TðωÞe−iωðts−x�Þ; x� → þ∞

e−iωðts−x�Þ þ RHðωÞe−iωðtsþx�Þ; x� → −∞
:

ð25Þ

The two reflection coefficients satisfy jRIðωÞj2 ¼ jRHðωÞj2
and also the unitary relation jRHðωÞj2 þ jTðωÞj2 ¼ 1. The
gray-body factor we are looking for is Γ ¼ jTðωÞj2. It
represents the probability that a phonon originating from
the past horizon reaches future null infinity. This is also
equal to the absorption probability of an ingoing phonon
from past null infinity [9].
To compute TðωÞ we shall employ a very simple,

although not general, method (see for example [10]) which
consists in solving Eq. (20) for χω in the infrared limit
(ω → 0) for finite x�, taking the limit x� → �∞ and
matching the solution there with the asymptotic forms
(24) and (25) developed for small ω. For fixed x� and in
the limit ω → 0, we can neglect the first term in Eq. (20)
which can then be rewritten, in terms of the original
variable x, as

∂x

�ðc2 − v2Þ
c2

∂xð
ffiffiffi
c

p
χ0Þ

�
¼ 0: ð26Þ

This can be immediately integrated, giving

χ0 ¼
c2ffiffiffiffiffiffiffiffiffi
cðxÞp þ c1ffiffiffiffiffiffiffiffiffi

cðxÞp
Z

x
dy

c2ðyÞ
c2ðyÞ − v2

¼ c2ffiffiffiffiffiffiffiffiffi
cðxÞp þ c1ffiffiffiffiffiffiffiffiffi

cðxÞp
Z

x�

cðy�Þdy�; ð27Þ

where c1;2 are integration constants. From this we can
extract the two asymptotic limits

χ0 →
c2ffiffiffi
v

p þ c1
ffiffiffi
v

p
x�; x� → −∞; ð28Þ

χ0 →
c2ffiffiffiffiffi
cR

p þ c1
ffiffiffiffiffi
cR

p
x�; x� → þ∞: ð29Þ

FIG. 1. Modes χI originating from I− and transmitted
(reflected) to Hþ (Iþ).

FIG. 2. Modes χH originating from H− and transmitted
(reflected) to Iþ (Hþ).

GRAY-BODY FACTOR AND INFRARED DIVERGENCES IN … PHYSICAL REVIEW D 90, 104044 (2014)

104044-3



These behaviors should then be compared with the small ω
expansion of the spatial part of (25)

χHω→0 → 1þ RH þ iωð1 − RHÞx�; x� → −∞; ð30Þ

χHω→0 → T þ iωTx�; x� → þ∞: ð31Þ

Equating Eq. (28) with (30) and (29) with (31) we get

c2ffiffiffi
v

p ¼ 1þ RH; ð32Þ

c1
ffiffiffi
v

p ¼ iωð1 − RHÞ; ð33Þ
c2ffiffiffiffiffi
cR

p ¼ T; ð34Þ

c1
ffiffiffiffiffi
cR

p ¼ iωT: ð35Þ

Dividing (32) by (33) and (34) by (35) one finds RH ¼ cR−v
cRþv

from which

jTj2 ¼ 1 − jRHj2 ¼
4cRv

ðcR þ vÞ2 : ð36Þ

This shows that the gray-body factor for a 1D acoustic
BH for the realistic profile cðxÞ does not vanish in the
ω → 0 limit.3 This conclusion explains the results of
the numerical analysis of [12]; see Figs. 11 and 13.
Interestingly, (36) radically differs from the standard result
found for asymptotically flat 4D BHs, for which jTj2 ∝
ω2 [5,13,14].
A nonvanishing gray-body factor in the infrared limit is

however not peculiar to acoustic BHs. One has been found
[10] for the l ¼ 0 mode of a massless minimally coupled
scalar field in Schwarzschild–de Sitter (SdS) spacetime
which is a solution to Einstein’s equations for a BH
immersed in de Sitter space. The gray-body factor is

jTj2SdS ¼
4r2Cr

2
H

ðr2C þ r2HÞ2
; ð37Þ

which is quite similar to the result (36). Here rH is the
radius of the BH horizon and rC the radius of the
cosmological horizon. The finite region between the two
horizons ½rH; rC� is mapped, by a tortoiselike coordinate
x�, to −∞ < x� < þ∞ as in BECs.4 The two expressions

(36) and (37) are mapped into each other by the
substitution rH↔ 1ffiffi

v
p , rC↔ 1ffiffiffiffi

cR
p . This is not surprising

since when performing a dimensional reduction along
the transverse angular variables (θ;ϕ) for the l ¼ 0

spherically symmetric component one gets 4πr2 as the
area of the transverse space, whereas in the acoustic BH,
due to the conformal factor present in the acoustic metric,
the transverse area is n

mc l
2⊥. This explains the correspon-

dence r2↔ 1
c in the term

ffiffiffiffiffiffi−gp
entering the d’Alembertian

operator.
The existence of a nonvanishing infrared limit for the

gray-body factor in the Schwarzschild–de Sitter case
was attributed in [10] to the finite size of the ½rH; rC�
region in which the propagation of the modes was
considered. As we have seen the same result is obtained
in the infinite space of our 1D acoustic BH with just one
horizon. The feature that these acoustic BHs and SdS
spacetimes share is the existence of an everywhere
bounded (not diverging) solution of the ω → 0 equa-
tion (26), namely the first term in Eq. (27). For acoustic
BHs, this solution corresponds, in terms of the original
field [see Eq. (13)], to a classical constant field solution
(for the SdS case see [15]). For both the SdS and
Schwarzschild BHs the corresponding term in Eq. (27)
is proportional to r. Thus it is bounded in the SdS
case where rH < r < rC, but it is unbounded for the
Schwarzschild case where rH < r < ∞.
In view of our result, we can conclude that, unlike the

standard Schwarzschild BH, the Hawking-like emission in
a 1D acoustic BH is dominated by soft phonons, since the
number of such particles [see Eq. (2)] diverges in the
infrared limit. Thus the gray-body factor no longer cancels
the 1

ω divergence of the Planckian distribution factor.
However, from an experimental point of view these emitted
phonons may be difficult to detect.
The gray-body factor also affects the IR behavior of

correlation functions. As shown in [16], a more promising
way of observing the signal of Hawking radiation in a BEC
is through the density-density correlation function

G2ðt; x; t; x0Þ ¼ lim
t→t0

hn̂1ðt; xÞn̂1ðt0; x0Þi; ð38Þ

which in the hydrodynamical approximation can be written,
using Eq. (7), as

G2ðt; x; t; x0Þ ¼ A lim
t→t0

D½hfθ̂1ðt; xÞθ̂1ðt0; x0Þgi�; ð39Þ

where f; g stands for the anticommutator, A ¼ ℏ2n2

2m2c2ðxÞc2ðx0Þ,
and the differential operator D is

D ¼ ∂t∂t0 − v∂t∂x0 − v∂t0∂x þ v2∂x∂x0 : ð40Þ
The expectation value is taken in the Unruh state, which is
the quantum state that describes Hawking emission of

3In the limit ω → 0, the reflection and transmission coeffi-
cients only depend on the asymptotic values of v and c, and, in
this limit, the S matrix possesses the same form as that found in
Sec. IV. A of [11] for a steplike discontinuity in the sound
velocity profile, with the replacement cR → cr and v → cl.

4Even though the size is finite in the r coordinate, the modes
oscillate an infinite number of times before reaching the horizons,
so it is as if the length of the region is infinite on both ends.
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thermal phonons.5 By restricting to points outside the
horizon it takes the form [see (13)]

hfθ̂1ðt; xÞ; θ̂1ðt0; x0Þgi ¼
m

nℏl2⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðxÞcðx0Þ

p
ðI þ JÞ; ð41Þ

where

I ¼
Z

∞

0

dω
½χHðω; t; xÞχ�Hðω; t0; x0Þ þ c:c:�

sinhðπωκ Þ
; ð42Þ

J ¼
Z

∞

0

dω½χIðω; t; xÞχ�I ðω; t0; x0Þ þ c:c:�: ð43Þ

Here κ ¼ 1
2v

dðc2−v2
0
Þ

dx jhor ¼ dc
dx jhor is the surface gravity of the

horizon for the acoustic metric (10). Note that because of
the nonvanishing of T in the low-frequency limit the
infrared behavior of the expectation value goes like

R
dω
ω2

for large x and x0 [coming from (42)]; one factor of 1
ω is due

to the usual vacuum term, and the additional factor of 1
ω

comes from the Planckian distribution factor of the Unruh
state. We have numerical evidence [18] that the same IR
divergence persists for any value of x or x0. The same factor
of 1

ω2 is present in the two-point function for the l ¼ 0mode
of a massless minimally coupled scalar field in the Unruh
state for both Schwarzschild and SdS black holes. In the
Schwarzschild case the infrared divergence is removed, at
large distances, by the gray-body factor (3) for the modes,
and one can show that this happens also at the horizon
where the asymptotic behaviors are given in (24), (25), and
R → −1þOðωÞ [19]. For SdS the gray-body factor
approaches a constant at low frequency [see (37)] and is
similar to the BEC case.

Despite this fact, a careful analysis of the solutions to the
mode equations in the BEC case shows that when the
operator D acts on the expectation value it always brings
down two factors of ω thus removing the infrared diver-
gence and making G2 infrared finite.6 For finite nonzero
values of x this has been seen numerically [18]. It can also
be seen analytically by approximating χω, at low frequency,
with χ0, where χ0 is given in (27) and c1 and c2 are obtained
from (32)–(35) for χHω and by an analogous set of equations
for χIω. At the horizon, where this approximation is not
valid, we find, for small ω [19],

ffiffiffi
c

p
χH ∼

ffiffiffiffiffi
v0

p ½e−iωðts−x�Þ þ RHe−iωðtsþx�Þ�ð1þOðωxÞÞffiffiffi
c

p
χI ∼

ffiffiffiffiffi
v0

p
Te−iωðtsþx�Þð1þOðωxÞÞ:

A similar analysis shows that the infrared divergence
is also removed in the point-split stress-energy tensor
for a massless minimally coupled scalar field in the
Schwarzschild–de Sitter case (the details for both of these
cases will be given in [19]).
Finally, we mention that for profiles for which Veff ¼ 0

the solutions (24) and (25), with T ¼ 1 and R ¼ 0 are exact
and in this case both the phase-phase (41) and density-
density (39) correlations functions are infrared divergent.
For these profiles, however, the conformal factor in the
metric (10), n

mc, goes as x�2. Thus it diverges both at the
horizon and at infinity and does not represent physically
interesting situations.
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