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Instability of global de Sitter space to particle creation
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We show that global de Sitter space is unstable to particle creation, even for a massive free field theory
with no self-interactions. The O(4, 1) de Sitter invariant state is a definite phase coherent superposition of
particle and antiparticle solutions in both the asymptotic past and future and, therefore, is not a true vacuum
state. In the closely related case of particle creation by a constant, uniform electric field, a time symmetric
state analogous to the de Sitter invariant one is constructed, which is also not a stable vacuum state. We
provide the general framework necessary to describe the particle creation process, the mean particle
number, and dynamical quantities such as the energy-momentum tensor and current of the created particles
in the de Sitter and electric field backgrounds respectively in real time, establishing the connection to
kinetic theory. We compute the energy-momentum tensor for adiabatic vacuum states in de Sitter space
initialized at early times in global S? sections and show that particle creation in the contracting phase
results in exponentially large energy densities at later times, necessitating an inclusion of their backreaction
effects and leading to large deviation of the spacetime from global de Sitter space before the expanding
phase can begin.
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I. INTRODUCTION

The problem of vacuum zero-point energy and its effects
on the curvature of space through Einstein’s equations has
been present in quantum theory since its inception, and was
first recognized by Pauli [1]. Largely ignored and bypassed
during the steady stream of successes of quantum mechan-
ics and then quantum field theory (QFT) over a remarkable
range of scales and conditions for five decades, the role of
vacuum energy was raised to prominence by cosmological
models of inflation. Inflation postulates a large vacuum
energy density to drive exponential expansion of the uni-
verse, and invokes quantum fluctuations in the de Sitter
epoch as the primordial seeds of density fluctuations that
give rise both the observed cosmic microwave background
anisotropies, and the formation of all observed structure in
the universe [2]. The problem of quantum vacuum energy
and the origin of structure are both strong motivations for
the study of QFT in de Sitter space.

Further motivation comes from the discovery of dark
energy in 1998 by measurements of the redshifts of distant
type Ia supernovae [3]. This has led to the realization that
cosmological vacuum energy may be some 70% of the
energy density in the universe and be responsible for its
accelerated Hubble expansion today. If correct, this implies
that de Sitter space is actually a better approximation
than flat Minkowski space to the geometry of the present
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observable universe. Accounting for the value of the
apparent vacuum energy density today and elucidating
its true nature and possible dynamics is widely viewed
as one of the most important challenges at the intersection
of quantum physics and gravitation theory, with direct
relevance for observational cosmology.

Being a maximally symmetric solution of Einstein’s
equations with positive cosmological constant, which itself
can be regarded as the energy of the vacuum, de Sitter space
is the simplest setting for posing questions about the inter-
play of QFT, gravity, and cosmology. Progress toward
a consistent theory of quantum vacuum energy and its
gravitational effects, and the formation of structure in the
universe almost certainly requires a thorough understanding
of quantum processes in de Sitter space.

Although global de Sitter space is clearly an idealization,
it is an important one amenable to exact analysis of
quantum effects, which can serve as a basis for applications
to cosmology. Current cosmological models of inflation
and the late time expansion of the universe make use only
of the expanding Poincaré patch of de Sitter space.
However, de Sitter space is a homogeneous space, all
points of which are on the same footing a priori. Hence one
would expect that quantum processes taking place in global
de Sitter space will have appropriate analogs in any
sufficiently large coordinate patch of de Sitter space.
One of the most basic of quantum processes that arise in
curved spacetimes is the spontaneous creation of particles
from the vacuum [4-8]. This process converts vacuum
energy to ordinary matter and radiation, and therefore can
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lead to the dynamical relaxation of vacuum energy with
time [9,10]. An introduction to these quantum effects,
summary of the earlier literature and the prospects for a
dynamical theory of vacuum energy based on conversion of
vacuum energy to particles may be found in [11]. Since that
review, there has been further interesting work on various
aspects of QFT in de Sitter space, particularly on quantum
infrared and interaction effects [12,13].

Because of the mathematical appeal of maximal sym-
metry, much of both the earlier and more recent work
assumes the stability of the de Sitter invariant state obtai-
ned by continuation from the Euclidean S*. This state of
maximal O(4,1) symmetry, known as the Chernikov-
Tagirov or Bunch-Davies (CTBD) state [14-16], is also
the one most often considered in inflationary models [2].
However the CTBD state raises a number of questions that
seem still to require clarification. In flat Minkowski space
the separation into positive and negative energies, hence
particle and antiparticle solutions of any Lorentz invariant
wave equation is itself Lorentz invariant. Minimizing the
conserved Hamiltonian in flat space in any inertial frame
produces a vacuum state that is invariant under the full
Poincare group. In de Sitter space there is no conserved
Hamiltonian with a spectrum bounded from below avail-
able for this minimization [14]. Hence the dynamical
stability of the maximally O(4, 1) symmetric CTBD state
and the definition of the “vacuum” itself cannot be taken for
granted. Since a freely falling detector in de Sitter space in
the CTBD state will detect a nonzero, thermal distribution
of particles at the Hawking—de Sitter temperature [17], the
CTBD state is clearly not a vacuum state at all in the usual
sense familiar from Minkowski spacetime.

Prior investigations of the stability of the CTBD state
have addressed the late time behavior of the stress tensor
or correlation functions. In [18] it was proven that for all fourth
order adiabatic states that lead to a homogeneous and isotropic
stress-energy tensor in the expanding spatially flat section of
de Sitter space, the components of the renormalized stress-
energy tensor expectation value (7¢,) for a free scalar field
asymptotically approach the CTBD value. In this sense the
CTBD state is a late time attractor state for (7%,) in de Sitter
space for a free, massive scalar QFT with m? + éR > 0. More
recently in [19,20] it has been argued that any correlation
function of an interacting massive scalar field theory also
approaches the expected CTBD value at late times at any order
of perturbation theory. This attractor behavior is clearly a result
of the cosmological redshift of the de Sitter expansion.

Not addressed in any of these previous investigations are
the effects of states other than the CTBD state on the early
or intermediate time behavior of the stress-energy tensor or
correlation functions in global de Sitter space, represented by
the hyperboloid of Fig. 15 of the Appendix. It is only this
geodesically complete full de Sitter hyperboloid that has
the maximal symmetry group O(4,1) = Z, ® SO(4,1),
including also the Z, discrete reflection symmetry which
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maps all points on the hyperboloid to their antipodal points,
cf. (A4). In spatially closed Robertson-Walker coordinates
(A8)—(AY), the global de Sitter geometry begins at infinite
size, contracts down to a minimum spatial radius, and then
expands again time symmetrically to infinite size. Because
the previously found attractor behavior is a consequence of
the cosmological redshift as the universe expands, the same
perturbations experience a cosmological blueshift in the
contracting half of de Sitter space, and one should expect
(T*,) or arbitrary correlation functions defined at some early
initial time to deviate more and more from their CTBD
values as the contraction proceeds. Thus a very small
difference in the energy density from the CTBD state can
become substantially magnified in the contracting phase of
de Sitter space, and one should expect exactly the opposite
of the attractor behavior found in the expanding phase. If
enough magnification of these de Sitter breaking effects
occurs and their backreaction effects are taken into account,
then the universe may never reach the symmetric point, at
which contraction ceases and expansion begins, and instead
may evolve in a completely different way from de Sitter
space for its entire future.

We treat the issue of perturbations of the CTBD state at
early initial times in the contracting phase explicitly in an
accompanying paper [21]. In this paper we show that the
status of the vacuum in de Sitter space is very much
analogous to that of a charged quantum field in the presence
of a constant, uniform electric field E = EZ. Such an
idealized static background field is completely invariant
under time reversal and time translations. Yet in this case,
as first shown by Schwinger, there can be little doubt that
the vacuum is unstable to the spontaneous creation of
charged particle/antiparticle pairs [22]. This spontaneous
process breaks the time reversal and translational symmetry
of the background, and leads to a positive imaginary part
for the effective action of charged matter in the electric
field background. Mathematically, this imaginary part is a
consequence of the m> — m? —i0" prescription in the
Schwinger proper time treatment, or equivalently in the
Feynman propagator, which distinguishes positive and
negative frequency solutions as particles and antiparticles,
respectively. It is this analytic continuation in mass (not
global symmetries of the background or Euclidean con-
tinuation) that provides the physical definition of the
vacuum and particle concepts for QFT in persistent back-
ground fields, including gravitational fields [23,24].

It is important to note that this prescription and
Schwinger’s calculation of the decay rate per unit volume
of a constant, uniform electric field and hence its instability
to particle creation already applies at the level of a non-
interacting QFT. While interactions and the behavior of
multiple point correlation functions are clearly important
for the subsequent evolution of the created pairs, the
instability of the background to creation of those par-
ticle/antiparticle pairs in the first place requires only the
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interaction of the quantum field with a classical background.
In de Sitter space the absence of any minimum energy
vacuum state, as well as the spontaneous particle creation
rate calculated some time ago [9], analogous to that in a
constant, uniform electric field, is evidence for the analogous
instability of global de Sitter space to particle creation.
We review that calculation in this paper and show that it can
be fully justified by the proper definition of time dependent
adiabatic Hadamard vacuum states. These adiabatic vacuum
states provide the basis for describing particle excitations
and their interactions in the transition to kinetic theory. The
definition of these adiabatic vacua and particle production is
restricted to massive fields, whereas it is apparent that the
effects of light fields and gravitons are more subtle [25-27].
Settling the basic question of vacuum instability to massive
particle creation of free QFT in de Sitter space is a necessary
first step, and clearly relevant to the fundamental problem
of cosmological vacuum energy, and its ultimate fate in a
full quantum theory.

Although the problem of charged particle creation in an
external electric field has a long history [22,28-36], it is
quite illustrative, and the features directly relevant to de
Sitter space are worth emphasizing. In particular, one can
find a completely time symmetric state in a constant,
uniform electric field background which has exactly zero
decay rate by time reversal symmetry, and is thus the close
analog of the maximally symmetric CTBD state in de Sitter
space. The construction of such a time symmetric state,
however appealing it may be mathematically, is an artificial
coherent superposition of particle and antiparticle waves,
which assures neither its nature as a true vacuum state, nor
its stability. The spontaneous particle creation process in
an electric field leads to an electric current that grows
linearly with time and whose backreaction on the classical
background electric field must eventually be taken into
account [34,36].

Guided by the electric field analog, our main purpose in
this paper is to present a detailed description of particle
creation in de Sitter space in real time, extending and
deepening previous analyses of its instability to particle
creation [9], and computing the energy-momentum tensor
of the created particles. Our study consists of two distinct
but related parts. In the first part, Secs. II-1II we compute
the rate of the particle production in de Sitter space, and
in Sec. IV review the analogous calculation for a constant
uniform electric field. The standard Feynman-Schwinger
prescription of particle excitations moving forward in time
with negative energy modes interpreted as antiparticles
propagating backwards in time provides the framework
for defining |in) and |out) vacuum states in the infinite
past /_ and infinite future /, of de Sitter space. With this
definition, it becomes evident that particles are created
spontaneously, and the overlap |{in|out)|> provides the
vacuum decay probability, just as it does in the electric field
analog. Both cases involve infinite time intervals in which
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the constant electric or gravitational field acts, with the
result that |(inlout)|* = exp(-I'Vy) = 0, as the four-
volume V, — oo. The finite decay rate I" for de Sitter
space is obtained by a physical argument relating a cutoff in
momentum mode sums to the cutoff in finite four-volume
V4 as both tend to infinity.

The infinite V, limit is somewhat subtle, and taken
literally leads to non-Hadamard |in) and |out) states with
zero overlap, corresponding to an infinite amount of
particle creation, termed “pathological” in [8]. In fact, this
should be expected for a persistent background producing
particles at a finite rate per unit volume. To compute this
finite rate of particle production rigorously, in the second
part of the paper beginning in Sec. V, we define adiabatic
Hadamard vacuum states and specify initial data for the
mode functions on Cauchy hypersurfaces at a finite time.
Then the time dependent Bogoliubov coefficients that
describe the particle production mode by mode are com-
puted and it is shown that in the infinite time, infinite V,
limit they approach the time independent Bogoliubov
coefficients connecting the |in) and |out) states. By thereby
exposing the anatomy of particle production in real time,
the infinite momentum and infinite time limits are shown
not to commute, and the physical cutoff of the previous
calculation is justified. This more careful treatment involv-
ing only UV finite adiabatic states removes a possible
technical objection against the more heuristic approach of
[9], reviewed in Sec. III. In addition, the second approach
allows the finite but exponentially growing (7,) in the
contracting phase of de Sitter space to be computed, and its
prospective large backreaction effects on the classical
geometry to be estimated. This approach also makes
possible a detailed investigation of the time dependence
of the energy density, showing it to become quickly
dominated by the particle production term in the con-
tracting phase.

By investigating the particle creation process in real time
and computing the corresponding energy momentum of
the particles, the vacuum instability of global maximally
extended de Sitter space to particle creation, the breaking
of both time reversal and global de Sitter symmetries, and
the necessity to include backreaction of the particles on the
geometry become clear. The nature of the CTBD state as a
particular coherent squeezed state combination of particle
and antiparticle excitations is also clarified.

In the case of a uniform electric field, the Feynman-
Schwinger prescription is known also to be equivalent to
an adiabatic prescription of switching the electric field on
and off again smoothly on a time scale 7, evaluating the
particles present in the final field free out region starting
with the well-defined Minkowski vacuum in the initial field
free in region [28,30,35]. We present evidence that for
the analogous gentle enough switching on of the de Sitter
phase from an initially static Einstein universe phase, for
large values of 7 and for modes with small enough
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momenta, the initial state produced for these modes is the
asymptotic |in) state defined previously in eternal de Sitter
space. Particle creation takes place for these modes after
adiabatic switching on of de Sitter space and the particle
spectrum produced is the same as in global de Sitter space.

The paper is organized as follows. In the next section
we define the CTBD state for a non-self-interacting scalar
quantum field theory in de Sitter space, fixing notation. In
Sec. III we formulate the problem of particle creation in de
Sitter space in terms of a one-dimensional time-independent
scattering problem, review the construction of the [in)
and |out) vacuum states, the nontrivial Bogoliubov trans-
formation between them, and the de Sitter decay rate this
implies. We show that the de Sitter invariant CTBD state is a
definite phase coherent squeezed superposition of particle
and antiparticle solutions in both the past and the future and
therefore not a true vacuum state. In Sec. IV we digress to
consider the case of particle creation in a constant, uniform
electric field, showing the close analogy to the de Sitter case.
In Sec. V we define the UV finite adiabatic states necessary
to interpolate between the asymptotic |in) and |out) states
and describe the particle creation process, the adiabatic
particle number, and physical quantities such as the current
and energy-momentum tensor of the created particles in
real time. In Sec. VI we apply this adiabatic framework
to global de Sitter space with closed spatial S* sections,
showing how it may be used to describe particle creation
events in real time. In Sec. VII we show how these same
methods may be applied equally well in the Poincaré
coordinates of de Sitter space with flat spatial sections most
often used in cosmology. In Sec. VIII we derive the form of
the energy-momentum tensor for vacuum states set at finite
initial times in the global S* sections, and show for early
initial times that particle creation in the contracting phase
leads to exponentially large energy densities before the
expanding phase even begins. In Sec. IX we present
numerical results for the adiabatic turning on and off of
de Sitter curvature on a time scale 7 starting from a static
space and back, showing that the |in) state is produced in this
way and particle production proceeds just as in global de
Sitter space. Section X contains a summary and discussion
of our results. There is one Appendix which contains
reference formulas for the de Sitter geometry and coordi-
nates, included for completeness. The reader interested
primarily in the results for de Sitter space may proceed
from Sec. III directly to Secs. VI-VIII and the summary
and discussion.

This paper may be read in conjunction with the closely
related paper [21]. This first paper focuses almost exclu-
sively on scalar particle creation and the resulting vacuum
instability, while the second considers the instability to
perturbations in a more general context, independent of
specific fields or particle definitions, emphasizing instead
the role of the effective action of the conformal anomaly
and the behavior of the stress tensor derived from it.
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The more general analysis based on the anomaly makes
it possible to draw more general conclusions about vacuum
instability, the importance of inhomogeneous perturbations
and sensitivity to initial conditions in de Sitter space and
cosmology.

II. WAVE EQUATION AND DE SITTER
INVARIANT STATE

We consider in this paper a scalar field ® with mass m
and conformal curvature coupling ¢ = % which in an
arbitrary curved spacetime satisfies the free wave equation

1 9
/—'_gaxa

(-O0+M*)d= { (\/—_gg“haib> +M2}<I>:0

(2.1)

with effective mass M? = m? + £R. In cosmological space-
times with S* closed spatial sections the Robertson-Walker
line element is
ds* = —d7* + a*d>?. 2.2)
Here dX? = dN - dN denotes the line element on S3 and N,
defined by Eq. (A10), is a unit vector on S3. Specializing to de
Sitter spacetime and defining the dimensionless cosmological
time u = Hr, the scale factoris a(u) = H~' cosh u, the Ricci
scalar R = 12H? is a constant, and the effective mass is
M? = m? + 126H? = m? + 2H? 2.3)
for & = ¢
The wave equation (2.1) is separable in coordinates (2.2)
with solutions of the form ® =y, (u)Y;,, (N) and Yy, (N)

a spherical harmonic on S* given explicitly in [21]. The
equation for y;(u) is

d72+3tanhui+(k2—l)sech2u+ 2+ 2 -0
du? du 4 /4 Vi =

(2.4)

with the dimensionless parameter y defined by

_\/M2 9_\/m2 1
"=Vm s Ve g

with the latter expression valid for conformal coupling. The
range of the integers kK = 1,2, ... is taken to be strictly
positive, so that the constant harmonic function on S$3
corresponds to k = 1, conforming to the notation of [18]
and [37]. In some works the sign under the square root in
(2.5) is reversed and the quantity v = iy is defined, which is
real for M? <2 H? [8]. In this paper we shall be interested
mainly in the massive case M* > 3 H* (the principal series

(2.5)
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representation of the de Sitter group) where y is real and
positive, and for simplicity, in the case of conformal
coupling & =, so that m* > ; H*.

With the change of varlables z=(1—isinhu)/2, the
mode equation (2.4) can be recast in the form of the
hypergeometric equation. The fundamental complex sol-
ution y; = vy, (u) may be taken to be

v, (1) = Hey, (sechu) (1 — i sinh u)*

1 1 1—isinhu
Fl=4+iy,=—ir;k+1;—, 2.6
X <2+1y2 iysk + 5 > (2.6)

where F = ,F| is the Gauss hypergeometric function and

. _[ (k+3+iy)l (k+%—i7)F_|F(k+%+i7)|
¥ 2 C Var(k+1)
2.7)

is a real normalization constant, fixed so that vy, satisfies
the Wronskian condition

. ., d d
iHa*(u) [vk},avk}, - Uk}’%“ky:| =1 (2.8)
for all k. Note that under time reversal u — —u the mode
function (2.6) goes to its complex conjugate

vy (—u) = vy, (u) (2.9)

for all M? > 0.
The scalar field operator ® can be expressed as a sum
over the fundamental solutions

-3

k=1

~

—1

l
Z {aklm Uky Yklm, (N)

ml—

+ak1m,vky( u) klm,(N)}

T
)

(2.10)

with the Fock space operator coefficients ay,, satisfying
the commutation relations

ot
(@R, W) = St Btt B - (2.11)

With (2.8), (2.11) and the standard unit normalization of
harmonic functions on the unit sphere

/§3 dSZ Yz’l’m; Yklm, - 5k’k61/15m;m1 (212)

the canonical equal time field commutation relation

[®(u, N), TI(u, N')] = i6s (N, N") (2.13)
is satisfied, where IT=,/—g® = Ha’%® is the field

momentum operator conjugate to @, the overdot denotes
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differentiation H9/Ou and &x(N,N') denotes the delta
function on the unit S with respect to the canonical round
metric d%?.

The Chernikov-Tagirov or Bunch-Davies (CTBD) state
|v) [14-16] defined by

Al l0) =0 ¥ k1 m (2.14)

is invariant under the full O(4, 1) isometry group of the
complete de Sitter manifold (A1)—-(A2), including under
the Z, discrete inversion symmetry of all coordinates in
the embedding space, X4 — —X4, cf. Eq. (A4), which is
not continuously connected to the identity. This de Sitter
invariant state |v) is the one usually discussed in the
literature, and the Green functions in this state are those
obtained by analytic continuation to de Sitter spacetime
from the Euclidean S* with full O(5) symmetry. The
existence of an O(4,1) invariant symmetric state does
not imply that this state is a stable vacuum. In this and a
closely related paper [21], we shall present the evidence
that it is not.

III. DE SITTER SCATTERING POTENTIAL,
IN AND OUT STATES, AND DECAY RATE

The solutions (2.6) and de Sitter invariant state |v) are
defined once and for all, globally in de Sitter space without
any reference to a separation between positive and negative
frequencies, which is axiomatic in flat spacetime to
discriminate between particle and antiparticle states, and
necessary to define a stable vacuum which is a minimum
of a positive definite Hamiltonian. In flat spacetime such a
separation into particle and antiparticle solutions of the
wave equation is defined by positive and negative fre-
quency solutions e~ and et  which are analytic
functions of m? in the lower and upper half complex m?
plane, respectively, as t = —+oco. For t = —oo the analytic-
ity in the two halves of the complex m? plane are reversed
for the same positive and negative frequency modes.
Clearly these are the same simple exponential functions
for all times in flat Minkowski space. The fundamental
CTBD solutions (2.6) do not have this property in de Sitter
space. Correspondingly, there is no positive definite
Hamiltonian operator to be minimized in global de Sitter
space [14]. These important differences with flat space are
responsible for the nontrivial features of quantum fields and
the quantum vacuum in de Sitter space.

To appreciate the sharp distinction from flat space, it
is useful to eliminate the factor of @’ in the Wronskian
condition (2.8) by defining the mode functions

fr = @y, 3.1)

which satisfy the equation of a time dependent harmonic
oscillator
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d2

ﬁfk +Qif =0 (3.2)

in each k mode, with the time dependent frequency
given by

+ m?.

1 h K K>
Q2 = o2 N - S 2 _ N
E wk+<§ 6) 27 T

(3.3)
Here h = a/a in a general RW spacetime with line element

(2.2). Specializing to de Sitter space and again using u = Hzr,
the time dependent harmonic oscillator frequency is

1
Q24 = H? [(kz - Z) sech?u + )/2] , 3.4)

so that we may rewrite (3.2) in dimensionless form as a
stationary state scattering problem,

d2
[_W+Z/lk(”):|fky =7 fip- (3.5)
with the one-dimensional effective scattering potential,
— 2 1 2
Up(u) = =( & =7 )sech’u. (3.6)

Here the “energy” y is defined by (2.5) and is both real and
positive for the fields with £ = £ and m* > { H* considered
in this paper.

Since the scattering potential (3.6) is negative definite, and
approaches zero exponentially as |u| — oo, the solutions of
(3.5) for y*> > 0 describe over the barrier scattering and are
everywhere oscillatory. The vanishing of the potential at
large |u| implies well-defined free asymptotic solutions as
u — Foo, behaving like e*7*. Because of the scattering by
the potential, a positive frequency wave e~7* incident from
the left (the past as u — —oo0) will be partially transmitted to
a positive frequency e~ wave to the right (the future as
u — +o0) and partially reflected to a negative frequency e”*
wave to the left. Potential scattering of this kind and mixing
of positive and negative energy solutions clearly does not
occur in static spacetimes such as Minkowski spacetime.

Now the crucial point is that the asymptotic pure
frequency scattering solutions behaving as e~7* have the
required analyticity in m?> to correspond exactly to the
Feynman prescription of positive energy solutions as
particles propagating forward in time, while et7* are
negative energy solutions corresponding to antiparticles
propagating backward in time [24,38]. This leads to the
covariant definition of the Feynman propagator as the
boundary value of a function defined in the complex m?
plane with the m? — i0" prescription specifying the limit in
which the real axis is approached and pole contributions

PHYSICAL REVIEW D 89, 104038 (2014)

evaluated. This definition is easily generalized to non-
vanishing background fields and curved spacetimes by the
same generally covariant m?> — i0" prescription, and is then
completely equivalent to the Schwinger-DeWitt proper
time method of defining the propagator and effective action
functional in such situations [22,23]. This gives a rigorous
definition of particles and antiparticles whenever the
solutions of the time dependent mode equation (3.2) behave
as pure oscillating exponential functions in the asymptotic
past and the asymptotic future. This definition is physically
based on the corresponding definitions in Minkowski space
[24], free of any assumptions of analytic continuation
from Euclidean time or S* and generally quite different
from that prescription. It is also the Feynman-Schwinger
m? —i0" definition of the propagator, and only that
definition that satisfies the composition rule for amplitudes
defined by a single path integral [39]. This should be clear
from the fact that only pure positive (or pure negative)
frequency exponentials can satisfy the composition rule
e'Sac ~ 5" petSaneiSsc in the Feynman path integral, and that
the composition rule will generally fail if superpositions of
e*iS appear in the single particle proper time representation
of the Feynman Green’s function. Finally, in Sec. IX we
provide evidence that this definition of asymptotic particle
and antiparticle solutions to the wave equation is the also
the unique one produced by adiabatically switching the
background gravitational field on and off.

Let us therefore denote by fy,4)(u) the properly nor-
malized positive frequency solution of (3.5) which behaves
as e~ as u — —oo (the particle in solution), and by f ,((;f) (u)
the properly normalized positive frequency solution of (3.5)
which behaves as e™7* as u — +oco (the particle out
solution). The corresponding negative frequency (or anti-
particle) solutions f,(_)(«) and f,((;)(u) which behave as
e’ as u — Foo, respectively, are obtained from these by

complex conjugation. Moreover since the potential U/, (u) is
real and even under u — —u, we have

Firo) () = [fryy(@)]" = f,iﬁ(—u) (3.7a)

W) = 1) ) = Fen (-, GTb)
by which any one of the four solutions determines the other

three. The proper normalization condition for each set of
modes analogous to (2.8) is

(. d d .
iH <f k) gy = e 7 f ky(+)> =1
. « d d «
_ m(f,iﬁ ) =1y oty ) (38)

The CTBD mode function (2.6), which we may write in
terms of a Legendre function [40],
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Fky(u) = agvky(u)
k2 o (1) IT(k + % +iy)|
V2H

x (cosh u)%P:;iy(i sinhu),

=e
(3.9

satisfies (3.5) and the normalization (3.8) by virtue of
(2.7), (2.8) and (3.1). The dependence of the phase on the
sign of u enters to compensate for the discontinuity of
the Legendre function P:i‘ ﬂ.y(é’ ) as conventionally defined

with a branch cut along the real axis from { = —oc0 to
{ = +1 [40], so that Fy,(u) is in fact continuous as u
Crosses zero.

Since the in, the out, and the CTBD mode functions
together with their complex conjugates are each a complete
set of solutions to (3.5), which preserve the Wronskian
relation (3.8), they are expressible in terms of each other
by means of a Bogoliubov transformation. Specifically, the
in mode functions are expressible in terms of the CTBD Fy,
and F}, by

<fk7(+) ) _ ( A;:Jl; B;:Jl; > <F1;7> (3.10)
f ky(-) Bf:; AZ;’/ F ky
and likewise for the out mode functions,
f(+) Aout  pout F
( i )—( e ’za)( ’?). (3.11)
f]<(;> B Aky Fy,

Each set of the (strictly time independent) A;, and By,
Bogoliubov coefficients satisfies the relation

|Aky|2 - |Bky|2 == 1 (312)

By using (3.7) and F,(-u) = F;,(u) we immediately
infer the relations
AQ = A" and  B{Y = By

(3.13)

between the in and out Bogoliubov coefficients.
Furthermore, by inverting (3.11) and substituting the result
in (3.10), we obtain

in in outx ou (+)
<fky(+)> N (Aky Bky ) ( Akyt _Bkyt> <fky >
for )~ \ b g s age )\ g0

0 0 +
(A (1 (3.14)
v
which with (3.13) gives
AL = (Al)? - (BIn)? (3.15a)
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By = A;{'J’,*BZ; - A;{'}’,B;C’J’,* (3.15b)
for the coefficients of the total Bogoliubov transformation
relating the in and out bases.

To find these Bogoliubov coefficients explicitly we
construct the de Sitter scattering solutions (3.7). From
the asymptotic form of the Legendre functions for large
arguments [40], the pure positive frequency solutions of
(3.5) as u — Foo are Legendre functions of the second
kind, Q¥ iy Fixing the normalization by (3.8) these exact
in and out solutions of (3.5) may be taken to be

P e~7 cosh u
kr(+)lu<o = T3 = k + iy)| [H sinh(zy

)] EQ:g_iy(i sinh )
(3.16a)

)

1
n coshu |z __ .
fl(cy Mo = } _;fﬂ.y(z sinh u)

e 2
TG =k + iy)| {H sinh(zy)
(3.16b)

in the indicated regions of u, which have the required
asymptotic behaviors [41]

)k
F), 2, (21)qy ef ey e=ir (3.17a)
— k s . .
(+) ( ) e—%elnk,e—l}’“, (3.17b)

fky o \2Hy

respectively, and where the phase 7, here is defined by

1
Ny = arg{F(l - iy)F(k + 3 + iy) }

Then by using Eq. (3.9) and Eq. 3.3.1 (11) of [40] relating
the Legendre functions of the second kind to those of the
first kind, we obtain

(3.18)

1 ikn 7y ikn y
=———— (ie2e2F, +e2e2F] 3.19a
fky(+) 5 sinh(n'y) ( ky ky) ( )

1 . ikz 7y ikn

(+) %7 e T F*
=—— (—ieze2F,, +e2e2F;), (3.19b
Ty 2 sinh(zy) ( v 2 :

which are valid for all u. Making use of the definitions
(3.10) and (3.11), we may read off the Bogoliubov
coefficients,

. i ikr 7y

Al = ———e % = A" (3.20a)
7\ /2 sinh(zy) b
. 1 ikn y

Bin = ¢Fe™¥ =By, (3.20b)

2 sinh(zy)
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relating the in and out scattering solutions of (3.5) to the
fundamental CTBD solution in de Sitter space.

Notice that if (3.10) or (3.11) with the Bogoliubov
coefficients (3.20) are inverted, then it is clear that the
CTBD solution (3.9) is a very particular phase coherent
superposition of positive and negative frequency solutions
at both u — £oo [42]. Hence the O(4, 1) invariant state |v)
they define through (2.14) contains particles in both the in
and out bases and is not a particle vacuum state in either
limit. A direct consequence of this is that the O(4,1)
invariant propagator function constructed from the CTBD
modes and obtained also by analytic continuation from the
Euclidean S* manifold contains a superposition of phase
increasing and decreasing exponentials e*’S, and does not
obey the composition rule of a Feynman propagator
function [12].

Clearly the quantization of the scalar field ¢ may be
formally carried out in either the in or out bases and the
corresponding Fock space operators introduced as in
(2.10)—(2.11) for the CTBD basis. Since there is scattering
in the de Sitter potential (3.5) and the in and out states are
related by a nontrivial Bogoliubov transformation (3.15),
which from (3.15) and (3.20) has coefficients

AP = (=) coth(zy) (3.21a)

B = i(=)*"cesch(y), (3.21b)
the vacuum state |in) defined by absence of positive
frequency particle excitations at early times is different
from the corresponding vacuum state |out) defined by the
absence of positive frequency particle excitations at late
times. Equivalently the early time [in) state contains
particle excitations relative to the late time |ouf) vacuum.
The mean number density of particles of the out basis in the
vacuum state defined by the in basis is

|BiY|* = csch?(zy) (3.22)
in the mode labeled by (kim;). Also
B;{Ot 2
w, = ’Atoyt = sech?(ny) (3.23)
ky

is the relative probability of creating a particle/antiparticle
pair in this mode. Note that both (3.22) and (3.23) are
independent of (kim,;), depending only upon the mass of
the field and its coupling to the scalar curvature. Equivalent
results were found in earlier work [9] with a different
choice of the arbitrary phases for the scattering solutions
and Bogoliubov coefficients.

The overlap between the in and out bases yields the
probability that no particles are created, or that the vacuum
remains the vacuum, and is given by

PHYSICAL REVIEW D 89, 104038 (2014)

(out|i)> = TJ(1 =w,) = exp{Zln [tanhz(ﬂy)]}.

klm, klm,;
(3.24)

Because the summand in the last expression is independent
of (klm;), the sum is quite divergent and the overlap
between the |in) and |out) states strictly vanishes. This fact
has led to questions about the physical meaning and
appropriateness of these states [8,43]. Questions have also
been raised by the closely related fact that the Wightman
and Green’s functions defined in the |in) and |out) states
have non-Hadamard short distance behaviors, since they
are in fact two members of the @ vacuum family of states
with particular nonzero values of the parameter a [9,44].
Although this entire family of states are formally de Sitter
invariant under the SO(4, 1) subgroup of O(4, 1) contin-
uously connected to the identity, they are not invariant
under discrete Z, inversion, and the two-point Wightman
correlation function in all such states other than the CTBD
a = 0 state has short distance singularities as x — x’ that
differ from those in flat space. This would seem to imply a
sensitivity of local short distance physics to global proper-
ties of the geometry, at odds with usual expectations of
renormalization and effective field theory.

These difficulties are removed once one recognizes that
the divergence of the sum in (3.24) and vanishing of the
overlap |(out|in)|* are due to the infinite four-volume V,
of de Sitter space, and one should ask instead about the
particle production probability per unit four-volume. As we
shall see by detailed analysis of the particle creation process
mode by mode in real time in Sec. VI, the unphysical non-
Hadamard UV behavior of the |in) and |out) states is due
to the noncommutivity of the infinite time |u| — oo (and
hence infinite V) and infinite momentum k — oo limits.
The short distance or UV properties of the state rely in
momentum space on the vacuum matching the flat space or
zero field vacuum to sufficiently high order at sufficiently
high momentum or short distances, whereas these large k
short distance properties are lost if the infinite time limit is
taken first. Thus both technical difficulties are eliminated
when one considers first a finite time interval and relates the
cutoff in k in (3.24) properly to the finite four-volume V,
over which the particle production takes place.

The finite particle production rate I' can be extracted
from (3.24) by the following physical considerations,
which we justify more rigorously in Sec. VI. First the
sums in (3.24) are regulated by introducing a cutoff in the
principal quantum number at k,,, = K, so that

=~

K k-1 l 3
3 le1<(K+1)(2K+1)_)£
k=1 1 3

(3.25)

‘ 6

Il
=}

mp=—

for K > 1. Then one recognizes that the cutoff in the mode
sum corresponds to a time dependent cutoff in physical
momenta at
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P(u) K KH
u)=—= .
K a coshu

(3.26)

Hence, for a fixed physical momentum cutoff Py, an
increase in time by Au results in an increase in K such that

AK  A(coshu)

3.27
K cosh u ( )

— sgn(u)Au = |Au|
as K and |u| — oo. Thus the K cutoff in the sum (3.25) may
be traded for a cutoff in the time interval u according to

In K<>|u| + const, (3.28)

where the constant is dependent upon the finite fixed Py
and is unimportant in the limit K, |u| — oo. Since the four-
volume enclosed by the change of u is

2712
AV, = /d4x\/—g|Z+A” = §|Au| cosh’u

2 2
AL S TN

4H* K 4H* (3-29)

in this limit, the change in the sum in the exponent of (3.24)
as the cutoff K is changed,

A) " In[tanh?(zy)] = —2In[coth(ny)| K> AK
klm,;
8H*
— ——-In[coth(zy)|AV,, (3.30)
T
may be regarded as giving rise to the finite decay rate per
unit four-volume according to

[(out|in)[};, = exp(-T'V,) (3.31)

as V, — oo, with

8H*
= ?ln[coth(ny)] (3.32)
the decay rate of the vacuum |in) state due to particle
creation in de Sitter space [9]. For m > H the decay rate
goes to zero exponentially

16H*

I'—- —26_27”"/1{ for m > H, (333)
T

while the divergence of (3.32) at y = 0O indicates that the
case of light masses must be treated differently.

The argument leading from (3.24) to (3.32) will be
justified in Sec. VI by a more careful procedure based on an
analysis of the real time particle creation process in de Sitter
space. This requires evolving the system from a finite initial
time to a finite final time and defining time dependent
adiabatic vacuum states which interpolate smoothly

PHYSICAL REVIEW D 89, 104038 (2014)

between the |in) and |out) states, so that the infinite time
infinite V, limit is taken only at the end. The analysis of
particle creation in real time introduces the momentum
dependence that is absent from the asymptotic Bogoliubov
coefficients (3.21) at infinite times and which justifies
the replacement (3.27). For finite elapsed |u| and finite
enclosed V, all states are Hadamard since their properties
at k> K are undisturbed from the UV finite adiabatic
vacuum. This will also enable consideration of the finite
renormalized stress tensor of the created particles and their
backreaction on the classical geometry. Before embarking
upon that more complete treatment of the particle creation
process in de Sitter space, we review the analogous case
of particle creation in a constant uniform electric field,
which shares many of the same features, and for which the
implication of an instability is clear.

IV. IN/OUT STATES AND DECAY RATE OF A
CONSTANT UNIFORM ELECTRIC FIELD

The case of a charged quantum field in the background
of a constant uniform electric field has many similarities
with the de Sitter case. Although this case has been
considered by many authors [22,28-31,33-36], the aspects
relevant to the de Sitter case are worth re-emphasizing,
including the existence of a time symmetric state analogous
to the CTBD state in de Sitter space, which apparently has
not received previous attention.

Treating the electric field as a classical background field
analogous to the classical gravitational field of de Sitter
space, the wave equation of a non-self-interacting complex
scalar field ® is

[—(0, — ieA,) (0" — ieA*) + m* D =0  (4.1)
in the background electromagnetic potential A, (x).
Analogous to choosing global time dependent coordinates

2.2)) or (A8) in de Sitter space, one may choose the time
dependent gauge,

4.2)

in which to describe a fixed constant and uniform
electric field in the z direction. Then the solutions of
the field equation (4.1) may be separated in Fourier modes
O ~ X f (1) with

2

pra (k. + eEt)? + k3 +m?| fi(t) = 0. 4.3)

This is again the form of a time-dependent harmonic
oscillator analogous to (3.2), with the frequency function
now given by
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3
wi (1) = [(k, + eEr)2 + k2 + m?]: = \/2|eE|\ /%4.,1
“4.4)

instead of (3.3) of the de Sitter case. We have defined here
the dimensionless variables

2 K + m?
=,/—(k Er), I=—Lt — 0.
4=\ eg] et eED 2eE]

D—il—%<e%u)’

4.5)

in

D_j_i(—etu),

Any two of the solutions (4.7) are linearly independent for
general real A.

It is important to recognize that questions relating to the
definition of particles and the proper vacuum state arise
in time-dependent background electromagnetic potentials
such as (4.2), which are quite analogous to the same
questions arising in gravitational backgrounds such as de
Sitter space. As in the de Sitter case Eq. (4.6) may viewed
as a one-dimensional stationary state scattering problem
for the Schrodinger equation in the inverted harmonic

|

t(u) 1 [u
@,1(14)5/( )dtwk(t)ZEA duv/u* + 41 =
t

u=0

ur 2
— sgn(u) 213

as |u| — oo. The fact that the phase (4.8) has a well-defined
asymptotic form with small corrections means that well-
defined positive and negative frequency mode functions
exist in the limit of large |u|, although the potential (4.2)
does not vanish (or even remain bounded) in this limit.
Examining the asymptotic form of the various parabolic
cylinder functions (4.7) one easily finds the exact solutions
of (4.6) which behave as pure positive frequency adiabatic
solutions of (4.3) or (4.6) [28-30], namely

Fary () = (2eE)ye~%emD 1,y (—e ) (4.9)

fﬁ”(”) = (2eE)7ie~Feim D_%_M(e%u), (4.9b)
and which satisfy the Wronskian normalization condition,
A . d d
i <f,1(+> 7/ ) cz’tf/1<+>> =1

. d d "
_ <f5+)E PURPSLPS >

— 4.10
Lodr (4.10)

o(5) 1)+

PHYSICAL REVIEW D 89, 104038 (2014)

Without loss of generality we can take the sign of eE to be
positive. With f () — f;(u), the wave equation (4.3) then
becomes
& u?
[W'Fz-l-/l]f,{(ll) =0, (4.6)

whose solutions may be expressed in terms of confluent

hypergeometric functions | F, (a; ¢; z) or parabolic cylinder
functions [40]

4.7)

oscillator potential —u?/4, independent of k in this case,
with “energy” A (the analog of y?). We again have over the
barrier scattering in a potential that is even under u — —u,
with no turning points on the real u axis and the solutions
(4.7) are everywhere oscillatory for positive 4. Although
the potential —u?/4 grows without bound as |u| — o,
pure positive frequency in and out particle modes can
be defined by the requirement that they behave as
(2wy )2¢™®:) | where the adiabatic phase ©,(u) is
defined by

u
4

Vi 142+ I (L M)
2V

4.8)

|

analogous to (3.8). These in and out scattering solutions
are chosen to have the simple pure positive frequency
asymptotic behaviors,

Fite) — (2p)Femi0t0 (4.11a)
£ s a0, (4.11b)

u—-+00

provided the arbitrary constant phase #, in (4.9) is taken
to be

Ini-2.

8 4.12)

N

_A_
’7,1—2

The in and out particle mode solutions (4.9) and the
corresponding complex conjugate antiparticle mode sol-
utions are a set of four solutions of (4.6) which are related
to each other by the precise analog of (3.7) in the de Sitter
case. Here we have chosen to incorporate the phase #, into
the definition of the modes (4.9) rather than have it appear
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in the asymptotic forms (4.11), as the analogous phase 77,
does in (3.17) of the previous section.

Now an additional point of correspondence is the
existence of a u-time symmetric solution to (4.6) analogous
to the CTBD mode solution (2.6) or (3.9) in de Sitter space,
and a corresponding maximally symmetric state of the
charged quantum field in a constant, uniform electric field
background. That such a mode solution to (4.6) obeying

v;(—u) = vj(u) (4.13)

exists is clear from the u — —u symmetry of the real
scattering potential —u?/4. Since there is no expansion
factor a(u) in this case, this symmetric function is also the
analog of Fy,(u) (3.9) in the de Sitter case. It is most
conveniently expressed in terms of the confluent hyper-
geometric function defined by the confluent hypergeomet-
ric series,

)= (), 2
Blai1) = Fiases) = 3G
I'(a+n)
= - 4.14
(a)n F(a) ’ ( )
or the integral representation
I'(c) 1
dla,c;z) =———2 | dxe¥xa1(1 — x)eme,
(a,c¢;2) F(a)F(c—a)A xe¥x* (1 - x)
Rec>Rea >0 (4.15)
in the form
v (M)_z—%(kz +m2)_%e_% P 1+i/1 l'il,t2
A 472272
il 3 iu?
—iuk®( T+ 555 4.16
A2 ( _|_2 > 2>:| ( )

which is correctly normalized by (4.10), and satisfies (4.13)
by use of the Kummer transformation of the function
®(a,c;z), cf. Eq. 6.3 (7) of [40]. By making use of the
value ®(a, c;0) =1 from (4.14) or (4.15), we find

I | 1
0,(0) = 275(k2 + m2)~t = e 4.17a)
81)/1 1 —ia)k
— = —ivVeEAk? )1 = , 4.17b
ot u=0 e ( * o ) ' Vv 2a)k u=0 ( )

so that the symmetric solution v; matches the adiabatic

.. 1 i .
positive frequency form (2wy ) 2e~©:) at the symmetric
point of the potential u =0, halfway in between the

PHYSICAL REVIEW D 89, 104038 (2014)

asymptotic limits u — +oo. The solution of (4.6) with
these properties is unique.

The existence of such a time reversal invariant solution
to (4.6) implies the existence of a maximally symmetric
state constructed along the lines of the maximally O(4, 1)
invariant invariant state (2.14) in the de Sitter background.
The existence of this state of maximal symmetry does not
imply that it is the stable ground state of either the de Sitter
or electric field backgrounds. In the electric field case this
is well known and the decay rate of the electric field into
particle/antiparticle pairs [22] is becoming close to being
experimentally verified in the near future [45]. That result is
easily recovered in the present formalism by calculations
exactly parallel to those of the de Sitter case in the last
section.

First the Bogoliubov transformation analogous to (3.10)
relating the in state mode function to the symmetric one
v,(u) and its complex conjugate are determined from
the relation between the parabolic cylinder function in
fa+)(u) and the confluent hypergeometric functions,
cf. Egs. 6.9.2 (31) and 6.5 (7) of [40], which give

face)(u) = A, (u) 4+ B (4.18)
with
, T i A% 1 2\{ ef
Am — \/7278171/13_T|:<> 7+ <> , :|
e 2) 1g-5 " \) 1a-B
(4.19a)
. Ty 2 /A1 1 2\{ ef
o e B O
’ 2 2) TG-% \4/) I(G-%)
(4.19b)

Because the in and out mode functions satisfy the same
relations as (3.7), and have the same relation to the
symmetric mode function v;(u) as the corresponding in
and out mode functions have to the CTBD mode function
(3.9) in the de Sitter case, the Bogoliubov coefficients
defined by the analogs of (3.10)—(3.15), and the coefficients
of the total Bogoliubov transformation from in to out
states in the electric field case are given by the same
relations as (3.15), namely

) : V2n _z i
AEO[ — (Ain)Z _ (Bin)Z — me 5 elh Mln/l’ (4.20a)
2
BY' = Ain*Bﬁ" - Ai"Bi”* = —je ™, (4.20b)

Thus the number density of out particles at late times in the
mode labeled by k or (k,, k) if the system is prepared in
the |in) vacuum is
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2 2
M} , 4.21)

Bt0t2: —27h _
B = e = exp | -7

and the relative probability of finding a particle/antiparticle
charged pair in the mode characterized by (k,,k ) in the
lin) vacuum is

Btot
Atot

1

=T (4.22)

w, = ‘

which is independent of k.. The vacuum overlap or vacuum
persistence probability is given then by the analog of (3.24),

T -w) —exp{ >in(r + —w}

K
(4.23)

|(out|in)|* =

Taking the infinite volume limit and converting the sum into
an integral according to

%/dkz/cﬂkb

we see that the exponent in (4.23) both diverges in V and
diverges because the integrand is independent of k.. Thus we
encounter a divergence in this mode sum quite analogous
to the de Sitter case (3.24). Again the reason for this is the
infinite amount of particle production in an infinite four-
volume and one should again define the decay rate by
dividing the exponent in the vacuum persistence probability
(4.23) by the four-volume VT, before taking the infinite time
limit 7 — oo. In this case, we recognize that the physical
(kinetic) longitudinal momentum of the particle in mode k, is
p =k, + eEt, so that for a fixed large p = P cutoff we have

(4.24)

dk, = —eEdt. (4.25)

Thus the positive integral over k, in (4.24) may be replaced
by eET, T being the total elapsed time over which the electric
field acts to create pairs. In this way we obtain from
(4.23)—(4.25) the vacuum decay rate per unit three-volume
V per unit time 7 to be

(4.26)

which is Schwinger’s result for scalar QED. (Schwinger
actually obtained his result for fermionic QED in which the
alternating sign in the sum over n is absent [22]).
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Thus the definition of the |in) and |out) states which are
purely positive frequency as t — F oo, respectively, accord-
ing to (4.11) gives a nontrivial particle creation rate and
imaginary part of the one-loop effective action which agrees
with [22], notwithstanding the existence of a fully time
symmetric state with mode functions (4.16). Clearly a
nonzero imaginary part and decay rate breaks the time
reversal symmetry of the background. Mathematically this
is of course a result of initial boundary conditions on the
vacuum, implemented in the present treatment by the
definition of positive frequency solutions at early and late
times, or in Schwinger’s proper time original treatment by
the m> — m? — i0* prescription of avoiding a pole. As in
the de Sitter case, the time symmetric modes (4.16) can be
defined and have the maximal symmetry of the background
E field. They do not describe a true vacuum state, but rather
a specific coherent superposition of particles and antipar-
ticles with respect to either the |in) or |out) vacuum states,
“halfway between.” The time symmetric state defined by the
solution (4.16) is a very curious state indeed, corresponding
to the rather unphysical boundary condition of each pair
creation event (cf. Sec. V) being exactly balanced by its
time reversed pair annihilation event, these pairs having
been precisely arranged to come from great distances at
early times in order to effect just such a cancellation.

We note also that taking the strict asymptotic states (4.9) in
a constant uniform electric field leads to the same sort of
divergence in the k, momentum integration we encountered
in the k sum in the de Sitter case, which can be handled by the
replacement (4.25) based on similar considerations of a fixed
physical momentum cutoff. The reason that the calculation
leading to (4.23) together with a physical argument for the &,
cutoff gives the identical answer to Schwinger’s proper time
method [22] is of course due to the fact that the definition
of particles by the positive frequency solutions of the time
dependent mode Eq. (4.6) is the same one selected by the
covariant analyticity requirement of the m? — i0* prescrip-
tion. For this correspondence to be unambiguous it is
important that the adiabatic frequency function ©®,(u) in
(4.8) have well-defined asymptotic behavior at large
lu| > /A, so that the in and out positive frequency mode
functions may be identified by the asymptotic behaviors of
the appropriate exact solutions of (4.6), even though the
electric field does not vanish in these asymptotic regions at
very early or very late times. Indeed exactly the same result
(4.26) is obtained if the electric field is switched on and off
smoothly [28,30,35] in a finite time 7. Then the Bogoliubov
coefficients have a nontrivial k, dependence and the integral
over k, for finite T is finite. Dividing by 7 and taking the
limit 7 — oo one recovers exactly the decay rate (4.26)
according to the replacement (4.25) above.

Presumably the |in) and |out) states in the constant,
uniform electric field have Wightman functions with the
same sort of non-Hadamard behavior as those in de Sitter
space, and for the same reason, namely the noncommutivity

104038-12



INSTABILITY OF GLOBAL DE SITTER SPACE TO ...

of the infinite time 7 — co and infinite momentum
(k.,k ) — oo limits. In the electric field case the physical
cutoff on |k.| is of order eET, so that the very high |k,
modes larger than this cutoff are undisturbed from the
ordinary zero field vacuum and the unphysical ultraviolet
behavior of matrix elements and Green’s functions in the
initial state is removed when T is finite. The finite T
regulator eliminates all UV problems, and transfers the
divergence instead to the question of the long time or
infrared secular evolution of the system. Then time trans-
lational as well as time reversal symmetry is lost.

V. ADIABATIC VACUUM STATES AND
PARTICLE CREATION IN REAL TIME

All idealized calculations in background fields that
persist for infinite times do not give much physical insight
into the particle creation process itself in real time.
In formulating a well-posed time dependent problem with
UV finite initial data one needs to define states in which the
momentum dependent particle creation process is started
and can be followed at any finite time. This leads naturally
to the introduction of adiabatic vacuum and particle states
defined at arbitrary times, instead of just in the asymptotic
past or future.

The in and our mode functions f(,) and f (+) are pure
positive frequency particle modes in the asymptotic past
and asymptotic future, respectively, while the time sym-
metric v or F is “halfway between” them and a positive
frequency mode at u = 0. This suggests that it would be
useful to introduce WKB mode functions,

1 t
exp —i/ dtwy |,
2Wy

that are approximate adiabatic positive frequency modes at
any intermediate time #, to interpolate between these limits.
These approximate modes are related to any of the exact
mode function solutions f ;) and f (+) or v of the oscillator
equation (3.2) or (4.3) in the de Sitter or electric field
backgrounds (which we denote generically by fi) by a
time-dependent Bogoliubov transformation

()= (et o) ().

where we require that

fi = (5.1)

(5.2)

o (D2 = 1B (D = 1 (5.3)
be satisfied at all times. The time dependent real frequency
function Wy in (5.1) is to be chosen to match the exact
frequency function Q, or @, of the time dependent
harmonic oscillator equation (3.2) or (4.3), i.e. (3.3) or
(4.4), to some order in the adiabatic expansion
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54)

obtained by substituting (5.1) into the oscillator equation
and expanding in time derivatives of the frequency. The
expansion (5.4) is adiabatic in the usual sense of slowly
varying, in that it is clear that the approximate positive
frequency mode (5.1) more and more accurately approaches
an exact mode solution of the oscillator equation (3.2) or
(4.3), as (3.3) or (4.4) becomes a more slowly varying
function of time, which is controlled by the strength of the
background gravitational or electric field.

An important property of the expansion (5.4) is that it is
an asymptotic series (rather than a convergent series)
which is nonuniform in time. The higher order terms fall
off more and more rapidly at large |k|, for any value of the
background field H or E, no matter how rapidly the
background varies, and irrespective of its asymptotic
behavior in time. In the literature the term adiabatic is
most often used in this second sense of the large |k|
behavior of vacuum modes for arbitrary (smooth) back-
grounds, independently of whether or not they are slowly
varying in time [8]. This guarantees that the adiabatic
vacuum defined by (5.1) will match the usual Minkowski
vacuum at sufficiently short distance scales as |k| — oo,
for any smoothly varying background field, and a suffi-
ciently high order adiabatic vacuum leads to Green’s
functions with Hadamard behavior. This is essential to
the renormalization program for currents and stress
tensors, which is necessary to formulate the backreaction
problem for time varying background fields [6-8].
However, as is generally the case with WKB methods
and asymptotic series more generally, the adiabatic
expansion misses exponentially small contributions in
the vicinity of turning points where wy vanishes. As a
result, the adiabatic mode function (5.1) is not uniformly
valid over all times, for any finite order truncation of the
asymptotic series (5.4), and mixing with fy generally
occurs.

Because of the Wronskian normalization conditions
(2.8) or (4.10), the coefficients of the time dependent
Bogoliubov transformation (5.2) are completely defined
only if the first time derivatives of the exact mode functions
in terms of @y and py are also specified. The general form
of fi in terms of the adiabatic modes f that preserves both
the Wronskian condition (2.8) and (5.3) is [37]

d ) 1% ~ ) V ~
Efk = <—1Wk + 7k> o fx + (ka + 7k>ﬂkfkv
(5.5)
where V| is a second time dependent real function, with its
own adiabatic expansion given by the time derivative of W

from (5.4). For any real (W, Vy) the transformation of
bases (5.2) may be viewed as a time dependent canonical
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transformation in the phase space of the coordinates f) and
their conjugate momenta f}. The corresponding adiabatic
particle and antiparticle creation and destruction operators
may be defined by setting the Fourier components of the
scalar field,

o (1) = ax fic (1) + b f (1)

a (O k(1) + Eik(f)}ik(f)v

equal so that the canonical transformation in the Fock space
(of a charged scalar field) is

<~5;k(l) ) _ (ak(f) ﬁl*((l)) < C{I_k )
by (1) Pi(t) o (1) by

when referred to the time independent basis (ay, b’ ).
For an uncharged Hermitian scalar field, by, and bik are

(5.6)

(5.7)

replaced by a; and aik, respectively. The time-dependent
instantaneous mean adiabatic particle number in the mode

k is defined in the (ay, l;T_k) basis as
Ni(t) = (aj (1)ax (1)
= (b, ()b (1))
= |anc (1) M agax) + i (1) (boicb )
= Ny + (1 +2N) |k (1), (5.8)
where
Ny = (aja) = (b' b_y) (5.9)

is the number of particles (assumed equal to the number of
antiparticles) referred to the time independent basis. This
may be taken to be the particle number at the initial time
t = t, provided that we initialize so that |y (zo)|*> = 0.
With Vy defined in terms of f, by (5.5), the time
dependent Bogoliubov coefficients may be found explicitly:

o = ify |:fk - (iWk + %)fk] (5.10a)

Bi = —if |:fk + (iWk - %)fk:|- (5.10b)

and in particular,

1 |- . \% 2
M Ji+ (ka—Tk>fk

is determined in terms of the adiabatic frequency functions
(W, Vi) and the exact mode function solution f) of
the oscillator equation (3.2) or (4.3), which is specified
by initial data (fy, fy) at ¢ = fy. Although the choice of
(Wy, Vi) is not unique, it is fairly tightly constrained by

B (1) = (5.11)

PHYSICAL REVIEW D 89, 104038 (2014)

the requirements of matching the adiabatic behavior of
the asymptotic expansion (5.4) to sufficiently high order, but
not higher than is necessary to isolate the divergences
of the current (j) or stress tensor (T“,) operators in their
vacuumlike contributions. We shall see that with these
requirements, although the detailed time dependence of
N (t) depends on the precise choice of (Wy,Vy), the
main features of the adiabatic particle number are largely
independent of the specific choice of these functions.

Let us first apply this general adiabatic framework to
the constant, uniform electric field example. Although it is
sufficient to choose the lowest order adiabatic frequency

functions,
E |
WO = oy = 4 /%(,ﬂ +40) (5.12a)
v — % __ g M (5.12b)

@i M2+4/1’

in this case, we shall also study the second-order choice,

W = gy — =Pk 2%
kT2 8wt
€E 2 1 1 5 I/l2
= [ + 4|1 - 2 ,
PR )2[ 140 T 2E 4

(5.13)
for comparison purposes. The Bogoliubov coefficient |y |*
and the adiabatic mean particle number were studied in a
constant electric field background with the choice WE( ) and

Vi = 0 in [36]. In Fig. 1 we plot |y |*> defined by (5.11)
with fy the in vacuum mode function f,)(u) of (4.9)
for both the lowest order and second order choices

0.0030F T T

0.0025

0.0020

S 0.0015

0.0010

0.0005

0.0000t «
-5 0 5 10

FIG. 1 (color online). The mean number of particles created
from the vacuum |[in) state, given by (5.11) with fy = f;,)(u) of
(4.9), with A = 1. The blue curve with larger oscillations is for the
first order choice of (Wy, V) in (5.12), while the green curve is
for the second order choice of Wy in (5.13) and the same V.
Both change rapidly around u = 0, and both tend to the same
asymptotic value, e~>* = 0.001867, of (5.15) as u — oo.
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of adiabatic frequency Wy, given by (5.12) and (5.13),
respectively.

A continuous but sharp rise in |f|* is observed in each
k, mode around its “creation event,” at u = 0, i.e. at the
time when the kinetic momentum p = k, 4 eEt = 0. Since
the adiabatic mode functions are essentially WKB approx-
imations to the time dependent harmonic oscillator equa-
tion (3.2) or (4.3), the particle creation process in real time
and this rapid rise may be understood from a consideration
of the WKB turning points in the complex u plane
[32,46,47]. These are defined by the values of u where
the frequency function @y vanishes. Since the solutions are
oscillatory on the real time axis, those turning points are
located off the real line, and in the case of (4.3)—(4.4) the
zeroes of the frequency are at

| 2

u=4u, =+2ivV2a (5.14)
as illustrated in Fig. 2.

Far from the turning points, for |u| > 2+/2, the exact
mode functions are well approximated by the adiabatic
WKB mode function (5.1) and hence | (¢)|*> defined by
(5.11) will be approximately constant. For u < —|u;| <0
the adiabatic vacuum is approximately the |in) vacuum
discussed previously and |3y (¢)|* is nearly zero if it is
initialized so that |By(fo)]> =0 for (k, + eEty) < —
VK2 +m? <0. For u> |uy| >0, ie. for (k. + eEt) >
k3 + m? > 0 the adiabatic vacuum is approximately the
|out) vacuum. Again |3y (¢)|* will be approximately con-
stant in this region and given approximately by the total
Bogoliubov coefficient BY* from in to out. In the region
u € (—uy, uy), as u crosses the Stokes’ line of the function
(4.8) along the imaginary axis joining the complex turning
points (5.14), the exact mode function fy () receives an

@
Qiﬁcb

\

_27;\/X0

FIG. 2. Location of the zeroes of the frequency function wy of
(4.4) in the complex u plane. Particle creation occurs as the real-time
u contour crosses u = 0, and the Stokes’ line of the function (4.8)
along the imaginary axis joining the pair of these zeroes (5.14).
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increasing admixture of the negative frequency component,
and |By|* changes rapidly from its in to out value. This
change in |y ()]* in the region Au~4v4i or At~

2\/k3 +m?/eE around u =0 (closest to the complex
zeroes of wy) is given by (4.21) or

Alpi|? = |BYY|? = 72, (5.15)
This result can be derived also by analytic continuation of
the adiabatic phase function of (4.8) in the complex u plane,
finding the lines of constant Im ©,(u) as they emanate from
u, and approach the real axis as |u| — oo [46]. Since there
is only one zero of wi in the upper half complex plane and
w} vanishes linearly in u as u — u;, the linear turning point
connection formulas for the WKB approximation extended
to the complex plane apply, and one finds [32,46,47]

BY' = —iexp{2i0®,(u;)} = —ie ™ (5.16)
from (4.8) together with (5.14), in agreement with (4.20b),
and hence (5.15). The total Bogoliubov coefficient BY" is
appropriate since the rise in |, |* changes continuously in
this region u € (—u,, u;) between the two complex zeroes
(5.14) with no constant value halfway between. The
numerical behavior of |y (u)|* for various values of 4 is
plotted in Fig. 3 showing the asymptotic value of the jump
in particle number consistent with (5.15). Since this rise
in |y |* occurs around u = 0, the particle creation “event”
occurs at a different time ¢t = —k,/eE for modes with
different values of k..

Consider now the adiabatic initial data at some finite
time 7,

10'2 T T T

107*

1078

« 1078

= I
107"°
1072

107"

-20 =10 0] 10 20
u

FIG. 3 (color online). The mean number of particles created
from the vacuum |[in) state, given by (5.11) with fy = f;,)(u) of
(4.9), and the second order adiabatic frequency of (5.13) for 1 =
1,2,3 (upper blue, middle green, lower red curves, respectively).
Note the logarithmic scale. The asymptotic values for large u are
1.87 x 1073, 3.49 x 107%, and 6.51 x 10~° for 1 =1,2,3, re-
spectively, in agreement with (5.15).
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1
BV PNTR 5.17
fulto) 2w (to) (5.17a)
Dl (g + 2
dr |, (“‘)k+2wk>fk|f=to (5.17b)

with @y (#) given by (4.4). This matches the adiabatic
vacuum with (5.12) so that f# (¢y) = 0. Since the creation
event occurs around u = 0 = k, + eEt, with a finite start-
ing time only those modes for which the initial kinetic
momentum p(ty) =k, + eEty <0 can experience this
creation event. They do so at the time when their kinetic
momentum p(t) =k, + eEt =0, i.e. when the particle
initially moving in the opposite direction to the electric
field is brought to instantaneous rest p(z) =0 by the
constant positive acceleration of the field and begins to
move in the direction of the electric field. On the other hand
those modes for which p(y) = k. + eEty > 0 are already
moving in the same direction as the electric field at the
initial time and undergo no particle creation event at later
times, being already approximately in the |out) vacuum
state at the initial time f,. Crudely approximating the
creation event as a step function at u = 0 with step size
(5.15), the number of particles in mode k at time 7 > ¢,
may be estimated to be

Ni(t) = (1 + 2N B ()P = 0(p(1))0(—p(19)) e
~ (1 +2Ny)0(k, + eEt)0(=k, — eEty)e ™,
(5.18)

where the factor of 14 2Ny accounts for the induced
creation rate of particles if there are already particles
Ny > 0 in the initial state. From (5.18) there is a “window
function” in k, for modes going through particle creation
given by

—eEt < k, < —eEty, (5.19)
which grows linearly with elapsed time ¢ — ;. Modes with
k. lying outside this range at any finite # remain in the
adiabatic vacuum. However as ¢t — oo, modes with arbi-
trarily large |k,| experience a creation event. Hence it is
clear that the large ¢ and large |k.| limits do not commute.
This is a concrete expression of the nonuniformity in time
of the single frequency adiabatic expansion (5.4). It is this
noncommutivity of limits that leads to the non-Hadamard
properties of the asymptotic |in) and |out) states, and the
consequent vanishing of their overlap (3.31) in the infinite
time, infinite volume limit.

The actual behavior of |By|? is shown in detail in Figs. 1
and 3, and Figures 2-4 of Ref. [36], which rise smoothly on
the time scale of Au ~ 4ﬂ. This behavior can be accu-
rately captured by the uniform asymptotic approximation

PHYSICAL REVIEW D 89, 104038 (2014)

of the parabolic cylinder functions even for moderately
small 1 [36]. Replacing this smooth rise of the average
particle number by a step function already gives a quali-
tatively correct picture of the semiclassical particle creation
process mode by mode in real time, with the correct
asymptotic density of particles. It is the window function
(5.19) which justifies the replacement of the integral over k,
in (4.24) by eE times the total elapsed time T =t — t,
which can then be divided out to obtain the decay rate
(4.26). The window function (5.19) of the real time particle
creation process also agrees with the analysis of adiabati-
cally switching on and off of the background electric field,
so that it acts only for a finite time [28,30,35,48]. It is this
definition of particles created by the electric field in the
adiabatic basis that forms the starting point in quantum
theory for a kinetic description [36].

The adiabatic basis also furnishes a simple physically
well-motivated method for defining renormalized expect-
ation values of current and energy-momentum bilinears
in the quantum field. In the approximation in which the
electric field background is treated classically while the
charged scalar matter field is quantized, the renormalized
J. current expectation value is

3

(10l.(1) o) = 2¢ / éT';m +eEr)

x [(1 NP - (5.20)

1
20 (1))
where the leading divergence has been subtracted by the
adiabatic vacuum term in which |fy | has been replaced by
| |* with (5.12) and N replaced by zero. It can be shown
that this one subtraction removes all the UV divergences
in the momentum integral for a constant E field [34].
A logarithmic divergence proportional to £ can be removed
by using the second adiabatic order approximation for Wy
in the expansion (5.4). As this term can easily be reab-
sorbed into coupling renormalization in backreaction
calculations and vanishes in any case for a constant E
field, the lowest order subtraction in (5.20) is sufficient
for our present purposes.

Substituting (5.2) we obtain from (5.8) and (5.20)

: e
(10l (Dto) = 2e / &’k (k. + ¢Er)

(2”)3 Wk
x [Ny + (1 4 2Ny )Re(a e,
(5.21)
where
O = /Iwkdt =0,(u(r)) —0,(u(ty)) (5.22)

is the adiabatic phase in (5.1), related to the function ©, (i)
defined in (4.8). Since (k, + eEt)/wy = p/wy is the z
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FIG. 4. The linear growth of the electric current J = (j.) with time in the case of fixed constant background electric field in 1 + 1

Z

dimensions in units of ¢>E for eE/m> = 1. The data and the plot were generated in Ref. [36]. The three curves shown are the current of
the exact renormalized current expectation value (5.20), (solid, labelled mean field), a uniform approximation described in Ref. [36]
(dashed, labelled new source), and that obtained from the simple window step function of particle creation in (5.18) and (5.23), (dotted,

labelled old source).

component of the velocity of a classical particle in the electric
field, the first term in the integral of (5.21) has a self-evident
classical interpretation as the contribution to the electric
current of the positive plus negatively charged particles with
phase space number density Ay. The second a fy, term in
(5.21) is a quantum interference term which has no classical
analog. This term is both rapidly oscillating in time and
rapidly oscillating in |k| for fixed time, so one would expect
it to average out in the integral and give a relatively small
contribution to the total current compared to the first term.
For the semiclassical particle interpretation based on the
adiabatic modes (5.1) to be most useful, this should be the
case. If it is, one can also substitute the step approximation
(5.18) for the particle density (assuming Ny = 0, i.e. no
particles in the initial state) and arrive at the simple result,

) e
s [

x O(—k, — eEty) exp [—

<t0 H(kz + €Et>

n(k3 + m?)
eE

=° [\/e2E2(t —1)% + m? — m}

T
0 dk2 kZ 2
x/ —Lexp {——”( itm )}
0 /4 eE
eE? i
- F (t - to)e_T, (523)

for the linear growth with time of the mean electric current of
the created particles. This exhibits the secular effect coming
from the window function (5.19) opening linearly with time
so that more and more modes go through their particle
creation event as time goes on, each becoming accelerated
very rapidly to the speed of light, and making a constant
contribution to the current.

One can also evaluate the exact expectation value (5.20)
for a constant uniform electric field background starting
with the initial adiabatic data (5.17) and compare it to the
simple step function approximation (5.23). This compari-
son is shown in Fig. 4 [36]. The transient oscillations at
early times are the effect of the second quantum interfer-
ence term in (5.21), while the dominant secular effect of
linear growth at late times is correctly captured by the
simple approximation (5.23) based on the particle creation
picture, labeled as old source in Fig. 4. The curve labeled
new source is the uniform approximation of [36] that gives
a slightly better approximation than the crude step function
approximation of (5.18). Either gives correctly the coef-
ficient of the linear secular growth with time, which implies
that backreaction must eventually be taken into account,
no matter how small eE/m? is, provided only that it is
nonzero. This secular growth is a nonperturbative infrared
memory effect in the sense of depending upon the time
elapsed since the initial vacuum state was prepared at
t = ty. Note that this time dependence due to particle
creation is a spontaneous breaking of the time translational
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and time reversal symmetry of the background constant E
field [10,49]. The exponentially small tunneling factor
associated with the spontaneous Schwinger particle crea-
tion rate from the vacuum shows that the effect is non-
perturbative, but that however small, it can be overcome by
a large initial state density of particles Ny > 1 for which
the induced particle creation and current is much larger.
Even in the initial adiabatic vacuum case for Ny = 0,
particle creation eventually overcomes the small tunneling
factor at late enough times.

VI. ADIABATIC STATES AND INITIAL
DATA IN DE SITTER SPACE

As in the electric field case, we introduce instantaneous
adiabatic vacuum states in de Sitter space, defined by the
adiabatic mode functions,

~ 1 T
fi= 2—Wkexp <—i/ dTWk>,

analogous to (5.1). Due to spatial homogeneity and
isotropy in the cosmological case, these modes depend
only upon the magnitude k = |k| which is the principal
quantum number of the spherical harmonic on S*. The time
dependent coefficients a; () and f;(u) of the Bogoliubov
transformation are defined by

(6.1)

fv = afi+Bifi (6.2a)

d \% ~ Vv -
H—f, = —iWk+—k afr+ iWk+—k Prfrs
du 2 2

(6.2b)

where f; is an exact mode function solution of (3.2). They
are given again by (5.10)

fi+ (iWk—Vzk>fk

2
(6.3)

1
Bic (1) ~ W,

and (5.3) is satisfied, provided only that both W, and V are
arbitrary real functions of time. The analog of (5.7) is now

< Agim, (1) ) B (ak(u) ﬁ’,;(u)> ( Aim, ) 6.4)
iy, (1))~ \Be(w) () )\ apy, '

when referred to any time-independent basis (ay;,,,» a,tl_m[)
for the Hermitian scalar field ® (not necessarily the CTBD
basis). The time dependent mean adiabatic particle number
in the mode (klm;) is independent of (Im;) for O(4)

invariant adiabatic states and may be defined by the analog
of (5.8) in de Sitter space to be
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N () = (@, (), () = Nic + (142N, B (w) .
(6.5)

where

Ny = (aiyy, arim,) (6.6)
is the number of particles at the initial time u = uy,
provided |By (ug)|* = 0 is initialized to zero at the initial
time u = uy. Note that with this initialization, the
exact mode function solution of (3.2) satisfies the initial
conditions,

1
\Y% 2Wk u=u

: | v
Fry(ug) = N <—1Wk + 7)

and hence is a certain linear combination (time independent
Bogoliubov transformation) of the CTBD mode function F,
and its complex conjugate Fy, . Correspondingly, the time

fky(u0> =

s

. (6.7

u=uy

. . I .
independent basis operators ay,,, Im, 1 Fock space are

certain linear combinations of the aj,, . aﬂm, operators that
define the de Sitter invariant state (2.14), which can be
expressed in terms of each other by time independent
Bogoliubov coefficients dependent upon the initial data (6.7).

As in the electric field example, the behavior of the
solutions of the mode equation (3.2) is determined by the
location of the zeroes of the frequency function, €; = 0 in

(3.4) in the complex u plane atcosh it = +iy~'\/k*> — 1/4,or

1
ﬁ:uR+iu,:j:uky+iﬂ<n+2> with n€Z and

(6.8a)

K —

A=

sinh uy, =

Mk}, =In

y b
=14+ k-1
\/ ‘ \/ 1. (6.8b)
%

Thus there is an infinite line of zeroes of €, in the complex u
plane along the two vertical axes at u = =uy, for 72 >0,
cf. Fig. 5. The largest effect on the Bogoliubov coefficient
B (u) will occur when the real time contour passes closest to
these lines of complex turning points at u = +u,,. Hence
there are two “‘creation events” in global de Sitter space, one
in the contracting and one in the expanding phase symmetric
around u = 0. Because of the multiple zeroes the simple
linear turning point formula which worked in the electric
field case will not be exact in this case, so we rely on the
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FIG. 5. Location of the zeroes (6.8) of the frequency function
Q, (3.3) in the complex u plane for y?> > 0. Particle creation
occurs as the real time u contour passes through the lines of these
Zeroes at u = Fuy,.

Bogoliubov coefficients (3.20) and (3.21) computed from
the exact in and out scattering solutions in Sec. III.
We may consider the two limits of (6.8b) for u,:

k-1
Uy — LR 0 fory>k or (6.92)
I4
2, /K> =1 2%
U, — In v ¢ —>ln<—> — o0 for k>y.
4 /4
(6.9b)

The first limit (6.9a) is the nonrelativistic limit of very
heavy particles whose rest mass is much larger than their
physical momentum k/a at all times. These nonrelativistic
particles are created nearly at rest close to the symmetric
point u = 0 between the contracting and expanding de
Sitter phases, so that the two events merge into one. The
second limit (6.9b) is the relativistic limit of particles whose
physical momentum is much larger than their rest mass
for most of their history. These particles are created in
two bursts, at u = Fuy,, when their physical momentum
kHsechuy,, is of the same order as their rest mass, so that
they are moderately relativistic at creation. In the con-
tracting phase of de Sitter space u < 0 these particles,
created around u = —uy,, are blueshifted exponentially
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rapidly in u, and thus become ultrarelativistic. This
contracting phase with the created particles becoming
ultrarelativistic is therefore most analogous to the previous
electric field example, and is the phase where we can expect
the largest backreaction effects. Conversely, in the expand-
ing phase, u > 0, the particles created around u = +uy,
will be subsequently exponentially redshifted in u, and
therefore have a much smaller backreaction effect. We
emphasize that the time +uy, is of the order of the horizon
crossing of the mode at u ~ 4 In(2k) only for y ~ 1. For
large values of y, when y > k the particle creation events
occur when the wavelength of the mode is much smaller
than the horizon, while for y — 0 the particle creation
events occur when the wavelength of the mode is much
greater than the horizon. Due to the different disposition of
zeroes of the adiabatic frequency in the electric field and
de Sitter cases, cf. Figs. 2 and 5, there is no analog of this
second burst of particle creation in the electric field case.

For all values of y, most of the k£ modes fall into the
second case (6.9b), and experience two well-separated
creation events at large u;, > 1 in both the contracting
and expanding phases of de Sitter space. In contrast to the
electric field case considered previously we may therefore
distinguish three distinct regions,

I u<—uy, in (6.10a)
Il —uy, <u<uy, CTBD (6.10b)
HI: uy, <u, out, (6.10¢)

where we have indicated the character of the adiabatic
vacuum in each region. If one takes the infinite time limits
u— Foo with k and y and hence uy, fixed, one is
automatically in the first in region or the third out region,
respectively. This corresponds to the in/out scattering
problem considered in Sec. III. If on the other hand one
takes the k — oo limit for fixed u, y then Eq. (6.9b) shows
that one is always in region II, where the CTBD state is the
adiabatic vacuum. This shows explicitly the noncommu-
tivity of the infinite # and infinite k limits, with the
transition between the two limits occurring at u = tuy,.

Next we consider the mode function(s) and adiabatic
vacuum state specified by the initial values (6.7) at an
arbitrary finite time #, < 0. The modes for a given value of
k fall into two possible classes:

(i) —u, < g <0 (6.11a)

(ii) ug < —ug, <O. (6.11b)
For modes in the first class (i) the initial time u is already
later than the first creation event. For these modes in region
II, the adiabatic initial condition is close to the CTBD state
in the high k limit, #; ~ 0 and nothing further happens in
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the contracting phase, as they remain in region II for all
uy < u < 0. In contrast, the k modes in class (ii) are
approximately in the |in) vacuum state initially. These
modes have yet to go through their particle creation event
which occurs at the later time u = —uy, > uy in the
contracting phase. At that time, the adiabatic particle
vacuum switches rapidly to approximately the CTBD state
as u increases past —uy,. Thus this mode sees its time
dependent Bogoliubov coefficient change rapidly in a few
expansion times (Au ~ 1 since the imaginary part of the
nearest complex zero of € is z/2 and independent of &, y)
from approximately zero to a nonzero plateau determined
by the Bogoliubov coefficient (3.20b). Approximating the
jump in particle number at these creation events by a step
function as before, we have

. - 1
ABP = |BIP = — = 6.12
|ﬁk| | ky| 2 Slnh(ﬂ']/) ezﬂy -1 ( a)
Ni(u) = 0(u + ug,)0(—uy, — ug) AN 4,
for u <0, uy <0 (6.12b)
142N
AN, = (14 2N)A B = ezT_l" (6.12¢)

in the contracting phase. The first # function in (6.12)
specifies the time of the creation event when the step
occurs, while the second 6 function restricts the modes
to class (ii) for which the step occurs at a later time
u = —uy, > uy in the contracting phase. These two 6
functions give the “window function” which is similar to
that found in the electric field case (5.19), namely,

1 1
K, (u) = 1/y*sinh?u +7< k < {/y?*sinh?u = K, (uy),

(6.13)

in the contracting phase of de Sitter space for which
uy < u < 0. Like (5.19) this window function has an upper
limit fixed by the initial time and a lower limit which
decreases as time evolves (for u < 0).

If we continue the evolution past the symmetric point
u = 0 into the expanding de Sitter phase, all of the modes
of class (ii) have experienced the first particle creation
event, and then begin (with the smallest value of k first) to
experience a second creation event at u = +uy,. Thus the
modes of class (ii) which started in region I undergo two
creation events with a total Bogoliubov transformation of
(3.21), while the modes of class (i) which started in region
IT undergo only the second creation event in the expanding
phase for which the single Bogoliubov transformation BZ;"
applies. Again approximating these creation events by step
functions we obtain

PHYSICAL REVIEW D 89, 104038 (2014)
Ni(u) = [0(uy, — u)0(—uy, —uy) + 0(u — uy,)0(ug + uy, )]
X ANy +O0(u =y, )O( =g, — 1g) AN 5 4,

for u > 0, uy <0 (6.14a)

AN2-,k}’ = (1 + 2Nk)|B§§} 2 = (1 + 2Nk)CSCh2(7T7/>
(6.14b)

in the expanding phase of de Sitter space. The window
function for this second creation event in the expanding

phase is now
23 h2 1 —
k < y/y*sin u—f—Zny(u)

for the modes undergoing the second creation event at
u = +uy,. Those with k < K, (1) undergo both the first
and second creation events with AN = AN,,,, while
those with k > K, (u) experience only the second creation
event with AN = AN ,.

This analysis may be repeated if the initial time uy > 0 is
in the expanding phase. In this case all modes initially in
region II, with u, < u;, undergo a single creation event at
u = +uy,. Hence we have

(6.15)

Nk(u) ~ 9(” - uky)e(uky - uO)ANl.ky
for u, uy > 0, (6.16)
replacing (6.14). The window function in k is now the
reverse of (6.13), namely,
K, (ug) <k < K,(u), (6.17)
which like (6.15) shows an upper limit that increases
with time.

The various cases (6.12), (6.14) and (6.16) may be
collected into one result,

Ni(z) » [0y, = [u)0(—1ui, = uo)

1 +2N
+ O — uy, )01y, — |uol)] (T_f)

+0(u— uk},)H(—uk}, —ug)(1 4 2N )csch?(zy),
(6.18)

valid for all values of u and initial times u,. From this or
(6.14) it is clear that for fixed k, with gy - —oc0, u - 400,
the mode experiences both particle creation events and we
recover (3.22), while for a finite interval of time only those
modes for which uy < —uy, and u, < u experience both
creation events. Thus taking the symmetric limit with
u = —ug > 0, the values of k satisfying both these con-
ditions are cut off at the maximum value K, (u), i.e.
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k<K,(u) —%e'”‘ or InK,(u)— |u|+In <%> (6.19)
as |u| — oo, which is exactly the cutoff (3.28) that we argued
on physical grounds earlier in Sec. III (and in Ref. [9])
should be used in the k sum of (3.24) to calculate the finite
decay rate per unit volume (3.32) of de Sitter space to
massive particle creation in the limit V; — oco. The constant
in (3.28) has been determined to be In(y/2) by our detailed
analysis of the particle creation process in real time. The
non-Hadamard short distance behavior of the |in) and |out)
states found in [9] has also been removed by regulating the
large k behavior with a finite initial and final time, since the
modes for which k > K,(u) remain in the CTBD state in
region II for all —|uy| < u < |uy| and the CTBD state is
known to have the correct short distance behavior [16].

The actual smooth behaviors of |, (u)|* defined by (6.3)
for various k and uy = —15 and uy = —5 are shown in
Figs. 6 and 7, respectively. The increases in |3 (u)|* occur
on a time scale Au ~ 1 for all the modes. The values chosen
for the adiabatic frequency functions (W, V,) are

%)
) 3wy 1y
W7 =Q +-——-——
L P g

h? 6m>  5m*

P L

8wy, wy, I

(6.20a)
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FIG. 6 (color online). Plotted is | (u)|> for m = H,y = /3/2
defined by (6.3) with the initial adiabatic matching time uy = —15
and the second order matching defined by (6.20). The innermost
blue curve is for k =1, the green for k = 10, the orange for
k = 100 and the outermost red for k = 1000, the latter 3 values
showing two clearly separated particle creation events. The values
of uy, given by (6.8) are 0.35, 2.31, 5.44, and 10.0, respectively, for
these values of k and y. The asymptotic value of [B|? of all the
curves for large u is 0.01748 in agreement with (6.14b) for N, = 0.
The intermediate plateau is at 0.00435 in agreement with (6.12c).
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FIG. 7 (color online).  Plotted is |8 (u)|? for the same values of y
and k as in Fig. 6, but with the initial adiabatic matching time
uy = —5. Note that for the two highest values of k at 100 and
1000 (the lower orange and red curves), a marked first particle
creation event does not occur since uy > —uy, for these modes.
The asymptotic value of the lower red curve at large u is 0.00435
in agreement with the first term of (6.18). The yellow curve for
k =100 has a small contribution from the first creation event
since uy and —uy, are comparable.

. 2
v = —%:h(l —m—2>
k Wy

(6.20b)

correct up to second order in the adiabatic expansion.
A comparison of |f;(u)|* for this choice and the simpler
choice

1 1
W,EO) =Q = H{(k2 - Z) sech’u + }/2] ’ (6.21a)
(1) _ @ m’
R S R 6.21b