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We show that global de Sitter space is unstable to particle creation, even for a massive free field theory
with no self-interactions. The Oð4; 1Þ de Sitter invariant state is a definite phase coherent superposition of
particle and antiparticle solutions in both the asymptotic past and future and, therefore, is not a true vacuum
state. In the closely related case of particle creation by a constant, uniform electric field, a time symmetric
state analogous to the de Sitter invariant one is constructed, which is also not a stable vacuum state. We
provide the general framework necessary to describe the particle creation process, the mean particle
number, and dynamical quantities such as the energy-momentum tensor and current of the created particles
in the de Sitter and electric field backgrounds respectively in real time, establishing the connection to
kinetic theory. We compute the energy-momentum tensor for adiabatic vacuum states in de Sitter space
initialized at early times in global S3 sections and show that particle creation in the contracting phase
results in exponentially large energy densities at later times, necessitating an inclusion of their backreaction
effects and leading to large deviation of the spacetime from global de Sitter space before the expanding
phase can begin.
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I. INTRODUCTION

The problem of vacuum zero-point energy and its effects
on the curvature of space through Einstein’s equations has
been present in quantum theory since its inception, and was
first recognized by Pauli [1]. Largely ignored and bypassed
during the steady stream of successes of quantum mechan-
ics and then quantum field theory (QFT) over a remarkable
range of scales and conditions for five decades, the role of
vacuum energy was raised to prominence by cosmological
models of inflation. Inflation postulates a large vacuum
energy density to drive exponential expansion of the uni-
verse, and invokes quantum fluctuations in the de Sitter
epoch as the primordial seeds of density fluctuations that
give rise both the observed cosmic microwave background
anisotropies, and the formation of all observed structure in
the universe [2]. The problem of quantum vacuum energy
and the origin of structure are both strong motivations for
the study of QFT in de Sitter space.
Further motivation comes from the discovery of dark

energy in 1998 by measurements of the redshifts of distant
type Ia supernovae [3]. This has led to the realization that
cosmological vacuum energy may be some 70% of the
energy density in the universe and be responsible for its
accelerated Hubble expansion today. If correct, this implies
that de Sitter space is actually a better approximation
than flat Minkowski space to the geometry of the present

observable universe. Accounting for the value of the
apparent vacuum energy density today and elucidating
its true nature and possible dynamics is widely viewed
as one of the most important challenges at the intersection
of quantum physics and gravitation theory, with direct
relevance for observational cosmology.
Being a maximally symmetric solution of Einstein’s

equations with positive cosmological constant, which itself
can be regarded as the energy of the vacuum, de Sitter space
is the simplest setting for posing questions about the inter-
play of QFT, gravity, and cosmology. Progress toward
a consistent theory of quantum vacuum energy and its
gravitational effects, and the formation of structure in the
universe almost certainly requires a thorough understanding
of quantum processes in de Sitter space.
Although global de Sitter space is clearly an idealization,

it is an important one amenable to exact analysis of
quantum effects, which can serve as a basis for applications
to cosmology. Current cosmological models of inflation
and the late time expansion of the universe make use only
of the expanding Poincaré patch of de Sitter space.
However, de Sitter space is a homogeneous space, all
points of which are on the same footing a priori. Hence one
would expect that quantum processes taking place in global
de Sitter space will have appropriate analogs in any
sufficiently large coordinate patch of de Sitter space.
One of the most basic of quantum processes that arise in
curved spacetimes is the spontaneous creation of particles
from the vacuum [4–8]. This process converts vacuum
energy to ordinary matter and radiation, and therefore can
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lead to the dynamical relaxation of vacuum energy with
time [9,10]. An introduction to these quantum effects,
summary of the earlier literature and the prospects for a
dynamical theory of vacuum energy based on conversion of
vacuum energy to particles may be found in [11]. Since that
review, there has been further interesting work on various
aspects of QFT in de Sitter space, particularly on quantum
infrared and interaction effects [12,13].
Because of the mathematical appeal of maximal sym-

metry, much of both the earlier and more recent work
assumes the stability of the de Sitter invariant state obtai-
ned by continuation from the Euclidean S4. This state of
maximal Oð4; 1Þ symmetry, known as the Chernikov-
Tagirov or Bunch-Davies (CTBD) state [14–16], is also
the one most often considered in inflationary models [2].
However the CTBD state raises a number of questions that
seem still to require clarification. In flat Minkowski space
the separation into positive and negative energies, hence
particle and antiparticle solutions of any Lorentz invariant
wave equation is itself Lorentz invariant. Minimizing the
conserved Hamiltonian in flat space in any inertial frame
produces a vacuum state that is invariant under the full
Poincarè group. In de Sitter space there is no conserved
Hamiltonian with a spectrum bounded from below avail-
able for this minimization [14]. Hence the dynamical
stability of the maximally Oð4; 1Þ symmetric CTBD state
and the definition of the “vacuum” itself cannot be taken for
granted. Since a freely falling detector in de Sitter space in
the CTBD state will detect a nonzero, thermal distribution
of particles at the Hawking–de Sitter temperature [17], the
CTBD state is clearly not a vacuum state at all in the usual
sense familiar from Minkowski spacetime.
Prior investigations of the stability of the CTBD state

have addressed the late time behavior of the stress tensor
or correlation functions. In [18] it was proven that for all fourth
order adiabatic states that lead to a homogeneous and isotropic
stress-energy tensor in the expanding spatially flat section of
de Sitter space, the components of the renormalized stress-
energy tensor expectation value hTa

bi for a free scalar field
asymptotically approach the CTBD value. In this sense the
CTBD state is a late time attractor state for hTa

bi in de Sitter
space for a free, massive scalar QFTwithm2 þ ξR > 0. More
recently in [19,20] it has been argued that any correlation
function of an interacting massive scalar field theory also
approaches the expected CTBD value at late times at any order
of perturbation theory. This attractor behavior is clearly a result
of the cosmological redshift of the de Sitter expansion.
Not addressed in any of these previous investigations are

the effects of states other than the CTBD state on the early
or intermediate time behavior of the stress-energy tensor or
correlation functions in global de Sitter space, represented by
the hyperboloid of Fig. 15 of the Appendix. It is only this
geodesically complete full de Sitter hyperboloid that has
the maximal symmetry group Oð4; 1Þ ¼ Z2 ⊗ SOð4; 1Þ,
including also the Z2 discrete reflection symmetry which

maps all points on the hyperboloid to their antipodal points,
cf. (A4). In spatially closed Robertson-Walker coordinates
(A8)–(A9), the global de Sitter geometry begins at infinite
size, contracts down to a minimum spatial radius, and then
expands again time symmetrically to infinite size. Because
the previously found attractor behavior is a consequence of
the cosmological redshift as the universe expands, the same
perturbations experience a cosmological blueshift in the
contracting half of de Sitter space, and one should expect
hTa

bi or arbitrary correlation functions defined at some early
initial time to deviate more and more from their CTBD
values as the contraction proceeds. Thus a very small
difference in the energy density from the CTBD state can
become substantially magnified in the contracting phase of
de Sitter space, and one should expect exactly the opposite
of the attractor behavior found in the expanding phase. If
enough magnification of these de Sitter breaking effects
occurs and their backreaction effects are taken into account,
then the universe may never reach the symmetric point, at
which contraction ceases and expansion begins, and instead
may evolve in a completely different way from de Sitter
space for its entire future.
We treat the issue of perturbations of the CTBD state at

early initial times in the contracting phase explicitly in an
accompanying paper [21]. In this paper we show that the
status of the vacuum in de Sitter space is very much
analogous to that of a charged quantum field in the presence
of a constant, uniform electric field E ¼ Eẑ. Such an
idealized static background field is completely invariant
under time reversal and time translations. Yet in this case,
as first shown by Schwinger, there can be little doubt that
the vacuum is unstable to the spontaneous creation of
charged particle/antiparticle pairs [22]. This spontaneous
process breaks the time reversal and translational symmetry
of the background, and leads to a positive imaginary part
for the effective action of charged matter in the electric
field background. Mathematically, this imaginary part is a
consequence of the m2 → m2 − i0þ prescription in the
Schwinger proper time treatment, or equivalently in the
Feynman propagator, which distinguishes positive and
negative frequency solutions as particles and antiparticles,
respectively. It is this analytic continuation in mass (not
global symmetries of the background or Euclidean con-
tinuation) that provides the physical definition of the
vacuum and particle concepts for QFT in persistent back-
ground fields, including gravitational fields [23,24].
It is important to note that this prescription and

Schwinger’s calculation of the decay rate per unit volume
of a constant, uniform electric field and hence its instability
to particle creation already applies at the level of a non-
interacting QFT. While interactions and the behavior of
multiple point correlation functions are clearly important
for the subsequent evolution of the created pairs, the
instability of the background to creation of those par-
ticle/antiparticle pairs in the first place requires only the
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interaction of the quantum field with a classical background.
In de Sitter space the absence of any minimum energy
vacuum state, as well as the spontaneous particle creation
rate calculated some time ago [9], analogous to that in a
constant, uniform electric field, is evidence for the analogous
instability of global de Sitter space to particle creation.
We review that calculation in this paper and show that it can
be fully justified by the proper definition of time dependent
adiabatic Hadamard vacuum states. These adiabatic vacuum
states provide the basis for describing particle excitations
and their interactions in the transition to kinetic theory. The
definition of these adiabatic vacua and particle production is
restricted to massive fields, whereas it is apparent that the
effects of light fields and gravitons are more subtle [25–27].
Settling the basic question of vacuum instability to massive
particle creation of free QFT in de Sitter space is a necessary
first step, and clearly relevant to the fundamental problem
of cosmological vacuum energy, and its ultimate fate in a
full quantum theory.
Although the problem of charged particle creation in an

external electric field has a long history [22,28–36], it is
quite illustrative, and the features directly relevant to de
Sitter space are worth emphasizing. In particular, one can
find a completely time symmetric state in a constant,
uniform electric field background which has exactly zero
decay rate by time reversal symmetry, and is thus the close
analog of the maximally symmetric CTBD state in de Sitter
space. The construction of such a time symmetric state,
however appealing it may be mathematically, is an artificial
coherent superposition of particle and antiparticle waves,
which assures neither its nature as a true vacuum state, nor
its stability. The spontaneous particle creation process in
an electric field leads to an electric current that grows
linearly with time and whose backreaction on the classical
background electric field must eventually be taken into
account [34,36].
Guided by the electric field analog, our main purpose in

this paper is to present a detailed description of particle
creation in de Sitter space in real time, extending and
deepening previous analyses of its instability to particle
creation [9], and computing the energy-momentum tensor
of the created particles. Our study consists of two distinct
but related parts. In the first part, Secs. II–III we compute
the rate of the particle production in de Sitter space, and
in Sec. IV review the analogous calculation for a constant
uniform electric field. The standard Feynman-Schwinger
prescription of particle excitations moving forward in time
with negative energy modes interpreted as antiparticles
propagating backwards in time provides the framework
for defining jini and jouti vacuum states in the infinite
past I− and infinite future Iþ of de Sitter space. With this
definition, it becomes evident that particles are created
spontaneously, and the overlap jhinjoutij2 provides the
vacuum decay probability, just as it does in the electric field
analog. Both cases involve infinite time intervals in which

the constant electric or gravitational field acts, with the
result that jhinjoutij2 ¼ expð−ΓV4Þ → 0, as the four-
volume V4 → ∞. The finite decay rate Γ for de Sitter
space is obtained by a physical argument relating a cutoff in
momentum mode sums to the cutoff in finite four-volume
V4 as both tend to infinity.
The infinite V4 limit is somewhat subtle, and taken

literally leads to non-Hadamard jini and jouti states with
zero overlap, corresponding to an infinite amount of
particle creation, termed “pathological” in [8]. In fact, this
should be expected for a persistent background producing
particles at a finite rate per unit volume. To compute this
finite rate of particle production rigorously, in the second
part of the paper beginning in Sec. V, we define adiabatic
Hadamard vacuum states and specify initial data for the
mode functions on Cauchy hypersurfaces at a finite time.
Then the time dependent Bogoliubov coefficients that
describe the particle production mode by mode are com-
puted and it is shown that in the infinite time, infinite V4

limit they approach the time independent Bogoliubov
coefficients connecting the jini and jouti states. By thereby
exposing the anatomy of particle production in real time,
the infinite momentum and infinite time limits are shown
not to commute, and the physical cutoff of the previous
calculation is justified. This more careful treatment involv-
ing only UV finite adiabatic states removes a possible
technical objection against the more heuristic approach of
[9], reviewed in Sec. III. In addition, the second approach
allows the finite but exponentially growing hTa

bi in the
contracting phase of de Sitter space to be computed, and its
prospective large backreaction effects on the classical
geometry to be estimated. This approach also makes
possible a detailed investigation of the time dependence
of the energy density, showing it to become quickly
dominated by the particle production term in the con-
tracting phase.
By investigating the particle creation process in real time

and computing the corresponding energy momentum of
the particles, the vacuum instability of global maximally
extended de Sitter space to particle creation, the breaking
of both time reversal and global de Sitter symmetries, and
the necessity to include backreaction of the particles on the
geometry become clear. The nature of the CTBD state as a
particular coherent squeezed state combination of particle
and antiparticle excitations is also clarified.
In the case of a uniform electric field, the Feynman-

Schwinger prescription is known also to be equivalent to
an adiabatic prescription of switching the electric field on
and off again smoothly on a time scale T, evaluating the
particles present in the final field free out region starting
with the well-defined Minkowski vacuum in the initial field
free in region [28,30,35]. We present evidence that for
the analogous gentle enough switching on of the de Sitter
phase from an initially static Einstein universe phase, for
large values of T and for modes with small enough
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momenta, the initial state produced for these modes is the
asymptotic jini state defined previously in eternal de Sitter
space. Particle creation takes place for these modes after
adiabatic switching on of de Sitter space and the particle
spectrum produced is the same as in global de Sitter space.
The paper is organized as follows. In the next section

we define the CTBD state for a non-self-interacting scalar
quantum field theory in de Sitter space, fixing notation. In
Sec. III we formulate the problem of particle creation in de
Sitter space in terms of a one-dimensional time-independent
scattering problem, review the construction of the jini
and jouti vacuum states, the nontrivial Bogoliubov trans-
formation between them, and the de Sitter decay rate this
implies.We show that the de Sitter invariant CTBD state is a
definite phase coherent squeezed superposition of particle
and antiparticle solutions in both the past and the future and
therefore not a true vacuum state. In Sec. IV we digress to
consider the case of particle creation in a constant, uniform
electric field, showing the close analogy to the de Sitter case.
In Sec. V we define the UV finite adiabatic states necessary
to interpolate between the asymptotic jini and jouti states
and describe the particle creation process, the adiabatic
particle number, and physical quantities such as the current
and energy-momentum tensor of the created particles in
real time. In Sec. VI we apply this adiabatic framework
to global de Sitter space with closed spatial S3 sections,
showing how it may be used to describe particle creation
events in real time. In Sec. VII we show how these same
methods may be applied equally well in the Poincaré
coordinates of de Sitter space with flat spatial sections most
often used in cosmology. In Sec. VIII we derive the form of
the energy-momentum tensor for vacuum states set at finite
initial times in the global S3 sections, and show for early
initial times that particle creation in the contracting phase
leads to exponentially large energy densities before the
expanding phase even begins. In Sec. IX we present
numerical results for the adiabatic turning on and off of
de Sitter curvature on a time scale T starting from a static
space and back, showing that the jini state is produced in this
way and particle production proceeds just as in global de
Sitter space. Section X contains a summary and discussion
of our results. There is one Appendix which contains
reference formulas for the de Sitter geometry and coordi-
nates, included for completeness. The reader interested
primarily in the results for de Sitter space may proceed
from Sec. III directly to Secs. VI–VIII and the summary
and discussion.
This paper may be read in conjunction with the closely

related paper [21]. This first paper focuses almost exclu-
sively on scalar particle creation and the resulting vacuum
instability, while the second considers the instability to
perturbations in a more general context, independent of
specific fields or particle definitions, emphasizing instead
the role of the effective action of the conformal anomaly
and the behavior of the stress tensor derived from it.

The more general analysis based on the anomaly makes
it possible to draw more general conclusions about vacuum
instability, the importance of inhomogeneous perturbations
and sensitivity to initial conditions in de Sitter space and
cosmology.

II. WAVE EQUATION AND DE SITTER
INVARIANT STATE

We consider in this paper a scalar field Φ with mass m
and conformal curvature coupling ξ ¼ 1

6
which in an

arbitrary curved spacetime satisfies the free wave equation

ð−□þM2ÞΦ≡
�
−

1ffiffiffiffiffiffi−gp ∂
∂xa

� ffiffiffiffiffiffi
−g

p
gab

∂
∂xb
�
þM2

�
Φ¼ 0

(2.1)

with effective massM2 ≡m2 þ ξR. In cosmological space-
times with S3 closed spatial sections the Robertson-Walker
line element is

ds2 ¼ −dτ2 þ a2dΣ2: (2.2)

Here dΣ2 ¼ dN̂ · dN̂ denotes the line element on S3 and N̂,
defined by Eq. (A10), is a unit vector onS3. Specializing to de
Sitter spacetime and defining the dimensionless cosmological
time u≡Hτ, the scale factor is aðuÞ ¼ H−1 cosh u, the Ricci
scalar R ¼ 12H2 is a constant, and the effective mass is

M2 ¼ m2 þ 12ξH2 ¼ m2 þ 2H2 (2.3)

for ξ ¼ 1
6
.

The wave equation (2.1) is separable in coordinates (2.2)
with solutions of the form Φ¼ykðuÞYklml

ðN̂Þ and Yklml
ðN̂Þ

a spherical harmonic on S3 given explicitly in [21]. The
equation for ykðuÞ is�
d2

du2
þ 3 tanhu

d
du

þ ðk2 − 1Þ sech2uþ
�
9

4
þ γ2

��
yk ¼ 0

(2.4)

with the dimensionless parameter γ defined by

γ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H2
−
9

4

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H2
−
1

4

r
(2.5)

with the latter expression valid for conformal coupling. The
range of the integers k ¼ 1; 2;… is taken to be strictly
positive, so that the constant harmonic function on S3

corresponds to k ¼ 1, conforming to the notation of [18]
and [37]. In some works the sign under the square root in
(2.5) is reversed and the quantity ν ¼ iγ is defined, which is
real for M2 ≤ 9

4
H2 [8]. In this paper we shall be interested

mainly in the massive caseM2 > 9
4
H2 (the principal series
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representation of the de Sitter group) where γ is real and
positive, and for simplicity, in the case of conformal
coupling ξ ¼ 1

6
, so that m2 > 1

4
H2.

With the change of variables z ¼ ð1 − i sinh uÞ=2, the
mode equation (2.4) can be recast in the form of the
hypergeometric equation. The fundamental complex sol-
ution yk ¼ υkγðuÞ may be taken to be

υkγðuÞ≡HckγðsechuÞkþ1ð1 − i sinh uÞk

× F

�
1

2
þ iγ;

1

2
− iγ; kþ 1;

1 − i sinh u
2

�
; (2.6)

where F≡ 2F1 is the Gauss hypergeometric function and

ckγ ≡ 1

k!

�
Γðkþ 1

2
þ iγÞΓðkþ 1

2
− iγÞ

2

�1
2 ¼ jΓðkþ 1

2
þ iγÞjffiffiffi

2
p

Γðkþ 1Þ
(2.7)

is a real normalization constant, fixed so that υkγ satisfies
the Wronskian condition

iHa3ðuÞ
�
υ�kγ

d
du

υkγ − υkγ
d
du

υ�kγ

�
¼ 1 (2.8)

for all k. Note that under time reversal u → −u the mode
function (2.6) goes to its complex conjugate

υkγð−uÞ ¼ υ�kγðuÞ (2.9)

for all M2 > 0.
The scalar field operator Φ can be expressed as a sum

over the fundamental solutions

Φðu; N̂Þ ¼
X∞
k¼1

Xk−1
l¼0

Xl
ml¼−l

faυklml
υkγðuÞYklml

ðN̂Þ

þ aυ†klml
υ�kγðuÞY�

klml
ðN̂Þg; (2.10)

with the Fock space operator coefficients aυklml
satisfying

the commutation relations

½aυklml
; aυ†k0l0m0

l
� ¼ δkk0δll0δmlm0

l
: (2.11)

With (2.8), (2.11) and the standard unit normalization of
harmonic functions on the unit sphereZ

S3

d3ΣY�
k0l0m0

l
Yklml

¼ δk0kδl0lδm0
lml

(2.12)

the canonical equal time field commutation relation

½Φðu; N̂Þ;Πðu; N̂0Þ� ¼ iδΣðN̂; N̂0Þ (2.13)

is satisfied, where Π ¼ ffiffiffiffiffiffi−gp _Φ ¼ Ha3 ∂Φ
∂u is the field

momentum operator conjugate to Φ, the overdot denotes

differentiation H∂=∂u and δΣðN̂; N̂0Þ denotes the delta
function on the unit S3 with respect to the canonical round
metric dΣ2.
The Chernikov-Tagirov or Bunch-Davies (CTBD) state

jυi [14–16] defined by

aυklml
jυi ¼ 0 ∀ k; l; ml (2.14)

is invariant under the full Oð4; 1Þ isometry group of the
complete de Sitter manifold (A1)–(A2), including under
the Z2 discrete inversion symmetry of all coordinates in
the embedding space, XA → −XA, cf. Eq. (A4), which is
not continuously connected to the identity. This de Sitter
invariant state jυi is the one usually discussed in the
literature, and the Green functions in this state are those
obtained by analytic continuation to de Sitter spacetime
from the Euclidean S4 with full Oð5Þ symmetry. The
existence of an Oð4; 1Þ invariant symmetric state does
not imply that this state is a stable vacuum. In this and a
closely related paper [21], we shall present the evidence
that it is not.

III. DE SITTER SCATTERING POTENTIAL,
IN AND OUT STATES, AND DECAY RATE

The solutions (2.6) and de Sitter invariant state jυi are
defined once and for all, globally in de Sitter space without
any reference to a separation between positive and negative
frequencies, which is axiomatic in flat spacetime to
discriminate between particle and antiparticle states, and
necessary to define a stable vacuum which is a minimum
of a positive definite Hamiltonian. In flat spacetime such a
separation into particle and antiparticle solutions of the
wave equation is defined by positive and negative fre-
quency solutions e−iωkt and eþiωkt, which are analytic
functions of m2 in the lower and upper half complex m2

plane, respectively, as t → þ∞. For t → −∞ the analytic-
ity in the two halves of the complex m2 plane are reversed
for the same positive and negative frequency modes.
Clearly these are the same simple exponential functions
for all times in flat Minkowski space. The fundamental
CTBD solutions (2.6) do not have this property in de Sitter
space. Correspondingly, there is no positive definite
Hamiltonian operator to be minimized in global de Sitter
space [14]. These important differences with flat space are
responsible for the nontrivial features of quantum fields and
the quantum vacuum in de Sitter space.
To appreciate the sharp distinction from flat space, it

is useful to eliminate the factor of a3 in the Wronskian
condition (2.8) by defining the mode functions

fk ¼ a
3
2yk (3.1)

which satisfy the equation of a time dependent harmonic
oscillator
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d2

dτ2
fk þ Ω2

kfk ¼ 0 (3.2)

in each k mode, with the time dependent frequency
given by

Ω2
k ≡ ω2

k þ
�
ξ −

1

6

�
R −

_h
2
−
h2

4
; ω2

k ≡ k2

a2
þm2:

(3.3)

Here h≡ _a=a in a general RW spacetime with line element
(2.2). Specializing to de Sitter space and again using u ¼ Hτ,
the time dependent harmonic oscillator frequency is

Ω2
kjdS ¼ H2

��
k2 −

1

4

�
sech2uþ γ2

�
; (3.4)

so that we may rewrite (3.2) in dimensionless form as a
stationary state scattering problem,

�
−

d2

du2
þ UkðuÞ

�
fkγ ¼ γ2fkγ; (3.5)

with the one-dimensional effective scattering potential,

UkðuÞ≡ −
�
k2 −

1

4

�
sech2u: (3.6)

Here the “energy” γ is defined by (2.5) and is both real and
positive for the fields with ξ ¼ 1

6
and m2 > 1

4
H2 considered

in this paper.
Since the scattering potential (3.6) is negative definite, and

approaches zero exponentially as juj → ∞, the solutions of
(3.5) for γ2 > 0 describe over the barrier scattering and are
everywhere oscillatory. The vanishing of the potential at
large juj implies well-defined free asymptotic solutions as
u → ∓∞, behaving like e�iγu. Because of the scattering by
the potential, a positive frequency wave e−iγu incident from
the left (the past as u → −∞) will be partially transmitted to
a positive frequency e−iγu wave to the right (the future as
u → þ∞) and partially reflected to a negative frequency eiγu

wave to the left. Potential scattering of this kind and mixing
of positive and negative energy solutions clearly does not
occur in static spacetimes such as Minkowski spacetime.
Now the crucial point is that the asymptotic pure

frequency scattering solutions behaving as e−iγu have the
required analyticity in m2 to correspond exactly to the
Feynman prescription of positive energy solutions as
particles propagating forward in time, while eþiγu are
negative energy solutions corresponding to antiparticles
propagating backward in time [24,38]. This leads to the
covariant definition of the Feynman propagator as the
boundary value of a function defined in the complex m2

plane with the m2 − i0þ prescription specifying the limit in
which the real axis is approached and pole contributions

evaluated. This definition is easily generalized to non-
vanishing background fields and curved spacetimes by the
same generally covariantm2 − i0þ prescription, and is then
completely equivalent to the Schwinger-DeWitt proper
time method of defining the propagator and effective action
functional in such situations [22,23]. This gives a rigorous
definition of particles and antiparticles whenever the
solutions of the time dependent mode equation (3.2) behave
as pure oscillating exponential functions in the asymptotic
past and the asymptotic future. This definition is physically
based on the corresponding definitions in Minkowski space
[24], free of any assumptions of analytic continuation
from Euclidean time or S4, and generally quite different
from that prescription. It is also the Feynman-Schwinger
m2 − i0þ definition of the propagator, and only that
definition that satisfies the composition rule for amplitudes
defined by a single path integral [39]. This should be clear
from the fact that only pure positive (or pure negative)
frequency exponentials can satisfy the composition rule
eiSAC ∼

P
Be

iSABeiSBC in the Feynman path integral, and that
the composition rule will generally fail if superpositions of
e�iS appear in the single particle proper time representation
of the Feynman Green’s function. Finally, in Sec. IX we
provide evidence that this definition of asymptotic particle
and antiparticle solutions to the wave equation is the also
the unique one produced by adiabatically switching the
background gravitational field on and off.
Let us therefore denote by fkγðþÞðuÞ the properly nor-

malized positive frequency solution of (3.5) which behaves

as e−iγu as u → −∞ (the particle in solution), and by fðþÞ
kγ ðuÞ

the properly normalized positive frequency solution of (3.5)
which behaves as e−iγu as u → þ∞ (the particle out
solution). The corresponding negative frequency (or anti-

particle) solutions fkγð−ÞðuÞ and fð−Þkγ ðuÞ which behave as
eiγu as u → ∓∞, respectively, are obtained from these by
complex conjugation. Moreover since the potential UkðuÞ is
real and even under u → −u, we have

fkγð−ÞðuÞ ¼ ½fkγðþÞðuÞ�� ¼ fðþÞ
kγ ð−uÞ (3.7a)

fð−Þkγ ðuÞ ¼ ½fðþÞ
kγ ðuÞ�� ¼ fkγðþÞð−uÞ; (3.7b)

by which any one of the four solutions determines the other
three. The proper normalization condition for each set of
modes analogous to (2.8) is

iH

�
f�kγðþÞ

d
du

fkγðþÞ − fkγðþÞ
d
du

f�kγðþÞ

�
¼ 1

¼ iH

�
fðþÞ�
kγ

d
du

fðþÞ
kγ − fðþÞ

kγ
d
du

fðþÞ�
kγ

�
: (3.8)

The CTBD mode function (2.6), which we may write in
terms of a Legendre function [40],
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FkγðuÞ≡ a
3
2υkγðuÞ

¼ e−
ikπ
2
sgnðuÞ jΓðkþ 1

2
þ iγÞjffiffiffiffiffiffiffi

2H
p

× ðcosh uÞ12P−k
−1
2
þiγ

ði sinhuÞ; (3.9)

satisfies (3.5) and the normalization (3.8) by virtue of
(2.7), (2.8) and (3.1). The dependence of the phase on the
sign of u enters to compensate for the discontinuity of
the Legendre function P−k

−1
2
þiγ

ðζÞ as conventionally defined
with a branch cut along the real axis from ζ ¼ −∞ to
ζ ¼ þ1 [40], so that FkγðuÞ is in fact continuous as u
crosses zero.
Since the in, the out, and the CTBD mode functions

together with their complex conjugates are each a complete
set of solutions to (3.5), which preserve the Wronskian
relation (3.8), they are expressible in terms of each other
by means of a Bogoliubov transformation. Specifically, the
inmode functions are expressible in terms of the CTBD Fkγ
and F�

kγ by�
fkγðþÞ
fkγð−Þ

�
¼
�

Ain
kγ Bin

kγ

Bin�
kγ Ain�

kγ

��
Fkγ

F�
kγ

�
(3.10)

and likewise for the out mode functions,

�
fðþÞ
kγ

fð−Þkγ

�
¼
�

Aout
kγ Bout

kγ
Bout�
kγ Aout

kγ

��
Fkγ

F�
kγ

�
: (3.11)

Each set of the (strictly time independent) Akγ and Bkγ
Bogoliubov coefficients satisfies the relation

jAkγj2 − jBkγj2 ¼ 1: (3.12)

By using (3.7) and Fkγð−uÞ ¼ F�
kγðuÞ we immediately

infer the relations

Aout
kγ ¼ Ain�

kγ and Bout
kγ ¼ Bin�

kγ (3.13)

between the in and out Bogoliubov coefficients.
Furthermore, by inverting (3.11) and substituting the result
in (3.10), we obtain

�
fkγðþÞ
fkγð−Þ

�
¼
 

Ain
kγ Bin

kγ

Bin�
kγ Ain�

kγ

! 
Aout�
kγ −Bout

kγ

−Bout�
kγ Aout

kγ

! 
fðþÞ
kγ

fð−Þkγ

!

¼
 
Atot
kγ Btot

kγ

Btot
kγ Atot

kγ

! 
fðþÞ
kγ

fð−Þkγ

!
(3.14)

which with (3.13) gives

Atot
kγ ¼ ðAin

kγÞ2 − ðBin
kγÞ2 (3.15a)

Btot
kγ ¼ Ain�

kγ B
in
kγ − Ain

kγB
in�
kγ (3.15b)

for the coefficients of the total Bogoliubov transformation
relating the in and out bases.
To find these Bogoliubov coefficients explicitly we

construct the de Sitter scattering solutions (3.7). From
the asymptotic form of the Legendre functions for large
arguments [40], the pure positive frequency solutions of
(3.5) as u → ∓∞ are Legendre functions of the second
kind, Q−k

−1
2
�iγ

. Fixing the normalization by (3.8) these exact
in and out solutions of (3.5) may be taken to be

fkγðþÞju<0 ¼
e−

πγ
2

jΓð1
2
− kþ iγÞj

�
cosh u

H sinhðπγÞ
�1

2

Q−k
−1
2
−iγði sinh uÞ

(3.16a)

fðþÞ
kγ ju>0 ¼

e−
πγ
2

jΓð1
2
− kþ iγÞj

�
coshu

H sinhðπγÞ
�1

2

Q−k
−1
2
þiγ

ði sinh uÞ

(3.16b)

in the indicated regions of u, which have the required
asymptotic behaviors [41]

fkγðþÞ ⟶
u→−∞

ð−Þkffiffiffiffiffiffiffiffiffi
2Hγ

p e
iπ
4e−iηkγe−iγu (3.17a)

fðþÞ
kγ ⟶

u→∞

ð−Þkffiffiffiffiffiffiffiffiffi
2Hγ

p e−
iπ
4eiηkγe−iγu; (3.17b)

respectively, and where the phase ηkγ here is defined by

ηkγ ≡ arg

�
Γð1 − iγÞΓ

�
kþ 1

2
þ iγ

��
: (3.18)

Then by using Eq. (3.9) and Eq. 3.3.1 (11) of [40] relating
the Legendre functions of the second kind to those of the
first kind, we obtain

fkγðþÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinhðπγÞp ðie−ikπ
2 e

πγ
2Fkγ þ e

ikπ
2 e−

πγ
2F�

kγÞ (3.19a)

fðþÞ
kγ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinhðπγÞp ð−ieikπ
2 e

πγ
2Fkγ þ e−

ikπ
2 e−

πγ
2F�

kγÞ; (3.19b)

which are valid for all u. Making use of the definitions
(3.10) and (3.11), we may read off the Bogoliubov
coefficients,

Ain
kγ ¼

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðπγÞp e−

ikπ
2 e

πγ
2 ¼ Aout�

kγ (3.20a)

Bin
kγ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðπγÞp e

ikπ
2 e−

πγ
2 ¼ Bout�

kγ ; (3.20b)
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relating the in and out scattering solutions of (3.5) to the
fundamental CTBD solution in de Sitter space.
Notice that if (3.10) or (3.11) with the Bogoliubov

coefficients (3.20) are inverted, then it is clear that the
CTBD solution (3.9) is a very particular phase coherent
superposition of positive and negative frequency solutions
at both u → �∞ [42]. Hence the Oð4; 1Þ invariant state jυi
they define through (2.14) contains particles in both the in
and out bases and is not a particle vacuum state in either
limit. A direct consequence of this is that the Oð4; 1Þ
invariant propagator function constructed from the CTBD
modes and obtained also by analytic continuation from the
Euclidean S4 manifold contains a superposition of phase
increasing and decreasing exponentials e�iS, and does not
obey the composition rule of a Feynman propagator
function [12].
Clearly the quantization of the scalar field Φ may be

formally carried out in either the in or out bases and the
corresponding Fock space operators introduced as in
(2.10)–(2.11) for the CTBD basis. Since there is scattering
in the de Sitter potential (3.5) and the in and out states are
related by a nontrivial Bogoliubov transformation (3.15),
which from (3.15) and (3.20) has coefficients

Atot
kγ ¼ ð−Þk−1 cothðπγÞ (3.21a)

Btot
kγ ¼ ið−Þk−1cschðπγÞ; (3.21b)

the vacuum state jini defined by absence of positive
frequency particle excitations at early times is different
from the corresponding vacuum state jouti defined by the
absence of positive frequency particle excitations at late
times. Equivalently the early time jini state contains
particle excitations relative to the late time jouti vacuum.
The mean number density of particles of the out basis in the
vacuum state defined by the in basis is

jBtot
kγ j2 ¼ csch2ðπγÞ (3.22)

in the mode labeled by ðklmlÞ. Also

wγ ≡
����Btot

kγ

Atot
kγ

����2 ¼ sech2ðπγÞ (3.23)

is the relative probability of creating a particle/antiparticle
pair in this mode. Note that both (3.22) and (3.23) are
independent of ðklmlÞ, depending only upon the mass of
the field and its coupling to the scalar curvature. Equivalent
results were found in earlier work [9] with a different
choice of the arbitrary phases for the scattering solutions
and Bogoliubov coefficients.
The overlap between the in and out bases yields the

probability that no particles are created, or that the vacuum
remains the vacuum, and is given by

jhoutjinij2 ¼
Y
klml

ð1 − wγÞ ¼ exp

�X
klml

ln ½tanh2ðπγÞ�
�
:

(3.24)

Because the summand in the last expression is independent
of ðklmlÞ, the sum is quite divergent and the overlap
between the jini and jouti states strictly vanishes. This fact
has led to questions about the physical meaning and
appropriateness of these states [8,43]. Questions have also
been raised by the closely related fact that the Wightman
and Green’s functions defined in the jini and jouti states
have non-Hadamard short distance behaviors, since they
are in fact two members of the α vacuum family of states
with particular nonzero values of the parameter α [9,44].
Although this entire family of states are formally de Sitter
invariant under the SOð4; 1Þ subgroup of Oð4; 1Þ contin-
uously connected to the identity, they are not invariant
under discrete Z2 inversion, and the two-point Wightman
correlation function in all such states other than the CTBD
α ¼ 0 state has short distance singularities as x → x0 that
differ from those in flat space. This would seem to imply a
sensitivity of local short distance physics to global proper-
ties of the geometry, at odds with usual expectations of
renormalization and effective field theory.
These difficulties are removed once one recognizes that

the divergence of the sum in (3.24) and vanishing of the
overlap jhoutjinij2 are due to the infinite four-volume V4

of de Sitter space, and one should ask instead about the
particle production probability per unit four-volume. As we
shall see by detailed analysis of the particle creation process
mode by mode in real time in Sec. VI, the unphysical non-
Hadamard UV behavior of the jini and jouti states is due
to the noncommutivity of the infinite time juj → ∞ (and
hence infinite V4) and infinite momentum k → ∞ limits.
The short distance or UV properties of the state rely in
momentum space on the vacuum matching the flat space or
zero field vacuum to sufficiently high order at sufficiently
high momentum or short distances, whereas these large k
short distance properties are lost if the infinite time limit is
taken first. Thus both technical difficulties are eliminated
when one considers first a finite time interval and relates the
cutoff in k in (3.24) properly to the finite four-volume V4

over which the particle production takes place.
The finite particle production rate Γ can be extracted

from (3.24) by the following physical considerations,
which we justify more rigorously in Sec. VI. First the
sums in (3.24) are regulated by introducing a cutoff in the
principal quantum number at kmax ¼ K, so that

XK
k¼1

Xk−1
l¼0

Xl
ml¼−l

1 ¼ KðK þ 1Þð2K þ 1Þ
6

→
K3

3
(3.25)

for K ≫ 1. Then one recognizes that the cutoff in the mode
sum corresponds to a time dependent cutoff in physical
momenta at
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PKðuÞ ¼
K
a
¼ KH

coshu
: (3.26)

Hence, for a fixed physical momentum cutoff PK , an
increase in time by Δu results in an increase in K such that

ΔK
K

¼ Δðcosh uÞ
coshu

→ sgnðuÞΔu ¼ jΔuj (3.27)

as K and juj → ∞. Thus the K cutoff in the sum (3.25) may
be traded for a cutoff in the time interval u according to

lnK↔juj þ const; (3.28)

where the constant is dependent upon the finite fixed PK
and is unimportant in the limit K; juj → ∞. Since the four-
volume enclosed by the change of u is

ΔV4 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p juþΔu
u ¼ 2π2

H4
jΔuj cosh3u

→
π2

4H4
e3juj

ΔK
K

→
π2

4H4
K2ΔK (3.29)

in this limit, the change in the sum in the exponent of (3.24)
as the cutoff K is changed,

Δ
X
klml

ln ½tanh2ðπγÞ� ¼ −2 ln ½cothðπγÞ�K2ΔK

→ −
8H2

π2
ln ½cothðπγÞ�ΔV4; (3.30)

may be regarded as giving rise to the finite decay rate per
unit four-volume according to

jhoutjinij2V4
¼ expð−ΓV4Þ (3.31)

as V4 → ∞, with

Γ ¼ 8H4

π2
ln½cothðπγÞ� (3.32)

the decay rate of the vacuum jini state due to particle
creation in de Sitter space [9]. For m ≫ H the decay rate
goes to zero exponentially

Γ →
16H4

π2
e−2πm=H for m ≫ H; (3.33)

while the divergence of (3.32) at γ ¼ 0 indicates that the
case of light masses must be treated differently.
The argument leading from (3.24) to (3.32) will be

justified in Sec. VI by a more careful procedure based on an
analysis of the real time particle creation process in de Sitter
space. This requires evolving the system from a finite initial
time to a finite final time and defining time dependent
adiabatic vacuum states which interpolate smoothly

between the jini and jouti states, so that the infinite time
infinite V4 limit is taken only at the end. The analysis of
particle creation in real time introduces the momentum
dependence that is absent from the asymptotic Bogoliubov
coefficients (3.21) at infinite times and which justifies
the replacement (3.27). For finite elapsed juj and finite
enclosed V4 all states are Hadamard since their properties
at k ≫ K are undisturbed from the UV finite adiabatic
vacuum. This will also enable consideration of the finite
renormalized stress tensor of the created particles and their
backreaction on the classical geometry. Before embarking
upon that more complete treatment of the particle creation
process in de Sitter space, we review the analogous case
of particle creation in a constant uniform electric field,
which shares many of the same features, and for which the
implication of an instability is clear.

IV. IN/OUT STATES AND DECAY RATE OF A
CONSTANT UNIFORM ELECTRIC FIELD

The case of a charged quantum field in the background
of a constant uniform electric field has many similarities
with the de Sitter case. Although this case has been
considered by many authors [22,28–31,33–36], the aspects
relevant to the de Sitter case are worth re-emphasizing,
including the existence of a time symmetric state analogous
to the CTBD state in de Sitter space, which apparently has
not received previous attention.
Treating the electric field as a classical background field

analogous to the classical gravitational field of de Sitter
space, the wave equation of a non-self-interacting complex
scalar field Φ is

½−ð∂μ − ieAμÞð∂μ − ieAμÞ þm2�Φ ¼ 0 (4.1)

in the background electromagnetic potential AμðxÞ.
Analogous to choosing global time dependent coordinates

)2.2 ) or (A8) in de Sitter space, one may choose the time
dependent gauge,

Az ¼ −Et; At ¼ Ax ¼ Ay ¼ 0; (4.2)

in which to describe a fixed constant and uniform
electric field in the ẑ direction. Then the solutions of
the field equation (4.1) may be separated in Fourier modes
Φ ∼ eik·xfkðtÞ with

�
d2

dt2
þ ðkz þ eEtÞ2 þ k2⊥ þm2

�
fkðtÞ ¼ 0: (4.3)

This is again the form of a time-dependent harmonic
oscillator analogous to (3.2), with the frequency function
now given by
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ωkðtÞ≡ ½ðkz þ eEtÞ2 þ k2⊥ þm2�12 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2jeEj

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

4
þ λ

r
(4.4)

instead of (3.3) of the de Sitter case. We have defined here
the dimensionless variables

u≡
ffiffiffiffiffiffiffiffiffi
2

jeEj

s
ðkz þ eEtÞ; λ≡ k2⊥ þm2

2jeEj > 0: (4.5)

Without loss of generality we can take the sign of eE to be
positive. With fkðtÞ → fλðuÞ, the wave equation (4.3) then
becomes

�
d2

du2
þ u2

4
þ λ

�
fλðuÞ ¼ 0; (4.6)

whose solutions may be expressed in terms of confluent
hypergeometric functions 1F1ða; c; zÞ or parabolic cylinder
functions [40]

D−iλ−1
2
ðeiπ

4uÞ; D−iλ−1
2
ð−eiπ

4uÞ; Diλ−1
2
ðe−iπ

4uÞ; Diλ−1
2
ð−e−iπ

4uÞ: (4.7)

Any two of the solutions (4.7) are linearly independent for
general real λ.
It is important to recognize that questions relating to the

definition of particles and the proper vacuum state arise
in time-dependent background electromagnetic potentials
such as (4.2), which are quite analogous to the same
questions arising in gravitational backgrounds such as de
Sitter space. As in the de Sitter case Eq. (4.6) may viewed
as a one-dimensional stationary state scattering problem
for the Schrödinger equation in the inverted harmonic

oscillator potential −u2=4, independent of k in this case,
with “energy” λ (the analog of γ2). We again have over the
barrier scattering in a potential that is even under u → −u,
with no turning points on the real u axis and the solutions
(4.7) are everywhere oscillatory for positive λ. Although
the potential −u2=4 grows without bound as juj → ∞,
pure positive frequency in and out particle modes can
be defined by the requirement that they behave as
ð2ωkÞ−1

2e−iΘλðuÞ, where the adiabatic phase ΘλðuÞ is
defined by

ΘλðuÞ≡
Z

tðuÞ

tðu¼0Þ
dtωkðtÞ ¼

1

2

Z
u

0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4λ

p
¼ u

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4λ

p
þ λ ln

�
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4λ

p

2
ffiffiffi
λ

p
�

→ sgnðuÞ
�
u2

4
þ λ

2

�
ln

�
u2

λ

�
þ 1

��
þO

�
λ2

u2

�
(4.8)

as juj → ∞. The fact that the phase (4.8) has a well-defined
asymptotic form with small corrections means that well-
defined positive and negative frequency mode functions
exist in the limit of large juj, although the potential (4.2)
does not vanish (or even remain bounded) in this limit.
Examining the asymptotic form of the various parabolic
cylinder functions (4.7) one easily finds the exact solutions
of (4.6) which behave as pure positive frequency adiabatic
solutions of (4.3) or (4.6) [28–30], namely

fλðþÞðuÞ ¼ ð2eEÞ−1
4e−

πλ
4 eiηλD−1

2
þiλð−e−iπ

4uÞ (4.9a)

fðþÞ
λ ðuÞ ¼ ð2eEÞ−1

4e−
πλ
4 e−iηλD−1

2
−iλðeiπ

4uÞ; (4.9b)

and which satisfy the Wronskian normalization condition,

i

�
f�λðþÞ

d
dt

fλðþÞ − fλðþÞ
d
dt

f�λðþÞ

�
¼ 1

¼ i

�
fðþÞ
λ

d
dt

fðþÞ
λ − fðþÞ

λ

d
dt

fðþÞ�
λ

�
; (4.10)

analogous to (3.8). These in and out scattering solutions
are chosen to have the simple pure positive frequency
asymptotic behaviors,

fλðþÞ ⟶
u→−∞ð2ωkÞ−1

2e−iΘλðuÞ (4.11a)

fðþÞ
λ ⟶

u→þ∞
ð2ωkÞ−1

2e−iΘλðuÞ; (4.11b)

provided the arbitrary constant phase ηλ in (4.9) is taken
to be

ηλ ≡ λ

2
−
λ

2
ln λ −

π

8
: (4.12)

The in and out particle mode solutions (4.9) and the
corresponding complex conjugate antiparticle mode sol-
utions are a set of four solutions of (4.6) which are related
to each other by the precise analog of (3.7) in the de Sitter
case. Here we have chosen to incorporate the phase ηλ into
the definition of the modes (4.9) rather than have it appear
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in the asymptotic forms (4.11), as the analogous phase ηkγ
does in (3.17) of the previous section.
Now an additional point of correspondence is the

existence of a u-time symmetric solution to (4.6) analogous
to the CTBD mode solution (2.6) or (3.9) in de Sitter space,
and a corresponding maximally symmetric state of the
charged quantum field in a constant, uniform electric field
background. That such a mode solution to (4.6) obeying

υλð−uÞ ¼ υ�λðuÞ (4.13)

exists is clear from the u → −u symmetry of the real
scattering potential −u2=4. Since there is no expansion
factor aðuÞ in this case, this symmetric function is also the
analog of FkγðuÞ (3.9) in the de Sitter case. It is most
conveniently expressed in terms of the confluent hyper-
geometric function defined by the confluent hypergeomet-
ric series,

Φða; c; zÞ≡ 1F1ða; c; zÞ ¼
X∞
n¼0

ðaÞn
ðcÞn

zn

n!
;

ðaÞn ≡ Γðaþ nÞ
ΓðaÞ ; (4.14)

or the integral representation

Φða; c; zÞ ¼ ΓðcÞ
ΓðaÞΓðc − aÞ

Z
1

0

dxexzxa−1ð1 − xÞc−a−1;

Re c > Re a > 0 (4.15)

in the form

υλðuÞ ¼ 2−
1
2ðk2⊥ þm2Þ−1

4e−
iu2
4

�
Φ
�
1

4
þ iλ

2
;
1

2
;
iu2

2

�

− iuλ
1
2Φ

�
3

4
þ iλ

2
;
3

2
;
iu2

2

��
; (4.16)

which is correctly normalized by (4.10), and satisfies (4.13)
by use of the Kummer transformation of the function
Φða; c; zÞ, cf. Eq. 6.3 (7) of [40]. By making use of the
value Φða; c; 0Þ ¼ 1 from (4.14) or (4.15), we find

υλð0Þ ¼ 2−
1
2ðk2⊥ þm2Þ−1

4 ¼ 1ffiffiffiffiffiffiffiffiffi
2ωk

p
����
u¼0

(4.17a)

∂υλ
∂t
����
u¼0

¼ −i
ffiffiffiffiffiffiffiffi
eEλ

p
ðk2⊥ þm2Þ−1

4 ¼ −iωkffiffiffiffiffiffiffiffiffi
2ωk

p
����
u¼0

; (4.17b)

so that the symmetric solution υλ matches the adiabatic
positive frequency form ð2ωkÞ−1

2e−iΘλðuÞ at the symmetric
point of the potential u ¼ 0, halfway in between the

asymptotic limits u → �∞. The solution of (4.6) with
these properties is unique.
The existence of such a time reversal invariant solution

to (4.6) implies the existence of a maximally symmetric
state constructed along the lines of the maximally Oð4; 1Þ
invariant invariant state (2.14) in the de Sitter background.
The existence of this state of maximal symmetry does not
imply that it is the stable ground state of either the de Sitter
or electric field backgrounds. In the electric field case this
is well known and the decay rate of the electric field into
particle/antiparticle pairs [22] is becoming close to being
experimentally verified in the near future [45]. That result is
easily recovered in the present formalism by calculations
exactly parallel to those of the de Sitter case in the last
section.
First the Bogoliubov transformation analogous to (3.10)

relating the in state mode function to the symmetric one
υλðuÞ and its complex conjugate are determined from
the relation between the parabolic cylinder function in
fλð�ÞðuÞ and the confluent hypergeometric functions,
cf. Eqs. 6.9.2 (31) and 6.5 (7) of [40], which give

fλðþÞðuÞ ¼ Ain
λ υλðuÞ þ Bin

λ υ
�
λ (4.18)

with

Ain
λ ¼

ffiffiffi
π

2

r
2
iλ
2eiηλe−

πλ
4

��
λ

2

�1
4 1

Γð3
4
− iλ

2
Þ þ

�
2

λ

�1
4 e

iπ
4

Γð1
4
− iλ

2
Þ
�

(4.19a)

Bin
λ ¼

ffiffiffi
π

2

r
2
iλ
2eiηλe−

πλ
4

��
λ

2

�1
4 1

Γð3
4
− iλ

2
Þ −
�
2

λ

�1
4 e

iπ
4

Γð1
4
− iλ

2
Þ
�
:

(4.19b)

Because the in and out mode functions satisfy the same
relations as (3.7), and have the same relation to the
symmetric mode function υλðuÞ as the corresponding in
and out mode functions have to the CTBD mode function
(3.9) in the de Sitter case, the Bogoliubov coefficients
defined by the analogs of (3.10)–(3.15), and the coefficients
of the total Bogoliubov transformation from in to out
states in the electric field case are given by the same
relations as (3.15), namely

Atot
λ ¼ ðAin

λ Þ2 − ðBin
λ Þ2 ¼

ffiffiffiffiffiffi
2π

p

Γð1
2
− iλÞ e

−πλ
2 eiλ−iλ ln λ; (4.20a)

Btot
λ ¼ Ain�

λ Bin
λ − Ain

λ B
in�
λ ¼ −ie−πλ: (4.20b)

Thus the number density of out particles at late times in the
mode labeled by k or ðkz; k⊥Þ if the system is prepared in
the jini vacuum is
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jBtot
λ j2 ¼ e−2πλ ¼ exp

�
−
πðk2⊥ þm2Þ

eE

�
; (4.21)

and the relative probability of finding a particle/antiparticle
charged pair in the mode characterized by ðkz;k⊥Þ in the
jini vacuum is

wλ ≡
����Btot

λ

Atot
λ

����2 ¼ 1

e2πλ þ 1
; (4.22)

which is independent of kz. The vacuum overlap or vacuum
persistence probability is given then by the analog of (3.24),

jhoutjinij2 ¼
Y
k

ð1 − wλÞ ¼ exp

�
−
X
k

lnð1þ e−2πλÞ
�
:

(4.23)

Taking the infinite volume limit and converting the sum into
an integral according to

X
k

→
V

ð2πÞ3
Z

dkz

Z
d2k⊥; (4.24)

we see that the exponent in (4.23) both diverges in V and
diverges because the integrand is independent of kz. Thus we
encounter a divergence in this mode sum quite analogous
to the de Sitter case (3.24). Again the reason for this is the
infinite amount of particle production in an infinite four-
volume and one should again define the decay rate by
dividing the exponent in the vacuum persistence probability
(4.23) by the four-volume VT, before taking the infinite time
limit T → ∞. In this case, we recognize that the physical
(kinetic) longitudinal momentum of the particle in mode kz is
p ¼ kz þ eEt, so that for a fixed large p ¼ P cutoff we have

dkz ¼ −eEdt: (4.25)

Thus the positive integral over kz in (4.24) may be replaced
by eET, T being the total elapsed time over which the electric
field acts to create pairs. In this way we obtain from
(4.23)–(4.25) the vacuum decay rate per unit three-volume
V per unit time T to be

Γ ¼ eE
ð2πÞ3

Z
d2k⊥ lnð1þ e−2πλÞ

¼ eE
ð2πÞ3

Z
∞

0

πdk2⊥
X∞
n¼1

ð−Þnþ1

n
exp

�
−
πnðk2⊥ þm2Þ

eE

�

¼ ðeEÞ2
ð2πÞ3

X∞
n¼1

ð−Þnþ1

n2
exp

�
−
πnm2

eE

�
; (4.26)

which is Schwinger’s result for scalar QED. (Schwinger
actually obtained his result for fermionic QED in which the
alternating sign in the sum over n is absent [22]).

Thus the definition of the jini and jouti states which are
purely positive frequency as t → ∓∞, respectively, accord-
ing to (4.11) gives a nontrivial particle creation rate and
imaginary part of the one-loop effective action which agrees
with [22], notwithstanding the existence of a fully time
symmetric state with mode functions (4.16). Clearly a
nonzero imaginary part and decay rate breaks the time
reversal symmetry of the background. Mathematically this
is of course a result of initial boundary conditions on the
vacuum, implemented in the present treatment by the
definition of positive frequency solutions at early and late
times, or in Schwinger’s proper time original treatment by
the m2 → m2 − i0þ prescription of avoiding a pole. As in
the de Sitter case, the time symmetric modes (4.16) can be
defined and have the maximal symmetry of the background
E field. They do not describe a true vacuum state, but rather
a specific coherent superposition of particles and antipar-
ticles with respect to either the jini or jouti vacuum states,
“halfway between.” The time symmetric state defined by the
solution (4.16) is a very curious state indeed, corresponding
to the rather unphysical boundary condition of each pair
creation event (cf. Sec. V) being exactly balanced by its
time reversed pair annihilation event, these pairs having
been precisely arranged to come from great distances at
early times in order to effect just such a cancellation.
We note also that taking the strict asymptotic states (4.9) in

a constant uniform electric field leads to the same sort of
divergence in the kz momentum integration we encountered
in the k sum in the de Sitter case, which can be handled by the
replacement (4.25) based on similar considerations of a fixed
physical momentum cutoff. The reason that the calculation
leading to (4.23) together with a physical argument for the kz
cutoff gives the identical answer to Schwinger’s proper time
method [22] is of course due to the fact that the definition
of particles by the positive frequency solutions of the time
dependent mode Eq. (4.6) is the same one selected by the
covariant analyticity requirement of the m2 − i0þ prescrip-
tion. For this correspondence to be unambiguous it is
important that the adiabatic frequency function ΘλðuÞ in
(4.8) have well-defined asymptotic behavior at large
juj ≫ ffiffiffi

λ
p

, so that the in and out positive frequency mode
functions may be identified by the asymptotic behaviors of
the appropriate exact solutions of (4.6), even though the
electric field does not vanish in these asymptotic regions at
very early or very late times. Indeed exactly the same result
(4.26) is obtained if the electric field is switched on and off
smoothly [28,30,35] in a finite time T. Then the Bogoliubov
coefficients have a nontrivial kz dependence and the integral
over kz for finite T is finite. Dividing by T and taking the
limit T → ∞ one recovers exactly the decay rate (4.26)
according to the replacement (4.25) above.
Presumably the jini and jouti states in the constant,

uniform electric field have Wightman functions with the
same sort of non-Hadamard behavior as those in de Sitter
space, and for the same reason, namely the noncommutivity
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of the infinite time T → ∞ and infinite momentum
ðkz; k⊥Þ → ∞ limits. In the electric field case the physical
cutoff on jkzj is of order eET, so that the very high jkzj
modes larger than this cutoff are undisturbed from the
ordinary zero field vacuum and the unphysical ultraviolet
behavior of matrix elements and Green’s functions in the
initial state is removed when T is finite. The finite T
regulator eliminates all UV problems, and transfers the
divergence instead to the question of the long time or
infrared secular evolution of the system. Then time trans-
lational as well as time reversal symmetry is lost.

V. ADIABATIC VACUUM STATES AND
PARTICLE CREATION IN REAL TIME

All idealized calculations in background fields that
persist for infinite times do not give much physical insight
into the particle creation process itself in real time.
In formulating a well-posed time dependent problem with
UV finite initial data one needs to define states in which the
momentum dependent particle creation process is started
and can be followed at any finite time. This leads naturally
to the introduction of adiabatic vacuum and particle states
defined at arbitrary times, instead of just in the asymptotic
past or future.
The in and out mode functions fðþÞ and fðþÞ are pure

positive frequency particle modes in the asymptotic past
and asymptotic future, respectively, while the time sym-
metric υ or F is “halfway between” them and a positive
frequency mode at u ¼ 0. This suggests that it would be
useful to introduce WKB mode functions,

~fk ¼ 1ffiffiffiffiffiffiffiffiffiffi
2Wk

p exp

�
−i
Z

t
dtWk

�
; (5.1)

that are approximate adiabatic positive frequency modes at
any intermediate time t, to interpolate between these limits.
These approximate modes are related to any of the exact
mode function solutions fðþÞ and fðþÞ or υ of the oscillator
equation (3.2) or (4.3) in the de Sitter or electric field
backgrounds (which we denote generically by fk) by a
time-dependent Bogoliubov transformation

�
fk
f�k

�
¼
�
αkðtÞ βkðtÞ
β�kðtÞ α�kðtÞ

��
~fk
~f�k

�
; (5.2)

where we require that

jαkðtÞj2 − jβkðtÞj2 ¼ 1 (5.3)

be satisfied at all times. The time dependent real frequency
function Wk in (5.1) is to be chosen to match the exact
frequency function Ωk or ωk of the time dependent
harmonic oscillator equation (3.2) or (4.3), i.e. (3.3) or
(4.4), to some order in the adiabatic expansion

W2
k ≃ ω2

k −
1

2

ω̈k

ωk
þ 3

4

_ω2
k

ω2
k
þ � � � ; (5.4)

obtained by substituting (5.1) into the oscillator equation
and expanding in time derivatives of the frequency. The
expansion (5.4) is adiabatic in the usual sense of slowly
varying, in that it is clear that the approximate positive
frequency mode (5.1) more and more accurately approaches
an exact mode solution of the oscillator equation (3.2) or
(4.3), as (3.3) or (4.4) becomes a more slowly varying
function of time, which is controlled by the strength of the
background gravitational or electric field.
An important property of the expansion (5.4) is that it is

an asymptotic series (rather than a convergent series)
which is nonuniform in time. The higher order terms fall
off more and more rapidly at large jkj, for any value of the
background field H or E, no matter how rapidly the
background varies, and irrespective of its asymptotic
behavior in time. In the literature the term adiabatic is
most often used in this second sense of the large jkj
behavior of vacuum modes for arbitrary (smooth) back-
grounds, independently of whether or not they are slowly
varying in time [8]. This guarantees that the adiabatic
vacuum defined by (5.1) will match the usual Minkowski
vacuum at sufficiently short distance scales as jkj → ∞,
for any smoothly varying background field, and a suffi-
ciently high order adiabatic vacuum leads to Green’s
functions with Hadamard behavior. This is essential to
the renormalization program for currents and stress
tensors, which is necessary to formulate the backreaction
problem for time varying background fields [6–8].
However, as is generally the case with WKB methods
and asymptotic series more generally, the adiabatic
expansion misses exponentially small contributions in
the vicinity of turning points where ωk vanishes. As a
result, the adiabatic mode function (5.1) is not uniformly
valid over all times, for any finite order truncation of the
asymptotic series (5.4), and mixing with ~f�k generally
occurs.
Because of the Wronskian normalization conditions

(2.8) or (4.10), the coefficients of the time dependent
Bogoliubov transformation (5.2) are completely defined
only if the first time derivatives of the exact mode functions
in terms of αk and βk are also specified. The general form
of _fk in terms of the adiabatic modes ~fk that preserves both
the Wronskian condition (2.8) and (5.3) is [37]

d
dt

fk ¼
�
−iWk þ Vk

2

�
αk ~fk þ

�
iWk þ Vk

2

�
βk ~f

�
k;

(5.5)

where Vk is a second time dependent real function, with its
own adiabatic expansion given by the time derivative ofWk
from (5.4). For any real (Wk; Vk) the transformation of
bases (5.2) may be viewed as a time dependent canonical
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transformation in the phase space of the coordinates fk and
their conjugate momenta _fk. The corresponding adiabatic
particle and antiparticle creation and destruction operators
may be defined by setting the Fourier components of the
scalar field,

φkðtÞ≡ akfkðtÞ þ b†kf
�
−kðtÞ

¼ ~akðtÞ ~fkðtÞ þ ~b†−kðtÞ ~f�−kðtÞ; (5.6)

equal so that the canonical transformation in the Fock space
(of a charged scalar field) is�

~akðtÞ
~b†−kðtÞ

�
¼
�
αkðtÞ β�kðtÞ
βkðtÞ α�kðtÞ

��
ak
b†−k

�
(5.7)

when referred to the time independent basis ðak; b†−kÞ.
For an uncharged Hermitian scalar field, bk and b†−k are
replaced by ak and a†−k, respectively. The time-dependent
instantaneous mean adiabatic particle number in the mode
k is defined in the ð ~ak; ~b†−kÞ basis as

N kðtÞ≡ h ~a†kðtÞ ~akðtÞi
¼ h ~b†−kðtÞ ~b−kðtÞi
¼ jαkðtÞj2ha†kaki þ jβkðtÞj2hb−kb†−ki
¼ Nk þ ð1þ 2NkÞjβkðtÞj2; (5.8)

where

Nk ≡ ha†kaki ¼ hb†−kb−ki (5.9)

is the number of particles (assumed equal to the number of
antiparticles) referred to the time independent basis. This
may be taken to be the particle number at the initial time
t ¼ t0 provided that we initialize so that jβkðt0Þj2 ¼ 0.
With Vk defined in terms of _fk by (5.5), the time

dependent Bogoliubov coefficients may be found explicitly:

αk ¼ i ~f�k

�
_fk −

�
iWk þ Vk

2

�
fk

�
(5.10a)

βk ¼ −i ~fk
�
_fk þ

�
iWk −

Vk

2

�
fk

�
: (5.10b)

and in particular,

jβkðtÞj2 ¼
1

2Wk

���� _fk þ
�
iWk −

Vk

2

�
fk

����2 (5.11)

is determined in terms of the adiabatic frequency functions
ðWk; VkÞ and the exact mode function solution fk of
the oscillator equation (3.2) or (4.3), which is specified
by initial data ðfk; _fkÞ at t ¼ t0. Although the choice of
ðWk; VkÞ is not unique, it is fairly tightly constrained by

the requirements of matching the adiabatic behavior of
the asymptotic expansion (5.4) to sufficiently high order, but
not higher than is necessary to isolate the divergences
of the current hji or stress tensor hTa

bi operators in their
vacuumlike contributions. We shall see that with these
requirements, although the detailed time dependence of
N kðtÞ depends on the precise choice of ðWk; VkÞ, the
main features of the adiabatic particle number are largely
independent of the specific choice of these functions.
Let us first apply this general adiabatic framework to

the constant, uniform electric field example. Although it is
sufficient to choose the lowest order adiabatic frequency
functions,

Wð0Þ
k ¼ ωk ¼

ffiffiffiffiffiffi
eE
2

r
ðu2 þ 4λÞ12 (5.12a)

Vð1Þ
k ¼ −

_ωk

ωk
¼ −

ffiffiffiffiffiffiffiffi
2eE

p u
u2 þ 4λ

; (5.12b)

in this case, we shall also study the second-order choice,

Wð2Þ
k ¼ ωk −

1

4

ω̈k

ω2
k
þ 3

8

_ω2
k

ω4
k

¼
ffiffiffiffiffiffi
eE
2

r
ðu2 þ 4λÞ12

�
1 −

1

ðu2 þ 4λÞ2 þ
5

2

u2

ðu2 þ 4λÞ3
�
;

(5.13)

for comparison purposes. The Bogoliubov coefficient jβkj2
and the adiabatic mean particle number were studied in a
constant electric field background with the choiceWð0Þ

k and
Vk ¼ 0 in [36]. In Fig. 1 we plot jβkj2 defined by (5.11)
with fk the in vacuum mode function fλðþÞðuÞ of (4.9)
for both the lowest order and second order choices

FIG. 1 (color online). The mean number of particles created
from the vacuum jini state, given by (5.11) with fk ¼ fλðþÞðuÞ of
(4.9), with λ ¼ 1. The blue curve with larger oscillations is for the
first order choice of (Wk; Vk) in (5.12), while the green curve is
for the second order choice of Wk in (5.13) and the same Vk.
Both change rapidly around u ¼ 0, and both tend to the same
asymptotic value, e−2π ¼ 0.001867, of (5.15) as u → ∞.
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of adiabatic frequency Wk, given by (5.12) and (5.13),
respectively.
A continuous but sharp rise in jβkj2 is observed in each

kz mode around its “creation event,” at u ¼ 0, i.e. at the
time when the kinetic momentum p ¼ kz þ eEt ¼ 0. Since
the adiabatic mode functions are essentially WKB approx-
imations to the time dependent harmonic oscillator equa-
tion (3.2) or (4.3), the particle creation process in real time
and this rapid rise may be understood from a consideration
of the WKB turning points in the complex u plane
[32,46,47]. These are defined by the values of u where
the frequency function ωk vanishes. Since the solutions are
oscillatory on the real time axis, those turning points are
located off the real line, and in the case of (4.3)–(4.4) the
zeroes of the frequency are at

u ¼ �uλ ≡�2i
ffiffiffi
λ

p
(5.14)

as illustrated in Fig. 2.
Far from the turning points, for juj ≫ 2

ffiffiffi
λ

p
, the exact

mode functions are well approximated by the adiabatic
WKB mode function (5.1) and hence jβkðtÞj2 defined by
(5.11) will be approximately constant. For u ≪ −juλj < 0
the adiabatic vacuum is approximately the jini vacuum
discussed previously and jβkðtÞj2 is nearly zero if it is
initialized so that jβkðt0Þj2 ¼ 0 for ðkz þ eEt0Þ ≪ −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

p
< 0. For u ≫ juλj > 0, i.e. for ðkz þ eEtÞ ≫ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þm2
p

> 0 the adiabatic vacuum is approximately the
jouti vacuum. Again jβkðtÞj2 will be approximately con-
stant in this region and given approximately by the total
Bogoliubov coefficient Btot

λ from in to out. In the region
u ∈ ð−uλ; uλÞ, as u crosses the Stokes’ line of the function
(4.8) along the imaginary axis joining the complex turning
points (5.14), the exact mode function fkðtÞ receives an

increasing admixture of the negative frequency component,
and jβkj2 changes rapidly from its in to out value. This
change in jβkðtÞj2 in the region Δu ∼ 4

ffiffiffi
λ

p
or Δt ∼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

p
=eE around u ¼ 0 (closest to the complex

zeroes of ωk) is given by (4.21) or

Δjβkj2 ¼ jBtot
λ j2 ¼ e−2πλ: (5.15)

This result can be derived also by analytic continuation of
the adiabatic phase function of (4.8) in the complex u plane,
finding the lines of constant ImΘλðuÞ as they emanate from
uλ and approach the real axis as juj → ∞ [46]. Since there
is only one zero of ω2

k in the upper half complex plane and
ω2
k vanishes linearly in u as u → uλ, the linear turning point

connection formulas for the WKB approximation extended
to the complex plane apply, and one finds [32,46,47]

Btot
λ ¼ −i expf2iΘλðuλÞg ¼ −ie−πλ (5.16)

from (4.8) together with (5.14), in agreement with (4.20b),
and hence (5.15). The total Bogoliubov coefficient Btot

λ is
appropriate since the rise in jβkj2 changes continuously in
this region u ∈ ð−uλ; uλÞ between the two complex zeroes
(5.14) with no constant value halfway between. The
numerical behavior of jβkðuÞj2 for various values of λ is
plotted in Fig. 3 showing the asymptotic value of the jump
in particle number consistent with (5.15). Since this rise
in jβkj2 occurs around u ¼ 0, the particle creation “event”
occurs at a different time t ¼ −kz=eE for modes with
different values of kz.
Consider now the adiabatic initial data at some finite

time t0,

FIG. 2. Location of the zeroes of the frequency function ωk of
(4.4) in the complex u plane. Particle creation occurs as the real-time
u contour crosses u ¼ 0, and the Stokes’ line of the function (4.8)
along the imaginary axis joining the pair of these zeroes (5.14).

FIG. 3 (color online). The mean number of particles created
from the vacuum jini state, given by (5.11) with fk ¼ fλðþÞðuÞ of
(4.9), and the second order adiabatic frequency of (5.13) for λ ¼
1; 2; 3 (upper blue, middle green, lower red curves, respectively).
Note the logarithmic scale. The asymptotic values for large u are
1.87 × 10−3, 3.49 × 10−6, and 6.51 × 10−9 for λ ¼ 1; 2; 3, re-
spectively, in agreement with (5.15).
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fkðt0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðt0Þ
p (5.17a)

dfk
dt

����
t¼t0

¼ −
�
iωk þ _ωk

2ωk

�
fkjt¼t0 (5.17b)

with ωkðtÞ given by (4.4). This matches the adiabatic
vacuum with (5.12) so that βkðt0Þ ¼ 0. Since the creation
event occurs around u ¼ 0 ¼ kz þ eEt, with a finite start-
ing time only those modes for which the initial kinetic
momentum pðt0Þ ¼ kz þ eEt0 < 0 can experience this
creation event. They do so at the time when their kinetic
momentum pðtÞ ¼ kz þ eEt ¼ 0, i.e. when the particle
initially moving in the opposite direction to the electric
field is brought to instantaneous rest pðtÞ ¼ 0 by the
constant positive acceleration of the field and begins to
move in the direction of the electric field. On the other hand
those modes for which pðt0Þ ¼ kz þ eEt0 > 0 are already
moving in the same direction as the electric field at the
initial time and undergo no particle creation event at later
times, being already approximately in the jouti vacuum
state at the initial time t0. Crudely approximating the
creation event as a step function at u ¼ 0 with step size
(5.15), the number of particles in mode k at time t > t0
may be estimated to be

N kðtÞ ¼ ð1þ 2NkÞjβkðtÞj2 ≈ θðpðtÞÞθð−pðt0ÞÞe−2πλ
≈ ð1þ 2NkÞθðkz þ eEtÞθð−kz − eEt0Þe−2πλ;

(5.18)

where the factor of 1þ 2Nk accounts for the induced
creation rate of particles if there are already particles
Nk > 0 in the initial state. From (5.18) there is a “window
function” in kz for modes going through particle creation
given by

−eEt < kz < −eEt0; (5.19)

which grows linearly with elapsed time t − t0. Modes with
kz lying outside this range at any finite t remain in the
adiabatic vacuum. However as t → ∞, modes with arbi-
trarily large jkzj experience a creation event. Hence it is
clear that the large t and large jkzj limits do not commute.
This is a concrete expression of the nonuniformity in time
of the single frequency adiabatic expansion (5.4). It is this
noncommutivity of limits that leads to the non-Hadamard
properties of the asymptotic jini and jouti states, and the
consequent vanishing of their overlap (3.31) in the infinite
time, infinite volume limit.
The actual behavior of jβkj2 is shown in detail in Figs. 1

and 3, and Figures 2-4 of Ref. [36], which rise smoothly on
the time scale of Δu ∼ 4

ffiffiffi
λ

p
. This behavior can be accu-

rately captured by the uniform asymptotic approximation

of the parabolic cylinder functions even for moderately
small λ [36]. Replacing this smooth rise of the average
particle number by a step function already gives a quali-
tatively correct picture of the semiclassical particle creation
process mode by mode in real time, with the correct
asymptotic density of particles. It is the window function
(5.19) which justifies the replacement of the integral over kz
in (4.24) by eE times the total elapsed time T ¼ t − t0,
which can then be divided out to obtain the decay rate
(4.26). The window function (5.19) of the real time particle
creation process also agrees with the analysis of adiabati-
cally switching on and off of the background electric field,
so that it acts only for a finite time [28,30,35,48]. It is this
definition of particles created by the electric field in the
adiabatic basis that forms the starting point in quantum
theory for a kinetic description [36].
The adiabatic basis also furnishes a simple physically

well-motivated method for defining renormalized expect-
ation values of current and energy-momentum bilinears
in the quantum field. In the approximation in which the
electric field background is treated classically while the
charged scalar matter field is quantized, the renormalized
jz current expectation value is

ht0jjzðtÞjt0iR ¼ 2e
Z

d3k
ð2πÞ3 ðkz þ eEtÞ

×

�
ð1þ 2NkÞjfkðtÞj2 −

1

2ωkðtÞ
�
; (5.20)

where the leading divergence has been subtracted by the
adiabatic vacuum term in which jfkj2 has been replaced by
j ~fkj2 with (5.12) and Nk replaced by zero. It can be shown
that this one subtraction removes all the UV divergences
in the momentum integral for a constant E field [34].
A logarithmic divergence proportional to Ë can be removed
by using the second adiabatic order approximation for Wk
in the expansion (5.4). As this term can easily be reab-
sorbed into coupling renormalization in backreaction
calculations and vanishes in any case for a constant E
field, the lowest order subtraction in (5.20) is sufficient
for our present purposes.
Substituting (5.2) we obtain from (5.8) and (5.20)

ht0jjzðtÞjt0iR ¼ 2e
Z

d3k
ð2πÞ3

ðkz þ eEtÞ
ωk

× ½N k þ ð1þ 2NkÞReðαkβ�ke−2iΘkÞ�;
(5.21)

where

Θk ≡
Z

t

t0

ωkdt ¼ ΘλðuðtÞÞ − Θλðuðt0ÞÞ (5.22)

is the adiabatic phase in (5.1), related to the function ΘλðuÞ
defined in (4.8). Since ðkz þ eEtÞ=ωk ¼ p=ωk is the z
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component of the velocity of a classical particle in the electric
field, the first term in the integral of (5.21) has a self-evident
classical interpretation as the contribution to the electric
current of the positive plus negatively charged particles with
phase space number density N k. The second αkβ

�
k term in

(5.21) is a quantum interference term which has no classical
analog. This term is both rapidly oscillating in time and
rapidly oscillating in jkj for fixed time, so one would expect
it to average out in the integral and give a relatively small
contribution to the total current compared to the first term.
For the semiclassical particle interpretation based on the
adiabatic modes (5.1) to be most useful, this should be the
case. If it is, one can also substitute the step approximation
(5.18) for the particle density (assuming Nk ¼ 0, i.e. no
particles in the initial state) and arrive at the simple result,

ht0jjzðtÞjt0iR ≈ 2e
Z

d3k
ð2πÞ3

ðkz þ eEtÞ
ωkðtÞ

θðkz þ eEtÞ

× θð−kz − eEt0Þ exp
�
−
πðk2⊥ þm2Þ

eE

�

¼ e
π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2E2ðt − t0Þ2 þm2

q
−m

�

×
Z

∞

0

dk2⊥
4π

exp

�
−
πðk2⊥ þm2Þ

eE

�

→
e3E2

4π3
ðt − t0Þe−πm2

eE ; (5.23)

for the linear growth with time of the mean electric current of
the created particles. This exhibits the secular effect coming
from the window function (5.19) opening linearly with time
so that more and more modes go through their particle
creation event as time goes on, each becoming accelerated
very rapidly to the speed of light, and making a constant
contribution to the current.
One can also evaluate the exact expectation value (5.20)

for a constant uniform electric field background starting
with the initial adiabatic data (5.17) and compare it to the
simple step function approximation (5.23). This compari-
son is shown in Fig. 4 [36]. The transient oscillations at
early times are the effect of the second quantum interfer-
ence term in (5.21), while the dominant secular effect of
linear growth at late times is correctly captured by the
simple approximation (5.23) based on the particle creation
picture, labeled as old source in Fig. 4. The curve labeled
new source is the uniform approximation of [36] that gives
a slightly better approximation than the crude step function
approximation of (5.18). Either gives correctly the coef-
ficient of the linear secular growth with time, which implies
that backreaction must eventually be taken into account,
no matter how small eE=m2 is, provided only that it is
nonzero. This secular growth is a nonperturbative infrared
memory effect in the sense of depending upon the time
elapsed since the initial vacuum state was prepared at
t ¼ t0. Note that this time dependence due to particle
creation is a spontaneous breaking of the time translational

FIG. 4. The linear growth of the electric current J ¼ hjzi with time in the case of fixed constant background electric field in 1þ 1
dimensions in units of e2E for eE=m2 ¼ 1. The data and the plot were generated in Ref. [36]. The three curves shown are the current of
the exact renormalized current expectation value (5.20), (solid, labelled mean field), a uniform approximation described in Ref. [36]
(dashed, labelled new source), and that obtained from the simple window step function of particle creation in (5.18) and (5.23), (dotted,
labelled old source).
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and time reversal symmetry of the background constant E
field [10,49]. The exponentially small tunneling factor
associated with the spontaneous Schwinger particle crea-
tion rate from the vacuum shows that the effect is non-
perturbative, but that however small, it can be overcome by
a large initial state density of particles Nk ≫ 1 for which
the induced particle creation and current is much larger.
Even in the initial adiabatic vacuum case for Nk ¼ 0,
particle creation eventually overcomes the small tunneling
factor at late enough times.

VI. ADIABATIC STATES AND INITIAL
DATA IN DE SITTER SPACE

As in the electric field case, we introduce instantaneous
adiabatic vacuum states in de Sitter space, defined by the
adiabatic mode functions,

~fk ¼
1ffiffiffiffiffiffiffiffiffi
2Wk

p exp

�
−i
Z

τ
dτWk

�
; (6.1)

analogous to (5.1). Due to spatial homogeneity and
isotropy in the cosmological case, these modes depend
only upon the magnitude k ¼ jkj which is the principal
quantum number of the spherical harmonic on S3. The time
dependent coefficients αkðuÞ and βkðuÞ of the Bogoliubov
transformation are defined by

fk ¼ αk ~fk þ βk ~f
�
k (6.2a)

H
d
du

fk ¼
�
−iWk þ

Vk

2

�
αk ~fk þ

�
iWk þ

Vk

2

�
βk ~f

�
k;

(6.2b)

where fk is an exact mode function solution of (3.2). They
are given again by (5.10)

jβkðtÞj2 ¼
1

2Wk

���� _fk þ
�
iWk −

Vk

2

�
fk

����2 (6.3)

and (5.3) is satisfied, provided only that bothWk and Vk are
arbitrary real functions of time. The analog of (5.7) is now

�
~aklml

ðuÞ
~a†kl−ml

ðuÞ
�

¼
�
αkðuÞ β�kðuÞ
βkðuÞ α�kðuÞ

��
aklml

a†kl−ml

�
(6.4)

when referred to any time-independent basis ðaklml
; a†kl−ml

Þ
for the Hermitian scalar field Φ (not necessarily the CTBD
basis). The time dependent mean adiabatic particle number
in the mode ðklmlÞ is independent of ðlmlÞ for Oð4Þ
invariant adiabatic states and may be defined by the analog
of (5.8) in de Sitter space to be

N kðuÞ ¼ h ~a†klml
ðuÞ ~aklml

ðuÞi ¼ Nk þ ð1þ 2NkÞjβkðuÞj2;
(6.5)

where

Nk ≡ ha†klml
aklml

i (6.6)

is the number of particles at the initial time u ¼ u0,
provided jβkðu0Þj2 ¼ 0 is initialized to zero at the initial
time u ¼ u0. Note that with this initialization, the
exact mode function solution of (3.2) satisfies the initial
conditions,

fkγðu0Þ ¼
1ffiffiffiffiffiffiffiffiffi
2Wk

p
����
u¼u0

;

_fkγðu0Þ ¼
1ffiffiffiffiffiffiffiffiffi
2Wk

p
�
−iWk þ

Vk

2

�����
u¼u0

; (6.7)

and hence is a certain linear combination (time independent
Bogoliubov transformation) of the CTBDmode function Fkγ

and its complex conjugate F�
kγ . Correspondingly, the time

independent basis operators aklml
; a†klml

in Fock space are

certain linear combinations of the aυklml
; aυ†klml

operators that
define the de Sitter invariant state (2.14), which can be
expressed in terms of each other by time independent
Bogoliubov coefficients dependent upon the initial data (6.7).
As in the electric field example, the behavior of the

solutions of the mode equation (3.2) is determined by the
location of the zeroes of the frequency function, Ωk ¼ 0 in
(3.4) in the complexuplaneatcosh ū ¼ �iγ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1=4

p
, or

ū ¼ uR þ iuI ¼ �ukγ þ iπ

�
nþ 1

2

�
with n ∈ Z and

(6.8a)

sinh ukγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

4

q
γ

;

ukγ ¼ ln

2
64

ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

4

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ k2 − 1

4

q
γ

3
75: (6.8b)

Thus there is an infinite line of zeroes of Ωk in the complex u
plane along the two vertical axes at u ¼ �ukγ for γ2 > 0,
cf. Fig. 5. The largest effect on the Bogoliubov coefficient
βkðuÞ will occur when the real time contour passes closest to
these lines of complex turning points at u ¼ �ukγ . Hence
there are two “creation events” in global de Sitter space, one
in the contracting and one in the expanding phase symmetric
around u ¼ 0. Because of the multiple zeroes the simple
linear turning point formula which worked in the electric
field case will not be exact in this case, so we rely on the
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Bogoliubov coefficients (3.20) and (3.21) computed from
the exact in and out scattering solutions in Sec. III.
We may consider the two limits of (6.8b) for ukγ:

ukγ →

ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

4

q
γ

→ 0 for γ ≫ k or (6.9a)

ukγ → ln

0
B@2

ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

4

q
γ

1
CA → ln

�
2k
γ

�
→ ∞ for k ≫ γ:

(6.9b)

The first limit (6.9a) is the nonrelativistic limit of very
heavy particles whose rest mass is much larger than their
physical momentum k=a at all times. These nonrelativistic
particles are created nearly at rest close to the symmetric
point u ¼ 0 between the contracting and expanding de
Sitter phases, so that the two events merge into one. The
second limit (6.9b) is the relativistic limit of particles whose
physical momentum is much larger than their rest mass
for most of their history. These particles are created in
two bursts, at u ¼ ∓ukγ , when their physical momentum
kHsechukγ is of the same order as their rest mass, so that
they are moderately relativistic at creation. In the con-
tracting phase of de Sitter space u < 0 these particles,
created around u ¼ −ukγ , are blueshifted exponentially

rapidly in u, and thus become ultrarelativistic. This
contracting phase with the created particles becoming
ultrarelativistic is therefore most analogous to the previous
electric field example, and is the phase where we can expect
the largest backreaction effects. Conversely, in the expand-
ing phase, u > 0, the particles created around u ¼ þukγ
will be subsequently exponentially redshifted in u, and
therefore have a much smaller backreaction effect. We
emphasize that the time �ukγ is of the order of the horizon
crossing of the mode at u ∼� lnð2kÞ only for γ ∼ 1. For
large values of γ, when γ ≫ k the particle creation events
occur when the wavelength of the mode is much smaller
than the horizon, while for γ → 0 the particle creation
events occur when the wavelength of the mode is much
greater than the horizon. Due to the different disposition of
zeroes of the adiabatic frequency in the electric field and
de Sitter cases, cf. Figs. 2 and 5, there is no analog of this
second burst of particle creation in the electric field case.
For all values of γ, most of the k modes fall into the

second case (6.9b), and experience two well-separated
creation events at large ukγ ≫ 1 in both the contracting
and expanding phases of de Sitter space. In contrast to the
electric field case considered previously we may therefore
distinguish three distinct regions,

I∶ u < −ukγ; in (6.10a)

II∶ − ukγ < u < ukγ; CTBD (6.10b)

III∶ ukγ < u; out; (6.10c)

where we have indicated the character of the adiabatic
vacuum in each region. If one takes the infinite time limits
u → ∓∞ with k and γ and hence ukγ fixed, one is
automatically in the first in region or the third out region,
respectively. This corresponds to the in/out scattering
problem considered in Sec. III. If on the other hand one
takes the k → ∞ limit for fixed u; γ then Eq. (6.9b) shows
that one is always in region II, where the CTBD state is the
adiabatic vacuum. This shows explicitly the noncommu-
tivity of the infinite u and infinite k limits, with the
transition between the two limits occurring at u ¼ �ukγ .
Next we consider the mode function(s) and adiabatic

vacuum state specified by the initial values (6.7) at an
arbitrary finite time u0 < 0. The modes for a given value of
k fall into two possible classes:

ðiÞ − ukγ < u0 < 0 (6.11a)

ðiiÞ u0 < −ukγ < 0: (6.11b)

For modes in the first class (i) the initial time u0 is already
later than the first creation event. For these modes in region
II, the adiabatic initial condition is close to the CTBD state
in the high k limit, βk ≈ 0 and nothing further happens in

FIG. 5. Location of the zeroes (6.8) of the frequency function
Ωk (3.3) in the complex u plane for γ2 > 0. Particle creation
occurs as the real time u contour passes through the lines of these
zeroes at u ¼ ∓ukγ .
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the contracting phase, as they remain in region II for all
u0 < u ≤ 0. In contrast, the k modes in class (ii) are
approximately in the jini vacuum state initially. These
modes have yet to go through their particle creation event
which occurs at the later time u ¼ −ukγ > u0 in the
contracting phase. At that time, the adiabatic particle
vacuum switches rapidly to approximately the CTBD state
as u increases past −ukγ . Thus this mode sees its time
dependent Bogoliubov coefficient change rapidly in a few
expansion times (Δu ∼ 1 since the imaginary part of the
nearest complex zero of Ωk is π=2 and independent of k; γ)
from approximately zero to a nonzero plateau determined
by the Bogoliubov coefficient (3.20b). Approximating the
jump in particle number at these creation events by a step
function as before, we have

Δjβkj2 ¼ jBin
kγj2 ¼

e−πγ

2 sinhðπγÞ ¼
1

e2πγ − 1
(6.12a)

N kðuÞ ≈ θðuþ ukγÞθð−ukγ − u0ÞΔN 1;kγ

for u < 0; u0 < 0 (6.12b)

ΔN 1;kγ ¼ ð1þ 2NkÞΔjβkj2 ¼
1þ 2Nk

e2πγ − 1
(6.12c)

in the contracting phase. The first θ function in (6.12)
specifies the time of the creation event when the step
occurs, while the second θ function restricts the modes
to class (ii) for which the step occurs at a later time
u ¼ −ukγ > u0 in the contracting phase. These two θ
functions give the “window function” which is similar to
that found in the electric field case (5.19), namely,

KγðuÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2sinh2uþ 1

4

r
< k <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2sinh2u0 þ

1

4

r
¼ Kγðu0Þ;

(6.13)

in the contracting phase of de Sitter space for which
u0 < u ≤ 0. Like (5.19) this window function has an upper
limit fixed by the initial time and a lower limit which
decreases as time evolves (for u < 0).
If we continue the evolution past the symmetric point

u ¼ 0 into the expanding de Sitter phase, all of the modes
of class (ii) have experienced the first particle creation
event, and then begin (with the smallest value of k first) to
experience a second creation event at u ¼ þukγ . Thus the
modes of class (ii) which started in region I undergo two
creation events with a total Bogoliubov transformation of
(3.21), while the modes of class (i) which started in region
II undergo only the second creation event in the expanding
phase for which the single Bogoliubov transformation Bout

kγ
applies. Again approximating these creation events by step
functions we obtain

N kðuÞ ≈ ½θðukγ − uÞθð−ukγ − u0Þ þ θðu− ukγÞθðu0 þ ukγÞ�
×ΔN 1;kγ þ θðu− ukγÞθð−ukγ − u0ÞΔN 2;kγ

for u > 0; u0 < 0 (6.14a)

ΔN 2;kγ ¼ ð1þ 2NkÞjBtot
kγ j2 ¼ ð1þ 2NkÞcsch2ðπγÞ

(6.14b)

in the expanding phase of de Sitter space. The window
function for this second creation event in the expanding
phase is now

k <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2sinh2uþ 1

4

r
¼ KγðuÞ (6.15)

for the modes undergoing the second creation event at
u ¼ þukγ . Those with k < Kγðu0Þ undergo both the first
and second creation events with ΔN ¼ ΔN 2;kγ , while
those with k > Kγðu0Þ experience only the second creation
event with ΔN ¼ ΔN 1;kγ .
This analysis may be repeated if the initial time u0 > 0 is

in the expanding phase. In this case all modes initially in
region II, with u0 < ukγ undergo a single creation event at
u ¼ þukγ . Hence we have

N kðuÞ ≈ θðu − ukγÞθðukγ − u0ÞΔN 1;kγ

for u; u0 > 0; (6.16)

replacing (6.14). The window function in k is now the
reverse of (6.13), namely,

Kγðu0Þ < k < KγðuÞ; (6.17)

which like (6.15) shows an upper limit that increases
with time.
The various cases (6.12), (6.14) and (6.16) may be

collected into one result,

N kðτÞ ≈ ½θðukγ − jujÞθð−ukγ − u0Þ

þ θðu − ukγÞθðukγ − ju0jÞ�
�
1þ 2Nk

e2πγ − 1

�
þ θðu − ukγÞθð−ukγ − u0Þð1þ 2NkÞcsch2ðπγÞ;

(6.18)

valid for all values of u and initial times u0. From this or
(6.14) it is clear that for fixed k, with u0 → −∞; u → þ∞,
the mode experiences both particle creation events and we
recover (3.22), while for a finite interval of time only those
modes for which u0 < −ukγ and ukγ < u experience both
creation events. Thus taking the symmetric limit with
u ¼ −u0 > 0, the values of k satisfying both these con-
ditions are cut off at the maximum value KγðuÞ, i.e.
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k≤KγðuÞ→
γ

2
ejuj or lnKγðuÞ→ jujþ ln

�
γ

2

�
(6.19)

as juj → ∞, which is exactly the cutoff (3.28) that we argued
on physical grounds earlier in Sec. III (and in Ref. [9])
should be used in the k sum of (3.24) to calculate the finite
decay rate per unit volume (3.32) of de Sitter space to
massive particle creation in the limit V4 → ∞. The constant
in (3.28) has been determined to be lnðγ=2Þ by our detailed
analysis of the particle creation process in real time. The
non-Hadamard short distance behavior of the jini and jouti
states found in [9] has also been removed by regulating the
large k behavior with a finite initial and final time, since the
modes for which k > KγðuÞ remain in the CTBD state in
region II for all −ju0j < u < ju0j and the CTBD state is
known to have the correct short distance behavior [16].
The actual smooth behaviors of jβkðuÞj2 defined by (6.3)

for various k and u0 ¼ −15 and u0 ¼ −5 are shown in
Figs. 6 and 7, respectively. The increases in jβkðuÞj2 occur
on a time scaleΔu ∼ 1 for all the modes. The values chosen
for the adiabatic frequency functions ðWk; VkÞ are

Wð2Þ
k ¼ Ωk þ

3

8

_ω2
k

ω3
k

−
1

4

ω̈k

ω2
k

¼ Ωk þ
h2

8ωk

�
1 −

6m2

ω2
k

þ 5m4

ω4
k

�

þ
_h

4ωk

�
1 −

m2

ω2
k

�
; (6.20a)

Vð1Þ
k ¼ −

_ωk

ωk
¼ h

�
1 −

m2

ω2
k

�
(6.20b)

correct up to second order in the adiabatic expansion.
A comparison of jβkðuÞj2 for this choice and the simpler
choice

Wð0Þ
k ¼ Ωk ¼ H

��
k2 −

1

4

�
sech2uþ γ2

�1
2

(6.21a)

Vð1Þ
k ¼ −

_ωk

ωk
¼ h

�
1 −

m2

ω2
k

�
(6.21b)

for the k ¼ 10 mode and u0 ¼ −15 is shown in Fig. 8.
As in the electric field case (cf. Fig. 1) the detailed time

structure of the creation event is different with different
choices of ðWk; VkÞ, but the qualitative features and
asymptotic values (and intermediate plateau value) are
independent of the choice. The second order WKB choice
(6.20) suppresses the oscillations observed with the choice
(6.21) and comes closer to the approximate step function
description. As predicted by the previous WKB analysis
and (6.18), the modes with k ¼ 1 and k ¼ 10 in Fig. 7 go
through both creation events with a rapid increase in
jβkðuÞj2 occurring for each at the appropriate value of
∓ukγ . The modes with k ¼ 100 and k ¼ 1000 for which
ukγ > ju0j only go through a marked second creation event,
although the orange curve for k ¼ 100 has a small con-
tribution from the first creation event, since u0 ¼ −5 and
−ukγ ¼ −5.44 are comparable for this mode. The value of
jβkðuÞj2 after the first creation event is well approximated

FIG. 6 (color online). Plotted is jβkðuÞj2 for m ¼ H; γ ¼ ffiffiffi
3

p
=2

defined by (6.3) with the initial adiabatic matching time u0 ¼ −15
and the second order matching defined by (6.20). The innermost
blue curve is for k ¼ 1, the green for k ¼ 10, the orange for
k ¼ 100 and the outermost red for k ¼ 1000, the latter 3 values
showing two clearly separated particle creation events. The values
of ukγ given by (6.8) are 0.35, 2.31, 5.44, and 10.0, respectively, for
these values of k and γ. The asymptotic value of jβkj2 of all the
curves for large u is 0.01748 in agreement with (6.14b) forNk ¼ 0.
The intermediate plateau is at 0.00435 in agreement with (6.12c).

FIG. 7 (color online). Plotted is jβkðuÞj2 for the same values of γ
and k as in Fig. 6, but with the initial adiabatic matching time
u0 ¼ −5. Note that for the two highest values of k at 100 and
1000 (the lower orange and red curves), a marked first particle
creation event does not occur since u0 > −ukγ for these modes.
The asymptotic value of the lower red curve at large u is 0.00435
in agreement with the first term of (6.18). The yellow curve for
k ¼ 100 has a small contribution from the first creation event
since u0 and −ukγ are comparable.
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by (6.12a) or (6.12c) with Nk ¼ 0 for an initial vacuum,
while for those modes undergoing two creation events the
second plateau of jβkðuÞj2 for u > ukγ is given by (6.14b).
In Fig. 9 we also compare jβkðuÞj2 for fixed k ¼ 1000 and
u0 ¼ −15, for three different values of the mass, showing
the dependence of the time of the creation events on γ given
by (6.8b).

For comparison we also plot the adiabatic particle
number as a function of u for the CTBD state in
Fig. 10. This figure shows that the CTBD state contains
particles in its initial condition and the first event at
u ¼ −ukγ is actually a particle destruction event. The
phase coherent initial particles in modes with principal
quantum number k find each other and annihilate at the
time u ¼ −ukγ , canceling each other precisely in region II.
At the later time u ¼ ukγ , these particles are created again
in a completely time symmetric manner. This is clearly a
delicately balanced coherent process that is artificially
arranged by initial conditions in the CTBD state. In an
accompanying paper we show that a small perturbation of
the CTBD state upsets this balance and leads again to
instability [21].

VII. PARTICLE CREATION IN SPATIALLY FLAT
FLRW POINCARÉ COORDINATES

The analysis of particle creation in the spatially closed S3

coordinates of de Sitter space of the previous section can
just as well be carried out in the spatially flat Poincaré
coordinates of (A11), more commonly used in cosmology.
The wave equation (2.1) again separates in the usual
Fourier basis Φ ∼ ϕkðτÞeik·x. Removing the scale factor
by defining the mode function fk ¼ a

3
2ϕk as in (3.1) but

with a ¼ expðHτÞ in this case gives the mode equation

�
d2

dτ2
þ k2e−2Hτ þm2 −

H2

4

�
fkðτÞ ¼ 0; (7.1)

with k≡ jkj. This equation again has the form of an
harmonic oscillator equation with a time dependent
frequency which is given by

FIG. 8 (color online). Plotted is jβkðuÞj2 for k ¼ 10 and for the
same value of γ ¼ ffiffiffi

3
p

=2 as in Fig. 6, when the matching time is
u0 ¼ −15. The blue curve with the larger oscillations corre-
sponds to the zeroth order adiabatic vacuum state specified by
Wk ¼ Ωk with Vk given by (6.21). The green curve corresponds
to the second order adiabatic vacuum state specified by (6.20).

FIG. 9 (color online). Plotted is jβkðuÞj2 for fixed k ¼ 1000 and
adiabatic matching time u0 ¼ −15, for three values of the mass:
m ¼ H (upper, green), m ¼ 3H (middle, orange), m ¼ 5H (lower,
blue) for Wk; Vk specified by (6.20). Note the logarithmic scale.
The asymptotic values of jβkj2 for large u are 1.748 × 10−2,
3.391 × 10−8 and 1.062 × 10−13, respectively, in agreement with
(6.14b) for Nk ¼ 0. The intermediate plateaux at u ¼ 0 are at
4.35 × 10−3, 8.48 × 10−9, and 2.66 × 10−14, respectively, in agree-
ment with (6.12c). The particle creation events occur at ∓ukγ with
ukγ ¼ 7.74; 6.52 and 6.00, respectively, for the three values of m.
The roughness of the blue and orange curves near the lower left
corner is due to roundoff error.

FIG. 10 (color online). Plotted is jβkðuÞj2 for the CTBD state for
various values of k: k ¼ 1 (blue), k ¼ 10 (green). k ¼ 100
(orange), k ¼ 1000 (red) for Wk; Vk specified by (6.20). Note
that the first event at u ¼ −ukγ is a particle annihilation event in
which the particle number decreases from 0.004352 to zero in each
kmode, rising again to the same value at u ¼ þukγ in a completely
time symmetric manner.
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ω2
kðτÞ ¼ k2e−2Hτ þm2 −

H2

4
: (7.2)

Thus with this change all of the methods employed in the
spatially closed sections or the electric field background
may be utilized again. In particular, for γ2 > 0 we have
over the barrier scattering in a nontrivial one-dimensional
potential, and we should expect the stationary waves
incident from the left as τ → −∞ to be partially reflected
and partially transmitted to the right as τ → ∞. This
scattering will result again in a nontrivial Bogoliubov
transformation between the positive frequency particle
solutions at early times in the jini vacuum and those at
late times in the jouti vacuum, i.e. particle creation, just as
in the electric field case.
By making the change of variables,

z≡ k
H
e−Hτ; (7.3)

Eq. (7.1) may be transformed into Bessel’s equation with
imaginary index ν ¼ �iγ. Thus the exact solutions are
Bessel or Hankel functions with this index. The particular
solution

ῡγðzÞ≡ 1

2

ffiffiffiffi
π

H

r
e−

πγ
2 e

iπ
4Hð1Þ

iγ ðzÞ

¼
ffiffiffiffi
π

H

r
e
πγ
2 e

iπ
4

e2πγ − 1
½eπγJiγðzÞ − J−iγðzÞ� (7.4)

is the CTBD solution in flat coordinates, with the asymp-
totic behavior

ῡγðzÞ →
1ffiffiffiffiffiffiffiffiffi
2Hz

p eiz as z → ∞: (7.5)

Since ωk ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ γ2

p
→ Hz and

ΘγðzÞ≡
Z

τðzÞ
dτωkðτÞ

¼ −
Z

z dz
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ γ2

q

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ γ2

q
−
γ

2
ln

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ γ2

p
− γffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ γ2
p

þ γ

#

→ −z as z → ∞; (7.6)

the solution (7.4) is also the correctly normalized adiabatic
in vacuum solution,

fkðþÞðτÞ ¼ ῡγðzÞ →
1ffiffiffiffiffiffiffiffi
2ωk

p e−iΘγ as τ → −∞; (7.7)

in the Poincaré coordinates.

This much is standard and may be found in standard
references [8]. However, in the opposite limit of late times
τ → ∞,

ωk → Hγ and ΘγðzÞ → −γ ln z as z → 0; (7.8)

and therefore

fðþÞ
k ðτÞ ¼

�
2H
k

�
iγ Γð1þ iγÞffiffiffiffiffiffiffiffiffi

2Hγ
p JiγðzÞ →

�
H
k

�
iγ ziγffiffiffiffiffiffiffiffiffi

2Hγ
p

¼ 1ffiffiffiffiffiffiffiffiffi
2Hγ

p e−iγHτ as τ → ∞ (7.9)

is the properly normalized positive frequency out solution,
which agrees with the adiabatic form e−iΘγ=

ffiffiffiffiffiffiffiffi
2ωk

p
at

late times. Comparison with the last form of (7.4) shows
that indeed there is a nontrivial mixing of positive and
negative frequencies at late times in the CTBD state.
The Bogoliubov coefficients are

Aγ ¼
ffiffiffiffiffiffiffiffi
2πγ

p
e
iπ
4

2iγΓð1þ iγÞ
e
3πγ
2

e2πγ − 1
(7.10a)

Bγ ¼ −
ffiffiffiffiffiffiffiffi
2πγ

p
e
iπ
4

2iγΓð1þ iγÞ
e
πγ
2

e2πγ − 1
; (7.10b)

with jAγj2 − jBγj2 ¼ 1. Note that

jBγj2 ¼
1

e2πγ − 1
¼ jBout

kγ j2: (7.11)

Thus Bk has exactly the same magnitude as the corre-
sponding Bogoliubov coefficient Eq. (3.20b) obtained
previously in the closed S3 spatial sections. This equality
is to be expected since in the asymptotic future the closed
spatial sections have negligible spatial curvature and there
is no local difference with the flat sections. This mode
mixing and particle creation effect in the flat Poincaré
coordinates, which follows from the second form of (7.4),
seems to have been overlooked in [8], which states that
“there is no particle production.”
The particle creation process may be analyzed in real

time in the flat Poincaré coordinates by using the methods
of Sec. V. Indeed the zeroes of (7.2) in the complex z plane
occur at

zγ ¼ �iγ; (7.12)

which represents an infinite series of zeroes at Hτ ¼
lnðk=HγÞ þ iπðnþ 1

2
Þ similar to those in the complex u

plane in Eq. (6.8) and Fig. 5. Since the Poincaré coordinates
cover only one half of the de Sitter manifold, where it is only
expanding (or in the other half where it is only contracting),
there is only one line of complex zeroes in Poincaré
coordinates and only one creation event occurring at
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τkγ ¼
1

H
ln

�
k
Hγ

�
(7.13)

for the mode with Fourier component k ¼ jkj: compare
(6.9b). If one starts the evolution at some finite initial time τ0
then only those modes with k in the range determined by

τ0 < τkγ < τ (7.14)

will experience their creation event at a later time τ.
The number density of particles in modes with k ¼ jkj at
time τ is therefore

N kðτÞ ≈ θðτkγ − τ0Þθðτ − τkγÞð1þ 2NkÞjBγj2 (7.15)

in the approximation that the particles are created instanta-
neously when τ passes through τkγ .
In the expanding phase of de Sitter space, whether

described by closed S3 or flat R3 spatial sections, these
particles will be redshifted in energy and make a decreasing
contribution to the energy density and pressure at later
times. In the next section we compute the energy density
of the created particles which grow exponentially in the
contracting part of de Sitter space due to their blueshifting
toward the extreme ultrarelativistic limit. This does not
occur in the Poincaré sections with only monotonic
expansion, for spatially homogeneous states. In [18] we
showed that the energy density and pressure relax to the
values of the de Sitter invariant CTBD state for all such UV
allowed spatially homogeneous states and for allM2 > 0 in
the expanding phase. Nevertheless because of the same
kind of nontrivial Bogoliubov mixing between the jini and
jouti states in the Poincaré coordinates (7.10), a calculation
of the decay rate analogous to that in Sec. III would show
the same type of instability to particle creation as in the
closed spatial S3 sections of the full hyperboloid.

VIII. STRESS-ENERGY TENSOR OF
CREATED PARTICLES

In this section we consider the stress-energy tensor of the
created particles, and their ability to affect the background
de Sitter spacetime by backreaction. The energy-momentum
tensor of the scalar field with arbitrary curvature
coupling ξ is

Tab ¼ ð∇aΦÞð∇bΦÞ −
gab
2

ð∇cΦÞð∇cΦÞ −
m2

2
gabΦ2

þ ξ½gab□ −∇a∇b þ Gab�Φ2; (8.1)

where Gab is the Einstein tensor. Assuming a metric of the
form (2.2) and spatial homogeneity and isotropy of the state
on the S3 sections, the only nonvanishing components of
the expectation value of Tab are the energy density ε ¼
hTττi and the isotropic pressure p ¼ 1

3
hTi

ii. The scalar field

operator Φ can be expressed in terms of the exact mode
function solutions of (3.2) such that

Φðu; N̂Þ ¼ a−
3
2

X∞
k¼1

Xk−1
l¼0

Xl
ml¼−l

fafklml
fkðuÞYklml

ðN̂Þ

þ af†klml
f�kðuÞY�

klml
ðN̂Þg; (8.2)

where the afklml
now correspond to the state specified by the

particular solution fkðuÞ of (3.5), fixed by specific initial
data at a finite time, and not necessarily the in, out or
CTBD states. Specializing to conformal coupling ξ ¼ 1

6
,

we find

εjξ¼1
6
¼ 1

4π2a3
X∞
k¼1

ð1þ 2NkÞ
�
j _fkj2 − hReðf�k _fkÞ

þ
�
k2

a2
þm2 þ h2

4

�
jfkj2

�
(8.3a)

pjξ¼1
6
¼ 1

12π2a3
X∞
k¼1

ð1þ 2NkÞ
�
j _fkj2 − hReðf�k _fkÞ

þ
�
k2

a2
−m2 þ h2

4

�
jfkj2

�
: (8.3b)

The exact mode functions fk and their time derivatives can
be expressed in terms of the adiabatic functions ~fk and the
time dependent Bogoliubov coefficients ðαk; βkÞ by (5.10)
and (6.2). Thus (8.3) may be expressed in the general
adiabatic basis as

εjξ¼1
6
¼ 1

2π2a3
X∞
k¼1

k2
�
εNk

�
N k þ

1

2

�
þ εRk Rk þ εIkIk

�

(8.4a)

pjξ¼1
6
¼ 1

2π2a3
X∞
k¼1

k2
�
pN
k

�
N k þ

1

2

�
þ pR

k Rk þ pI
kIk

�
;

(8.4b)

where the three terms labeled by N , R, and I are

εNk jξ¼1
6
¼ 1

2Wk

�
ω2
k þW2

k þ
ðVk − hÞ2

4

�
(8.5a)

εRk jξ¼1
6
¼ 1

2Wk

�
ω2
k −W2

k þ
ðVk − hÞ2

4

�
(8.5b)

εIk jξ¼1
6
¼ Vk − h

2
(8.5c)

in the energy density, and
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pN
k jξ¼1

6
¼ 1

6Wk

�
ω2
k − 2m2 þW2

k þ
ðVk − hÞ2

4

�
(8.6a)

pR
k jξ¼1

6
¼ 1

6Wk

�
ω2
k − 2m2 −W2

k þ
ðVk − hÞ2

4

�
(8.6b)

pI
k jξ¼1

6
¼ Vk − h

6
; (8.6c)

in the pressure, with N k given by (6.5), and Rk; Ik
given by

Rk ¼ ð1þ 2NkÞReðαkβ�ke−2iΘkÞ (8.7a)

Ik ¼ð1þ 2NkÞ Imðαkβ�ke−2iΘkÞ (8.7b)

in terms of the adiabatic phase

Θk ≡
Z

τ

τ0

dτWk: (8.8)

The N k terms have a quasi-classical interpretation as the
energy density and pressure of particles with single particle
energies εNk . The 1

2
in these terms has the natural inter-

pretation of the quantum zero point energy in the adiabatic
vacuum specified by ðWk; VkÞ. The Rk and Ik terms
are oscillatory quantum interference terms that have no
classical analog, analogous to the last term of (5.21).
The mode sums over k in (8.4) are generally quartically

divergent in four dimensions. It is in handling and remov-
ing these divergent contributions in the mode sums that
the adiabatic method is most useful [4,6–8,37,50,51].
Although a fourth order adiabatic subtraction is needed
in general, when ξ ¼ 1

6
it is sufficient to subtract only the

second order adiabatic expressions

εð2Þ ¼ 1

4π2a3
X∞
k¼1

k2εð2Þk (8.9a)

pð2Þ ¼ 1

4π2a3
X∞
k¼1

k2pð2Þ
k (8.9b)

with

εð2Þk jξ¼1
6
¼ ωk þ

h2m4

8ω5
k

(8.10a)

pð2Þ
k jξ¼1

6
¼ 1

3

�
ωk −

m2

ωk
−

m4

8ω5
k

ð2_hþ 5h2Þ þ 5m6h2

8ω7
k

�

(8.10b)

to arrive at a finite, renormalized and conserved stress
tensor. The reason for this is that it may be shown that the
only possible remaining divergence is logarithmic and

proportional to ðξ − 1
6
Þ2, and correspondingly there are

no ω−3
k terms in either of the expressions (8.10) for

conformal coupling ξ ¼ 1
6
. Moreover the logarithmic diver-

gence is proportional to the tensor ð1ÞHab [8,37] which
vanishes in de Sitter space (similar to the vanishing of the
counterterm proportionl to Ë when E is a constant).
The difference of the 1

2
vacuum-likeN terms in (8.4) and

the subtraction terms are

εvac ¼
1

4π2a3
X∞
k¼1

k2ðεNk − εð2Þk Þ (8.11a)

pvac ¼
1

4π2a3
X∞
k¼1

k2ðpN
k − pð2Þ

k Þ (8.11b)

with the summands

εNk − εð2Þk ¼ 1

2Wk

�
ðWk − ωkÞ2 þ

ðVk − hÞ2
4

�
−
h2m4

8ω5
k

(8.12a)

pN
k − pð2Þ

k ¼ 1

3
ðεNk − εð2Þk Þ þ m2

3Wkωk
ðWk − ωkÞ

þ m4

12ω5
k

ð _hþ 3h2Þ − 5m6h2

24ω7
k
: (8.12b)

In order for the sums in the renormalized energy-
momentum tensor expectation value, subtracted as in
(8.11) to converge, it is sufficient for the summands
(8.12) to fall off as k−5 or faster at large k. This is
the important physical condition on the definition of the
adiabatic mode functions ðWk; VkÞ, which restricts the
choice of the adiabatic vacuum state. The last term of
(8.12a) and the last two terms of (8.12b) already satisfy
this condition. Inspection of the other terms in (8.12) shows
that in order to satisfy this condition it is sufficient for

Wk − ωk ¼ Oðk−3Þ
and Vk − h ¼ Oðk−2Þ

as k → ∞; (8.13)

and then the sums in (8.11) will converge quadratically.
Either of the choices (6.20) or (6.21) of the last section
satisfy this condition. Let us emphasize that the choice of
ðWk; VkÞ as functions of time only affects how the
individual N ;R and I terms contribute to the stress tensor
expectation value in (8.4), while the sum of all the
contributions and the subtraction terms (8.9)–(8.10) are
independent of that choice, once the initial state is specified
by fkðu0Þ and _fkðu0Þ.
Thus with the vacuum contributions subtracted (8.4)

becomes
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εR ¼ 1

2π2a3
X∞
k¼1

k2
�
εNk N k þ εRk Rk þ εIkIk

�
þ εvac

(8.14a)

pR ¼ 1

2π2a3
X∞
k¼1

k2½pN
k N k þ pR

k Rk þ pI
kIk� þ pvac:

(8.14b)

It should make very little difference which of the choices
for ðWk; VkÞ one uses to define the instantaneous adiabatic
vacuum and time dependent Bogoliubov coefficients, since
they all fall off at large k, and will give qualitatively the
same behavior for the particle creation effects when passing
through the lines of complex zeroes in Fig. 5. The change in
the plateau values ΔN 1;kγ or ΔN 2;kγ obtained after one or
two creation events are the same for all definitions and the
only difference is in the detailed time dependence during
the creation “event” itself, and only for the lower k modes.
In our actual numerical calculations we have used the full

fourth order adiabatic subtraction as described in Ref. [51]
in which the renormalization counterterms are separated
into terms which are divergent and terms which are finite.
The latter can be integrated to form an analytic contribution
to the stress-energy tensor that is separately conserved.
The full renormalized stress-energy tensor is then given
by (8.14) with

εvac ¼
1

4π2a3
X∞
k¼1

k2
�
εNk −

k
a
−
m2a
2k

þm4a3

8k3

�
þ εan

(8.15a)

pvac ¼
1

4π2a3
X∞
k¼1

k2
�
pN
k −

ka
3
þm2a2k

6
−
m4a3

8k

�
þ pan:

(8.15b)

The analytic terms are given by

εan ¼
1

2880π2

�
6a⃛ _a
a2

þ 6ä _a2

a3
−
3ä2

a2
−
6_a4

a4
þ 6

a4

�

−
m2

96π2

�
_a2

a2
þ 1

a2

�
−

m4

64π2

�
1

2
þ log

�
m2a2

4

�
þ 2C

�
(8.16a)

pan ¼
1

2880π2

�
−
2a⃜

a
−
4a⃛ _a
a2

þ 8ä _a2

a3
−
3ä2

a2
−
2_a4

a4
þ 2

a4

�

þ m2

288π2

�
2ä
a

þ _a2

a2
þ 1

a2

�

þ m4

64π2

�
7

6
þ log

�
m2a2

4

�
þ 2C

�
; (8.16b)

with C Euler’s constant. This differs from the vacuum
subtraction in (8.12) by finite terms, which one can check
remain small for all times in de Sitter space.
One way to assess the usefulness of the particle descrip-

tion is to analyze its contribution to the stress-energy tensor.
This is done in Fig. 11 where the full energy density and
that due to the various terms in the energy density (8.14) are
plotted. It is clear from the plot that near u ¼ 0 the εNk N k
term provides by far the dominant contribution to the stress-
energy tensor, whose total value depends only upon the
initial data, while the interferenceRk and Ik terms are very
much smaller. At very early times and very late times this is
not the case. At early times this is expected since the
particle definition is designed to give a vacuum state at
the matching time. At late times it is also expected since
the energy density of the particles redshifts away.
From the window function (6.13) in the contracting phase

of de Sitter space the energy density for the initial adiabatic
vacuum matched by (6.7) at u ¼ u0 should behave like

εR ≃ 1

2π2a3
XKγðu0Þ

k¼KγðuÞ
k2εNk ΔN 1kγ

≃ 1

8π2
K4

γðu0Þ
a4ðuÞ

1

e8πγ − 1

≃ γ4

8π2
1

e2πγ − 1

sinh4u0
a4ðuÞ (8.17)

FIG. 11 (color online). The absolute values of various con-
tributions in (8.14a) to the energy density for an adiabatic state
when m ¼ H are shown in units of H4 for a matching time of
u0 ¼ −5 with Wk, Vk specified by (6.20). The blue curve is the
total energy density, while the red curve which is nearly
coincident with it for most values of u, is the contribution from
the N k adiabatic particle term. Note the logarithmic scale and
large growth of these at intermediate u. The lower two curves are
the contributions to (8.14a) of the εvac (in green), and the sum of
theRk and the Ik quantum interference terms (in orange), which
remain small for all times shown.
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and therefore grow exponentially with the fourth power of
the scale factor as aðuÞ decreases, consistent with our
discussion above of the highest k modes contributing in the
window KðuÞ < k < Kðu0Þ in the contracting phase, where
their effects on the stress tensor are blueshifted, becoming
highly relativistic. This is what accounts for the enormous
growth of the particle contribution to the energy density εNk
in Fig. 11 as it rapidly dominates the quantum εRk ; ε

I
k and

vacuum terms in (8.14). This is completely analogous to the
secular growth of the current in a constant uniform electric
field starting from the adiabatic vacuum plotted in Fig. 4.
To check the a−4 relativistic dependence predicted by (8.17)
we plot the energy density due to the particles multiplied
by a4ðuÞ in Fig. 12. As expected the resulting quantity is
approximately constant for a large range of u, deviating
from this behavior only for initial values of u of order
u0 < 0 and again as the particles are redshifted away at u of
order ju0j.
The estimate (8.17) also predicts that the maximum value

of the energy density at the symmetric point u ¼ 0 varies
with the fourth power of sinh u0. In Fig. 13 the energy
density is plotted for two different adiabatic matching
times. It is clear from the plots that the maximum energy
density at u ¼ 0 is substantially larger for the earlier
adiabatic matching time, consistent with (8.17). This is
expected since an earlier matching time allows more modes
to go through the first particle creation phase and increases
the upper limit Kγðu0Þ in (8.17).
These results show that the adiabatic particle definition

is a very useful one, since its contribution to the energy
density dominates when the particles become ultrarelativ-
istic, that the energy density of the created particles grows
exponentially in the contracting phase of de Sitter space,
and most importantly that the maximum of the energy

density also grows exponentially with the initial time as
u0 → −∞. This shows conclusively that global or “eternal”
de Sitter space is unstable to particle creation, as the
arbitrarily large energy densities of the particles will
necessarily lead to a very large backreaction on the classical
spacetime when used as a source for the semiclassical
Einstein equations, especially as u0 → −∞.
We note that this instability has a classical analog. The

process of pair creation spontaneously from the vacuum is
purely quantum in nature, but any spontaneous emission
process is always accompanied by induced emission, which
can be viewed in classical terms. Choosing the adiabatic
vacuum, which is as empty as possible of excitations in the
far past, shows that global de Sitter space is unstable to this
spontaneous quantum process. The computation of the
energy-momentum tensor in the adiabatic vacuum state,
its growth like a−4 in the contracting phase, and the
dominance of the particle creation term jβkj2 in (6.5) and
(8.4), cf. Fig. 11, show clearly the large de Sitter noninvariant
energy density estimated in (8.17) that is generated by the
spontaneous particle creation effect. The induced or classical
effect is associated with the initial and constantNk term (6.6)
in (6.5), quite apart from the spontaneous effect associated
with jβkj2. Such an Nk > 0 term only makes the coefficient
of the a−4 growth and energy density at u ¼ 0 larger. This
would generate even larger deviations from de Sitter space if
included in backreaction, before the expanding phase ever
begins. However if Nk ¼ 0, there is no classical perturba-
tion, and the instability is purely quantum in nature.
That the effect grows in the contracting phase of de Sitter

space, when modes are being blueshifted to the ultra-
relativistic regime, and the large kUV part of the mode sum
dominates, as opposed to the expanding phase when the

FIG. 13 (color online). The energy density for an adiabatic state
when m ¼ H is shown in units of H4 for an adiabatic matching
time of u0 ¼ −3 (green lower curve) and a matching time of
u0 ¼ −5 (blue upper curve). For both curves Wk and Vk are
specified by (6.20). The exponential dependence on the time u0,
predicted by Eq. (8.17), is evident.

FIG. 12. The product of the fourth power of the scale factor and
the energy density due to the particles for an adiabatic state when
m ¼ H is shown. The matching time for the adiabatic state
matching time of u0 ¼ −5 and Wk and Vk are specified
by (6.20).
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particles are redshifted and the low k modes dominate is
not surprising. To see this effect properly one needs to
start with the adiabatic basis at a finite (early) initial time.
We observe here one major difference between the electric
field and de Sitter cases in the basic kinematics. The electric
field is a vector field and uniformly accelerates all charged
particles of a given charge in one direction. Particles
(virtual or real) with initially negative kinetic momenta
along the direction of the electric field are eventually
brought momentarily to rest, and then turn around with
continually increasing positive kinetic momentum ever
after. It is these modes in the quantum theory that undergo
particle creation at the turnaround time, and make the
secular contribution to the current as their kinetic momen-
tum and energy grow without bound and the corresponding
particles approach the speed of light. Thus this late time
contribution is clearly relativistic and UV dominated. There
is only one creation event for each wave number mode.
On the other hand in the de Sitter case the physical or

kinetic momentum is p ¼ k=a which is isotropic, depend-
ing only on the magnitude of k and not its direction in the
spatially homogeneous states we are considering. There are
two creation events for each k mode, one in the contracting
phase of de Sitter space, the second in the expanding phase.
The first creation event is quite analogous to the electric
field case in that once created the particles are blueshifted
(exponentially in this case), rapidly becoming ultrarelativ-
istic and making a contribution to the energy density and
pressure that grows like a−4, typical of ultrarelativistic
particles in the contracting phase of de Sitter space. In the
expanding phase of de Sitter space the situation is reversed,
the created particles in each k mode are redshifted,
and make a decreasing contribution to the stress tensor,
certainly for spatially homogeneous states, so that even a
steady rate of particle creation cannot produce an effect in
the stress tensor that is secularly growing in time. Instead
the vacuum and other R and I interference terms in (8.14)
remain of the same order as the particle creation term at late
times and together their sum approaches the de Sitter
invariant CTBD value [18]. There is no exact analog of this
second behavior in the electric field case.

IX. ADIABATIC SWITCHING ON OF DE SITTER
SPACE AND THE IN VACUUM

In the case of the spatially uniform electric field there
is an exactly soluble problem in which the electric field is
adiabatically switched on and off according to the profile

AzðtÞ ¼−ET tanh ðt=TÞ; EðtÞ ¼Eẑsech2ðt=TÞ: (9.1)

By taking the limit T → ∞ at the end of the calculation, the
constant uniform field (4.2) is recovered [29,30,35]. On the
other hand if T is finite and t → �∞ the electric field goes
to zero exponentially rapidly, and the particle and anti-
particle solutions are the standard Minkowski ones (with
p ¼ kz � eET), so there is no doubt that jini and jouti

states may be identified with the Minkowski vacuum and
the excitations above that state correspond to the usual
definition of particles.
No such analytically soluble model for de Sitter space is

known. However there is no difficulty in studying the time
profile of the scale factor,

aTðuÞ ¼
1

H
cosh

�
HT tanh

�
u
HT

��
; (9.2)

in the line element (2.2) and the associated solutions of the
scalar field mode equation (3.2) by numerical methods. With
this profile at fixed T, in the infinite time limits u → ∓∞,
aðuÞ approaches the constant H−1 coshðHTÞ so that the
spacetime is static and the particle number is uniquely
defined by the asymptotic constant positive and negative
frequency functions. On the other hand forHT → ∞ at fixed
u, aTðuÞ approaches the de Sitter scale factor H−1 cosh u.
Thus (9.2) interpolates between static spacetimes in both the
remote past and remote future with a symmetrical de Sitter
contracting and expanding phase in between.
In Fig. 14 we show a comparison of the time dependent

adiabatic particle number jβkðuÞj2 for both the fixed de
Sitter and the adiabatic switched metric of the form (9.2),
for two representative values of k. The similarity of the
curves for the two models with the same value of k shows
that essentially the same particle production process takes
place in the fixed de Sitter space background or with the
adiabatic switching on of the background from a static
initial metric according to (9.2), at least for a large range of
k when T is large enough. This supports the choice of the
jini state and positive frequency mode function (3.16a) in

FIG. 14 (color online). Comparison of jβkðuÞj2 for the jini
vacuum in exact de Sitter space for matching time u0 ¼ −15, and
that for the smooth adiabatic switching on of de Sitter space
according to the time profile (9.2) for HT ¼ 100. Plotted is
jβkðuÞj2 for k¼10, u0¼−15 (green, exact and blue, HT ¼ 100),
and jβkðuÞj2 for k ¼ 100, u0 ¼ −15 HT ¼ 100 (orange, exact
and red, HT ¼ 100). If the curves for k ¼ 10 and k ¼ 100 were
plotted for HT ¼ 1000, they would be indistinguishable on the
scale of the plot from the green and orange curves.
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de Sitter space, as that one selected by turning on the
de Sitter background adiabatically. Certainly the state
produced in this way is very different from the maximally
symmetric CTBD state defined by analytic continuation
from Euclidean S4, in its low momentum modes, as
expected by our analysis of adiabatic vacua and particle
creation: compare Fig. 10. A detailed study of the state and
subsequent evolution produced by (9.2) and other adia-
batic profile functions will be presented in a subsequent
publication [48].

X. SUMMARY AND DISCUSSION

In this paper we have presented a detailed study of the
spontaneous particle production of a massive free field
theory in geodesically complete de Sitter space in real time.
It is this spontaneous production of particles from the
vacuum that is the basis for the instability of global de Sitter
space. The formulation of particle creation as an harmonic
oscillator with a time dependent frequency, or equivalently,
as a one-dimensional stationary state scattering problem,
determines the jini and jouti positive energy particle states
for massive fields in de Sitter space. This emphasizes the
very close analogy with the spontaneous creation of
charged particle/antiparticle pairs in a uniform, constant
electric field. In each case the background gravitational or
electric field configuration is symmetric under time rever-
sal. Hence in each case it is possible to find a time reversal
symmetric state in which no net particle creation occurs, and
for which the imaginary part of the one-loop effective action
and the decay rate vanish identically [43]. Such a maximally
symmetric state allows a “self-consistent” solution to the
semiclassical Maxwell or Einstein equations, with vanishing
electric current or de Sitter invariant stress tensor. The
artificiality of such a time symmetric state is apparent in
the stationary scattering formulation, since it corresponds to
choosing a very special coherent superposition of positive and
negative frequency scattering solutions globally, which exactly
cancels each spontaneous particle creation event by a time
reversed particle annihilation event, cf. Fig. 10. This corre-
sponds to adjusting the state of the quantum field to contain
just as many pairs coming in from infinity and with precisely
the right phase relations between them, so as to exactly cancel
the electric currents or stress-energies of the pairs being
spontaneously produced by the electric or de Sitter back-
grounds. This is clearly not a true vacuum state in either case.
In situations such as these, the extension of the concepts

of particle and vacuum from flat Minkowski space with no
background fields must be reconsidered carefully. The
essential generalization of the Feynman prescription of
particles propagating forward in time and antiparticles
propagating backward in time is to define jini and jouti
vacuum states corresponding to the choice of pure positive
frequency modes (5.1) at intermediate times which are
asymptotic to the exact particle in and out solutions (3.19)
of the oscillator equation (3.2) in the remote past and

remote future. Mathematically this is the condition that the
positive frequency particle modes are analytic functions of
m2 in the lower or upper complex m2 plane which are
regular as t → �∞, respectively. This is the condition
which also corresponds to the Schwinger-DeWitt method
and choice of proper time contour. This should settle the
question of whether the effective action in de Sitter space is
real or imaginary due to particle creation effects [52].
We have provided evidence in Sec. IX that the jini state

is also the state obtained by turning the background fields
on and off again according to a finite time T parameter
which may be taken to infinity at the end of all calculations.
By any of these equivalent methods one obtains the
standard Schwinger decay rate (4.26) for scalar charged
particle creation in a constant, uniform electric field. By
applying these same two methods to the background
gravitational field of de Sitter space, one obtains the
vacuum persistence amplitude and decay rate (3.32).
Hence global de Sitter space is unstable to particle creation
for the same reason as a constant, uniform electric field
is in electrodynamics. This provides a mechanism for the
relaxation of vacuum energy into matter or radiation and at
least one possible route to the solution of the vacuum
energy problem relying only upon known physics [10,11].
Although the definition of the adiabatic particle number

(5.8) necessarily comes with some ambiguity in a time
dependent background, and depends upon two frequency
functions ðWk; VkÞ in (5.11) that are not unique, their choice
is highly constrained by the requirements of rendering the
vacuum zero-point contributions to physical currents, and
the energy density and pressure (8.11) ultraviolet finite. The
detailed time profile of the particle number depends upon
the particular choice of adiabatic particle number through
ðWk; VkÞ, but the qualitative features and the asymptotic
values in either the constant electric field or de Sitter cases do
not depend upon this choice, cf. Figs. 1 and 8. The rapid
change in the adiabatic particle number around “creation
events” can be understood from the location of the zeroes of
the adiabatic frequency function in the complex time plane,
cf. (5.14) and Figs. 2–3 in the electric field case and (6.8) and
Figs. 5–9 for de Sitter space. Some adiabatic particle number
definition of this kind is certainly necessary to make the
transition from QFT to kinetic theory, since the Boltzmann
equation assumes that particle numbers and densities can be
defined in the classical limit.
The usefulness of the particle concept is seen in the

evaluation of expectation values of currents and stress
tensors, and particularly in their secular terms, which are
most important for backreaction. The “window function”
(5.19) of pair creation in the electric field background
accounts very well for the linear secular growth in time of
the current of the produced pairs in Fig. 4 [36]. In the de
Sitter case the corresponding window function (6.13)
accounts very well for the exponential growth of the energy
density and pressure of the created particles in the
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contracting phase, cf. Eq. (8.17) and Fig. 11. The linear
growth in time in the first case and exponential a−4 growth
in time in the contracting de Sitter case, Fig. 12 are just
what should be expected as the created particles are
accelerated and rapidly become ultrarelativistic. Because
of this secular growth backreaction effects on the back-
ground electric field must be taken into account through the
semiclassical Maxwell equations. Likewise for the de Sitter
geometry for early enough matching times u0, cf. (8.17),
backreaction effects similarly must be taken into account
through the semiclassical Einstein equations.
This detailed study of particle creation removes a possible

objection to the use of the strictly asymptotic jini and jouti
states in [9] to calculate the decay rate of de Sitter space,
namely that these states are not Hadamard UVallowed states
as defined e.g. in [53]. Instead they are members of the one
parameter family of α vacua invariant under the SOð4; 1Þ
subgroup of the de Sitter group continuously connected to
the identity [9,44], although not the discrete Z2 inversion
symmetry (A4). The difficulty is removed by the recognition
that the large juj time and large k limits do not commute. If
one starts with UVallowed states such as the adiabatic initial
state (6.7) at a finite initial time, and evolves forward for a
finite time, only a finite number of modes experience particle
creation events, according to the appropriate window func-
tion. The non-Hadamard α vacua are produced only in the
improper limit of juj → ∞ in eternal de Sitter space, never in
any finite time starting with UV finite initial data. Although
the result for the decay rate (3.32) with an appropriate
physical cutoff is the same, only a detailed analysis of the k
and time dependence allows a description free of any
spurious UV problems and focuses attention on the resulting
necessary breaking of de Sitter invariance instead [10,54].
In the electric field case it is generally accepted that

particle creation will lead to eventual shorting of the electric
field, although to date in four dimensions this process has
only been studied in a large N semiclassical approximation
[34,55], which is not adequate to show the true long time
behavior of the system even in QED. This depends upon
self-interactions, and the long time behavior of correlation
functions that are not accessible to the standard weak
coupling approximations. Such processes involving multi-
ple interactions in a medium, possibly very far from
equilibrium, are generally described in many-body physics
in the kinetic Boltzmann equation approximation, where all
time reversal invariance properties of the underlying QFT
are lost, and irreversible behavior is expected. What is
perhaps less widely appreciated is that this breaking of time
reversal invariance has its roots in the definition of the
vacuum itself and the distinction between particles and
antiparticles in QFT by the m2 − i0þ prescription for the
Feynman propagator and Schwinger-DeWitt proper time
method. When interactions are turned on, the bare mass
becomes a dressed self-energy function Σ − iΓp=2 and the
pole moves away from the real axis. The imaginary part is

now finite and gives the quasiparticle lifetime in the
medium. Causality fixes the sign of this imaginary part,
and that same causal prescription is already present in the
free propagator in the limit Γp → 0þ that the interactions
are turned off. It is this causal boundary condition antici-
pating the inclusion of interactions, rather than the
interactions themselves, which breaks time reversal
symmetry.
Spontaneous particle creation vs the exact annihilation

of particles in the CTBD state, cf. Fig. 10 raises another
interesting point about the origins of time irreversibility,
entropy and the second law in QFT. That particle creation is
in some sense an irreversible process in which entropy
increases [56] can be made precise by means of the
quantum density matrix expressed in the adiabatic particle
basis [57]. Since adiabatic particle number is by construc-
tion an adiabatic invariant of the evolution, the diagonal
elements of the density matrix are slowly varying in this
basis. In contrast, the off-diagonal elements are rapidly
varying functions both of time and of momentum at a fixed
time. Then it is reasonable to average over those rapidly
varying phases and construct the reduced density matrix
which shows general (though not strictly monotonic)
increase in time as particles are created [57], much as
Figs. 3, 6 and 7 for the particle number itself do. This is
equivalent to the approximation of neglecting the oscil-
latory term(s) in the current (5.21) or stress-tensor (8.14)
expectation values, which as we have seen is a very good
approximation over long times when the secular effects of
particle creation dominate. Clearly no such interpretation is
possible for the time symmetric CTBD state in which phase
correlations are exactly preserved, and particle annihila-
tions represent a decrease in the effective entropy. One
would expect such processes and such finely tuned states to
be statistically disfavored.
The fact that particles can achieve arbitrarily high

energies for persistent constant field backgrounds produc-
ing a secular effect in both the electric field and de Sitter
cases underscores the interesting interplay of UV and IR
aspects. Since anomalies perform exactly this function of
connecting the UV to the IR, they can play an important
role [58,59], a connection we explore in detail in [21]. In de
Sitter space with S3 spatial sections the blueshifting toward
ultrahigh energies is clear in the contracting phase. In the
expanding phase of de Sitter space the created particles
defined in the S3 sections are redshifted and do not produce
any growing secular effect in spatially homogeneous states.
In fact, one can prove that the energy density and pressure
always tend to the de Sitter invariant Bunch-Davies value
for fields with positive effective masses, m2 þ ξR > 0,
produced in any UVallowed Oð4Þ invariant state [18]. It is
this redshifting of perturbations mode by mode due to the
expansion in the flat FRW coordinates (A11) that leads to
the impression that (one half of) de Sitter space is stable. As
shown in Sec. VII, even in this case of continual expansion
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there is non-trivial mode mixing, particle creation and
hence a nonvanishing vacuum decay rate.
This is clearly incorrect for global (“eternal”) de Sitter

space which has both a contracting and an expanding
phase. With the S3 time slicing chosen to cover all of
de Sitter space, and for early matching times as discussed,
the exponentially growing energy density and pressure of
the created particles will necessarily produce an enormous
backreaction on the geometry if taken into account even
semiclassically, and even without self-interactions. Hence
one may never arrive at the expanding or inflationary phase
of de Sitter space at all. This emphasizes the importance
of and potential sensitivity to initial conditions of
inflation [60].
In this paper we have concentrated on massive particle

creation in global or “eternal” de Sitter space. This
idealized situation is amenable to an exact analysis, and
is the necessary foundation to be established before full
backreaction, interacting fields, or more subtle issues
involving light fields or the gravitational field itself are
tackled, upon which a full theory of dynamical vacuum
energy undoubtedly depends. Our adiabatic method and
formula for the decay rate (3.32) clearly break down when
γ2 ≤ 0, as the mode Eq. (3.5) then exhibits turning points
on the real u axis, suggesting even more pronounced
quantum effects for light fields and gravitons in de Sitter
space, which we have not considered here. For massive
fields among the many interesting open questions is what
are the consequences of the instability of de Sitter space to
spontaneous and induced particle creation processes for
inflation, and cosmology more generally.
De Sitter space is widely believed to be relevant to

cosmology as a good description of an epoch of inflation in
the early universe and of our present (and future) era of
accelerated expansion. Only expanding portions of de Sitter
space are assumed to arise in these descriptions. Although
our analysis has focused on global de Sitter space, and in
particular, on the contracting phase where the blueshifting
of created particles has the most obvious, significant effects,
these effects are not limited to only that phase. Let us
emphasize that de Sitter space is a homogeneous spacetime,
all points of which are a priori equivalent. There is thus no
invariant meaning to the contracting vs the expanding
phase; these distinctions becoming meaningful only after
initial and/or boundary conditions breaking Oð4; 1Þ invari-
ance are specified. Furthermore we have shown in Sec. VII
that particle creation due to Bogoliubov mode mixing
occurs also in the expanding Poincaré patch, leading to
the same kind of decay rate and vacuum instability as found
for global de Sitter space in Sec. III.
Here again the electric field example may be helpful.

One can describe a constant, uniform electric field in either a
time dependent or time independent, but spatially dependent
gauge. Both are equally good for describing the idealized
situation without boundaries in either space or time.

However, what actually happens depends sensitively on
boundary or initial conditions. Just as one can consider
relaxing the constancy in time of the background to study the
dependence upon vacuum initial conditions, adiabatically
switching it on and then off in a finite time T, one could also
consider the arguably more physical situation of relaxing
strict spatial homogeneity, allowing the electric field to be
established by some charge distribution at a large but finite
distance away from the local region of interest. Sensitivity of
the vacuum to initial conditions will likely then be accom-
panied by sensitivity to the spatial boundary conditions, and
the final evolution may be quite different globally.
The distance scale over which the particle creation takes

place, of order 2mc2=eE, is also the distance scale over
which significant acceleration of particles to relativistic
velocities takes place in an electric field background.
Thus this is the scale at which one might expect spatial
inhomogeneities to develop in a random particle creation
process, spatial homogeneity becoming re-established only
later after the particles interact. In de Sitter space the
acceleration time scale is of order H−1, which is indepen-
dent of particle mass. Perturbations on the horizon scale are
sensitive to the blueshifting kinematics which is critical for
the instability discussed in this paper. Hence the natural
scale for inhomogeneities to develop in de Sitter space is
the horizon scale, which is also dictated by causality.
We address spatially inhomogeneous perturbations of the
CTBD state, irrespective of particle bases in an accom-
panying paper [21]. The behavior of the stress tensor due to
these spatially inhomogeneous perturbations depending
upon the direction of k as well as its magnitude again
suggests that the assumption of spatial homogeneity on
larger than horizon scales in de Sitter space may not hold.
For these reasons, the implications of the instability we
have discussed in global de Sitter space for the portions
of de Sitter space generally assumed to be relevant to
cosmology remain to be more fully explored.
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APPENDIX: GEOMETRY AND COORDINATES
OF DE SITTER SPACE

The de Sitter manifold is most conveniently defined as
the single sheeted hyperboloid
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ηABXAXB ¼ −ðX0Þ2 þ
X3
i¼1

XiXi þ ðX4Þ2 ¼ 1

H2
(A1)

embedded in five-dimensional flat Minkowski spacetime,

ds2 ¼ ηABdXAdXB

¼ −ðdX0Þ2 þ ðdX1Þ2 þ ðdX2Þ2 þ ðdX3Þ2 þ ðdX4Þ2:
(A2)

This manifold has the isometry group Oð4; 1Þ with the
maximal number of continuous symmetry generators (10)
for any solution of the vacuum Einstein field equations,

Ra
b −

R
2
δab þ Λδab ¼ 0; (A3)

in four dimensions. It also has the discrete inversion
symmetry,

XA → −XA; (A4)

which is not continuously connected to the identity, making
the isometry group of the full de Sitter manifold Oð4; 1Þ ¼
Z2 ⊗ SOð4; 1Þ. The Riemann tensor, Ricci tensor, and
scalar curvature are

Rab
cd ¼ H2ðδacδbd − δadδ

b
cÞ (A5a)

Ra
b ¼ 3H2δab (A5b)

R ¼ 12H2; (A5c)

with the Hubble constant H related to Λ by

H ¼
ffiffiffiffi
Λ
3

r
: (A6)

The globally complete hyperbolic coordinates ðu;χ;θ;ϕÞ
of de Sitter space are defined by

X0 ¼ 1

H
sinh u; (A7a)

Xi ¼ 1

H
cosh u sin χn̂i; i ¼ 1; 2; 3: (A7b)

X4 ¼ 1

H
cosh u cos χ (A7c)

where n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ is the unit vector
on S2. In these coordinates the de Sitter line element takes
the form

ds2 ¼ 1

H2
ð−du2 þ cosh2u dΣ2Þ; (A8)

where

dΣ2 ≡ dN̂ · dN̂ ¼ dχ2 þ sin2χðdθ2 þ sin2θdϕ2Þ (A9)

is the standard round metric on S3. Hence in the coor-
dinates of (A7) which cover the entire de Sitter manifold
the de Sitter line element (A8) is a hyperboloid of
revolution whose constant u sections are three-spheres,
cf. Fig. 15. In (A9) and the following we make use of the
shorthand notation,

N̂ ¼ ðsin χn̂; cos χÞ; (A10)

for the unit four-vector of S3 in the ðXi; X4Þ coordinates of
the flat space embedding.
In cosmology it is more common to use instead

the Friedmann-Lemaître-Robertson-Walker (FLRW) line
element with flat R3 spatial sections,

ds2 ¼ −dτ2 þ e2Hτdx2 ¼ −dτ2 þ e2Hτðdϱ2 þ ϱ2dΩ2Þ;
(A11)

with ϱ≡ jxj. De Sitter space (A1)–(A2) can be brought into
the flat FLRW form (A11) by setting

X0 ¼ 1

H
sinhðHτÞ þHϱ2

2
eHτ (A12a)

Xi ¼ eHτϱn̂i; i ¼ 1; 2; 3 (A12b)

FIG. 15 (color online). The de Sitter manifold represented as
a single sheeted hyperboloid of revolution about the X0

axis, embedded in five-dimensional flat spacetime ðX0; XaÞ;
a ¼ 1;…4, in which the X1, X2 coordinates are suppressed.
The hypersurfaces at constant X0 ¼ H−1 sinh u are three-spheres,
S3. The S3 at X0 ¼ �∞ are denoted by I�.
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X4 ¼ 1

H
coshðHτÞ −Hϱ2

2
eHτ: (A12c)

From (A12) T þW > 0 in these coordinates for all
τ ∈ ð−∞;∞Þ, with the hypersurfaces of constant FLRW
time τ slicing the hyperboloid in Fig. 15 at a 45° angle.
The null surface at T þW ¼ 0 is approached in the
limit τ → −∞.
Hence the flat FLRW coordinates (A11) break the time

inversion symmetry of global de Sitter space and cover only
one half of the full de Sitter hyperboloid in which the

spatial sections are always expanding as τ increases. The
other half of the full de Sitter hyperboloid with T þW < 0
is obtained ifHτ is replaced by −Hτ0 þ iπ, so that expðHτÞ
is replaced by − expð−Hτ0Þ, and the line element (A11)
now takes the form

ds2 ¼ −dτ02 þ e−2Hτ0dx2; (A13)

where the spatial sections are always contracting as τ0
increases. The null surface T þW ¼ 0 is approached in the
limit τ0 → þ∞.
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