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The Euclidean or Bunch-Davies Oð4; 1Þ invariant state for quantum fields in global de Sitter space is
shown to be unstable to small perturbations, even for a massive free field with no self-interactions. There
are perturbations of this state with energy density that is arbitrarily small at early times, is exponentially
blueshifted in the contracting phase of “eternal” de Sitter space, and becomes large enough to disturb the
classical geometry through the semi-classical Einstein equations at later times. In the closely analogous
case of a constant, uniform electric field, a time symmetric state equivalent to the de Sitter invariant one is
constructed, which is also not a stable vacuum state under perturbations. The role of a quantum anomaly in
the growth of perturbations and symmetry breaking is emphasized in both cases. In de Sitter space, the
same results are obtained either directly from the renormalized stress tensor of a massive scalar field, or for
massless conformal fields of any spin, more directly from the effective action and stress tensor associated
with the conformal trace anomaly. The anomaly stress tensor shows that states invariant under the Oð4Þ
subgroup of the de Sitter group are also unstable to perturbations of lower spatial symmetry, implying that
both the Oð4; 1Þ isometry group and its Oð4Þ subgroup are broken by quantum fluctuations. Potential
consequences of this result for cosmology and the problem of vacuum energy are discussed.
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I. VACUUM STATES IN DE SITTER SPACE

The existence of a ground state as the state of lowest
energy is fundamental to all quantum mechanical systems.
For quantum field theory (QFT) in flat Minkowski space-
time, the vacuum state is defined as the eigenstate of
the Hamiltonian operator of the system with the lowest
eigenvalue. The existence of a Hamiltonian generator of
time translational symmetry, with a non-negative eigen-
value spectrum, bounded from below is crucial to the
existence and determination of the vacuum ground state.
This definition of the vacuum in flat spacetime makes use

of an essential property of the Poincaré group, namely that
positive and negative (particle and antiparticle) halves of the
Hamiltonian spectrum do not mix, remaining distinct under
any of the continuous generators of the group. Hence the
vacuum state in flat space QFT is the same for all inertial
frames related to each other by translations, rotations and
Lorentz boosts, and the vacuum enjoys complete invariance
under Poincaré symmetry.
As is well known, none of these properties hold in a

general curved spacetime, in time-dependent background
fields, nor even in flat spacetime under general coordinate
transformations which are not Poincaré symmetries. In
these circumstances the definitions of “vacuum” and
“particles” become much more subtle. Related to this,

whereas the infinite zero point energy associated with the
QFT vacuum may be disregarded as unobservable in flat
space QFT, the energy of the quantum vacuum in curved
spacetime cannot be neglected when the coupling to gravity
is taken into account.
These issues come to the fore in the important special

case of de Sitter space, the classical spacetime with a
positive cosmological constant Λ > 0, which itself may be
regarded as a vacuum energy density uniformly curving
space. The geodesically complete full de Sitter manifold
may be represented as a single sheeted hyperboloid of
revolution embedded in five dimensional flat Minkowski
spacetime, cf. Fig. 1 [1]. It has the isometry group Oð4; 1Þ
with 10 continuous symmetry generators, the same number
as the Poincaré group of Minkowski space, and the
maximal number possible for any solution of the vacuum
Einstein field equations in 4 spacetime dimensions. This
maximal symmetry is evident from the constant and
uniform Riemann curvature tensor and Ricci scalar of de
Sitter space, which are respectively,

Rab
cd ¼ H2ðδacδbd − δadδ

b
cÞ; (1.1a)

Ra
b ¼ 3H2δab ¼ Λδab; (1.1b)

R ¼ 12H2 ¼ 4Λ: (1.1c)

A natural attempt to generalize the QFT vacuum of flat
space to de Sitter space makes use of this geometrical
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symmetry of de Sitter space to define the de Sitter invariant
“vacuum” jυi as the state possessing the same maximal
Oð4; 1Þ symmetry in the Hilbert space of states. Introduced
by Chernikov and Tagirov (CT) [2], this state is commonly
known also as the Bunch-Davies (BD) state [3,4], or the
Euclidean vacuum, because its Green’s functions are those
obtained by analytic continuation from the Euclidean S4, at
least for massive fields where no obvious infrared issues
arise [5].
It is important to recognize that unlike in flat space, the

construction of the CTBD state is not based on diagonal-
ization of any Hamiltonian nor any minimization of energy.
In fact no suitable Hamiltonian operator with a spectrum
bounded from below exists at all in de Sitter space, even for
free QFT. In the globally complete coordinates of the de
Sitter hyperboloid,

ds2 ¼ H−2ð−du2 þ cosh2u dΣ2Þ; (1.2)

with

dΣ2 ≡ dN̂ · dN̂ ¼ dχ2 þ sin2χdn̂ · dn̂

¼ dχ2 þ sin2χðdθ2 þ sin2θdϕ2Þ; (1.3)

the standard round metric on S3, the de Sitter metric is
dependent on the time u. Thus translation in u is not a
symmetry of de Sitter space and the generator of u time
translations is not conserved. As a consequence, the vacuum
defined by Hamiltonian diagonalization at one instant of u
timewill contain particles at any other u time. This is equally
true in the flat spatial slicing of de Sitter space

ds2 ¼ −dτ2 þ e2Hτd~x · d~x; (1.4)

used most frequently in cosmology, which is similarly
dependent on the time τ.
The nonexistence of a conserved Hamiltonian generator

bounded from below in de Sitter space is a consequence
of the de Sitter symmetry group Oð4; 1Þ itself. Unlike the
Poincaré group, any de Sitter symmetry generator chosen
for the role of the Hamiltonian has a spectrum of both
positive and negative eigenvalues which are mixed by the
action of other generators of the group [6]. One of the
four noncompact Lorentz boost generators of the Oð4; 1Þ
symmetry group may be selected (arbitrarily) as the
Hamiltonian of the system, generating time translations
t → tþ Δt in the static coordinates of de Sitter space,
where the line element takes the form

ds2 ¼ −ð1 −H2r2Þdt2 þ dr2

1 −H2r2

þ r2ðdθ2 þ sin2θ dϕ2Þ: (1.5)

In these coordinates the geometry is independent of the
time t. However the event horizon at r ¼ H−1 relative to the
origin r ¼ 0 is now manifest, and the static coordinates
cover only one quarter of the full de Sitter manifold. The
Killing symmetry ∂=∂t is not globally timelike, and changes
its orientation from one quadrant to another, as may be seen
from the Carter-Penrose conformal diagram of de Sitter
space: Fig. 2. A direct consequence of this is that the
corresponding Hamiltonian symmetry generator across any
complete Cauchy surface is not positive definite, but rather
unbounded from below, as Lorentz boosts are. Hence its
eigenstates or expectation values cannot be used to select a
global minimum energy vacuum state. The choice of ∂=∂t is
also arbitrary and the separation into positive and negative
energies with respect to ∂=∂t is noninvariant under de Sitter
group transformations. The particle concept is likewise
affected, as the CTBD de Sitter invariant vacuum state jυi
is actually a statewith a thermal distribution of particles with
respect to the Killing Hamiltonian generator ∂t of (1.5) with
the Hawking de Sitter temperature [7],

TH ¼ ℏH
2πkB

; (1.6)

and in that sense is not a vacuum state at all.
The horizon and causal structure of de Sitter space raises

the question of how a vacuum state can be prepared

FIG. 1 (color online). The de Sitter manifold represented as a
single sheeted hyperboloid of revolution about the T ¼ X0

axis, embedded in five dimensional flat spacetime ðX0; XaÞ;
a ¼ 1;…4, in which the X1, X2 coordinates are suppressed.
The hypersurfaces at constant T ¼ X0 ¼ H−1 sinh u are three-
spheres, S3. The S3 at T ¼ �∞ are denoted by I�.

PAUL R. ANDERSON AND EMIL MOTTOLA PHYSICAL REVIEW D 89, 104039 (2014)

104039-2



operationally, even in principle. Inspection of the con-
formal diagram in Fig. 2 shows that points on a Cauchy
surface at u0 < 0 with widely different N̂ (for example at
χ ¼ 0 and its antipodal point χ ¼ π) could never have been
linked by any causal signal in the past. As the initial time u0
is taken earlier and earlier, this causal disconnection affects
more and more of the initial u ¼ u0 Cauchy surface. Since
past infinity I− is spacelike, as u0 → −∞ in this limit no
two different points on S3 could have been in any causal
contact whatsoever. Thus any global initial data on S3,
including that necessary to construct the CTBD state jυi
cannot have been provided at any initial time u0 < 0 by any
causal process within de Sitter space itself. Instead initial
data has simply to be posited over the full spacelike S3, at
points outside of the causal horizon of any local agent who
might have prepared it at early times. This is equivalent to
the existence of a particle horizon [1], and is completely
unlike that of flat Minkowski spacetime, where Cauchy
data on a fixed time slice t ¼ const may be prepared in
principle by transmitting signals causally from a single
point early enough in the past. The existence of horizons
and the absence of a global time coordinate connected with
any symmetry reveal the essential difficulties with defining
a global vacuum state for QFT in eternal de Sitter space.

They also imply that the mathematical requirement of
global de Sitter invariance cannot be realized by any local
physics within de Sitter space itself, requiring instead an
acausal fine tuning of initial data at spacelike past infinity I−,
with a view to the entire futuremanifold, which is presumed to
be known in advance in order to specify a globally Oð4; 1Þ
invariant state. Although maximal Oð4; 1Þ symmetry may
seem natural mathematically, or by analytic continuation from
the Euclidean S4 where no causal relations apply, it is quite
unnatural with respect to the physical principles of locality
and causality in real time, as well as lacking any de Sitter
invariant Hamiltonian minimization principle.
For these reasons it is important to study the sensitivity

of physical quantities in de Sitter space to fluctuations and/
or perturbations of states away from precisely the ‘right’
one for global Oð4; 1Þ invariance, rather than simply
assuming this symmetry. The calculation of the imaginary
part of the effective action of a simple scalar QFT in de
Sitter space due to particle creation [8,9] already shows that de
Sitter space is unstable to spontaneous creation of particle
pairs from the vacuum, just as is an ‘eternal’ uniform electric
field E ¼ Eẑ permeating all of space [10]. This electric field
analogy and the close relation between fluctuations and
dissipation in any causal theory suggests that the ‘shorting
of the vacuum’ should result in the classical energy of de Sitter
space converting itself into standardmatter and radiation, thus
providing a route to a dynamical solution to the cosmological
‘constant’ problem [11,12].
As in electrodynamics, interactions in de Sitter space are

certainly relevant to understanding of the detailed evolution
and final state, particularly since spontaneous pair creation
should be accompanied by induced emission processes
which can create an avalanche of particles that will
inevitably interact and thermalize, leading to the final
dissipation of vacuum energy into matter and radiation.
A fuller understanding of these nonequilibrium processes
may well lead to a satisfactory resolution of the cosmo-
logical “constant” problem, and be relevant to observatio-
nal cosmology through the residual dark energy in the
present epoch [11,12]. However, this dynamics has not
been fully solved in four dimensions even in flat space
electrodynamics. Moreover a number of questions persist
about QFT in de Sitter space, even in the noninteracting
case, and these should be settled definitively first, because
they depend through the energy-momentum-stress tensor
Tab only upon the universal coupling to the gravitational
field, independently of any matter self-interactions.
In the preceding paper [9], we focused on the instability

of global de Sitter space to particle creation, delineating in
particular the close analogy to the Schwinger calculation
of the decay rate per unit volume of a constant, uniform
electric field permeating all of space [10]. In this paper we
study the behavior of the renormalized energy-momentum
tensor hTabi of QFT under perturbations of the jυi state to
nearby states of lower symmetry, without regard to particle

FIG. 2 (color online). The Carter-Penrose conformal diagram
for de Sitter space, in which light rays emanating from any point
are at 45∘, and the angular coordinates θ, ϕ are suppressed. The
quarter of the diagram labeled as the static region is covered by
the static coordinates of (1.5). The orbits of the static time Killing
field ∂=∂t, r ¼ 0 and curves of constant r > 0 are shown. In
contrast, the surfaces of the constant u time coordinate in (1.2)
are horizontal straight lines across the diagram with χ ∈ ½0; π�.
The label on the right is the conformal time coordinate
η≡ sin−1ðtanh uÞ ∈ ð− π

2
; π
2
Þ. The coordinate u ranges from

−∞ to þ∞ at past (I−) and future (Iþ) infinity, respectively.
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definitions. In the expanding part of de Sitter space u > 0
of (1.2) or in the Poincaré coordinates of flat spatial
sections (1.4), it has been shown that in a fixed de Sitter
background, the expectation value hTabi for a scalar field
with effective mass M2 ¼ m2 þ ξR > 0 approaches the
Oð4; 1Þ de Sitter invariant value at late times, for all
spatially homogeneous UV allowed perturbations [13].
Calculations including the backreaction of the perturba-
tions of the stress tensor on the de Sitter metric have also
been done, with similar results [14,15]. Physically this
result may seem intuitively obvious, since all deviations from
the expectation value in the de Sitter invariant state jυi are
redshifted in the de Sitter expansion and vanish in the
u → ∞ limit. Since global or ‘eternal’ de Sitter space is time
reversal invariant, the attractor behavior in the expanding
phase implies just the opposite behavior under time reversal in
the contracting phase. That is, very small changes in the initial
state in the very distant past u0 → −∞ of eternal de Sitter
spacewith initially very small hTabimust necessarily produce
larger and larger effects in hTabi as the contraction proceeds
towards u ¼ 0. This is just the casewhere the aforementioned
issues with causality at spacelike I− arise, and this sensitivity
to initial conditions at I− is the source of the instability.
By studying the general behavior of the renormalized

hTabi in states with lower symmetry, we show in this paper
that the CTBD de Sitter invariant state jυi is unstable, in the
sense that there is a large class of initial state perturbations
which have exponentially small energy density in the
infinite past u0 → −∞ but which grow large enough
through exponential blueshifting proportional to a−4,
where a ¼ H−1 cosh u is the scale factor in (1.2), to exceed
the classical background energy Λ=8πG and hence sig-
nificantly disturb the de Sitter geometry at u ¼ 0. In fact,
there are such states with hTabi larger than it for any fixed
finite value at u ¼ 0.
This extreme sensitivity to initial conditions as u0→−∞

implies that Oð4; 1Þ de Sitter invariance is broken, and the
spacetime will generally depart from de Sitter space when
the backreaction of hTabi of any matter or radiation on the
geometry is taken into account, through the semiclassical
Einstein equations,

Ra
b −

R
2
δab þ Λδab ¼ 8πGhTa

biR; (1.7)

and quite apart from any matter self-interactions or higher
loop effects. Although in a fixed de Sitter background the
energy density of spatially homogeneous perturbations will
begin to decrease again for u > 0, perturbations of the
CTBD state and their backreaction through (1.7) will have
already drastically altered the geometry in the contracting
phase and broken the de Sitter symmetry by u ¼ 0,
rendering further evolution ignoring backreaction moot.
This large backreaction of the energy-momentum tensor for
perturbations of the CTBD state is independent of any
definition of particles.

Although for definiteness we study this growth of hTabi
explicitly in a scalar field theory, the result is clearly much
more general. A very useful tool for characterizing the
behavior of the stress tensor in any coordinates is the one-
loop effective action of the trace anomaly and the stress
tensor derived from it [16–18]. The nonlocal form of this
effective action, cf. (5.1) already indicates infrared de Sitter
breaking effects, and sensitivity to initial and/or boundary
conditions for conformal QFTs of any spin. The corre-
sponding stress tensor may be found in closed form in de
Sitter space in any coordinates by solving a classical, linear
Eq. (5.6) for a scalar condensate effective field, whose
solutions necessarily break de Sitter invariance, and allow
wide classes of initial state perturbations for fields of any
spin to be surveyed at once. Because de Sitter space is
conformally flat, this anomaly stress tensor is a complete
description of the full QFT stress tensor for conformal
fields linearized around the CTBD state jυi at all length
scales much larger than the Planck length LPl, where
semiclassical methods should apply [15].
The a−4 blueshifting of the energy density of even

massive fields to eventually ultrarelativistic behavior shows
that the conformal anomaly stress tensor is relevant for
long time evolution even if the underlying QFT is not
conformally invariant. When the scalar perturbations are
spatially inhomogeneous new effects may also become
apparent. In Ref. [15] we studied spatially inhomgeneous
scalar perturbations in linear response of conformal QFTs
around de Sitter space and found a class of gauge invariant
perturbations, which do not redshift away but instead give
diverging energy-momentum components at r ¼ H−1 in
static coordinates (1.5). These may be interpreted as
fluctuations in the Hawking de Sitter temperature (1.6)
at the de Sitter horizon with respect to some arbitrary but
fixed choice of origin, and clearly respect only rotational
Oð3Þ invariance around r ¼ 0 and static time t translational
invariance. This result suggests that fluctuations on the
horizon scale H−1 may produce significant backreaction in
de Sitter space, and that the Oð4; 1Þ symmetry is unstable
to such spatially inhomogeneous scalar fluctuations in the
Hawking de Sitter temperature [19]. Tensor perturbations
have been studied recently in [20].
Using the anomaly form of Tab we shall show that there

is even greater sensitivity to spatially inhomogeneous non-
Oð4Þ invariant initial data in the distant past u0 → −∞ of
global de Sitter space, so that Oð4Þ invariance is broken as
well as the full Oð4; 1Þ de Sitter invariance. This strongly
suggests that spatial inhomogeneities are more important in
QFT in de Sitter space than previously suspected, support-
ing the results of [15]. Such spatially inhomogeneous
perturbations clearly are relevant even in the expanding
Poincaré patch (1.4). The interesting questions of the
behavior of the stress tensor in states of lower symmetry,
such as the Oð3Þ symmetry evident in static coordinates
(1.5), and consequences for spatially inhomogeneous
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cosmologies will be taken up in future publications. An
accompanying and closely related paper gives a fuller
treatment of the instability of global de Sitter space to
particle creation [9].
The paper is organized as follows. In the next section we

construct the time symmetric invariant state analogous to the
CTBD state in de Sitter space, in the case of a uniform,
constant electric field backgroundE ¼ Eẑ, and show that it
also is unstable to perturbations for which the mean current
hjzi grows with time. This growth of the current and
breaking of background symmetries can be understood by
consideration of a quantum anomaly, in this case the chiral
anomaly of massless fields in two spacetime dimensions.
The reader interested primarily in de Sitter space propermay
skip this section upon first reading and proceed directly to
Sec. III where we begin discussion of the CTBD state and
general states of Oð4Þ symmetry in de Sitter space. In
Sec. IV we construct the renormalized expectation value of
the stress tensor of a massive scalar field with conformal
coupling ξ ¼ 1

6
in generalOð4Þ invariant states in the global

hyperboloid coordinates (1.2) of de Sitter space, and
explicitly exhibit the class of states with large backreaction
atu ¼ 0. In Sec.Vwe consider the effective action and stress
tensor associated with the trace anomaly of conformal fields
in de Sitter space and show how the strong infrared effects,
sensitivity to initial conditions, and breaking of de Sitter
symmetry is inherent in the conformal anomaly for QFTs of
any spin. In Sec. VI we extend the analysis of the anomaly
stress tensor to states of lower thanOð4Þ symmetry, showing
that these spatially inhomogeneous perturbations grow even
more rapidly to larger values at u ¼ 0 thanOð4Þ symmetric
states. SectionVII contains our conclusions and a discussion
of their possible consequences for cosmology and the
problem of cosmological vacuum energy.

II. CONSTANT UNIFORM ELECTRIC FIELD:
INVARIANT STATE AND INSTABILITY

A. Time Symmetric Invariant State

The example of a charged quantum field in the back-
ground of a constant uniform electric field has many
similarities with the de Sitter case. Although this problem
has been considered by many authors [10,21–27], the
existence of a time symmetric state analogous to the
CTBD state in de Sitter space does not appear to have
received previous attention, and is particularly relevant to
our study of vacuum states in de Sitter space, so we
consider this case first in some detail.
Analogous to choosing global time-dependent coordi-

nates (1.2) in de Sitter space, one may choose the time-
dependent gauge,

Az ¼ −Et; At ¼ Ax ¼ Ay ¼ 0; (2.1)

in which to describe a fixed constant and uniform electric
fieldE ¼ Eẑ in the z direction. Treating the electric field as

a classical background field analogous to the classical
gravitational field of de Sitter space, the wave equation of a
non-self-interacting complex scalar field Φ is

½−ð∂μ − ieAμÞð∂μ − ieAμÞ þm2�Φ ¼ 0 (2.2)

in the classical electromagnetic potential (2.1).
The solutions of (2.2) may be decomposed into Fourier

modes Φ ∼ eik·xfkðtÞ with�
d2

dt2
þ ω2

kðtÞ
�
fkðtÞ ¼ 0; (2.3)

where the frequency function ωkðtÞ is defined by

ωkðtÞ≡ ½ðkz þ eEtÞ2 þ k2⊥ þm2�12 ¼
ffiffiffiffiffiffiffiffi
2eE

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

4
þ λ

r
:

(2.4)

We have defined the dimensionless variables,

u≡
ffiffiffiffiffiffi
2

eE

r
ðkz þ eEtÞ; λ≡ k2⊥ þm2

2eE
> 0; (2.5)

and chosen the sign of eE to be positive without loss of
generality. With fkðtÞ → fλðuÞ, the dimensionless mode
Eq. (2.3) becomes�

d2

du2
þ u2

4
þ λ

�
fλðuÞ ¼ 0; (2.6)

the solutions of which may be expressed in terms
of confluent hypergeometric functions 1F1ða; c; zÞ or
parabolic cylinder functions Dν [28].
Since (2.6) is real and symmetric under u → −u, it is

clear that its real solutions can be classified into those
which are either even or odd under this discrete reflection
symmetry. Let us define two fundamental real solutions

of (2.6), fðiÞλ ðuÞ, i ¼ 0; 1 by the conditions

½fðiÞλ ðuÞ�� ¼ fðiÞλ ðuÞ; i ¼ 0; 1 ðrealÞ (2.7a)

fð0Þλ ðuÞ ¼ fð0Þλ ð−uÞ ðevenÞ (2.7b)

fð1Þλ ðuÞ ¼ −fð1Þλ ð−uÞ ðoddÞ; (2.7c)

which are even or odd, respectively, and which satisfy the
initial data,

fð0Þλ ð0Þ ¼ 1; fð0Þ0λ ð0Þ ¼ 0; (2.8a)

fð1Þλ ð0Þ ¼ 0; fð1Þ0λ ð0Þ ¼ 1; (2.8b)

at u ¼ 0, where the primes denote differentiation with
respect to u. These fundamental real solutions of (2.6) are
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most concisely expressed in terms of the confluent hyper-
geometric (Kummer) function,

Φða; c; zÞ≡ 1F1ða; c; zÞ ¼
X∞
n¼0

ðaÞn
ðcÞn

zn

n!
;

ðaÞn ≡ Γðaþ nÞ
ΓðaÞ ; (2.9)

which has the integral representation [28]

Φða; c; zÞ ¼ ΓðcÞ
ΓðaÞΓðc − aÞ

Z
1

0

dx exzxa−1ð1 − xÞc−a−1;

Re c > Re a > 0 (2.10)

with the result that

fð0Þλ ðuÞ ¼ e−
iu2
4 Φ

�
1

4
þ iλ

2
;
1

2
;
iu2

2

�

¼ e
iu2
4 Φ

�
1

4
−
iλ
2
;
1

2
;−

iu2

2

�
; (2.11a)

fð1Þλ ðuÞ ¼ ue−
iu2
4 Φ

�
3

4
þ iλ

2
;
3

2
;
iu2

2

�

¼ ue
iu2
4 Φ

�
3

4
−
iλ
2
;
3

2
;−

iu2

2

�
. (2.11b)

These functions are clearly even and odd respectively, and
are real by the Kummer transformation which yields the
second forms in (2.11), and satisfy the initial data (2.8).
It is also possible to express these fundamental real

solutions fðiÞλ as linear combinations of parabolic cylinder
functions Dν in the forms [28]

fð0Þλ ðuÞ ¼ 2
iλ
2
−3
4

Γ
�
3
4
þ iλ

2

�
ffiffiffi
π

p
�
D−1

2
−iλðeiπ

4uÞ þD−1
2
−iλð−eiπ

4uÞ
�
;

(2.12a)

fð1Þλ ðuÞ ¼ 2
iλ
2
−5
4e−

iπ
4

Γ
�
1
4
þ iλ

2

�
ffiffiffi
π

p
�
−D−1

2
−iλ

�
e
iπ
4u
�

þD−1
2
−iλ

�
−eiπ

4u

��
; (2.12b)

the representations of which are useful for identifying their
relationship to the in and out positive frequency scattering
solutions defined as u → ∓∞, respectively, in [9,21–23].
From the fundamental real solutions (2.8)–(2.11) one can

construct the complex mode functions

υλðuÞ≡ ð8eEλÞ−1
4½fð0Þλ ðuÞ − iλ

1
2fð1Þλ ðuÞ�

¼ 2−
1
2ðk2⊥ þm2Þ−1

4e−
iu2
4

�
Φ

�
1

4
þ iλ

2
;
1

2
;
iu2

2

�

− iλ
1
2uΦ

�
3

4
þ iλ

2
;
3

2
;
iu2

2

��
; (2.13)

which are normalized according to theWronskian condition

i

�
υ�λ

d
dt

υλ − υλ
d
dt

υ�λ

�
¼ 1; (2.14)

and which satisfy the time reversal conjugation property

υ�λðuÞ ¼ υλð−uÞ: (2.15)

These υλ mode functions satisfy the initial data,

υλð0Þ ¼ 2−
1
2ðk2⊥ þm2Þ−1

4 ¼ 1ffiffiffiffiffiffiffiffiffi
2ωk

p
����
u¼0

;

dυλ
dt

����
u¼0

¼ −
iffiffiffi
2

p ðk2⊥ þm2Þ14 ¼ −iωkυλðuÞ; (2.16)

which coincides with the definition of the lowest order
adiabatic frequency mode functions at the symmetric
point u ¼ 0. The solution of (2.6) satisfying conditions
(2.14)–(2.16) is unique. Because of relations (2.12) and the
simple asymptotic forms of theDν functions, the symmetric
mode function υλ is a coherent superposition of positive and
negative frequency (particle and antiparticle) solutions as
u → �∞, just as the CTBD mode function is in de Sitter
space [9].
The existence of such a time reversal invariant solution to

(2.6) is related to the existence of a maximally symmetric
state constructed along the lines of the maximally Oð4; 1Þ
invariant CTBD state in the de Sitter background. If the
charged quantum field Φ is expanded in terms of these
symmetric basis functions in a finite volume V,

Φðt;xÞ ¼ 1ffiffiffiffi
V

p
X
k

½aυkυλðuÞeik·x þ bυ†k υ�λðuÞe−ik·x�;

(2.17)

with u and λ defined by (2.5), then a symmetric state jυi in
a background constant uniform electric field may be
defined by

aυkjυi ¼ bυkjυi ¼ 0: (2.18)

The symmetry in this case is isomorphic to the full Poincaré
symmetry group of zero electric field in flat Minkowski
space. This is due to the remarkable fact that a canonical
transformation exists that transforms the algebra of position
and momentum operators, xμ and pν ¼ −i∂=∂xν, in a
constant, uniform E field background to new position
and momentum operators, Xμ and Pν ¼ −i∂=∂Xν, such
that the Klein-Gordon operator (2.2),
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− ð∂μ − ieAμÞð∂μ − ieAμÞ þm2

→ −p2
t þ ðpz þ eEtÞ2 þ p2

x þ p2
y þm2

¼ −P2
T þ P2

Z þ P2
X þ P2

Y þm2 ¼ 0; (2.19)

(with PX ¼ px; PY ¼ py and PZ ¼ pz) becomes that of
flat space with zero field [29]. The existence of this
transformation and symmetry may be less surprising when
it is recognized that there are two quantities,

PT ¼ ðp2
t − 2eEt − e2E2t2Þ12 ¼ ðp2

z þ p2
x þ p2

y þm2Þ12
(2.20a)

TPZ þ ZPT ¼ PT

eE
ðeEzþ pt − PTÞ; (2.20b)

that are conserved by virtue of the equation of motion
(2.19), and (together with PZ ¼ pz which generates space
Z translations) they generate T time translations and
Lorentz boosts in the Z direction in the transformed
ðT; ZÞ coordinates. This dynamical maximal Poincaré
symmetry in the constant, uniform E field is analogous
to the maximal Oð4; 1Þ point symmetry group of de Sitter
space. In each case the existence of a maximally symmetric
state jυi which enjoys the full symmetries of the back-
ground follows.
The expectation value of the electric current operator is

given in the symmetric state jυi by

hυjjzjυiR ¼ 2e
Z

d3k
ð2πÞ3 ðkz þ eEtÞ

�
jυλðuÞj2 −

1

2ωkðtÞ
�

(2.21)

where the second term is the lowest order adiabatic vacuum
subtraction sufficient for the constant E field background
[27]. Actually by changing integration variables from kz to
u and using the fact that both jυλðuÞj2 and ωkðtÞ are even
functions of u, it is clear that both terms in the integrand
of (2.21) are odd under u → −u and thus give vanishing
contributions if integrated symmetrically in u. Hence as a
consequence of time reversal invariance (or charge con-
jugation symmetry), the symmetric state jυi has exactly
zero electric current expectation value

hυjjzjυiR ¼ hυjj⊥jυiR ¼ 0 (2.22)

at all times, by the symmetry of this state. Likewise the
mean charge density hυjρjυiR vanishes in this charge
symmetric state. Thus the state jυi defined by (2.13)–(2.18)
in a constant, uniform electric field background is an exact
self-consistent solution of the semiclassical Maxwell
equations,

∇ ·E ¼ hυjρjυiR (2.23a)

∇ ×B −
∂E
∂t ¼ hυjjjυiR (2.23b)

with both sides vanishing identically. This is analogous to
the maximallyOð4; 1Þ symmetric and time reversal invari-
ant CTBD state jυi which satisfies the semiclassical
Einstein equations (1.7) in de Sitter space with a simple
redefinition of Λ, since hυjTa

bjυiR ¼ −ευδab, cf. Sec. IV.

B. Instability of the maximally symmetric state:
Electric current

The existence of a state of maximal symmetry does not
imply that it is the stable ground state of either the de Sitter
or electric field backgrounds. In the electric field case the
imaginary part of the effective action and spontaneous decay
rate of the electric field into particle/antiparticle pairswas first
calculated by Schwinger [10]. By time reversal invariance the
imaginary part of the effective action (which changes sign
under time reversal) corresponding to the symmetric jυi state
vanishes, in disagreement with Schwinger’s result. As a
precise coherent superposition of particle and antiparticle
pairs for all modes, the time symmetric state defined by
(2.13)–(2.18) is a very curious state indeed, corresponding to
the rather unphysical boundary condition of eachpair creation
event being exactly balanced by its time reversed pair
annihilation event, these pairs having been arranged with
precisely the right phase relations to come from great
distances at early times in order to effect just such a
cancellation everywhere at all times. While mathematically
allowed in a time reversal invariant background, it would be
difficult to arrange such an artificial construction and fine
tuning of initial and/or boundary conditions on the quantum
state of the charged field with any macroscopic physical
apparatus, and certainly it would not be producedwith amore
realistic adiabatic switching on and off of the electric field
background in either finite timeor over a finite regionof space
[26]. Nor does the state jυi minimize the Hamiltonian of
the system which is time dependent in the gauge (2.1), or
unbounded from below in the static gauge A0 ¼ Ez.
The above physical considerations and Schwinger’s

earlier result suggest that there should be an instability
of the time symmetric state to nearby states in which the
fine tuned cancellation between particle/antiparticle crea-
tion and annihilation events is slightly perturbed. In order to
probe these nearby states we return to (2.3), and express its
general solution in the form

fkðtÞ ¼ AkυλðuÞ þ Bkυ
�
λðuÞ; (2.24)

with the (strictly time-independent) Bogoliubov coeffi-
cients required to obey

jAkj2 − jBkj2 ¼ 1 for all k; (2.25)

in order for the Wronskian condition

i

�
f�k

d
dt

fk − fk
d
dt

f�k

�
¼ 1 (2.26)
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to be satisfied. The Bogoliubov coefficients ðAk; BkÞ may
be regarded as specified by initial data fkðt0Þ and _fkðt0Þ at
t ¼ t0 according to

Akðt0Þ ¼ i

�
υ�λ

d
dt

fk − fk
d
dt

υ�λ

�����
t¼t0

(2.27a)

Bkðt0Þ ¼ i

�
fk

d
dt

υλ − υλ
d
dt

fk

�����
t¼t0

: (2.27b)

The quantized charged scalar field operator (2.17) may just
as well be expressed in terms of these general mode
functions (2.24) as

Φðt;xÞ¼ 1ffiffiffiffi
V

p
X
k

½afkfkðtÞeik·xþbf†k f�−kðtÞe−ik·x�; (2.28)

where upon setting the Fourier components of (2.17) and
(2.28) equal, the corresponding Fock space operators
afk; b

f†
k are related to the previous ones by

� avk
bv†−k

�
¼

�
Ak B�

k

Bk A�
k

��
afk

bf†−k

�
(2.29)

or its inverse

�
afk
bf†−k

�
¼

�
A�
k −B�

k−Bk Ak

��
avk
bv†−k

�
(2.30)

Hence if we define the state jfi by the condition

afkjfi ¼ bfkjfi ¼ 0; (2.31)

this state contains a nonzero expectation value

hfjaυ†k aυkjfi ¼ jBkj2 ¼ hfjbυ†−kbυ−kjfi (2.32)

of υ quanta. Conversely the jυi state contains a nonzero
expectation value of f quanta. Since both the jυi and
general jfi states are pure states, and each can be expressed
as a coherent, squeezed state with respect to the other, it is
best not to use the term particles for either of these
expectation values, nor can one decide a priori which
among them is the “correct” vacuum. This illustrates the
fact that the questions of particle definition or which
vacuum state to choose are not limited to de Sitter space
or gravitational backgrounds only, but rather are character-
istic of QFT in time-dependent and persistent classical
background fields more generally.
The most general state which is both spatially homo-

geneous and charge symmetric is the mixed state with a
density matrix ρf;N and a finite expectation value of f
quanta [27], which we denote by

Trðaf†k afkρf;NÞ ¼ Nk ¼ Trðbf†−kbf−kρf;NÞ: (2.33)

Computing the renormalized mean value of the electric
current in this charge symmetric state, we find

Trðjzρf;NÞ

¼ 2e
Z

d3k
ð2πÞ3 ðkzþeEtÞ

�
jfkðtÞj2ð1þ2NkÞ−

1

2ωkðtÞ
�

¼ 4e
Z

d3k
ð2πÞ3 ðkzþeEtÞ

	
½NkþjBkj2ð1þ2NkÞ�

× jυλðuÞj2þð1þ2NkÞRe½AkB�
kυ

2
λðuÞ�



; (2.34)

where we have used (2.22) and (2.24)–(2.25) in arriving
at the second expression. Charge asymmetric states or
spatially inhomogeneous states with lower symmetry
could be considered as well. In a general state with
Bk ≠ 0 or Nk ≠ 0, the charge conjugation and time
reversal symmetry of the background is broken and the
current Trðjzρf;NÞ ≠ 0. Because such states correspond
to charged particle/antiparticle excitations that are rap-
idly accelerated to ultrarelativistic energies by the back-
ground electric field, they lead to persistent currents that
do not decay and which destabilize the constant electric
field background through the semiclassical Maxwell
equation (2.23b).
To see this requires only a qualitative understanding of

the integrand in (2.34). The three terms ujυλj2, uRe ðυ2λÞ,
and u Im ðυ2λÞ appearing in the integrand of (2.34) are
shown as functions of u for several values of λ in
Figs. 3–5. In Fig. 3 the saturation of the function ujυλj2 at
large u is the result of acceleration of charged scalar
particles to ultrarelativistic energies by the electric field,
where they make a constant contribution to the current
integrand. Hence if Nk and/or jBkj2 in (2.34) is nonzero
for any range of k, such modes will make a contribution

FIG. 3. The ujυλj2 integrand in the current in (2.21) or (2.34) in
units of 2eE as a function of u for two different values of λ, cf.
(2.5) and (2.13). The curve with large oscillations is for λ ¼ 1
while the oscillations are much smaller in the curve for λ ¼ 5.
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to the current proportional to the occupied phase space
volume

R
d3k which can therefore give an arbitrarily

large hjzi at late times, u ≫ 1.
The oscillatory terms in the real and imaginary parts of

uυ2λ are shown in Figs. 4–5. The envelope of the oscillations
shows a saturation behavior at large juj similar to Fig. 3.
For smaller λ the oscillations are significantly offset from
the horizontal axis, by � expð−πλÞ, showing that there will
also be a net contribution to the current from modes with
AkB�

k ≠ 0. Hence these contributions to hjzi can also
become arbitrarily large if the range of k for which
AkB�

k is nonzero is large.
An interesting special case in which to evaluate (2.34) is

the adiabatic vacuum state of initial data,

fkðt0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðt0Þ
p ;

_fkðt0Þ ¼
�
−iωk −

_ωk

2ωk

�
fk

����
t¼t0

;

(2.35)

and Nk ¼ 0. We denote this pure state which matches the
lowest order adiabatic vacuum state at the particular time
t ¼ t0 by jt0i. With these initial conditions it is shown in [9]

that the Bogoliubov coefficients are given approxi-
mately by

Akðt0Þ≃ Ain
λ θð−kz − eEt0Þ þ Aout

λ θðkz þ eEt0Þ (2.36a)

Bkðt0Þ≃ Bin
λ θð−kz − eEt0Þ þ Bout

λ θðkz þ eEt0Þ; (2.36b)

where

Ain
λ ¼Aout�

λ ¼
ffiffiffi
π

2

r �
2

λ

�iλ
2

��
λ

2

�1
4 1

Γð3
4
− iλ

2
Þþ

�
2

λ

�1
4 e

iπ
4

Γð1
4
− iλ

2
Þ
�

×exp
�
iλ
2
−
iπ
8
−
πλ

4

�
(2.37a)

Bin
λ ¼Bout�

λ ¼
ffiffiffi
π

2

r �
2

λ

�iλ
2

��
λ

2

�1
4 1

Γð3
4
− iλ

2
Þ−

�
2

λ

�1
4 e

iπ
4

Γð1
4
− iλ

2
Þ
�

×exp

�
iλ
2
−
iπ
8
−
πλ

4

�
: (2.37b)

FIG. 4. The uReðυ2λÞ integrand in the current in (2.34) in units
of 2eE as a function of u for two different values of λ. The upper
panel is for λ ¼ 1 while the lower panel is for λ ¼ 0.1 chosen to
accentuate the asymmetry in u↔ − u.

FIG. 5. The u Imðυ2λÞ integrand in the current in (2.34) in units
of 2eE as a function of u for the same values of λ ¼ 1 (upper) and
λ ¼ 0.1 (lower) as in Fig. 4. Shown also is the horizontal line
at − expð−πλÞ around which the average amplitude of the
oscillations are displaced.
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In a better approximation, the step functions in (2.36)
would be smooth functions which interpolate between the
two limits, but this simple approximation is sufficient to
illustrate the main features of the current expectation value
which is its linear growth in time from the initial time t0.

Substituting (2.36) into (2.34) with Nk ¼ 0, changing
variables from ðkz; k⊥Þ to ðu; λÞ, and making use of the
fact that the functions ujυλðuÞj2 and u Re½υ2λðuÞ� are odd
functions of u (cf. Figs. 3–4), while u Im½υ2λðuÞ� is even
(cf. Fig. 5), we obtain

ht0jjzjt0iR ≃ 4e
ð2πÞ2

Z
∞

0

k⊥dk⊥
	Z

−eEt0

−∞
dkzðkz þ eEtÞ½jBin

λ j2jυλðuÞj2 þ Re½Ain
λ B

in�
λ υ2λðuÞ��

þ
Z

∞

−eEt0
dkzðkz þ eEtÞ½jBout

λ j2jυλðuÞj2 þ Re½Aout
λ Bout�

λ υ2λðuÞ��



¼ −
e2E
π2

Z
∞

m2=2eE
dλ Im½Ain

λ B
in�
λ �

Z ffiffiffiffiffiffi
2eE

p ðt−t0Þ

0

du u Im½υ2λðuÞ�

¼ e3E2

2π2
1ffiffiffiffiffiffiffiffi
2eE

p
Z

∞

m2=2eE
dλe−πλ

Z ffiffiffiffiffiffi
2eE

p ðt−t0Þ

0

du½ufð0Þλ ðuÞfð1Þλ ðuÞ�; (2.38)

since from (2.37), or Eq. (4.20b) of Ref. [9] and (2.13),

jBin
λ j2 ¼ jBout

λ j2 (2.39a)

Re½Ain
λ B

in�
λ � ¼ Re½Aout

λ Bout�
λ � (2.39b)

Im½Ain
λ B

in�
λ � ¼−Im½Aout

λ Bout�
λ � ¼−

1

2
ImBtot

λ ¼ 1

2
e−πλ (2.39c)

Im½υ2λðuÞ� ¼ −
1ffiffiffiffiffiffiffiffi
2eE

p fð0Þλ ðuÞfð1Þλ ðuÞ: (2.39d)

Because of the offset from the u axis of ufð0Þλ ðuÞfð1Þλ ðuÞ ¼
−uIm½υ2λðuÞ� by e−πλ, around which the oscillations average
to zero (cf. Fig. 5), for large t − t0 → ∞ the u integral
in (2.38) is

Z ffiffiffiffiffiffi
2eE

p ðt−t0Þ

0

du½ufð0Þλ ðuÞfð1Þλ ðuÞ�→
Z ffiffiffiffiffiffi

2eE
p ðt−t0Þ

0

due−πλ

¼
ffiffiffiffiffiffiffiffi
2eE

p
ðt− t0Þe−πλ (2.40)

and hence (2.38) gives for late times

ht0jjzjt0iR →
e3E2

4π3
e−πm

2=eEðt − t0Þ; (2.41)

which is the same result as that of Eq. (5.22) in Ref. [9],
which was obtained much more naturally in the adiabatic
particle basis by consideration of particle creation events.
That treatment makes it clear that the growth of the current
is a cumulative effect of particle creation from the quantum
vacuum which continues unabated as long as the constant
electric field is maintained.
Thus there are states for which the current grows linearly

with time related to the steady rate of particle creation in a
constant electric field background. Moreover it is clear

from the penultimate line of (2.38) that any perturbation of
the symmetric jυi state with Bogoliubov coefficients
Ak; Bk of the form (2.36) obeying the conditions
Ain
λ ¼ Aout�

λ , Bin
λ ¼ Bout�

λ of (2.37), having constant but
nonzero support for arbitrarily large and negative kz will
produce a cumulative effect on the current similar to (2.41),
so that hjzi continues to grow linearly with time for
arbitrarily long times. This linear growth with time implies
that however small the coupling e and the coefficient
Im ½Ain

λ B
in�
λ � (which can be enhanced by taking Nk > 0),

the current must eventually influence the background field
through the semiclassical Maxwell equation (2.23b). Thus
the symmetric jυi state in a fixed constant uniform electric
field background is unstable to perturbations of the kind
(2.36). If Bk has nonzero support up to some large but finite
negative value ðkzÞmin ¼ −Kz the linear growth in (2.41)
will be cut off at t − t0 ¼ Kz=eE but still be large and
produce a large backreaction through (2.23b).
If one goes beyond the simple mean field approximation

considered here, it is also clear on physical grounds that the
introduction of a single electrically charged particle into the
jυi state will cause it to be accelerated by the electric field
to arbitrarily large energies, which would allow it to emit
photons and produce additional charged pairs resulting in
an electromagnetic avalanche. Allowing these additional
channels opened up by self-interactions makes the physical
instability of the symmetric jυi state to small perturbations
more obvious, although that instability already exists even
without self-interactions, in the mean field approximation,
as (2.41) and (2.23b) show.
This example of the quantum states in a constant,

uniform external electric field shows quite clearly that
the most symmetric state, with the full symmetry group of
the background need not be the stable ground state of the
system. In this case it is well known that the background is
unstable to particle creation. In the accompanying paper [9]
we have shown how the same conclusion follows in de
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Sitter space, for essentially the same reasons. The treatment
above shows that one need not be committed to any
definition of particles to discover the instability of the
electric field background by perturbations of the symmetric
jυi state which have support at large canonical momentum
jkzj. For kz < 0 this may correspond to small physical
kinetic momentum kz þ eEt0 at some early initial time t0.
The unlimited growth of the physical momentum kz þ eEt
with time for fixed canonical momentum kz in terms of
which the initial state is specified is the essential feature,
and this feature is found in gravitational backgrounds such
as de Sitter space as well.

C. Relation to quantum chiral anomaly
in two dimensions

The linear secular growth of the current in a background
constant electric field can also be understood through
the Schwinger anomaly in 1þ 1 dimensions [30]. For
that comparison we drop the d2k⊥=ð2πÞ2 integral in (2.34)
to reduce to 1þ 1 dimensions, and further set the mass
m ¼ 0. We have then

hjzi2d →
e2E
π

ðt − t0Þ (2.42)

at late times. Since scalars are essentially the same as
fermions in 1þ 1 dimensions one can use the bosonization
results [31] for fermionic QED to express the current in
the form

hjμi ¼ effiffiffi
π

p ϵμν∂νχ; (2.43)

where ϵμν is the antisymmetric symbol in two dimensions
and χ is a pseudoscalar field whose derivative is the chiral
current

hjμ5i ¼ 1ffiffiffi
π

p ∂μχ: (2.44)

This current has the well-known chiral anomaly [32]

∂μhjμ5i2d ¼
1ffiffiffi
π

p □χ ¼ e
2π

ϵμνFμν ¼
eE
π

(2.45)

in a background electric field. The second-order Eq. (2.45)
for χ with the anomaly source in a constant, uniform field
has solutions independent of z of the form

1ffiffiffi
π

p χ ¼ eE
2π

ðt − t0Þ2: (2.46)

Substituting this value of χ into the electric current (2.43)
gives

hjzi2d ¼
effiffiffi
π

p χ̇ ¼ e2E
π

ðt − t0Þ; (2.47)

which recovers (2.42). Thus the linear secular growth of the
current with time in the massless limit is related to the two-
dimensional chiral anomaly and the particular z indepen-
dent solution (2.46) to the pseudoscalar field Eq. (2.45).
This particular solution to (2.45) is associated with the
spatially homogeneous initial state condition (2.35) and
state specified by the mode functions (2.24) and (2.36).
It is interesting to note that although the anomaly

Eq. (2.45) is Lorentz invariant—because it is an inhomo-
geneous equation—none of its solutions are Lorentz
invariant. Thus the maximal Poincaré symmetry of the
fixed electric field background is necessarily broken by
the solutions to the anomaly Eq. (2.45), which leads to a
spontaneous breaking of symmetry of the background, at
least in the semiclassical approximation and neglecting
backreaction [33]. This may be seen also from the effective
action corresponding to the two-dimensional chiral
anomaly [30,34],

S2Danom½χ� ¼
e2

8π

Z
d2x

Z
d2x0½ϵμνFμν�x□−1ðx; x0Þ½ϵαβFαβ�x0

¼ 1

2

Z
d2x

�
−χ□χ þ effiffiffi

π
p χϵμνFμν

�
; (2.48)

where □
−1ðx; x0Þ is the Green’s function inverse of the

scalar wave operator □ in two dimensions. As is well
known, the usual construction of the Feynman Green’s
function for a massless scalar in two dimensions is infrared
divergent due to the constant k ¼ 0 mode, and conse-
quently no Lorentz invariant Feynman function exists in
this case. Green’s functions □

−1ðx; x0Þ obeying different
boundary conditions exist, but these necessarily break some
of the continuous or discrete symmetries of the back-
ground. Thus the form of the effective action of the two-
dimensional chiral anomaly (2.48), together with the
absence of a Lorentz invariant Feynman Green’s function
□

−1ðx; x0Þ due to infrared divergences is sufficient to
conclude that the maximally symmetric state in a uniform
constant background 1

2
ϵμνFμν ¼ E is sensitive to noninvar-

iant initial and/or boundary conditions which break that
maximal symmetry. The linear growth of the current found
in (2.41) and reproduced by the solution (2.46) in (2.47) is
symptomatic of that necessary breaking of the maximal
symmetry of the classical background by the quantum
chiral anomaly.
It is also interesting that this connection with the

anomaly of massless fields in two dimensions survives
in four dimensions and even if the field has a nonzero
mass m, whose main effect is to suppress the coefficient of
the linear growth by the Schwinger tunneling factor
expð−πm2=eEÞ. We shall see there is also an interesting
connection to a quantum anomaly of massless fields in four
dimensional de Sitter space, a local condensate bilinear of
the underlying quantum field(s) analogous to χ, and simple
arguments analogous to (2.43)–(2.47) which lead directly
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to the analogous conclusion of instability of the symmetric
state and breaking of maximal de Sitter invariance in that
case as well.

III. Oð4Þ INVARIANT STATES
IN DE SITTER SPACE

Turning to our primary topic of de Sitter space, we
develop the quantization and discussion of possible vacuum
states in de Sitter space analogously to the electric field case
of the previous section. For an uncharged scalar field Φ
satisfying the free wave equation,

ð−□þM2ÞΦ≡
�
−

1ffiffiffiffiffiffi−gp ∂
∂xa

� ffiffiffiffiffiffi
−g

p
gab

∂
∂xb

�
þM2

�
Φ

¼ 0; (3.1)

in a gravitational background, with ξ the curvature cou-
pling. The effective mass

M2 ≡m2 þ ξR ¼ m2 þ 12ξH2 (3.2)

is a constant since the Ricci scalar R ¼ 12H2 is a constant
in de Sitter spacetime. In the geodesically complete
coordinates (1.2) the wave equation (3.1) may be separated
into a complete basis of functions of cosmological time
ykðuÞ times Yklml

ðN̂Þ, the spherical harmonics on S3. A unit
vector on S3 is denoted by N̂ with coordinates

N̂ðχ;θ;ϕÞ¼ðsinχn̂;cosχÞ
¼ðcosχ;sinχcosθ;sinχsinθsinϕ;sinχ sinθcosϕÞ:

(3.3)

The YklmðN̂Þ harmonics are eigenfunctions of the scalar
Laplacian on the unit S3 satisfying

−Δ3Yklml
¼ −

1

sin2χ

� ∂
∂χ sin

2χ
∂
∂χ þ

1

sin θ
∂
∂θ sin θ

∂
∂θ

þ 1

sin2θ
∂2

∂ϕ2

�
Yklml

¼ ðk2 − 1ÞYklml
; (3.4)

with the range of the integer k ¼ 1; 2;… taken to be strictly
positive, conforming to the notation of [13] and [35]. These
S3 harmonics are given in terms of Gegenbauer functions
Clþ1
k−l−1ðcos χÞ and the familiar S2 spherical harmonics

Ylml
ðn̂Þ in the form [28]

Yklml
ðN̂Þ¼2ll!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðk− l−1Þ!
πðkþ lÞ!

s
ðsinχÞlClþ1

k−l−1ðcosχÞYlml
ðn̂Þ;

(3.5)

with l¼0;1;…k−1 and ml ¼ −l;…; l, normalized so that

Z
S3

d3ΣY�
k0l0m0

l
Yklml

¼
Z

π

0

dχsin2χ
Z

π

0

dθ sin θ

×
Z

2π

0

dϕY�
k0l0m0

l
Yklml

¼ δk0kδl0lδm0
lml

: (3.6)

Note also that Y�
klml

ðN̂Þ ¼ Ykl−ml
ðN̂Þ.

The time-dependent functions ykðuÞ satisfy
�
d2

du2
þ3 tanhu

d
du

þðk2−1Þsech2uþ
�
γ2þ9

4

��
yk ¼ 0;

(3.7)

where the dimensionless parameter γ is defined by

γ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H2
−
9

4

r
≡ iν: (3.8)

In the massive case M2 > 9
4
H2 (the principal series),

γ is real and positive. With the change of variables to
z ¼ ð1 − i sinh uÞ=2, the mode equation (3.7) can be recast
in the form of the hypergeometric equation. The funda-
mental complex solution yk → υkγðuÞ may be taken to be

υkγðuÞ≡HckγðsechuÞkþ1ð1 − i sinh uÞk

× F
�
1

2
þ iγ;

1

2
− iγ; kþ 1;

1 − i sinh u
2

�
; (3.9)

where F≡ 2F1 is the Gauss hypergeometric function, and

ckγ ≡ 1

k!

�
Γðkþ 1

2
þ iγÞΓðkþ 1

2
− iγÞ

2

�1
2

(3.10)

is a real normalization constant, fixed so that υkγ satisfies
the Wronskian condition

iHa3ðuÞ
�
υ�kγ

d
du

υkγ − υkγ
d
du

υ�kγ

�
¼ 1 (3.11)

for all k, where aðuÞ ¼ H−1 cosh u is the scale factor in
coordinates (1.2). Note that under time reversal u → −u,
the mode function (3.9) goes to its complex conjugate,

υkγð−uÞ ¼ υ�kγðuÞ; (3.12)

for all M2 > 0.
If 0 < M2 ≤ 9

4
H2, (3.8)–(3.12) continue to hold by

analytic continuation to pure imaginary γ ≡ iν, with
υkγ → υk;ν. The mode functions (3.9) reduce to elementary
functions in the massless, conformally coupled case,
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m ¼ 0; ξ ¼ 1

6
; ν ¼ 1

2
∶

υk;1
2
¼ Hffiffiffiffiffi

2k
p sechuðsechu − i tanhuÞk

¼ Hffiffiffiffiffi
2k

p cos η e−ikη; (3.13)

and in the massless, minimally coupled case,

m ¼ 0; ξ ¼ 0; ν ¼ 3

2
∶

υk;3
2
¼ Hðksechuþ i tanhuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kðk2 − 1Þ
p ðsechu − i tanh uÞk

¼ Hðk cos ηþ i sin ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðk2 − 1Þ

p e−ikη; k ¼ 2; 3;…; (3.14)

where the conformal time variable η is given by, cf. Fig. 2,

η≡ sin−1ðtanhuÞ ∈
�
−
π

2
;
π

2

�
; cos η ¼ sechu;

tan η ¼ sinh u: (3.15)

The complex positive frequency modes υk;ν of (3.9), (3.14)
are undefined for the case ν ¼ 3

2
, k ¼ 1 since the solutions

of (3.7) are nonoscillatory in this case, and must be treated
separately [13,36]. This leads to the nonexistence of a de
Sitter invariant vacuum state or Feynman Green’s function
□

−1ðx; x0Þ for a massless, minimally coupled scalar in de
Sitter space [36,37], that is similar to that for a massless
scalar in two dimensional flat space discussed in Sec. II C.
The scalar field operator Φ can be expressed as a sum

over the fundamental solutions,

Φðu; N̂Þ ¼
X∞
k¼1

Xk−1
l¼0

Xl

ml¼−l
faυklml

υkγðuÞYklml
ðN̂Þ

þ aυ†klml
υ�kγðuÞY�

klml
ðN̂Þg (3.16)

with the Fock space operator coefficients aυklml
satisfying

the commutation relations

½aυklml
; aυ†k0l0m0

l
� ¼ δkk0δll0δmlm0

l
: (3.17)

With (3.6), (3.11), and (3.17) the canonical equal time field
commutation relation,

½Φðu; N̂Þ;Πðu; N̂0Þ� ¼ iδΣðN̂; N̂0Þ; (3.18)

is satisfied, where Π ¼ ffiffiffiffiffiffi−gp
Φ̇ ¼ Ha3 ∂Φ

∂u is the field
momentum operator conjugate to Φ, the overdot denotes
the time derivative H∂=∂u and δΣðN̂; N̂0Þ denotes the delta
function on the unit S3 with respect to the canonical round
metric dΣ2.

The Chernikov-Tagirov or Bunch-Davies (CTBD) state
jυi [2,3,6] is defined by

aυklml
jυi ¼ 0 ∀ k; l; ml; (3.19)

and is invariant under the fullOð4; 1Þ isometry group of the
complete de Sitter manifold, including under the discrete
inversion symmetry of all coordinates in the embedding
space, XA → −XA (cf. Fig. 1), or ðu; N̂Þ → ð−u;−N̂Þ,
which is not continuously connected to the identity. The
Feynman Green’s function in this maximally symmetric
state is invariant under Oð4; 1Þ and also coincides with that
obtained by analytic continuation from the Euclidean S4 for
M2 > 0 with full Oð5Þ symmetry [5]. As in the electric
field example of Sec. II the existence or construction
of a maximally symmetric Oð4; 1Þ invariant state does
not imply that this state is a stable vacuum.
Alternative Fock representations in real u time are clearly

possible. For example, since the general solution of (3.7)
may be written as the linear combination

ykðuÞ ¼ AkυkγðuÞ þ Bkυ
�
kγðuÞ; (3.20)

and normalized by (3.11) in the same way by requiring

iHa3ðuÞ
�
y�k

d
du

yk−yk
d
du

y�k

�
¼ iH

�
f�k

d
du

fk−fk
d
du

f�k

�
¼ jAkj2− jBkj2¼ 1; (3.21)

the general functions yk ≡ a−
3
2fk may just as well be chosen

as a basis of quantization of the Φ field by

Φðu; N̂Þ ¼
X∞
k¼1

Xk−1
l¼0

Xl

m¼−l
½afklml

ykðuÞYklml
ðN̂Þ

þ af†klml
y�kðuÞY�

klml
ðN̂Þ�. (3.22)

The Bogoliubov transformation between the corresponding
Fock space operators is

�
aυklml

aυ†kl−ml

�
¼

�
Ak B�

k
Bk A�

k

��
afklml

af†kl−ml

�
; (3.23)

and its inverse is

�
afklml

af†kl−ml

�
¼

�
A�
k −B�

k
−Bk Ak

��
aυklml

aυ†kl−ml

�
; (3.24)

analogous to (2.24)–(2.30).
The mode function fk ¼ a

3
2yk also satisfies the equation

of an harmonic oscillator,

d2fk
du2

þ
��

k2 −
1

4

�
sech2uþ γ2

�
fk ¼ 0; (3.25)
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analogous to (2.6), and (3.25), which is the starting point
for an adiabatic or WKB analysis of particle creation in [9].
Here we note that because of (3.21) the commutation
relations (3.17) are also satisfied by afklml

; af†klml
, as is the

canonical field commutation relation (3.18). Hence we may
define a state jfi corresponding to the general solution
(3.20) of (3.7) or (3.25) by

afklml
jfi ¼ 0 ∀ k; l; ml; (3.26)

for any set of complex coefficients fAk; Bkg satisfying
(3.21). Since the solutions ykðuÞYklml

ðN̂Þ at fixed k form
an irreducible representation of the group Oð4Þ for any
fAk; Bkg, these states are invariant under Oð4Þ rotations of
S3, but not the full Oð4; 1Þ de Sitter group (unless Ak ¼ 1,
Bk ¼ 0 for all k).
The Oð4Þ invariant states are associated with a preferred

u time slicing which breaks the Oð4; 1Þ symmetry. The
Bogoliubov coefficients fAk; Bkg and hence the particular
jfi state may be regarded as specified by initial data ykðu0Þ
and ẏkðu0Þ on the u ¼ u0 Cauchy surface according to

Akðu0Þ ¼ iHa3
�
υ�kγ

d
du

yk − yk
d
du

υ�kγ

�����
u¼u0

(3.27a)

Bkðu0Þ ¼ iHa3
�
yk

d
du

υkγ − υkγ
d
du

yk

�����
u¼u0

: (3.27b)

States with lower symmetry than Oð4Þ may be obtained by
considering Bogoliubov transformations more general than
(3.24), mixing aυ and aυ† of different ðklmlÞ. For example
if the relation (3.24) is generalized to aklml

¼ A�
kk0a

υ
k0lml

−
B�
kk0a

υ†
k0l−ml

so that the Bogoliubov coefficients are (non-
diagonal) matrices in k; k0 (but still diagonal in l; ml), the
corresponding states (3.26) are Oð3Þ invariant only. These
are appropriate for the static coordinates of de Sitter space.
All states related to jυi by exact Bogoliubov transforma-
tions of this kind are pure states and related to each other by
a unitary transformation [8], whether they involve different
ðklmlÞ or not.
The expectation value of aυ†klml

aυklml
is nonvanishing in the

general jfi state defined by (3.20), (3.24) and (3.26),

hfjaυ†klml
aυklml

jfi ¼ jBkj2 (3.28a)

hfjaυklml
aυkl−ml

jfi ¼ AkB�
k ¼ hfjaυ†klml

aυ†kl−ml
jfi�: (3.28b)

Hence the general jfi vacuum state apparently contains
particles defined with respect to the de Sitter invariant state
jυi. However, the converse is also true as the expectation
values,

hυjaf†klml
afklml

jυi ¼ jBkj2 (3.29a)

hυjafklml
afkl−ml

jυi ¼ −A�
kBk ¼ hυjaf†klml

af†kl−ml
jυi�; (3.29b)

are also nonzero, so that the de Sitter invariant vacuum may
equally well be said to contain particles with respect to the
general Oð4Þ basis states jfi. Since each of the jfi states in
either case is in fact a coherent, squeezed pure state with
respect to the others, with all exact quantum phase
correlations maintained, it is better not to attach the label
of “particles” to either set of expectation values (3.28) or
(3.29), or the term “vacuum” to any particular state in de
Sitter space at this point. As in the electric field case, mixed
states which are Oð4Þ invariant can be defined through a
density matrix ρf;N with [38]

Trðρf;Naf†klml
afklml

Þ ¼ Nk; (3.30)

and Nk ¼ 0 reducing to the pure jfi state defined in (3.26).
A nonzero Nk above the arbitrary Oð4Þ invariant jfi
vacuum is also best not identified with any physical particle
number. In previous works and in a companion paper to this
one [9,35], we give a definition of physical particle number
in de Sitter space based on an adiabatic or slowly varying
positive frequency basis [4].

IV. ENERGY-MOMENTUM TENSOR
OF O(4) INVARIANT STATES

The behavior of perturbations of the CTBD Oð4; 1Þ
symmetric state in de Sitter space may be studied through
the energy-momentum-stress tensor, and the potential
backreaction effects on the background geometry through
the semiclassical Einstein equations (1.7), analogous to
perturbations of the symmetric jυi state and backreaction
effects of the electric current through the semiclassical
Maxwell equation (2.23b).
The conserved energy-momentum-stress tensor of the

free scalar field is

Tab ¼ ð∇aΦÞð∇bΦÞ −
gab
2

�
gcdð∇cΦÞð∇dΦÞ þm2Φ2

�

þ ξ

�
Rab −

gab
2

R −∇a∇b þ gab□

�
Φ2: (4.1)

If the Heisenberg field operator in the general Oð4Þ basis
(3.22) is substituted into this expression, and (3.30) is used,
the expectation value of Tab in the general jfi state may
be expressed as a sum over modes. Since these states are
spatially homogeneous and isotropic, and Oð4Þ invariant,
we find that

Trðρf;NTu
uÞ ¼ −εf;N (4.2a)

Trðρf;NTi
jÞ ¼ δijpf;N i; j ¼ χ; θ;ϕ; (4.2b)

are the only nonvanishing components of the renormal-
ized expectation value in coordinates (1.2). Since the
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renormalization counterterms are state independent, they
may be subtracted from the mode sum for the de Sitter
invariant state with Ak ¼ 1, Bk ¼ 0 once and for all. The
renormalized expectation value hυjTabjυiR has been com-
puted in the CTBD state [3]. Because of its de Sitter
invariance this expectation value satisfies (4.2) with
pυ ¼ −ευ. Collecting then the remaining finite terms which
differ from this when Ak ≠ 1, Bk ≠ 0 in the general Oð4Þ
invariant mixed state, one obtains [38]

εf;N ¼ ευ þ
1

2π2
X∞
k¼1

k2fð1þ 2NkÞRe½AkB�
kε

A
k �

þ ½Nk þ jBkj2ð1þ 2NkÞ�εBk g (4.3a)

pf;N ¼ pυ þ
1

2π2
X∞
k¼1

k2fð1þ 2NkÞRe½AkB�
kp

A
k �

þ ½Nk þ jBkj2ð1þ 2NkÞ�pB
k g; (4.3b)

where we have defined

εAk ≡ υ̇2k þ 2hυkυ̇k þ ðω2
k þ h2Þυ2k ≡ 3pA

k þ 2m2υ2k; (4.4a)

εBk ≡ jυ̇kj2 þ 2hRe½υ�kυ̇k� þ ðω2
k þ h2Þjυkj2

≡ 3pB
k þ 2m2jυkj2; (4.4b)

ω2
k ≡ k2

a2
þm2; h≡ ȧ

a
¼ H tanhu. (4.4c)

Here an overdot denotes Hd=du and a ¼ H−1 cosh u. We
have suppressed the γ subscript and also set ξ ¼ 1

6
(but kept

m ≠ 0) in order to simplify the expressions. This is already
sufficiently general for our purposes, as the general case
ξ ≠ 1

6
adds no essentially new features. By using the mode

equation (3.7) satisfied by υk one may readily check that the
renormalized stress tensor is covariantly conserved,

H
dεf;N
du

þ3hðεf;N þpf;NÞ¼
H
a3

d
du

ða3εf;NÞþ3hpf;N ¼ 0;

(4.5)

so that it is sufficient to focus attention on the energy
density for the general Oð4Þ invariant state.
Since the renormalization subtractions have already been

performed in defining the finite pυ ¼ −ευ in the Oð4; 1Þ
invariant state jυi, the additional state-dependent mode
sums in (4.3) must not give rise to any new UV divergen-
ces. This implies that the Bogoliubov coefficients Bk and
numbers Nk must satisfy

lim
k→∞

½k4jBkj� ¼ lim
k→∞

½k4jBkj2� ¼ lim
k→∞

½k4Nk� ¼ 0; (4.6)

so that all of the sums over k for the remaining state-
dependent terms in (4.3) converge. States jfi whose
Bogoliubov coefficients satisfy (4.6) in addition to (3.21)

are UV allowed or UV finite Oð4Þ invariant states [38].
Finiteness and conservation are clearly necessary condi-
tions for the expectation value Tr ðρf;NTa

bÞ to be used as a
source for the semiclassical Einstein equations (1.7). These
properties of hTa

biR remain valid for all UV finite states,
including those of lower symmetry, provided only that the
Bogoliubov coefficients fall off rapidly enough at large k,
as in (4.6). The UV finiteness conditions (4.6) are also
both necessary and sufficient conditions for the two-point
function to have Hadamard short distance behavior.
As in the current expectation value of Sec. II we seek a

qualitative understanding of the terms contributing to the
energy density in (4.3a) and (4.4). There are three kinds of
terms for a given k in a general Oð4Þ invariant UV finite
state, namely those multiplying the factors jBkj2, ReðAkB�

kÞ,
and ImðAkB�

kÞ, respectively. These are plotted in Figs. 6–11.
In Fig. 6 the three summands in (4.3a), namely k2εBk =ð2π2Þ,
k2ReεAk =ð2π2Þ and−k2ImεAk =ð2π2Þ are shown in units ofH4

for the case m ¼ H and k ¼ 10. The εAk terms multiplying
the complex AkB�

k coefficient in (4.3a) are oscillatory,
while the εBk function multiplying the real coefficient
Nk þ jBkj2ð1þ 2NkÞ is nonoscillatory. Themain difference
between the coefficients of the real and the imaginary parts
ofAkB�

k is that the former is symmetric aboutu ¼ 0while the
latter is antisymmetric. The plots also show that the maxima
of the two oscillatory functions occur for juj of order one,
while themaximumof the third, nonoscillatory function is at
the symmetric point u ¼ 0 and is much larger in magnitude.
In all three cases the functions fall off for large values of the
time juj where the scale factor aðuÞ is large.
Since the field is massive one might expect that at large

values of the scale factor the contributions to the energy
density would scale like a−3. To illustrate the power
dependence on the scale factor we plot in Figs. 7 and 8
the coefficients of the real and imaginary parts of ð1þ
2NkÞAkB�

k multiplied by a3 for k ¼ 1, 10, 100 and m ¼ H
andm ¼ 10H, respectively.We observe that the oscillations
have an envelope which does scale like a−3 for large juj and
large aðuÞ. The envelope also scales like k2 independently of
m, so that if wewere to summodes up to a large but finiteK,
we would expect a K3=a3 behavior characteristic of a
nonrelativistic gas. However the rapid oscillations, particu-
larly for larger values ofm and k, highlight the fact that these
are highly coherent quantum states, and the energy density is
not that of quasiclassical particles in any sense.
The a−3 behavior of the envelope of the oscillations also

does not hold for small juj. As shown in detail by a WKB
analysis of the mode equation (3.7) in the accompanying
paper [9], the mode functions and adiabatic vacuum state
change character around the times u ¼ ∓ukγ, where

ukγ ¼ ln

2
64

ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

4

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ k2 − 1

4

q
γ

3
75: (4.7)
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The modes are nonrelativistic for juj > ukγ, but relativistic
for juj < ukγ. For a conformal massless field m ¼ 0, with
υk ¼ υk;1

2
of (3.13), εAk of (4.4a) vanishes identically. This

accounts for the much smaller values of the energy
densities in Figs. 7 and 8 in the central regions where
−ukγ < u < þukγ , where there is no simple behavior of the
envelope of the quantum coherent oscillations. The maxi-
mum of the oscillatory terms occurs for all values of k and
m investigated at juj ∼ 1 in the central region. This
maximum saturates at a value of order one in H4 units
for large k ≫ 1, as shown in Fig. 9.
The nonoscillatory k2εBk =ð2π2Þ term in the energy

density is shown in Figs. 10 and 11 for m ¼ H and
m ¼ 10H, respectively, for k ¼ 1, 10, and 100. In the left
panels the term is multiplied by a3ðuÞ and in the right
panels the term is multiplied by a4ðuÞ. It is clear that in all
cases the contribution from this εBk term is proportional to
a−3 at large values of the scale factor and is proportional
to a−4 near u ¼ 0. In other words, it blueshifts in the
contracting phase of de Sitter space (and redshifts in the
expanding phase) as a nonrelativistic fluid for large juj but
as a relativistic fluid for smaller juj. At juj ¼ ukγ given

by (4.7), the energy density transitions from nonrelativistic
to relativistic behavior and for smaller juj the physical
momentum k=a dominates the mass term in the mode
equation (3.25). In the nonrelativistic region u > jukγj the k
dependence is k2. However the maximum of the k2εBk term
always occurs in the relativistic region −ukγ < u < þukγ ,
where the k dependence is k3, so that this maximum value
grows unbounded for k ≫ 1, in contrast to the oscillatory
terms which are bounded for large k (Fig. 9).
For the strictly massless conformally invariant scalar

field, there are no oscillatory εAk terms since εAk ¼ 0
identically for υk ¼ υk;1

2
, and hence there are no terms linear

in Bk in the energy density or pressure of a general Oð4Þ
invariant UV allowed state. The only contributions come
instead from the εBk terms quadratic in the perturbation Bk
from the de Sitter invariant CTBD state jυi. Substituting υk;1

2

into (4.4b) with m ¼ 0 gives

k2

2π2
εBk jm¼0 ¼

k3

2π2a4
; (4.8)

showing that the relativistic behavior observed in
Figs. 10–11 in the relativistic region −ukγ < u < ukγ holds

FIG. 6. The top panel shows the coefficient of the jBkj2 term in the energy density k2εBk =ð2π2Þ of (4.3a), form ¼ H and k ¼ 10 in units
of H4. The bottom left panel shows the real part and the bottom right panel the imaginary part of the coefficient of the AkB�

k term in
the energy density, namely k2ReεAk =ð2π2Þ and −k2ImεAk =ð2π2Þ, respectively, of (4.3a) and (4.4a) again for m ¼ H and k ¼ 10, in
the same units.
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for all u in themassless case. This result can also be obtained
by conformally transforming from flat space to de Sitter
space the exact stress tensor for a conformal field in a state
other than the Minkowski vacuum [4]. Although this is
exactly the behavior onewould expect for a gas of relativistic
particles, we emphasize that these are still coherent quantum

excitations of the pure jfi vacuum state, in which the exact
phase relations of (3.28)–(3.29) are maintained.
In all cases the perturbations from the CTBD state jυi fall

off in the expanding half u > 0 of de Sitter space but grow
in the contracting half u < 0. The maximum value at the
symmetric point from (4.3), (4.4), and (4.8) is given by

FIG. 7. The panels at left show, for m ¼ H, the summand k2ReεAk =ð2π2Þ in the energy density (4.3a) and (4.4b) in units of H4

multiplied by a factor of a3, with a ¼ H−1 cosh u the scale factor. The panels at right show −a3k2ImεAk =ð2π2Þ. From top to bottom the
values of k are k ¼ 1, k ¼ 10, and k ¼ 100. The values of ukγ from (4.7) are 0.88, 3.14, and 5.44, respectively. The plots show that the
envelope of the oscillations is proportional to a−3 for juj > ukγ, but that the behavior changes markedly for juj < ukγ.
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εf;Nmax ¼
1

2π2a4
X∞
k¼1

k3½Nk þ jBkj2ð1þ 2NkÞ�

≃ H4

8π2
K4½NK þ jBKj2ð1þ 2NKÞ�; (4.9)

where we have approximated the sum by an integral valid
for large kmax ¼ K, the maximum value of k for which jBkj2
and/or Nk has support consistent with the UV finiteness
conditions (4.6). This summarizes the results plotted in
Figs. 6–11 as the estimate of the largest contribution to the

FIG. 8. The panels at left show, for m ¼ 10H, the summand k2Re εAk =ð2π2Þ in the energy density (4.3a) and (4.4a) in units of H4

multiplied by a factor of a3, with a ¼ H−1 cosh u the scale factor. The panels at right show −a3k2Im εAk =ð2π2Þ. From top to bottom the
values of k are k ¼ 1, k ¼ 10, and k ¼ 100, with the corresponding values of ukγ from (4.7) 0.087, 0.88, and 3.00, respectively, where
the behavior changes markedly. It is also observed that the envelopes for juj > ukγ scale like k2.
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energy density (4.3a). For this to produce a significant
backreaction on the classical de Sitter geometry through
the semiclassical Einstein equations, it is necessary for this
to be larger than the background cosmological energy
density, i.e.,

8πGεf;N ≳ Λ ¼ 3H2 or

GH2

3π
½NK þ jBKj2ð1þ 2NKÞ�

�
K

coshu

�
4 ≳ 1: (4.10)

Clearly no matter how small GH2 ≪ 1, or the state-
dependent perturbation in square brackets is, as long as
their product is nonzero there is always a large enough (but
still finite K) for which the inequality (4.10) is satisfied
at the maximum at u ¼ 0. Since all finite k modes are
redshifted in physical momentum as k=a → 0 for
aðuÞ → ∞, perturbations satisfying (4.10) at u ¼ 0 have
vanishingly small energy densities at early times u → −∞.
Hence for any finite GH2 > 0 there is a large class of Oð4Þ
invariant but de Sitter noninvariant states satisfying (4.10),
which give rise to energy densities that are large enough
to produce significant de Sitter noninvariant backreaction
effects at the symmetric point u ¼ 0, all of which have
exponentially vanishing de Sitter noninvariant energy
densities at times in the infinite past at I− of ‘eternal’ de
Sitter space. The physical momentum HK=a correspond-
ing to the condition (4.10) for significant backreaction is of
order

ffiffiffiffiffiffiffiffiffiffiffiffi
HMPl

p
≪ MPl, far less than the Planck scaleMPl, so

that the semiclassical approximation is still reliable.
To see how the general condition (4.10) for large

backreaction and de Sitter instability is realized in a specific
physical state, which is the one determined by adiabatically
switching on of the background analogous to switching on
of the electric field in the infinite past [39], one can choose
Bogoliubov coefficients corresponding to the Oð4Þ invari-
ant jini state of [9] prepared at the initial time u0. In the
contracting phase of de Sitter space u < 0 this corresponds

to choosing the mode functions according to the initial data
at u ¼ u0,

Ak ¼ Ain
kγθð−ukγ − u0Þ þ θðu0 þ ukγÞ (4.11a)

Bk ¼ Bin
kγθð−ukγ − u0Þ; (4.11b)

with ukγ defined in (4.7). The step functions are again
simple approximations to the actual smooth but rapid
change at −ukγ. Since Bk ¼ 0 for ukγ > −u0 the mode
sums in (4.3a) are cut off for k > Kγðu0Þ, where

Kγðu0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 sinh2 u0 þ

1

4

r
≃ γ

2
eju0j (4.12)

for ju0j ≫ 1. Also,

Ain
kγ ¼

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðπγÞp e−

ikπ
2 e

πγ
2 ;

Bin
kγ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðπγÞp e

ikπ
2 e−

πγ
2

(4.13)

so that

Ain
kγB

in�
kγ ¼ ið−Þk

2 sinhðπγÞ θð−ukγ − u0Þ (4.14)

oscillates in k. Because the εAk term is bounded in k for any
state as shown in Fig. 11 and its coefficient (4.14) oscillates
in k for this jini state, its contributions tend to cancel when
summed over k in (4.3a), and are negligible compared to
the nonoscillatory εBk term in the energy density for large
Kγðu0Þ, hence large ju0j. Retaining only the latter, we then
have approximately

εin ≃ ευ þ
1

2π2
XKγðu0Þ

k¼1

k2jBin
kγj2εBk

≃ 1

4π2
e−πγ

sinhðπγÞ
Z

Kγðu0Þ

1

dk
k3

a4ðuÞ

≃ H4

8π2
1

e2πγ − 1

�
Kγðu0Þ
cosh u

�
4

; (4.15)

which agrees with Eq. (8.17) of [9] and (4.9) for the
particular choice of jBKj2 from (4.13) and Nk ¼ 0. This
energy density, which has an arbitrarily small value for
u → −∞, is blueshifted as a relativistic fluid and by u ¼ 0
can grow large enough to be comparable to or even far
exceed the background de Sitter energy density and hence
significantly affect the background de Sitter geometry. It
satisfies the inequality (4.10) for significant backreaction if

Kγðu0Þ≳
�
3π

GH2
ðe2πγ − 1Þ

�1
4

(4.16)

FIG. 9. The maxima of the oscillations of k2Re εAk =ð2π2Þ in
units of H4 are plotted for several values of k, for m ¼ 10H. The
saturation at large values of k is apparent.
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or from (4.12),

ju0j > ln

�
2

γ

�
3π

GH2

�1
4ðe2πγ − 1Þ14

�
; (4.17)

which can always be satisfied for early enough u0, and
nonzero GH2 and γ in eternal de Sitter space. Even for
GH2 ≃ 10−122, γ ≃ 1, corresponding to the present value of
the cosmological constant inferred from the SNIa data [40],
this value of ju0j is quite moderate, of order 70.

FIG. 10. The panels on the left show for m ¼ H, the k2εBk =ð2π2Þ term in the energy density of (4.3a) and (4.4b) in units of H4

multiplied by a factor of a3. The panels on the right show this same term multiplied by a factor of a4. From top to bottom the value of k
which corresponds to each set of plots is k ¼ 1, k ¼ 10, and k ¼ 100, with values of ukγ of 0.88, 3.14, and 5.44, respectively, where the
behavior changes from nonrelativistic to relativistic.
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V. CONFORMAL ANOMALY, STRESS
TENSOR AND DE SITTER
SYMMETRY BREAKING

As in the electric field example, the quantum
vacuum instability in de Sitter space is illuminated by

consideration of a quantum anomaly, in this case the
conformal trace anomaly of the energy-momentum
tensor [4,41]. The nonlocal covariant effective action
that gives the conformal anomaly in four dimensions
is [12,16–18,42]

FIG. 11. The panels on the left show for m ¼ 10H, the k2εBk =ð2π2Þ term in the energy density of (4.3a) and (4.4b) in units of H4

multiplied by a factor of a3. The panels on the right show this same term multiplied by a factor of a4. From top to bottom the value of k
which corresponds to each set of plots is k ¼ 1, k ¼ 10, and k ¼ 100. The values of ukγ where the behavior changes from nonrelativistic
to relativistic are 0.087, 0.88, and 3.00, respectively, for this m.
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Sanom½g� ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p Z
d4x0

ffiffiffiffiffiffiffi
−g0

p �
E
2
−
□R
3

�
x

× Δ−1
4 ðx; x0Þ

�
bF þ b0

�
E
2
−
□R
3

��
x0
: (5.1)

This nonlocal effective action (5.1) is the analog of (2.48)
for the chiral anomaly in two dimensions and theR
d2x

ffiffiffiffiffiffi−gp R
d2x0

ffiffiffiffiffiffiffi
−g0

p
Rx□

−1ðx; x0ÞR0
x effective action

for the conformal trace anomaly in two dimensions
[43]. In four dimensions there are two invariants E≡
�Rabcd

�Rabcd ¼ RabcdRabcd − 4RabRab þ R2 and F≡
CabcdCabcd ¼ RabcdRabcd − 2RabRab þ 1

3
R2 contributing

to the nonlocal anomaly with corresponding dimension-
less coefficients b and b0 proportional to ℏ in the notation
of [41]. Being nonlocal in terms of the curvature
invariants E and F, the one-loop effective action (5.1)
contains information about nonlocal and global quantum
effects, i.e. sensitivity to initial and/or boundary con-
ditions, through the Green’s function inverse Δ−1

4 ðx; x0Þ of
the conformally covariant differential operator

Δ4 ≡□
2 þ 2Rab∇a∇b −

2

3
R□þ 1

3
ð∇aRÞ∇a

¼ ∇a

�
∇a∇b þ 2Rab −

2

3
Rgab

�
∇b: (5.2)

To (5.1) it is possible to add any conformally invariant
action (nonlocal or local) which does not affect the
anomaly. However, only the conformal breaking (5.1)
term in the effective action needs be retained in a low
energy classification of operators in the effective action
[16] and only this term can have relevant infrared effects.
Moreover, the effective action of the anomaly (5.1) is

distinguished by being responsible for additional massless
scalar degree(s) of freedom in low energy gravity, not
present in the classical theory [44], as seen also in two
dimensions by the shifting of the central charge from
N − 26 to N − 25 [45]. In four dimensions this is made
explicit by rewriting (5.1) in the local form

Sanom ¼ b0SðEÞanom þ bSðFÞanom; (5.3)

by the introduction of at least one additional scalar field,
where for example

SðEÞanom½g;φ�≡ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p 	
−ð□φÞ2 þ 2

�
Rab −

1

3
Rgab

�

× ð∇aφÞð∇bφÞ þ
�
E −

2

3
□R

�
φ



(5.4)

is the term related to E in terms of the additional scalar
field φ. This scalar (analogous to χ of Sec. II C) is a new
effective degree of freedom, not to be confused with the
original scalar field Φ, which describes two-particle

correlations or bilinears (relativistic Cooper pairs) of the
underlying scalar, fermion or vector QFT [18,44]. QFTs of
different spin may all be studied via the effective action
(5.4), since the only dependence upon spin for free fields is
through the trace anomaly coefficients b0 and b, where

b0 ¼ −
1

360ð4πÞ2 ðNS þ 11NF þ 62NVÞ (5.5)

is the coefficient for the E term in the conformal anomaly
for noninteracting scalar (S), fermion (F), or vector (V)
fields, respectively. The b term in the anomaly proportional

to F gives rise to an effective action SðFÞanom similar to (5.4)
but is less important in de Sitter space where F ¼
CabcdCabcd ¼ 0 [15–18].
Formally solving the Euler-Lagrange equation for φ that

results from varying (5.4) in a general metric background
requires inverting the differential operator Δ4, i.e. finding
its Green’s function Δ−1

4 ðx; x0Þ, and substituting the sol-
ution for φ into (5.4). This returns the b0 term of the
nonlocal form (5.1), up to surface terms. In de Sitter space
we also have E ¼ 24H4, □R ¼ 0, and the operator Δ4

factorizes, so that the variation of (5.4) with respect to φ
yields the linear equation of motion,

Δ4φjdS ¼ −□ð−□þ 2H2Þφ ¼ E
2
−
□R
3

¼ 12H4; (5.6)

with a constant source. Because of this constant source,
analogous to (2.45), and the fact that the only invariant
scalar in de Sitter space is a constant, it is clear that no de
Sitter invariant constant solution to (5.6) for φ exists. In
the local form of the effective action (5.4), the freedom
to add homogeneous solutions to (5.6) is equivalent to that
of specifying the particular Green’s function inverse
Δ−1

4 ðx; x0Þ dependent upon initial/boundary conditions in
the nonlocal form (5.1). It is also clear from the factorized
form (5.6) of Δ4 in de Sitter space that its inverse,

Δ−1
4 jdS ¼

1

2H2
½ð−□Þ−1 − ð−□þ 2H2Þ−1�; (5.7)

cannot be de Sitter invariant, since it is proportional to the
difference of the inverses of a massless, minimally coupled
(ξ ¼ 0) scalar and a massless, conformally coupled (ξ ¼ 1

6
)

scalar, and no de Sitter invariant form of the former exists
[36]. Thus the breaking of de Sitter invariance and infrared
sensitivity to initial/boundary conditions is already appar-
ent from either the nonlocal one-loop effective action (5.1)
and nonexistence of a de Sitter invariant Feynman Green’s
function (5.7), or equivalently from the noninvariance of
the solutions to (5.6) and hence those of the local effective
action (5.4).
The form of the breaking of de Sitter invariance may be

studied through the stress tensor corresponding to the local
effective action (5.4), whose variation with respect to the
metric gives the tensor
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Eab½φ�jdS ≡ −
2ffiffiffiffiffiffi−gp δSðEÞanom

δgab

����
dS

¼ −2ð∇ðaφÞð∇bÞ□φÞ

þ 2ð∇cφÞð∇c∇a∇bφÞ þ 2ð□φÞð∇a∇bφÞ

−
2

3
∇a∇b½ð∇φÞ2� − 4H2ð∇aφÞð∇bφÞ

þ 1

2
gab

�
−ð□φÞ2 þ 1

3
□½ð∇φÞ2� þ 2H2ð∇φÞ2

�

−
2

3
∇a∇b□φþ 4H2∇a∇bφ −

2

3
H2gab□φ

þ 8H4gab; (5.8)

which is covariantly conserved by the use of (5.6). In (5.8)
we have evaluated Eab in de Sitter space and used the

notation ð∇φÞ2 ≡ gabð∇aφÞð∇bφÞ. The stress tensorTðEÞ
ab ¼

b0Eab evaluated on solutions φ satisfying the classical linear
equation (5.6) may be used to evaluate the renormalized
expectation value hTabiR of the underlying QFT. This is
exact up to state-dependent (but curvature-independent)
terms if the spacetime is conformally flat as is de Sitter
space, and the QFT is classically conformally invariant [46].
We showbelow in particular that (5.8) reproduces theCTBD
state value exactly for classically conformally invariant
fields of any spin with an appropriate choice of φ.
Since the fourth order linear operator Δ4 in (5.6) factor-

izes into two second order wave operators for a conformally
coupled and minimally coupled massless scalar in de Sitter
space, the general homogeneous solution of (5.6) in coor-
dinates (1.2) is easily found in terms of υk;1

2
Yklml

and υk;3
2
Yklml

and their complex conjugates. Inspection of these solutions,
(3.13)–(3.15) shows that the functions υk;1

2
and υk;3

2
may also

be written as a linear combination of exp½−iðk� 1Þη�. The
conformal covariance property of the operator Δ4 is what
makes this rearrangement of the solutions possible. In de
Sitter spacetime (and in fact any conformally flat spacetime)
there is a second factorization of Δ4 into two second order
operators, reflecting the fact that for a fixed k (5.6) may also
be written [47]

Δ4jdSφkðηÞYklml
ðN̂Þ ¼ H4cos4η

�
d2

dη2
þ ðk − 1Þ2

�

×

�
d2

dη2
þ ðkþ 1Þ2

�
φkðηÞYklml

ðN̂Þ

(5.9)

in conformal time η, where H4 cos4 η ¼ a−4. Thus the
homogeneous solutions of (5.6) are clearly linear combi-
nations of exp½−iðk� 1Þη�Yklml

ðN̂Þ and their complex
conjugates. To these one must add a particular solution of
the inhomogeneous equation (5.6), which is easily found in
coordinates (1.2) to be

φ0 ≡ 2 lnðcosh uÞ: (5.10)

This particular solution is Oð4Þ invariant but not Oð4; 1Þ
invariant. Other choices correspond to states of lower
symmetry, but some choice must be made since the
inhomogeneous term in (5.6) disallows the de Sitter invari-
ant choice of constant φ. Then we may express the general
solution of (5.6) in the form

φ ¼ φ1ðuÞ þ
1

2

X∞
k¼2

Xk−1
l¼0

Xl

ml¼−l

�
aklmlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðk − 1Þp e−iðk−1ÞηYklml

þ bklmlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðkþ 1Þp e−iðkþ1ÞηYklml

þ c:c:

�
; (5.11)

where φ1ðuÞ is the general solution of (5.6) for k ¼ 1,
constant on S3, given by

φ1ðuÞ ¼ φ0ðuÞ þ c0 þ c1sin−1ðtanhuÞ þ c2sech2u

þ c3 tanh usechu

¼ 2 lnðsec ηÞ þ c0 þ c1ηþ c2cos2ηþ c3 sin η cos η;

(5.12)

with the ci arbitrary constants multiplying the 4 homo-
geneous solutions which are functions only of u or con-
formal time η defined in (3.15). The normalizations of the
k > 1 solutions in (5.11) are chosen to correspond to a
previous canonical analysis on the conformally related
Einstein static cylinder R ⊗ S3 where the φ ¼ 2σ field
was quantized and the ðaklml

; bklml
Þ obey canonical com-

mutation relations (the bklml
; b†klml

with negative metric)
[47]. Here we treat all the expansion coefficients
ðci; aklml

; bklml
Þ of the general solution (5.11) to (5.6) for

the effective action in de Sitter space as c numbers.
For Oð4Þ invariant states the stress tensor can only be a

function of u. Because of the terms linear in φ in (5.8) this
corresponds to choosing all the coefficients aklml

¼bklml
¼0

in (5.11) for k > 1. With φ ¼ φ1ðuÞ substituted into (5.8)
we obtain the energy density

−Eu
u½φ1ðuÞ� ¼ φ⃛1φ̇1 −

1

2
φ̈2
1 þ 2hφ̈1φ̇1

þ 3

�
2ḣþ 3

2
h2 −H2

�
φ̇2
1 − 2hφ⃛1

þ 2ðH2 − 3h2Þφ̈1 − 6hðḣþH2Þφ̇1; (5.13)

where a dot denotes the derivative H−1d=du. Substituting
(5.12) into this expression gives

ε ¼ −b0Eu
u½φ1ðuÞ� ¼ −6b0H4 þ 2b0

a4
ðc21 − c22 − c23 þ 4Þ:

(5.14)

The first term gives the constant value of the renormalized
ευ ¼ −6b0H4 for the de Sitter invariant state of a free
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conformal field of any spin, with the corresponding
pressure pυ ¼ −ευ ¼ 6b0H4. The second a−4 term shows
that exactly the term corresponding to the relativistic limit,
obtained in Sec. IV from detailed analysis of the renor-
malized expectation value of the stress tensor of a quantum
field in the general Oð4Þ invariant state, is reproduced by
the anomaly stress tensor (5.8) with a classical effective
field φ ¼ φ1ðuÞ. The spatial components,

Eij½φ1ðuÞ� ¼ 6H4gij þ
2

3a4
gijðc21 − c22 − c23 þ 4Þ; (5.15)

and equation of state p ¼ ε=3 for the second term are just
that required by covariant conservation (4.5) for this
general Oð4Þ invariant state.
In (5.14) the arbitrary coefficients ci of the homogenous

solution in (5.12) appear and may be related to the sum
over the state-dependent coefficients Nk; Bk and K of (4.9).
The de Sitter invariant expectation value for hTabiR is
recovered if

c21 þ 4 ¼ c22 þ c23 ðde Sitter invarianthTabiÞ; (5.16)

so that no relativistic radiation a−4 term is present. Any
solution of (5.6) of the form (5.12) with the condition (5.16)
on the coefficients ci may be taken as corresponding to the
CTBD state and gives a de Sitter invariant stress tensor
with ευ ¼ −pυ. It is interesting to note in passing that for
the particular values c1 ¼ −2i and c0 ¼ c2 ¼ c3 ¼ 0,
exp½φ1ðuÞ� is just the (complex) conformal transformation
that maps flat space and its Minkowski vacuum to de Sitter
space and the CTBD invariant state jυi. However, if we
restrict φ1ðuÞ of (5.12) to be real, and invariant under time
reversal u↔ − u, corresponding to the discrete inversion
symmetry of the CTBD state, then c1 ¼ c3 ¼ 0, and from
(5.16) c2 ¼ �2 so that

φ̄ðuÞ ¼ 2 lnðcosh uÞ þ c0 � 2sech2u

¼ −2 lnðcos ηÞ þ c0 � 2cos2η (5.17)

is the background solution to (5.6) with ευ ¼ −6b0H4 ¼
−pυ most closely corresponding to jυi. Since the stress
tensor (5.8) depends only upon derivatives of φ, the
constant c0 is irrelevant and may be set to zero, so that
the choice of solution (5.17) is determined up to the sign of
the last term.
This φ̄ðuÞ in (5.17) is a kind of mean value condensate of

the φ effective field in de Sitter. Although itself not de Sitter
invariant, it gives a stress tensor corresponding to the de
Sitter invariant CTBD state of the underlying QFT. It seems
that one has to consider more complicated expectation
values such as hTabTcdi in order to see directly the de Sitter
breaking effects of the inhomogeneous solution to (5.6).
This is similar to the de Sitter invariant stress tensor hTabi
obtained for a massless, minimally coupled field in de Sitter
space despite the non–de Sitter invariant vacuum state [36].

A small variation of c2 away from �2 produces a de
Sitter noninvariant stress tensor of the form (5.14)–(5.15)
which is infinitesimally small at asymptotic past infinity I−
because of its a−4 dependence upon the scale factor, but
which grows to finite values at the symmetric time u ¼ 0.
The ci satisfying (5.16) are clearly a subset of a wider class
of a three parameter family corresponding toOð4Þ invariant
but non-Oð4; 1Þ invariant states. In this parameterization
the condition (4.10) that the perturbations of the CTBD
state produce a large enough backreaction at u ¼ 0 to affect
the classical geometry is

16πGH2jb0ðc21 − c22 − c23 þ 4Þj≳ 1: (5.18)

Clearly there is a large class of such states all of which have
exponentially vanishing de Sitter noninvariant energy den-
sities at times u → −∞ in the infinite past. Since a pertur-
bation of the CTBD state with infinitesimally small energy
density at I− with coefficients ci satisfying (5.18) produces a
large backreaction on the geometry at u ¼ 0, we conclude
that the de Sitter invariant jυi state is unstable to such state
perturbations in the initial data of eternal de Sitter space.
Thus the anomaly effective action and stress tensor gives

the same result of instability of the CTBD state to perturba-
tions, obtained previously for massive scalar fields, without
any need of renormalization subtractions or mode sums,
although the connection to the large K cutoff in (4.9) or
(4.10), or to particle creation in the jini state of (4.15) or [9] is
no longer transparent in (5.18). The anomaly derivation of
the instability condition (5.18) emphasizes its generality,
independent of the particular case of a noninteracting scalar
field, so that (5.18) holds for fields of any spin simply
by changing b0 according to (5.5), or more generally for
interacting QFTs as well with the appropriate b0. This result
and the composite effective fieldφ is similar to the generality
of the axial anomaly derivation of the linear growth of the
current in a persistent electric field background in termsof the
bosonized effective field χ in (2.47).

VI. STATES OF LOWER SYMMETRY: SPATIALLY
INHOMOGENEOUS STRESS TENSOR

The expansion (5.11) of the anomaly scalarφ also enables
a general study of states of lower than Oð4Þ symmetry
simply by allowing any of the parameters aklml

or bklml

in the general solution (5.11) to be different from zero.
Substituting that general solution for φ in (5.8) gives a Tab
which is a function of directions N̂ on S3 as well as u. In
order to study the effect of these Oð4Þ breaking terms, we
linearize the anomaly stress tensor around the solution φ̄ðuÞ
of (5.17) with a de Sitter invariant stress tensor by

φ ¼ φ̄ðuÞ þ ϕðu; N̂Þ (6.1)

for ϕ a general solution of (5.6) withΔ4ϕ ¼ 0, expressed as
the sum of modes (5.11). To first order in ϕ,
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Eð1Þ
ab ¼ −2ð∇ðaφ̄Þð∇bÞ□ϕÞ − 2ð∇ða□φ̄Þð∇bÞϕÞ þ 2ð∇cφ̄Þð∇c∇a∇bϕÞ þ 2ð∇c∇a∇bφ̄Þð∇cϕÞ

þ 2ð□φ̄Þð∇a∇bϕÞ þ 2ð∇a∇bφ̄Þð□ϕÞ − 4

3
∇a∇b½gcdð∇cφ̄Þð∇dϕÞ� − 8H2ð∇ðaφ̄Þð∇bÞϕÞ

þ gab

	
−ð□φ̄Þð□ϕÞ þ 1

3
□½gcdð∇cφ̄Þð∇dϕÞ� þ 2H2gcdð∇cφ̄Þð∇dϕÞ




−
2

3
∇a∇b□ϕþ 4H2∇a∇bϕ −

2

3
H2gab□ϕ; (6.2)

which is both covariantly conserved and traceless. Using
the identities

∇τ∇τφ ¼ φ̈ (6.3a)

∇τ∇iφ ¼ ∇iðφ̇ − hφÞ (6.3b)

∇τ∇τ∇τφ ¼ φ⃛ (6.3c)

∇τ∇τ∇iφ ¼ ∇iðφ̈ − 2hφ̇ − ḣφþ h2φÞ; (6.3d)

which are valid for any scalar function φ in the de Sitter
metric in coordinates (1.2), and the fact that φ̄ðuÞ is a
function only of u ¼ Hτ, we obtain

δEð1Þu
u ¼ 2 ˙̄φð□ϕÞ̇ þ 2ð□φ̄Þ̇ ϕ̇þ 2 ˙̄φϕ⃛ þ 2φ̄⃛ ϕ̇−2ð□φ̄Þϕ̈

− 2 ̈φ̄ð□ϕÞ − ð□φ̄Þð□ϕÞ − 4

3
ðφ̄⃛ ϕ̇þ2 ̈φ̄ ϕ̈þ ˙̄φ ϕ⃛ Þ

þ 6H2 ˙̄φ ϕ̇−
1

3
□ð ˙̄φ ϕ̇Þ þ 2

3
ð□ϕÞ̈ − 4H2ϕ̈

−
2

3
H2

□ϕ (6.4)

for the a ¼ b ¼ u component of this linearized stress
tensor. Since the off-diagonal metric components, gui,
are zero, it is slightly easier to compute in this case

Eð1Þ
ui ≡∇iVð1Þ ¼ ∂iVð1Þ; (6.5)

where

Vð1Þ ¼ − ˙̄φð□ϕÞ − ð□φ̄Þ̇ ϕ − 2 ˙̄φ½ϕ̈ − 2hϕ̇þ ðh2 − ḣÞϕ�

þ 2ð□φ̄Þðϕ̇ − hϕÞ þ 4

3
ð ̈φ̄ ϕ̇þ ˙̄φ ϕ̈−h ˙̄φ ϕ̇Þ

− 4H2 ˙̄φϕ −
2

3
½ð□ϕÞ̇ − h□ϕ� þ 4H2ðϕ̇ − hϕÞ:

(6.6)

The linearized energy density perturbation in a given
ðklmlÞ mode can be obtained from this component by
using the conservation equation ∇aTð1Þau ¼ 0 with
Tð1Þab ¼ b0Eð1Þab, or

H
∂εð1Þ
∂u þ 3hðϵð1Þ þ pð1ÞÞ ¼ b0

Δ3

a2
Vð1Þ (6.7)

together with the condition,

pð1Þ ¼ 1

3
εð1Þ; (6.8)

following from the vanishing of the trace, with the
result that

εð1Þklml
¼ b0

Ha4

Z
u

−∞
dua2Δ3V

ð1Þ
klml

¼ −b0
ðk2 − 1Þ
Ha4

Z
u

−∞
dua2Vð1Þ

klml
. (6.9)

Substituting (5.11) and (5.17) into (6.6), we obtain in
particular the contributions

−
2

3
˙̄φϕ̈¼ 2H3

3
k2sech2u tanhuð1∓2sech2uÞ

×

�
aklmlffiffiffi
2

p
k
e−iðk−1ÞηYklml

þbklmlffiffiffi
2

p
k
e−iðkþ1ÞηYklml

þ c:c:

�
þ�� � (6.10)

and

−
2

3
ð□ϕÞ̇ ¼ 2H3

3
k2sech2u

�
−i

aklmlffiffiffi
2

p
k
e−ikηYklml

þ i
bklmlffiffiffi
2

p
k
e−ikηYklml

þ c:c:

�
þ � � � ; (6.11)

both of which are shown to leading order in k. The ellipsis
and all other terms in (6.6) are subleading in k for k ≫ 1.
Since these terms are linear in k for large k, and because of
the additional factor of k2 from (6.9), these leading terms in

k in εð1Þk are proportional to k3. Next taking into account the
time dependence, we observe that since e�iη ¼ sechu�
i tanh u → ∓i as u → −∞, the leading sech2u behavior of

Vð1Þ
klml

cancels in the sum of (6.10) and (6.11), so that the
integrand of (6.9) vanishes at its lower limit, making the
integral convergent. The surviving subleading term then
gives a contribution to (6.9) of
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εð1Þklml
≃ −

b0k3

a4

ffiffiffi
2

p

3

Z
u

−∞
du sechu tanhu½ðaklml

þ bklml
Þ

× e−ikηYklml
þ c:c:�

≃ b0
ffiffiffi
2

p

3
H4k3sech5u½ðaklml

þ bklml
ÞikYklml

þ c:c:�
(6.12)

as u → −∞. The integral in (6.12) can be computed exactly
for u ¼ 0 with the result

εð1Þklml
ju¼0 → −b0H4

ffiffiffi
2

p

3
k2½ðaklml

þ bklml
Þikþ1Yklml

þ c:c:�
(6.13)

for k ≫ 1. Since the contribution of this Oð4Þ breaking
leading term in k to the total linearized energy density is

εð1Þ ¼
X∞
k¼1

Xk−1
l¼0

Xl

ml¼−l
εð1Þklml

(6.14)

it falls off proportional to a−5 from (6.12) and hence a
factor of a−1 faster than theOð4Þ symmetric terms in (5.14)
as u → −∞. From (6.13) at u ¼ 0 its maximum value
grows with the maximum momentum K for which the
coefficients aklml

or bklml
are nonzero, proportional to

εð1Þju¼0 ∼ −b0H4
XK
k¼1

Xk−1
l¼0

Xl

ml¼−l
k2 ∼ −b0H4

Z
K

k¼1

dkk4

≃ −b0H4
K5

5
(6.15)

and hence can easily exceed (5.14) at the symmetric point
u ¼ 0 if K ≫ 1. The backreaction of these Oð4Þ breaking
terms in the stress tensor becomes significant when

8πGH2jb0jK
5

5
jaKlml

j ∼ 8πGH2jb0jK
5

5
jbKlml

j≳ 1 (6.16)

which is even easier to satisfy for a larger range of state
coefficients. Thus these k-dependent Oð4Þ breaking terms
begin smaller and, for large enough K, grow larger to
dominate the a−4 de Sitter breaking Oð4Þ symmetric terms
(5.14) in the stress tensor as a decreases from infinity at I−.
We conclude that the general Oð4Þ invariant vacuum

states jfi defined by (3.20)–(3.26) are dynamically unsta-
ble to producing large deviations in the stress tensor, even
more so than the Oð4; 1Þ invariant jυi. Hence the Oð4Þ
symmetry subgroup and spatial homogeneity is also spon-
taneously broken in eternal de Sitter space. This conclusion
which follows from the stress tensor of the anomaly could
also be obtained by calculating the expectation value

hTabiR for Oð4Þ noninvariant states in the underlying
QFT in de Sitter space.

VII. CONCLUSIONS

The main conclusion of our analysis of possible states in
both de Sitter space and in a constant, uniform electric field
is that the most symmetric state in such persistent back-
ground fields is not the stable vacuum state. Unlike flat
Minkowski space where the Poincaré invariant vacuum is
determined by a physical minimization of the energy, no
such conserved Hamiltonian bounded from below exists in
either de Sitter space or in a constant, uniform electric field.
Instead both of these systems are characterized by a mixing
of particle and antiparticle modes with respect to any
proposed Hamiltonian generator, and are therefore unstable
to spontaneous particle pair creation from the vacuum
[8–10]. In each case the persistent or eternal background
classical field provides an inexhaustible supply of energy
to create pairs at a finite rate and subsequently accelerate
them to ultrarelativistic particle energies. In this situation
one should expect the symmetric state to be unstable to
perturbations and capable of generating large backreaction
effects, even in a semiclassical mean field approximation in
which particle self-interactions are neglected. The study of
particle creation in real time and the resulting vacuum
decay rate given in an accompanying publication [9] is
perhaps the clearest path to the instability of eternal de
Sitter space.
In this work we have provided two additional approaches

to an analysis of the instability. These are both based not on
any particular definition of particles but on the study of
perturbations of the maximally symmetric jυi states and
the conserved currents they produce. In the electric field
background this state is constructed in Sec. II and is a self-
consistent solution of the semiclassical Maxwell equa-
tions (2.23b) just as the Oð4; 1Þ invariant CTBD state is a
self-consistent solution of the semiclassical Einstein equa-
tions (1.7), with a shifted cosmological constant. In each
case there are large classes of perturbations of the symmetric
state that produce an electric current hjzi or stress tensor
hTabi that are initially zero or negligibly small, but which
grow larger than any prescribed finite value. In each case this
is due to the blueshifting of field modes to ultrarelativistic
energies. In de Sitter space this occurs clearly in the
contracting phase u < 0, and requires that backreaction of
the energy-momentum through the semiclassical Einstein
equations (1.7) be taken into account. Hence the assumption
of a fixed de Sitter background is violated, eternal de Sitter
space is unstable to perturbations satisfying (4.10), which
produce large backreaction effects, and the classicalOð4; 1Þ
symmetry is broken by quantum fluctuations.
The second approach to instability of the maximally

symmetric state in both the electric field and de Sitter
backgrounds is through the relation to a quantum anomaly.
The chiral anomaly and bosonization method in the
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two-dimensional Schwinger model shows that the invari-
ance of the electric field background is broken by quantum
effects. In the approximation of a fixed background field
the solutions of the anomaly equation (2.45) for the
effective boson field which are spatially homogeneous
predict the linear growth with time (2.47), found also by
direct study of the perturbations of the symmetric state.
Even at the level of the effective action (2.48), the appearance
of the Green’s function □

−1 of the two-dimensional wave
operator makes it clear that there will be infrared sensitivity
to boundary and/or initial conditions associated with the
anomaly.
In the gravitational case it is the conformal trace anomaly

which produces long lived infrared effects sensitive to
either boundary or initial conditions. It is important that
the kinematics of the persistent de Sitter background will
always produce ultrarelativistic energies for large enough k
so that the stress tensor eventually behaves like that of a
massless conformal field which is described by the stress
tensor of the anomaly. From the nonlocal form (5.1) and the
infrared properties of the conformal operator Δ4 and its
inverse, it is already clear without detailed calculation that
de Sitter invariance is broken. As for the two-dimensional
chiral anomaly one can introduce a composite effective
bosonic field φ whose equation of motion (5.6) has a
constant source and therefore possesses no de Sitter
invariant solutions. Since the Eq. (5.6) is de Sitter invariant
but none of its solutions are, the anomaly provides a
mechanism for spontaneous breaking of de Sitter symmetry
[48]. The behavior of the Oð4Þ symmetric solutions which
break de Sitter invariance is easily found and the same
conclusion of the instability of global de Sitter space to
these state perturbations follows. The anomaly approach is
quite general and shows that the same large backreaction
effect and instability to initial state perturbations occurs in
de Sitter space for fields of any spin.
In both cases it is essential that moderate or small

physical momenta are blueshifted to very large physical
momenta, arbitrarily large if backreaction is turned off and
the background field persists indefinitely. This unbounded-
ness and relation to anomalies is a direct consequence of
the infinite reservoir of arbitrarily high momentum or short
distance modes in any vacuum state of QFT with no UV
cutoff. The physical momentum which first produces large
backreaction effects is of order

ffiffiffiffiffiffiffiffiffiffiffiffi
HMPl

p
. There is thus an

interesting interplay of UV and IR physics in these effects,
as has been noticed by other authors [49,50].
The instability of the de Sitter invariant state to large

backreaction effects shows that the Oð4; 1Þ symmetry of
global de Sitter space is broken by quantum perturbations
of the state. Of course, one can still construct fully Oð4; 1Þ
invariant theories in eternal fixed de Sitter spacetime
mathematically by continuation from the Euclidean S4,
order by order in perturbation theory [51,52]. By this
construction the very state perturbations responsible for the

instability of de Sitter space in real time are disallowed by
the Euclidean regularity conditions. If one requires these
regularity conditions, either explicitly by analytic continu-
ation from S4, or implicitly in an in-in formalism in the
Poincaré patch [53], and fixes the geometry to be de Sitter
exactly, also disallowing the possibility of any dynamical
backreaction through the semiclassical Einstein equations,
it is not surprising then to find no sign of the instability we
have discussed in this paper, in which these very restrictive
assumptions are relaxed. This shows that it is not matter
self-interactions per se which are critical for the instability,
but rather the initial or boundary conditions imposed on
states and Green’s functions. If Euclidean boundary con-
ditions are imposed, matter interactions lead to no apparent
instability [51,52]. Conversely, instability is seen once
those restricted boundary/initial conditions are relaxed,
even in free QFT, and the backreaction effects of the
energy-momentum tensor on the background de Sitter
geometry are considered.
In [51,52] it has been further argued that any correlation

function of an interacting massive scalar field theory
approaches the expected CTBD value at late times or large
spacetime separation at any order of perturbation theory,
for an appropriately dense set of states. The approach to
Oð4; 1Þ invariance at late times is similar to that found
earlier in [13], where it was proven that for all fourth order
UV finite (and therefore Hadamard) adiabatic initial states
with a spatially homogeneous and isotropic stress-energy
tensor, the renormalized stress-energy expectation value
hTa

bi for a free scalar field with m2 þ ξR > 0 asymptoti-
cally approaches its CTBD value in the expanding Poincaré
patch of de Sitter space (1.4). In this sense the CTBD state
is a late time attractor for hTa

bi in de Sitter space for a
free, massive scalar QFT, and appears to be quite stable.
The attractor or “cosmic no-hair” behavior at late times, i.e.
asymptotic future infinity Iþ in Fig. 2, found in [13] or at
large separations in [51,52] is clearly a result of the
cosmological redshift, which applies both in the expanding
Poincaré patch and the u > 0 half of the full manifold in
coordinates (1.2).
In this paper we have focused on the extreme sensitivity

to initial conditions and instability of the stress tensor to
perturbations due to the converse blueshifting effect in the
contracting half u < 0 of the full de Sitter manifold. Due to
this initial state sensitivity the backreaction must be taken
into account long before the expanding phase even begins.
If one nevertheless simply begins the Universe’s evolution
with only an expanding section of de Sitter space, the
question naturally arises as to whether and how the global
de Sitter instability we have demonstrated in this and the
preceding paper [9] are relevant to inflation, cosmological
vacuum energy, or cosmology more generally.
In this connection we make the following observations:
(i) de Sitter space is a homogeneous space, all points of

which are a priori equivalent. There is thus no
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invariant meaning to the contracting vs the expand-
ing phase, these distinctions becoming meaningful
only after initial conditions on a definite time slicing
are imposed, which break Oð4; 1Þ invariance.

(ii) The present study shows that Oð4; 1Þ invariance is
necessarily broken by quantum fluctuations, the
larger k values with larger spatial inhomogeneities
producing the larger energy-momentum tensor de-
viations from the de Sitter invariant equation of state
p ¼ −ρ, so that the assumption of de Sitter invari-
ance and relevance to cosmology of the Oð4; 1Þ
invariant CTBD state is open to question.

(iii) The anomaly stress tensor shows that there are also
spatially inhomogeneous perturbations of the initial
state that breakOð4Þ symmetry and that vanish more
rapidly in the infinite past and blueshift to even
larger values at later times than the Oð4Þ symmetric
ones. This shows that there is no spatially homo-
geneousOð4Þ invariant stable vacuum state in global
de Sitter space either.

(iv) In the expanding Poincaré patch a small amplitude
deviation of the state from the CTBD state in
sufficiently high jkj modes also produces large
deviations of the stress tensor (proportional to
a−4 ¼ e−4Hτ) at sufficiently early times τ → −∞,
highlighting the potentially extreme sensitivity of
inflation to its UV initial conditions.

(v) In static coordinates (1.5) which cover one quarter of
de Sitter space, cf. Fig. 2, entirely contained within
the expanding Poincaré patch, individual field
modes are infinitely blueshifted in the vicinity of
the horizon r ¼ H−1 relative to r ¼ 0. Since the
instability studied in this paper arises when slight
perturbations become strongly blueshifted, a similar
instability to spatially inhomogeneous perturbations
on the horizon scale should be expected.

(vi) Fluctuations in the stress tensor hTabðxÞTcdðx0Þi are
certainly spatially inhomogeneous for spacelike
separations on the horizon scale H−1.

(vii) In a previous study of linear response in de Sitter
space [15], incorporating these fluctuations in the
stress tensor away from its mean value, we have
found correspondingly large stress tensor perturba-
tions in the vicinity of the cosmological horizon in
the static coordinates of de Sitter space, suggesting
that both de Sitter invariance and spatial homo-
geneity are broken at the horizon scale H−1.

(viii) These new scalar cosmological horizon modes
associated with the anomaly effective field and
stress tensor are capable of generating fluctuations
on the horizon which describe the observed anisot-
ropies in the CMB [54].

These considerations taken together lead to the con-
clusion that de Sitter space is neither eternal nor able to
preserve its spatial homogeneity under quantum state
perturbations. They suggest instead that spatially inhomo-
geneous models of cosmological dark energy on the
Hubble horizon scale H−1, possessing at most only rota-
tional Oð3Þ symmetry, may be required for a stable
quantum vacuum state, and for determining the magnitude
of cosmological dark energy in the universe.
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