! This program takes the values of the Bunch-Davies modes at u = -1 and ! uses them as initial conditions for the mode equation. The mode equation is ! then solved in terms of proper time u to get the exact Bunch-Davies modes for all times. c I've decided for now the best way to do it is to have different versions. This version c is for m = 10 and k = 10. There will be 6 combinations total. Implicit None Integer i,im, nu, it, nk, nbad,nok,junk real*8 ustart,uin,u,delu,m,uout,y(4) Real*8 pi,eps,h1,hmin,k Real*8 gamma Real*8 Ckr,Cki,vr,vpr,vi,vpi,B2k common/intp/k common/mass/m EXTERNAL DERIVS EXTERNAL BSSTEP Open(unit = 9, file = "BDmodes_v.dat") open(unit = 10, file = "BDmodes_v.out") open(unit = 11, file = "C_m_10_k_10.out") open(unit = 12, file = "B_m_10_k_10.out") read(9,*) junk read(9,*) uin,delu,nu read(9,*) junk read(9,*),eps,h1,hmin pi = 2.d0*dasin(1.d0) Print *,'pi = ',pi m = 1.d1 gamma = dsqrt(m**2 - 0.25d0) k = 1.d1 c We start the integration at u = -1 ustart = -1.d0 c Y(1) is vr, Y(2) is vpr, Y(3) is vi, Y(4) is vpi y(1) = 0.08347325657365478d0 y(2) = 0.8813437120328692d0 y(3) = 0.06684568699774554d0 y(4) = -0.9244764216908276d0 CALL ODEINT(Y,4,ustart,uin,EPS,H1,HMIN,NOK,NBAD,DERIVS,BSSTEP) u = uin uout = uin + delu vr = Y(1) vpr = Y(2) vi = Y(3) vpi = Y(4) write(10,*) k, u, y(1), y(2), y(3), y(4) c Now compute the coefficients of Ckr and Cki Ckr = -(k**2*vi**2)/(8.d0*Pi**2) - (gamma**2*k**2*vi**2)/(2.d0*Pi**2) - - (k**2*vpi**2)/(2.d0*Pi**2) + (k**2*vpr**2)/(2.d0*Pi**2) + - (k**2*vr**2)/(8.d0*Pi**2) + (gamma**2*k**2*vr**2)/(2.d0*Pi**2) - - (k**4*vi**2)/(2.d0*Pi**2*dcosh(u)**2) + (k**4*vr**2)/(2.d0*Pi**2*dcosh(u)**2) - - (k**2*vi*vpi*dtanh(u))/Pi**2 + (k**2*vpr*vr*dtanh(u))/Pi**2 - - (k**2*vi**2*dtanh(u)**2)/(2.d0*Pi**2) + (k**2*vr**2*dtanh(u)**2)/(2.d0*Pi**2) Cki = -((k**2*vpi*vpr)/Pi**2) - (k**2*vi*vr)/(4.d0*Pi**2) - - (gamma**2*k**2*vi*vr)/Pi**2 - (k**4*vi*vr)/(Pi**2*dcosh(u)**2) - - (k**2*vi*vpr*dtanh(u))/Pi**2 - (k**2*vpi*vr*dtanh(u))/Pi**2 - - (k**2*vi*vr*dtanh(u)**2)/Pi**2 Write(11,29) u,k,Ckr,Cki B2k = (k**2*vi**2)/(8.d0*Pi**2) + (gamma**2*k**2*vi**2)/(2.d0*Pi**2) + - (k**2*vr**2)/(8.d0*Pi**2) + (gamma**2*k**2*vr**2)/(2.d0*Pi**2) + - (k**4*vi**2/dcosh(u)**2)/(2.d0*Pi**2) + - (k**4*vr**2/dcosh(u)**2)/(2.d0*Pi**2) + - (k**2*vi**2*dtanh(u)**2)/(2.d0*Pi**2) + (k**2*vr**2*dtanh(u)**2)/(2.d0*Pi**2) - + k**2*(vpr**2+vpi**2 + 2.d0*dtanh(u)*(vr*vpr+vi*vpi))/(2.d0*Pi**2) Write(12,29) u,k,B2k do it = 1,nu CALL ODEINT(Y,4,u,uout,EPS,H1,HMIN,NOK,NBAD,DERIVS,BSSTEP) write(10,*) k, uout, y(1), y(2), y(3), y(4) u = uout uout = uout + delu vr = Y(1) vpr = Y(2) vi = Y(3) vpi = Y(4) c Now compute the coefficients of Ckr and Cki Ckr = -(k**2*vi**2)/(8.d0*Pi**2) - (gamma**2*k**2*vi**2)/(2.d0*Pi**2) - - (k**2*vpi**2)/(2.d0*Pi**2) + (k**2*vpr**2)/(2.d0*Pi**2) + - (k**2*vr**2)/(8.d0*Pi**2) + (gamma**2*k**2*vr**2)/(2.d0*Pi**2) - - (k**4*vi**2)/(2.d0*Pi**2*dcosh(u)**2) + (k**4*vr**2)/(2.d0*Pi**2*dcosh(u)**2) - - (k**2*vi*vpi*dtanh(u))/Pi**2 + (k**2*vpr*vr*dtanh(u))/Pi**2 - - (k**2*vi**2*dtanh(u)**2)/(2.d0*Pi**2) + (k**2*vr**2*dtanh(u)**2)/(2.d0*Pi**2) Cki = -((k**2*vpi*vpr)/Pi**2) - (k**2*vi*vr)/(4.d0*Pi**2) - - (gamma**2*k**2*vi*vr)/Pi**2 - (k**4*vi*vr)/(Pi**2*dcosh(u)**2) - - (k**2*vi*vpr*dtanh(u))/Pi**2 - (k**2*vpi*vr*dtanh(u))/Pi**2 - - (k**2*vi*vr*dtanh(u)**2)/Pi**2 Write(11,29) u,k,Ckr,Cki B2k = (k**2*vi**2)/(8.d0*Pi**2) + (gamma**2*k**2*vi**2)/(2.d0*Pi**2) + - (k**2*vr**2)/(8.d0*Pi**2) + (gamma**2*k**2*vr**2)/(2.d0*Pi**2) + - (k**4*vi**2/dcosh(u)**2)/(2.d0*Pi**2) + - (k**4*vr**2/dcosh(u)**2)/(2.d0*Pi**2) + - (k**2*vi**2*dtanh(u)**2)/(2.d0*Pi**2) + (k**2*vr**2*dtanh(u)**2)/(2.d0*Pi**2) - + k**2*(vpr**2+vpi**2 + 2.d0*dtanh(u)*(vr*vpr+vi*vpi))/(2.d0*Pi**2) Write(12,29) u,k,B2k end do 29 Format(1x,20(d12.5,2x)) stop end SUBROUTINE DERIVS(u,Y,DYDT,NVAR) INTEGER nvar REAL*8 u, Y(4), DYDT(4), k, m, a, h COMMON/IntP/k COMMON/mass/m a = dcosh(u) h = dtanh(u) DYDT(1) = Y(2) DYDT(2) = -3.d0*h*Y(2)-((k**2-1.d0)/dcosh(u)**2 + (m**2+2.d0))*Y(1) DYDT(3) = Y(4) DYDT(4) = -3.d0*h*Y(4)-((k**2-1.d0)/dcosh(u)**2 + (m**2+2.d0))*Y(3) RETURN END