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Summary

We establish communication lower bounds for
matricized-tensor times Khatri-Rao product (MTTKRP)

key kernel for computing CP decomposition

We present optimal parallel dense MTTKRP algorithm
attains the lower bound to within constant factors

We implement and benchmark optimal CP-ALS algorithm
remains computation bound and scales well
dimension tree optimization avoids redundant computation
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CP Decomposition: sum of outer products

Matrix: M ≈
R∑

r=1

ur (σr vT
r )

Tensor: X ≈
R∑

r=1

ur ◦ vr ◦wr

This is known as the CANDECOMP or PARAFAC or
canonical polyadic or CP decomposition
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CP Optimization Problem

For fixed rank R, we want to solve

min
U,V,W

∥∥∥∥∥X−
R∑

r=1

ur ◦ vr ◦wr

∥∥∥∥∥
which is a nonlinear, nonconvex optimization problem

in the matrix case, the SVD gives us the optimal solution

in the tensor case, need iterative optimization scheme
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Alternating Least Squares (ALS)

Fixing all but one factor matrix, we have a linear LS problem:

min
V

∥∥∥∥∥X−
R∑

r=1

ûr ◦ vr ◦ ŵr

∥∥∥∥∥
or equivalently

min
V

∥∥∥X(2) − V(Ŵ� Û)T
∥∥∥

F

� is the Khatri-Rao product, a column-wise Kronecker product
or row-wise Hadamard (element-wise) product

ALS works by alternating over factor matrices, updating one at
a time by solving the corresponding linear LS problem
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CP-ALS

Repeat
1 Solve U(VTV ∗WTW) = X(1)(W� V) for U
2 Solve V(UTU ∗WTW) = X(2)(W� U) for V
3 Solve W(UTU ∗ VTV) = X(3)(V� U) for W

Linear least squares problems solved via normal equations
using identity (A� B)T(A� B) = ATA ∗ BTB,

where ∗ is Hadamard product

All optimization schemes that compute the gradient
must also compute MTTKRP in all modes: e.g.,

∂f
∂V

= V(UTU ∗WTW)− X(2)(W� U)
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MTTKRP bottleneck

How do we compute MTTKRP efficiently?

How do we parallelize MTTKRP efficiently?
how do we load balance computation?
how do we minimize communication?
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MTTKRP via Matrix Multiplication

MTTKRP: M = X(2)(W� U)

Standard approach to MTTKRP for dense tensors
1 “form” matricized tensor (a matrix)
2 compute Khatri-Rao product (a matrix)
3 call matrix-matrix multiplication subroutine

Can we communicate less by exploiting tensor structure?
(avoiding forming explicit Khatri-Rao product)
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MTTKRP for 3-way Tensors

Matrix equation:
M = X(2)(W� U)

Element equation:

mjr =
I∑

i=1

K∑
k=1

xijkuir wkr

Example pseudocode:

for i = 1 to I do
for j = 1 to J do

for k = 1 to K do
for r = 1 to R do

M(j , r) += X(i , j , k) · U(i , r) ·W(k , r)
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MTTKRP for N-way Tensors

Matrix equation:

M(n) = X(n)(U(N) � · · · � U(n+1) � U(n−1) � · · · � U(1))

Element equation:

m(n)
inr =

∑
xi1...iN

∏
m 6=n

u(m)
imr

Example pseudocode:

for i1 = 1 to I1 do
. . .

for iN = 1 to IN do
for r = 1 to R do

M(n)(in, r) += X(i1, . . . , iN) · U(1)(i1, r) · · ·U(N)(iN , r)
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Communication Lower Bounds for MTTKRP

MTTKRP is a set of nested loops that accesses arrays
Nick’s PhD thesis was “Communication-Optimal Loop Nests"
References: thesis [Kni15] and paper [CDK+13]

From Nick’s thesis...
tabulate how the arrays are accessed
use Hölder-Brascamp-Lieb-type inequality in LB proof
solve linear program to get tightest lower bound
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MTTKRP Lower Bound Proofs

Lower bound argument follows [CDK+13] almost directly

Gotcha: the number of nested loops is not constant
Fixed using a technique similar to one used for tightening
the constant in matrix multiplication lower bound [SvdG17]

Gotcha: memory-independent bounds most relevant
inspiration from matrix multiplication [BDH+12, DEF+13]

Key assumption: algorithm is not allowed to pre-compute
and re-use temporary values

e.g., forming explicit Khatri-Rao product
e.g., computing and re-using “partial” MTTKRP
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Parallel Communication Lower Bound

Theorem
Any parallel MTTKRP algorithm involving a tensor with
Ik = I1/N for all k and that evenly distributes one copy of the
input and output performs at least

Ω

((
NIR
P

) N
2N−1

+ NR
(

I
P

)1/N
)

sends and receives. (Either term can dominate.)

N is the number of modes

I is the number of tensor entries

Ik is the dimension of the k th mode

R is the rank of the CP model

P is the number of processors
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Communication-Optimal Parallel Algorithm (3D)

U(1)

M(2)
U
(3)

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U(1)

3 All-Gathers all the rows
needed from U(3)

4 Computes its contribution to
rows of M(2) (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M(2) evenly
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Theoretical Comparisons

Lower Bound New Algorithm Standard (MM∗)
Words

Ω
(

NR
( I

P

)1/N
)

O
(

NR
( I

P

)1/N
)

O
(
I1/NR

)
(“small” P)

Words
Ω

((NIR
P

) N
2N−1

)
O
((NIR

P

) N
2N−1

)
O
(( IR

P

)2/3
)

(“large” P)

For relatively small P (or small R) and even dimensions, parallel
“stationary” algorithm attains lower bound

same algorithm for sparse [SK16] and dense 3D [LKL+17]

For larger P (or R), then we need more general algorithm to
attain lower bound

involves communicating the tensor

∗communication-optimal matrix multiplication from [DEF+13]
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Modeled Communication Costs
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Matrix Multiplication
Stationary Tensor
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What about for a full CP-ALS iteration?

A full iteration of CP-ALS includes computing all N MTTKRPs

Lower Bound
Lower bound for single MTTKRP applies to computing all N

Algorithm
We can compute all N with same communication as just 1

lots of data overlap across MTTKRPs
more computation required, but not that much more
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Avoiding re-communication across MTTKRPs

while not converged do
for n = 1 to N do

% Compute new factor matrix in nth mode
M = Local-MTTKRP(Xp1···pN , {U

(i)
pi
},n)

M(n)
p = Reduce-Scatter(M,PROC-SLICE(n,pn))

S(n) = G(1) ∗ · · · ∗G(n−1) ∗G(n+1) ∗ · · · ∗G(N)

U(n)
p = Local-Update(S(n),M(n)

p )
% Organize data for later modes

H = U(n)
p

T
U(n)

p

G(n) = All-Reduce(H,ALL-PROCS)

U(n)
pn = All-Gather(U(n)

p ,PROC-SLICE(n,pn))

Compute factor matrix, communicate it once for use in all other N−1 modes
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Avoiding recomputation across MTTKRPs

We re-use communication and computation across MTTKRPs

M(1) = X(1)

(
U(3) � U(2)

)
and M(2) = X(2)

(
U(3) � U(1)

)

We organize intermediate values in “dimension tree” [PTC13, LCP+17, KU18]
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{1,2,3,4,5}

{1,2} {3,4,5}

M(1) M(2) M(3) {4,5}

M(4) M(5)

PM PM

mTTV mTTV mTTV mTTV

mTTV mTTV
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Implementation

Uses CP-ALS for non-negative CP problems
minimize least squares loss function
use block principal pivoting [KP11] to solve subproblems

Avoids redundant communication across MTTKRPs

Avoids redundant computation across MTTKRPs
using dimension trees
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Strong Scaling Results (3D)
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Figure: 1024×1024×1024 tensor on 2k×2k×2k proc grids (R = 32)
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Strong Scaling Results (5D)
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Figure: 64× 64× 64× 64× 64 tensor (R = 32)
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Varying Rank Results (3D)
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Figure: 30,012× 1200× 500 tensor on 120× 6× 2 proc grid
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Varying Rank Results (4D)
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Summary

We establish communication lower bounds for
matricized-tensor times Khatri-Rao product (MTTKRP)

key kernel for computing CP decomposition

We present optimal parallel dense MTTKRP algorithm
attains the lower bound to within constant factors
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remains computation bound and scales well
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Fibers

Mode-1 Fibers Mode-2 Fibers Mode-3 Fibers 

A tensor can be decomposed into the fibers of each mode
(fibers are vectors – fix all indices but one)
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Matricized Tensors

A tensor can be reshaped into a matrix,
called a matricized tensor or unfolding, for a given mode,

where each column is a fiber
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Sequential Communication Lower Bound

Theorem
For sufficiently large I, any sequential MTTKRP algorithm
performs at least

Ω

(
NIR

M1−1/N

)
loads and stores to/from slow memory.

N is the number of modes

I is the number of tensor entries

R is the rank of the CP model

M is the size of the fast memory
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Communication-Optimal Sequential Algorithm (3D)

b

b
b

·U(1)

M(2)

U
(3)

1 Loop over b × · · · × b blocks
of the tensor

2 With block in memory, loop
over subcolumns of input
factor matrices, updating
corresponding subcolumn of
output matrix

choose b ≈ M1/N
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Theoretical Comparisons

Lower Bound New Algorithm Standard (MM)

Flops - NIR 2IR

Words Ω
(

NIR
M1−1/N

)
O
(

I + NIR
M1−1/N

)
O
(

I + IR
M1/2

)
Temp Mem - - IR

In

New algorithm performs N/2 more flops than standard
For relatively small R, I term dominates communication

we expect this to be the typical case in practice
For relatively large R, new algorithm communicates less

better exponent on M
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MTTKRP Loop Nest

for i1 = 1 to I1 do
. . .

for iN = 1 to IN do
for r = 1 to R do

M(n)(in, r) += X(i1, . . . , iN) ∗ U(1)(i1, r) ∗ · · · ∗ U(N)(iN , r)

∆ =

i1 · · · in · · · iN r
U(1) 1 1

...
. . .

...
M(n) 1 1

...
. . .

...
U(N) 1 1
X 1 · · · 1 · · · 1
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