
Communication-Optimal Algorithms for
CP Decompositions of Dense Tensors

Grey Ballard, Koby Hayashi, Ramakrishnan Kannan,
Nicholas Knight, Kathryn Rouse

May 8, 2018

SIAM Conference on Applied Linear Algebra
MS04: Constrained Low-Rank Matrix and Tensor Approximations

Summary

We establish communication lower bounds for
matricized-tensor times Khatri-Rao product (MTTKRP)

key kernel for computing CP decomposition

We present optimal parallel dense MTTKRP algorithm
attains the lower bound to within constant factors

We implement and benchmark optimal CP-ALS algorithm
remains computation bound and scales well
dimension tree optimization avoids redundant computation

Ballard 1

CP Decomposition: sum of outer products

Matrix: M ≈
R∑

r=1

ur (σr vT
r)

Tensor: X ≈
R∑

r=1

ur ◦ vr ◦wr

This is known as the CANDECOMP or PARAFAC or
canonical polyadic or CP decomposition

Ballard 2

CP Optimization Problem

For fixed rank R, we want to solve

min
U,V,W

∥∥∥∥∥X−
R∑

r=1

ur ◦ vr ◦wr

∥∥∥∥∥
which is a nonlinear, nonconvex optimization problem

in the matrix case, the SVD gives us the optimal solution

in the tensor case, need iterative optimization scheme

Ballard 3

Alternating Least Squares (ALS)

Fixing all but one factor matrix, we have a linear LS problem:

min
V

∥∥∥∥∥X−
R∑

r=1

ûr ◦ vr ◦ ŵr

∥∥∥∥∥
or equivalently

min
V

∥∥∥X(2) − V(Ŵ� Û)T
∥∥∥

F

� is the Khatri-Rao product, a column-wise Kronecker product
or row-wise Hadamard (element-wise) product

ALS works by alternating over factor matrices, updating one at
a time by solving the corresponding linear LS problem

Ballard 4

CP-ALS

Repeat
1 Solve U(VTV ∗WTW) = X(1)(W� V) for U
2 Solve V(UTU ∗WTW) = X(2)(W� U) for V
3 Solve W(UTU ∗ VTV) = X(3)(V� U) for W

Linear least squares problems solved via normal equations
using identity (A� B)T(A� B) = ATA ∗ BTB,

where ∗ is Hadamard product

All optimization schemes that compute the gradient
must also compute MTTKRP in all modes: e.g.,

∂f
∂V

= V(UTU ∗WTW)− X(2)(W� U)

Ballard 5

MTTKRP bottleneck

How do we compute MTTKRP efficiently?

How do we parallelize MTTKRP efficiently?
how do we load balance computation?
how do we minimize communication?

Ballard 6

MTTKRP via Matrix Multiplication

MTTKRP: M = X(2)(W� U)

Standard approach to MTTKRP for dense tensors
1 “form” matricized tensor (a matrix)
2 compute Khatri-Rao product (a matrix)
3 call matrix-matrix multiplication subroutine

Can we communicate less by exploiting tensor structure?
(avoiding forming explicit Khatri-Rao product)

Ballard 7

MTTKRP for 3-way Tensors

Matrix equation:
M = X(2)(W� U)

Element equation:

mjr =
I∑

i=1

K∑
k=1

xijkuir wkr

Example pseudocode:

for i = 1 to I do
for j = 1 to J do

for k = 1 to K do
for r = 1 to R do

M(j , r) += X(i , j , k) · U(i , r) ·W(k , r)

Ballard 8

MTTKRP for N-way Tensors

Matrix equation:

M(n) = X(n)(U(N) � · · · � U(n+1) � U(n−1) � · · · � U(1))

Element equation:

m(n)
inr =

∑
xi1...iN

∏
m 6=n

u(m)
imr

Example pseudocode:

for i1 = 1 to I1 do
. . .

for iN = 1 to IN do
for r = 1 to R do

M(n)(in, r) += X(i1, . . . , iN) · U(1)(i1, r) · · ·U(N)(iN , r)

Ballard 8

Communication Lower Bounds for MTTKRP

MTTKRP is a set of nested loops that accesses arrays
Nick’s PhD thesis was “Communication-Optimal Loop Nests"
References: thesis [Kni15] and paper [CDK+13]

From Nick’s thesis...
tabulate how the arrays are accessed
use Hölder-Brascamp-Lieb-type inequality in LB proof
solve linear program to get tightest lower bound

Ballard 9

MTTKRP Lower Bound Proofs

Lower bound argument follows [CDK+13] almost directly

Gotcha: the number of nested loops is not constant
Fixed using a technique similar to one used for tightening
the constant in matrix multiplication lower bound [SvdG17]

Gotcha: memory-independent bounds most relevant
inspiration from matrix multiplication [BDH+12, DEF+13]

Key assumption: algorithm is not allowed to pre-compute
and re-use temporary values

e.g., forming explicit Khatri-Rao product
e.g., computing and re-using “partial” MTTKRP

Ballard 10

MTTKRP Lower Bound Proofs

Lower bound argument follows [CDK+13] almost directly

Gotcha: the number of nested loops is not constant
Fixed using a technique similar to one used for tightening
the constant in matrix multiplication lower bound [SvdG17]

Gotcha: memory-independent bounds most relevant
inspiration from matrix multiplication [BDH+12, DEF+13]

Key assumption: algorithm is not allowed to pre-compute
and re-use temporary values

e.g., forming explicit Khatri-Rao product
e.g., computing and re-using “partial” MTTKRP

Ballard 10

MTTKRP Lower Bound Proofs

Lower bound argument follows [CDK+13] almost directly

Gotcha: the number of nested loops is not constant
Fixed using a technique similar to one used for tightening
the constant in matrix multiplication lower bound [SvdG17]

Gotcha: memory-independent bounds most relevant
inspiration from matrix multiplication [BDH+12, DEF+13]

Key assumption: algorithm is not allowed to pre-compute
and re-use temporary values

e.g., forming explicit Khatri-Rao product
e.g., computing and re-using “partial” MTTKRP

Ballard 10

MTTKRP Lower Bound Proofs

Lower bound argument follows [CDK+13] almost directly

Gotcha: the number of nested loops is not constant
Fixed using a technique similar to one used for tightening
the constant in matrix multiplication lower bound [SvdG17]

Gotcha: memory-independent bounds most relevant
inspiration from matrix multiplication [BDH+12, DEF+13]

Key assumption: algorithm is not allowed to pre-compute
and re-use temporary values

e.g., forming explicit Khatri-Rao product
e.g., computing and re-using “partial” MTTKRP

Ballard 10

Parallel Communication Lower Bound

Theorem
Any parallel MTTKRP algorithm involving a tensor with
Ik = I1/N for all k and that evenly distributes one copy of the
input and output performs at least

Ω

((
NIR
P

) N
2N−1

+ NR
(

I
P

)1/N
)

sends and receives. (Either term can dominate.)

N is the number of modes

I is the number of tensor entries

Ik is the dimension of the k th mode

R is the rank of the CP model

P is the number of processors

Ballard 11

Communication-Optimal Parallel Algorithm (3D)

U(1)

M(2)
U
(3)

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U(1)

3 All-Gathers all the rows
needed from U(3)

4 Computes its contribution to
rows of M(2) (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M(2) evenly

Ballard 12

Communication-Optimal Parallel Algorithm (3D)

U(1)

M(2)
U
(3)

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U(1)

3 All-Gathers all the rows
needed from U(3)

4 Computes its contribution to
rows of M(2) (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M(2) evenly

Ballard 12

Communication-Optimal Parallel Algorithm (3D)

U(1)

M(2)
U
(3)

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U(1)

3 All-Gathers all the rows
needed from U(3)

4 Computes its contribution to
rows of M(2) (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M(2) evenly

Ballard 12

Communication-Optimal Parallel Algorithm (3D)

U(1)

M(2)
U
(3)

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U(1)

3 All-Gathers all the rows
needed from U(3)

4 Computes its contribution to
rows of M(2) (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M(2) evenly

Ballard 12

Communication-Optimal Parallel Algorithm (3D)

U(1)

M(2)
U
(3)

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U(1)

3 All-Gathers all the rows
needed from U(3)

4 Computes its contribution to
rows of M(2) (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M(2) evenly

Ballard 12

Communication-Optimal Parallel Algorithm (3D)

U(1)

M(2)
U
(3)

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U(1)

3 All-Gathers all the rows
needed from U(3)

4 Computes its contribution to
rows of M(2) (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M(2) evenly

Ballard 12

Theoretical Comparisons

Lower Bound New Algorithm Standard (MM∗)
Words

Ω
(

NR
(I

P

)1/N
)

O
(

NR
(I

P

)1/N
)

O
(
I1/NR

)
(“small” P)

Words
Ω

((NIR
P

) N
2N−1

)
O
((NIR

P

) N
2N−1

)
O
((IR

P

)2/3
)

(“large” P)

For relatively small P (or small R) and even dimensions, parallel
“stationary” algorithm attains lower bound

same algorithm for sparse [SK16] and dense 3D [LKL+17]

For larger P (or R), then we need more general algorithm to
attain lower bound

involves communicating the tensor

∗communication-optimal matrix multiplication from [DEF+13]

Ballard 13

Theoretical Comparisons

Lower Bound New Algorithm Standard (MM∗)
Words

Ω
(

NR
(I

P

)1/N
)

O
(

NR
(I

P

)1/N
)

O
(
I1/NR

)
(“small” P)

Words
Ω

((NIR
P

) N
2N−1

)
O
((NIR

P

) N
2N−1

)
O
((IR

P

)2/3
)

(“large” P)

For relatively small P (or small R) and even dimensions, parallel
“stationary” algorithm attains lower bound

same algorithm for sparse [SK16] and dense 3D [LKL+17]
For larger P (or R), then we need more general algorithm to
attain lower bound

involves communicating the tensor

∗communication-optimal matrix multiplication from [DEF+13]

Ballard 13

Modeled Communication Costs

20 25 210 215 220 225 230
106

107

108

109

Processors

W
or

ds
C

om
m

un
ic

at
ed

Modeled Strong-Scaling Comparison

Matrix Multiplication
Stationary Tensor
General Tensor

Ballard 14

What about for a full CP-ALS iteration?

A full iteration of CP-ALS includes computing all N MTTKRPs

Lower Bound
Lower bound for single MTTKRP applies to computing all N

Algorithm
We can compute all N with same communication as just 1

lots of data overlap across MTTKRPs
more computation required, but not that much more

Ballard 15

Avoiding re-communication across MTTKRPs

while not converged do
for n = 1 to N do

% Compute new factor matrix in nth mode
M = Local-MTTKRP(Xp1···pN , {U

(i)
pi
},n)

M(n)
p = Reduce-Scatter(M,PROC-SLICE(n,pn))

S(n) = G(1) ∗ · · · ∗G(n−1) ∗G(n+1) ∗ · · · ∗G(N)

U(n)
p = Local-Update(S(n),M(n)

p)
% Organize data for later modes

H = U(n)
p

T
U(n)

p

G(n) = All-Reduce(H,ALL-PROCS)

U(n)
pn = All-Gather(U(n)

p ,PROC-SLICE(n,pn))

Compute factor matrix, communicate it once for use in all other N−1 modes

Ballard 16

Avoiding recomputation across MTTKRPs

We re-use communication and computation across MTTKRPs

M(1) = X(1)

(
U(3) � U(2)

)
and M(2) = X(2)

(
U(3) � U(1)

)

We organize intermediate values in “dimension tree” [PTC13, LCP+17, KU18]

Ballard 17

Avoiding recomputation across MTTKRPs

We re-use communication and computation across MTTKRPs

M(1) = X(1)

(
U(3) � U(2)

)
and M(2) = X(2)

(
U(3) � U(1)

)

We organize intermediate values in “dimension tree” [PTC13, LCP+17, KU18]

{1,2,3}

{1,2} M(3)

M(1) M(2)

PM PM

mTTV mTTV

Ballard 17

PM = Partial MTTKRP mTTV = multi-Tensor-Times-Vector

Avoiding recomputation across MTTKRPs

We re-use communication and computation across MTTKRPs

M(1) = X(1)

(
U(3) � U(2)

)
and M(2) = X(2)

(
U(3) � U(1)

)
We organize intermediate values in “dimension tree” [PTC13, LCP+17, KU18]

{1,2,3,4,5}

{1,2} {3,4,5}

M(1) M(2) M(3) {4,5}

M(4) M(5)

PM PM

mTTV mTTV mTTV mTTV

mTTV mTTV

Ballard 17

PM = Partial MTTKRP mTTV = multi-Tensor-Times-Vector

Implementation

Uses CP-ALS for non-negative CP problems
minimize least squares loss function
use block principal pivoting [KP11] to solve subproblems

Avoids redundant communication across MTTKRPs

Avoids redundant computation across MTTKRPs
using dimension trees

Ballard 18

Strong Scaling Results (3D)

2−1 21 23 25 27 29 211 213

2−7

2−4

2−1

22

25

Cores

Ti
m

e
(s

)

DimTree
NoDimTree

NbAO-NTF [LKL+17]

Figure: 1024×1024×1024 tensor on 2k×2k×2k proc grids (R = 32)

Ballard 19

Strong Scaling Results (5D)

20 21 22 23 24 25
2−4

2−2

20

22

24

Nodes

Ti
m

e
(s

)

DimTree
NoDimTree

Figure: 64× 64× 64× 64× 64 tensor (R = 32)

Ballard 20

Varying Rank Results (3D)

10 20 30 40 50
2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Low Rank R

Ti
m

e(
s)

DimTree
NoDimTree

NbAO-NTF [LKL+17]

Figure: 30,012× 1200× 500 tensor on 120× 6× 2 proc grid

Ballard 21

Varying Rank Results (4D)

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3
·10−2

Rank R

Ti
m

e
(s

)

Partial MTTKRP multi-TTV Loc Update Factor Comm Gram Comm

Figure: 1344× 1024× 33× 9 tensor on 8× 8× 1× 1 proc grid
Ballard 22

Summary

We establish communication lower bounds for
matricized-tensor times Khatri-Rao product (MTTKRP)

key kernel for computing CP decomposition

We present optimal parallel dense MTTKRP algorithm
attains the lower bound to within constant factors

We implement and benchmark optimal CP-ALS algorithm
remains computation bound and scales well
dimension tree optimization avoids redundant computation

Ballard 23

References I

G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.
Brief announcement: strong scaling of matrix multiplication algorithms and memory-independent
communication lower bounds.
In Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’12,
pages 77–79, New York, NY, USA, June 2012. ACM.

M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick.
Communication lower bounds and optimal algorithms for programs that reference arrays - part 1.
Technical Report UCB/EECS-2013-61, EECS Department, University of California, Berkeley, May 2013.

J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and O. Spillinger.
Communication-optimal parallel recursive rectangular matrix multiplication.
In Proceedings of the 27th IEEE International Symposium on Parallel and Distributed Processing, IPDPS
’13, pages 261–272, 2013.

Nicholas Knight.
Communication-Optimal Loop Nests.
PhD thesis, EECS Department, University of California, Berkeley, Aug 2015.

Jingu Kim and Haesun Park.
Fast nonnegative matrix factorization: An active-set-like method and comparisons.
SIAM Journal on Scientific Computing, 33(6):3261–3281, 2011.

Oguz Kaya and Bora Uçar.
Parallel candecomp/parafac decomposition of sparse tensors using dimension trees.
SIAM Journal on Scientific Computing, 40(1):C99–C130, 2018.

Jiajia Li, Jee Choi, Ioakeim Perros, Jimeng Sun, and Richard Vuduc.
Model-driven sparse CP decomposition for higher-order tensors.
In IEEE International Parallel and Distributed Processing Symposium, IPDPS, pages 1048–1057, May 2017.

Ballard 24

References II

A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and N. D. Sidiropoulos.
Nesterov-based alternating optimization for nonnegative tensor factorization: Algorithm and parallel
implementation.
IEEE Transactions on Signal Processing, Nov 2017.

Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki.
Fast alternating LS algorithms for high order CANDECOMP/PARAFAC tensor factorizations.
IEEE Transactions on Signal Processing, 61(19):4834–4846, Oct 2013.

Shaden Smith and George Karypis.
A medium-grained algorithm for distributed sparse tensor factorization.
In IEEE 30th International Parallel and Distributed Processing Symposium, pages 902–911, May 2016.

Tyler Michael Smith and Robert A. van de Geijn.
Pushing the bounds for matrix-matrix multiplication.
Technical Report 1702.02017, arXiv, 2017.

Ballard 25

Fibers

Mode-1 Fibers Mode-2 Fibers Mode-3 Fibers

A tensor can be decomposed into the fibers of each mode
(fibers are vectors – fix all indices but one)

Ballard 26

Matricized Tensors

A tensor can be reshaped into a matrix,
called a matricized tensor or unfolding, for a given mode,

where each column is a fiber

Ballard 27

Sequential Communication Lower Bound

Theorem
For sufficiently large I, any sequential MTTKRP algorithm
performs at least

Ω

(
NIR

M1−1/N

)
loads and stores to/from slow memory.

N is the number of modes

I is the number of tensor entries

R is the rank of the CP model

M is the size of the fast memory

Ballard 28

Communication-Optimal Sequential Algorithm (3D)

b

b
b

·U(1)

M(2)

U
(3)

1 Loop over b × · · · × b blocks
of the tensor

2 With block in memory, loop
over subcolumns of input
factor matrices, updating
corresponding subcolumn of
output matrix

choose b ≈ M1/N

Ballard 29

Communication-Optimal Sequential Algorithm (3D)

b

b
b

·U(1)

M(2)

U
(3)

1 Loop over b × · · · × b blocks
of the tensor

2 With block in memory, loop
over subcolumns of input
factor matrices, updating
corresponding subcolumn of
output matrix

choose b ≈ M1/N

Ballard 29

Theoretical Comparisons

Lower Bound New Algorithm Standard (MM)

Flops - NIR 2IR

Words Ω
(

NIR
M1−1/N

)
O
(

I + NIR
M1−1/N

)
O
(

I + IR
M1/2

)
Temp Mem - - IR

In

New algorithm performs N/2 more flops than standard
For relatively small R, I term dominates communication

we expect this to be the typical case in practice
For relatively large R, new algorithm communicates less

better exponent on M

Ballard 30

Theoretical Comparisons

Lower Bound New Algorithm Standard (MM)

Flops - NIR 2IR

Words Ω
(

NIR
M1−1/N

)
O
(

I + NIR
M1−1/N

)
O
(

I + IR
M1/2

)
Temp Mem - - IR

In

New algorithm performs N/2 more flops than standard
For relatively small R, I term dominates communication

we expect this to be the typical case in practice
For relatively large R, new algorithm communicates less

better exponent on M

Ballard 30

MTTKRP Loop Nest

for i1 = 1 to I1 do
. . .

for iN = 1 to IN do
for r = 1 to R do

M(n)(in, r) += X(i1, . . . , iN) ∗ U(1)(i1, r) ∗ · · · ∗ U(N)(iN , r)

∆ =

i1 · · · in · · · iN r
U(1) 1 1

...
. . .

...
M(n) 1 1

...
. . .

...
U(N) 1 1
X 1 · · · 1 · · · 1

Ballard 31

