Efficient CP-ALS and Reconstruction From CP

Jed A. Duersch & Tamara G. Kolda
Sandia National Laboratories
Livermore, CA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

This research was funded by LDRD project 199986.
Tensor Notation

\mathbf{y} is a tensor.

d is the order. Number of indices to locate an element. $\mathbf{y}_{(i_1,i_2,\ldots,i_d)}$

n is the size of each mode. Generally mode k has size n_k, but all set to n for simplicity.

(It’s a hypercube!)
Canonical Polyadic Decomposition (CPD)

\[\mathbf{Y} = \mathbf{a}_1 \mathbf{B}_1 \mathbf{C}_1 + \mathbf{a}_2 \mathbf{B}_2 \mathbf{C}_2 + \cdots + \mathbf{a}_r \mathbf{B}_r \mathbf{C}_r \]

CPD (aka CANDECOMP/PARAFAC) expresses \(\mathbf{Y} \) as a sum of rank-1 tensor products.

- \(d \) is the order.
- \(n \) is the size of each mode.
- \(r \) is the number of components.
As we discuss computations and memory requirements, keep this example in mind.

Order: $d = 4$
Mode-size: $n = 100$
Components: $r = 10$
Tensor Size: $n^d = 10^8$
Factor Matrices

We can arrange vector components as columns in factor matrices.

Ex: 10^8

Ex: 10^3 each

Ex: $d = 4 \ n = 100 \ r = 10$
Problem: Reconstruct from CPD

Sometimes you need to reconstruct the full tensor. This is `full()` in Tensor Toolbox for MATLAB.

Orange \[O(n^d) \]

Ex: \(10^8 \)

\[y(i_1, i_2, \ldots, i_d) = \sum_{j=1}^{r} \lambda_j \prod_{k=1}^{d} A_{ikj}^{(k)} \]

Sum over each component

Optionally include scaling factors for each component

Product over factor matrices

Blue \(O(rn) \)

Ex: \(10^3 \)

Compute: \(r \cdot n^d = 10^9 \)

fused multiply-accumulates (FMAs)

How can we compute this efficiently?

Ex: \(d = 4 \quad n = 100 \quad r = 10 \)
We can unfold \mathbf{y} into a vector without memory movement.

Natural descending element order:

$\mathbf{y}_{(i_1,i_2,...,i_d)}$ is located at array offset

$$y[i_1 + (i_2 - 1)n + (i_3 - 1)n^2 + ... + (i_d - 1)n^{d-1}].$$

Vectorization:

Take $\mathbf{y} = \text{vec}(\mathbf{Y})$ by flattening the multiindex

$$\hat{i} = i_1 + (i_2 - 1)n + (i_3 - 1)n^2 + ... + (i_d - 1)n^{d-1}.$$

$$\mathbf{y}_{\hat{i}} = \mathbf{y}_{(i_1,i_2,...,i_d)}$$
Khatri-Rao Product (KRP)

Same as a tensor product (outer product) over matching columns

\[K = A^{(2)} \bigotimes A^{(1)} \]

means

\[K_{ij} = A_{i_2 j}^{(2)} A_{i_1 j}^{(1)} \quad \text{where } \hat{i} = i_1 + (i_2 - 1)n. \]
Vectorized Full is Expensive in Memory!

Using \(y = \text{vec}(\mathbf{y}) \)

Ex: \(10^8 \)

\[K = A^{(d)} \odot \ldots \odot A^{(2)} \odot A^{(1)} \]

Ex: \(10^9 \) Ex: \(10^3 \) each

we can rewrite this

\[y_{(i_1,i_2,\ldots,i_d)} = \sum_{j=1}^{r} \lambda_j \prod_{k=1}^{d} A^{(k)}_{i_k,j} \]

as matrix-vector multiply.

\(y = K \lambda \)

10^9 FMAs

Ex: \(d = 4 \) n = 100 r = 10

\[\text{Red} = O(rn^d) \]

Ex: \(10^9 \)

Matrix-vector multiply (gemv)

1 FMA/move
Rather than unrolling all modes into the row index,

\[\hat{i} = i_1 + (i_2 - 1)n + (i_3 - 1)n^2 + \ldots + (i_d - 1)n^{d-1} \]

we can split modes between rows and columns.

Modes 1 to \(s \) go into rows and the rest in columns.

1:s \[\hat{i}_1 = i_1 + (i_2 - 1)n + \ldots (i_s - 1)n^{s-1} \]

s+1:d \[\hat{i}_2 = i_{s+1} + (i_{s+2} - 1)n + \ldots (i_d - 1)n^{d-s-1} \]

Still no memory movement

\[Y = \text{mat}_{(1:s)}(Y) \]

\[Y_{\hat{i}_1 \hat{i}_2} = Y(i_1,i_2,\ldots,i_d) \]
Key Idea: Matricized Reconstruction

Using \(Y = \text{mat}_{(1:s)}(Y) \) with

Left modes \(L = A^{(s)} \odot \cdots \odot A^{(2)} \odot A^{(1)} \)

Right modes \(R = A^{(d)} \odot \cdots \odot A^{(s+2)} \odot A^{(s+1)} \)

changes \(Y_{(i_1,i_2,\ldots,i_d)} = \sum_{j=1}^{r} \lambda_j \prod_{k=1}^{d} A_{i_k j}^{(k)} \)

into matrix multiply \(Y = L \text{ diag}(\lambda) R^T \)

Ex: \(d = 4 \ n = 100 \ r = 10 \)

Green = \(O(rn^{d/2}) \) Ex: \(10^5 \)

Ex: \(10^8 \)

Ex: \(10^5 \) Ex: \(10^3 \) each

Ex: \(10^9 \)
Reduced Memory, Higher Computational Intensity

\[y = K \lambda \]

Ex: \(10^8\)
Ex: \(10^9\)

Construct:
\(r n^d = 10^9\) floats

Compute:
\(r n^d = 10^9\) FMAs

Output:
\(n^d = 10^8\) floats

\[Y = L \text{diag}(\lambda) R^T \]

Ex: \(10^8\)
Ex: \(10^5\)
Ex: \(10^5\)

Matrix-vector multiply (gemv)
1 FMA/move

Matrix-matrix multiply (gemm)
\(O(M^{3/2})\) FMAs/move

Construct:
\(2 r n^{d/2} = 2 \times 10^5\) floats

Compute: same
Output: same

Ex: \(d = 4\)
\(n = 100\)
\(r = 10\)
Choosing the optimal splitting

Fixed cost: Matrix-matrix multiply.

Strong implementations of gemm() typically hit 90%+ of peak.

Memory movement is hidden.

Controllable cost: Khatri-Rao product formation.

Requires at least 1 pass over output memory:

\[
 s^* = \arg\min_s \left(r \left[\prod_{k=1}^{s} n_k \right] + r \left[\prod_{k=s+1}^{d} n_k \right] \right)
\]

\[
 L \quad R
\]
Matricized full uses far less memory!

Smaller n lets us test higher orders.

Tests use: \(n = 10 \quad r = 10 \)

<table>
<thead>
<tr>
<th>Order (d)</th>
<th>Tensor Elts</th>
<th>Vect Mem</th>
<th>Matr Mem</th>
<th>Vect Time</th>
<th>Matr Time</th>
<th>Speed Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(10^4)</td>
<td>781 kB</td>
<td>15.6 kB</td>
<td>(5.8 \times 10^{-4}) s</td>
<td>(4.8 \times 10^{-4}) s</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>(10^5)</td>
<td>7.63 MB</td>
<td>85.9 kB</td>
<td>(4.8 \times 10^{-3}) s</td>
<td>(7.7 \times 10^{-3}) s</td>
<td>6.3</td>
</tr>
<tr>
<td>6</td>
<td>(10^6)</td>
<td>76.3 MB</td>
<td>156 kB</td>
<td>(3.9 \times 10^{-2}) s</td>
<td>(2.7 \times 10^{-3}) s</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>(10^7)</td>
<td>763 MB</td>
<td>859 kB</td>
<td>(3.9 \times 10^{-1}) s</td>
<td>(2.0 \times 10^{-2}) s</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>(10^8)</td>
<td>7.45 GB</td>
<td>1.53 MB</td>
<td>(4.7 \times 10^{0}) s</td>
<td>(1.9 \times 10^{-1}) s</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>(10^9)</td>
<td>74.5 GB</td>
<td>8.39 MB</td>
<td>FAILED</td>
<td>(2.2) s</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Test were run on Dell laptop, Intel Core i7 vPro, with MATLAB R2017a 64-bit.
Tests use $n = 10 \quad r = 10$

Run on Dell laptop, Intel Core i7 vPro, with MATLAB R2017a 64-bit.
Now we switch focus to extracting $\mathbf{y} = [\lambda; A^{(1)}, \ldots, A^{(d)}]$ from data tensor \mathbf{x}.

- repeat
 - for $k = 1 : d$
 - Fix factor matrices $A^{(1)}, \ldots, A^{(k-1)}, A^{(k+1)}, \ldots, A^{(d)}$.
 - Solve $A^{(k)}$.
 - end for
 - Compute fit.
- until fit change is below threshold

Gauss-Seidel iterative technique cycles through subproblems.
Optimal splitting allowed us to avoid forming a large KRP. Can we use the same technique here?

\[Z^{(k)} = X^{(k)} \left[A^{(d)} \odot \cdots \odot A^{(k+1)} \odot A^{(k-1)} \odot \cdots \odot A^{(1)} \right] \text{diag}(\lambda) \]

Mode-k unfolding

We just saw that even constructing this may be quite expensive!

- **Construct:**
 \[r \, n^{d-1} = 10^7 \text{ floats} \]

- **Compute:**
 \[r \, n^d = 10^9 \text{ FMAs} \]

Matricized tensor times Khatri-Rao product (MTTKRP)
Splitting the Khatri-Rao Product

If $k \leq s$, we can rewrite

$$Z^{(k)} = X^{(k)} \left[A^{(d)} \odot \cdots \odot A^{(k+1)} \odot A^{(k-1)} \odot \cdots \odot A^{(1)} \right] \text{diag}(\lambda)$$

with an intermediate computation

$$X = \text{mat}_{1:s}(X) \quad W^{(R)} = X \left[A^{(d)} \odot \cdots \odot A^{(s+1)} \right]$$

Finishing from this form is fast. Details omitted.

~ 1 pass $= rn^d/2 = 10^5$ moves and FMAs

Ex: $d = 4$ $n = 100$ $r = 10$
Connection to Dimension Trees

Each node lists remaining (unreduced) modes.

Each leaf is an MTTKRP on a different mode.

Dimension trees save all intermediate results.

Bulk of speedup comes from keeping first reductions.

A. Phan, P. Tichavsky, A. Cichocki
“Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations,” 2013

K.. Rouse, G. Ballard, N. Knight
“Communication Lower Bounds for Matricized Tensor Times Khatri-Rao Product,” 2018

Minimal total construction from optimal splitting.
Memory: $2rn^{d/2}$
Compute: $2rn^d$

Follow-up ops are lower complexity (multi-Tensor-Times-Vector).
Compute: $\sim dln^{d/2}$
Optimal Split Reuse in Update Sequence

<table>
<thead>
<tr>
<th>Update:</th>
<th>Matrices used in efficient MTTKRP formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A^{(1)} \mapsto \hat{A}^{(1)})</td>
<td>(A^{(2)})</td>
</tr>
<tr>
<td>(A^{(2)} \mapsto \hat{A}^{(2)})</td>
<td>(\hat{A}^{(1)})</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\hat{A}^{(1)})</td>
</tr>
<tr>
<td>(A^{(s)} \mapsto \hat{A}^{(s)})</td>
<td>(\hat{A}^{(1)})</td>
</tr>
<tr>
<td>(A^{(s+1)} \mapsto \hat{A}^{(s+1)})</td>
<td>(\hat{A}^{(s+2)})</td>
</tr>
<tr>
<td>(A^{(s+2)} \mapsto \hat{A}^{(s+2)})</td>
<td>(\hat{A}^{(s+1)})</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\hat{A}^{(s+1)})</td>
</tr>
<tr>
<td>(A^{(d)} \mapsto \hat{A}^{(d)})</td>
<td>(\hat{A}^{(s+1)})</td>
</tr>
</tbody>
</table>

\[
W^{(R)} = X \begin{bmatrix}
 d \\
 k' = s+1
\end{bmatrix}
\]

\[
W^{(L)} = \begin{bmatrix}
 s \\
 k' = 1
\end{bmatrix}^T X
\]

Efficient convergence check uses \(W^{(L)} \) with \(\bigcirc_{k' = s+1:d} \hat{A}^{(k')} \) (Reuse next iteration!)

4/30/2018
J. A. Duersch at SIAM-ALA18
MTTKRP-Sequence Cost Comparison

Ex: \(d = 4 \ n = 100 \ r = 10 \)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>KRP Construction*</th>
<th>Ex (floats)</th>
<th>Post-KRP Computations*</th>
<th>Ex (FMAs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>(drn^{d-1})</td>
<td>4.00 \times 10^7</td>
<td>(drn^d)</td>
<td>4.00 \times 10^9</td>
</tr>
<tr>
<td>OptSplit</td>
<td>(2rn^{d/2} + drn^{d-1})</td>
<td>2.04 \times 10^5</td>
<td>(2rn^d + drn^{d/2})</td>
<td>2.00 \times 10^9</td>
</tr>
<tr>
<td>DimTree</td>
<td>(2rn^{d/2} + 4rn^{d/4})</td>
<td>2.04 \times 10^5</td>
<td>(2rn^d + 4rn^{d/2})</td>
<td>2.00 \times 10^9</td>
</tr>
</tbody>
</table>

Leading two terms. Assumes perfect splitting.
Higher Order – Better Speed-up

Tests use $n = 10$ $r = 10$

Run on Dell laptop, Intel Core i7 vPro, with MATLAB R2017a 64-bit.
Splitting KRPs reduces memory and allows computational reuse.

• Optimal splitting minimizes construction cost for Khatri-Rao products.
• Matricized full() uses less memory which is faster.
 • Vectorized: $r n^d$ Matricized: $2rn^{d/2}$
• MTTKRP sequence (all modes) can be done forming two medium KRPs.
 • Standard: drn^{d-1} floats OptSplit: $2rn^{d/2}$ floats
• MTTKRP sequence can be computed using two matrix multiplies.
 • Standard: drn^d FMAs OptSplit: $2rn^d$ FMAs
• Follow-up ops are lower complexity - a simple implementation works well.
• Technique applies to both alternating (CP-ALS) and all-at-once (CP-OPT).

Jed A. Duersch - jaduers@sandia.gov