
Accelerating the Tucker Decomposition

with Compressed Sparse Tensors

Shaden Smith and George Karypis

Department of Computer Science & Engineering, University of Minnesota

{shaden, karypis}@cs.umn.edu

SIAM Conference on Applied Linear Algebra 2018

1 / 26

Table of Contents

Introduction & Tucker Decomposition

Related Work

TTMc with a Compressed Sparse Fiber Tensor

Experiments

Conclusions

1 / 26

Tensors

Tensors are the generalization of matrices to higher orders.
I Allow us to represent and analyze multi-dimensional data
I Applications in precision healthcare, cybersecurity, recommender

systems, . . .

p
atien

ts

procedures
di
ag
no
se
s

2 / 26

Tucker decomposition

The Tucker decomposition models a tensor X as a set of orthogonal
factor matrices and a core tensor.

Notation

A 2 RI⇥F
1 , B 2 RJ⇥F

2 , and C 2 RK⇥F
3 denote the factor matrices.

G 2 RF
1

⇥F
2

⇥F3 denotes the core tensor.

3 / 26

Essential operation: tensor-matrix multiplication

Tensor-matrix multiplication (TTM; also called the n-way product)
I Given: tensor X 2 RI⇥J⇥K and matrix M 2 RF⇥K .
I Operation: X ⇥

3

M
I Output: Y 2 RI⇥J⇥F

Elementwise:

Y(i , j , f) =
KX

k=1

X (i , j , k)M(f , k).

4 / 26

Chained tensor-matrix multiplication (TTMc)

Tensor-matrix multiplications are often performed in sequence
(chained).

Y
1

 X ⇥
2

BT ⇥
3

CT

Notation
Tensors can be unfolded along one mode to matrix form: Y

(n).

I Mode n forms the rows and the remaining modes become columns.

5 / 26

Higher-Order Orthogonal Iterations (HOOI)

Tucker Decomposition with HOOI

1: while not converged do
2: Y

1

 X ⇥
2

BT ⇥
3

CT

3: A F
1

leading left singular vectors of Y
(1)

4:

5: Y
2

 X ⇥
1

AT ⇥
3

CT

6: B F
2

leading left singular vectors of Y
(2)

7:

8: Y
3

 X ⇥
1

AT ⇥
2

BT

9: C F
3

leading left singular vectors of Y
(3)

10:

11: G X ⇥
1

AT ⇥
2

BT ⇥
3

CT

12: end while

TTMc is the most expensive kernel in the HOOI algorithm.

6 / 26

Table of Contents

Introduction & Tucker Decomposition

Related Work

TTMc with a Compressed Sparse Fiber Tensor

Experiments

Conclusions

6 / 26

TTM & Intermediate memory blowup

A first step is to optimize a single TTM kernel and apply in sequence:

Y
1

⇣⇣

X ⇥
2

BT
⌘
⇥

3

CT
⌘

Challenge:

I Intermediate results become more dense after each TTM.

I Memory overheads are dependent on sparsity pattern and
factorization rank, but can be several orders of magnitude.

Tamara Kolda and Jimeng Sun. “Scalable tensor decompositions for
multi-aspect data mining”. In: International Conference on Data Mining (ICDM).
2008.

7 / 26

Elementwise formulation

Processing each non-zero individually has cost O(nnz(X)F
2

F
3

) and
O(F

2

F
3

) memory overhead.

Y
1

(i , :, :) += X (i , j , k) [B(j , :) � C(k , :)]

i

Y

j
B

k

C

Oguz Kaya and Bora Uçar. High-performance parallel algorithms for the
Tucker decomposition of higher order sparse tensors. Tech. rep. RR-8801.
Inria-Research Centre Grenoble–Rhône-Alpes, 2015.

8 / 26

TTMc with coordinate form

The elementwise formulation of TTMc naturally lends itself to a
coordinate storage format:

!

Y
1

(i , :, :, :) += X (i , j , k , l) [B(j , :) � C(k , :) �D(l , :)]

9 / 26

TTMc with dimension trees

State-of-the-art TTMc:
I Each node in the tree stores intermediate results from a set of

modes.

Oguz Kaya and Bora Uçar. High-performance parallel algorithms for the
Tucker decomposition of higher order sparse tensors. Tech. rep. RR-8801.
Inria-Research Centre Grenoble–Rhône-Alpes, 2015.

10 / 26

Table of Contents

Introduction & Tucker Decomposition

Related Work

TTMc with a Compressed Sparse Fiber Tensor

Experiments

Conclusions

10 / 26

Compressed Sparse Fiber (CSF)

CSF encodes a sparse tensor as a forest.

I Each path from root to leaf encodes a non-zero.

I CSF can be viewed as a generalization of CSR.

!

Shaden Smith and George Karypis. “Tensor-Matrix Products with a
Compressed Sparse Tensor”. In: 5th Workshop on Irregular Applications:
Architectures and Algorithms. 2015.

11 / 26

Arithmetic redundancies in TTMc

Going back to the non-zero formulation:

Y
1

(i , :, :) += X (i , j , k) [B(j , :) � C(k , :)]

There are two arithmetic redundancies we can exploit:

1. Distributive outer products

2. Redundant outer products

12 / 26

Distributive outer products

Consider two non-zeros in the same fiber X (i , j , :)

Y
1

(i , :, :) += X (i , j , k
1

) [B(j , :) � C(k
1

, :)]

Y
1

(i , :, :) += X (i , j , k
2

) [B(j , :) � C(k
2

, :)]

We can factor out B(j , :)

Y
1

(i , :, :) += B(j , :) � [X (i , j , k
1

)C(k
1

, :) +X (i , j , k
2

)C(k
2

, :)]

13 / 26

Distributive outer products with CSF

Compare to computing with coordinate format:

Savings: Under some mild assumptions, the cost of each non-zero
(leaf) is now linear in the rank.

14 / 26

Redundant outer products

Suppose that we are now computing Y
3

:

Y
3

(:, :, k
1

) += X (i , j , k
1

) [A(i , :) � B(j , :)] ,
Y

3

(:, :, k
2

) += X (i , j , k
2

) [A(i , :) � B(j , :)] .

The outer product can be reused:

S A(i , :) � B(j , :)
Y

3

(:, :, k
1

) += X (i , j , k
1

) · S
Y

3

(:, :, k
2

) += X (i , j , k
2

) · S

15 / 26

Redundant outer products with CSF

Compare to computing with coordinate format:

Savings: Outer products are constructed less often, but non-zeros still
have the same asymptotic cost as coordinate form.

16 / 26

Putting it all together

These two optimizations can be combined within the same kernel.

17 / 26

Parallelism with CSF

We distribute trees to threads and use dynamic load balancing.

Race conditions are dependent on the mode of interest:

I Root nodes are unique, so no race conditions

I Otherwise, use a mutex to lock the slice of Y

18 / 26

Limitation

TTMc is significantly more expensive when computing for the
lower-level modes.

I This is due to FLOPs and synchronization costs.

19 / 26

Multiple CSF representations

We can reorder the modes of X and store additional copies of the
tensor.

I Selectively place some modes near the top which were previously
expensive.

! , or

20 / 26

Table of Contents

Introduction & Tucker Decomposition

Related Work

TTMc with a Compressed Sparse Fiber Tensor

Experiments

Conclusions

20 / 26

Experimental Setup

Source code:

I Part of the Surprisingly ParalleL spArse Tensor Toolkit1

I Written in C and parallelized with OpenMP

I Compiled with icc v16.0.3 and linked with Intel MKL

HyperTensor

I Implements dimenson tree-based methods

I Written in C++ and parallelized with OpenMP

Machine specifications:

I 2x 12-core Intel E5-2680v3 processors (Haswell)

I Double-precision floats and 32-bit integers

1SPLATT: https://github.com/ShadenSmith/splatt

21 / 26

https://github.com/ShadenSmith/splatt

Datasets

Most datasets are available from FROSTT:2

Dataset Non-zeros Modes Dimensions
NELL-2 77M 3 12K, 9K, 29K
Netflix 100M 3 480K, 18K, 2K
Enron 54M 4 6K, 6K, 244K, 1K
Alzheimer 6.27M 5 5, 1K, 156, 1K, 396
Poisson3D, Poisson4D 100M 3,4 3K, . . . , 3K

K and M stand for thousand and million, respectively.

2FROSTT: http://frostt.io/

22 / 26

http://frostt.io/

Parallel Scalability

Adding CSF representations improves scalability due to fewer and
smaller critical regions.

23 / 26

Performance tradeo↵s

Selecting the number of CSFs provides tuning for memory vs. speed.
I CSF always provides the options for the smallest and fastest

executions.

24 / 26

Table of Contents

Introduction & Tucker Decomposition

Related Work

TTMc with a Compressed Sparse Fiber Tensor

Experiments

Conclusions

24 / 26

Wrapping up

Contributions:
I We optimized TTMc kernels via a compressed tensor

representation
I CSF naturally exposes arithmetic redundancies in TTMc

I Multiple CSF tensors can further accelerate computation
I Up to 20⇥ speedup over the state-of-the-art while using 28⇥ less

memory
I Choosing the number of data copies o↵ers tunable

computation/memory tradeo↵

25 / 26

	Introduction & Tucker Decomposition
	Related Work
	TTMc with a Compressed Sparse Fiber Tensor
	Experiments
	Conclusions

