

Parallel Sparse Tensor Decompositions using HiCOO Format

Jiajia Li, Jee Choi, Richard Vuduc May 08, 2018 @ SIAM ALA'18

Figure sources: "A brief survey of tensors" by Berton Earnshaw and NVIDIA Tensor Cores

Outline

2

Background

- HiCOO Format
- O Multicore CP-ALS
- O Distributed CPDs

Tensors

Applications of Tensor Methods

(4)

- Data analytics and compression
 - Natural language processing, healthcare analytics, social network analytics, brain signal processing, and deep learning
- Scientific computing
 - Quantum chemistry, computational physics, quantum mechanics

Tensors & Decompositions

- Tensors, multi-way arrays, provide a natural way to represent multidimensional data.
 - Special cases: matrices 2D tensors, vectors 1D tensors.
 - Tensor mode or order: tensor dimension.
 - A <u>SPARSE</u> tensor, a tensor consisting mostly of zero entries, widely exists in real applications.

 Tensor decomposition: an extension of matrix factorization to analyze tensor features.

CP-ALS and CP-APR

- CP-ALS alternating least squares
 - For general data
 - Describe input data as Gaussian distribution
 - Fitting function: least squares.
 - Core operation: MTTKRP

- CP-APR alternating
 Poisson regression
 - For non-negative data, e.g. count data.
 - Describe input data as Poisson distribution
 - Fitting function:Poisson likelihood fitting algorithm
 - Core operation: element-wise division.

MTTKRP Operation

• Matriced Tensor Times Khatri-Rao Product (MTTKRP)

В

MTTKRP Operation

Matriced Tensor Times Khatri-Rao Product (MTTKRP)

Khatri-Rao Product

CP-APR

(10)

1: for
$$k = 1, 2, ..., k_{\max}$$
 do
2: isConverged \leftarrow true
3: for $n = 1, ..., N$ do
4: $\mathbf{S}(i, r) \leftarrow \begin{cases} \kappa, \text{ if } k > 1, \mathbf{A}^{(n)}(i, r) < \kappa_{tol}, \text{ and } \Phi^{(n)}(i, r) > 1, \\ 0, \text{ otherwise} \end{cases}$
5: $\mathbf{B} \leftarrow (\mathbf{A}^{(n)} + \mathbf{S})\mathbf{A}$
6: $\mathbf{\Pi} \leftarrow \left(\mathbf{A}^{(N)} \odot \cdots \odot \mathbf{A}^{(n+1)} \odot \mathbf{A}^{(n-1)} \odot \cdots \odot \mathbf{A}^{(1)}\right)^{\mathsf{T}}$
7: for $\ell = 1, 2, ..., \ell_{\max}$ do
8: $\Phi^{(n)} \leftarrow (\mathbf{X}_{(n)} \oslash (\max(\mathbf{B}\mathbf{\Pi}, \epsilon))) \mathbf{\Pi}^{\mathsf{T}}$ > subproblem loop
8: $\Phi^{(n)} \leftarrow (\mathbf{X}_{(n)} \oslash (\max(\mathbf{B}\mathbf{\Pi}, \epsilon))) \mathbf{\Pi}^{\mathsf{T}}$
9: if $|\min(\mathbf{B}, \mathbf{E} - \Phi^{(n)})| < \tau$ then
10: break
11: end if
12: isConverged \leftarrow false
13: $\mathbf{B} \leftarrow \mathbf{B} * \Phi^{(n)}$
14: end for
15: $\lambda \leftarrow \mathbf{e}^{\mathsf{T}}\mathbf{B}$
16: $\mathbf{A}^{(n)} \leftarrow \mathbf{B}\mathbf{A}^{-1}$
17: end for
18: if isConverged = true then
19: break
20: end if
21: end for

Bottleneck of CP-APR

• Consider CP-APR MU

$$\Phi^{(n)} \leftarrow \left(\mathbf{X}_{(n)} \oslash (\max(\mathbf{B}\Pi, \epsilon)) \right) \Pi^{\mathsf{T}}$$
$$\Pi \leftarrow \left(\mathbf{A}^{(N)} \odot \cdots \odot \mathbf{A}^{(n+1)} \odot \mathbf{A}^{(n-1)} \odot \cdots \odot \mathbf{A}^{(1)} \right)^{\mathsf{T}}$$

Stored in sparse format, size nnz * R

Outline

Background

HiCOO Format

• Multicore CP-ALS

O Distributed CPDs

Mode Orientation

Mode Oriented Formats

 Three CSF/F-COO representations are required/preferred for the three MTTKRPs.

Mode Oriented Formats

 Three CSF/F-COO representations are required/preferred for the three MTTKRPs.

Current Sparse Tensor Formats

- **COO**: coordinate formats [Bader et al., 2006]
- CSF: Compressed Sparse Fibers, extension of CSR. [Smith et al. 2015]
- F-COO: Flagged COO format [Liu et al., 2017]

Current Sparse Tensor Formats

- COO: coordinate formats [Bader et al., 2006]
- CSF: Compressed Sparse Fibers, extension of CSR. [Smith et al. 2015]
- F-COO: Flagged COO format [Liu et al., 2017]

Current Sparse Tensor Formats

- **COO:** coordinate formats [Bader et al., 2006]
- **CSF**: Compressed Sparse Fibers, extension of CSR. [Smith et al. 2015]
- F-COO: Flagged COO format [Liu et al., 2017]

mode orientation

4

4

.

3

HiCOO Format

- Store a sparse tensor in units of small sparse blocks, saving storage
 - Shorten the bit-length of element indices
 - Compress the number of block indices
 - an improvement of the Compressed Sparse Blocks (CSB) format

	32-bit			32-bit			8-bit						
i	j	k	val	י ו ו	k	optr	bi	bj	bk	ei	ej	ek	val
0	0	0	1			0	0	0	0	0	0	0	1
0	1	0	2		B0					0	1	0	2
1	0	0	3							1	0	0	3
1	0	2	4		B1	3	0	0	1	1	0	0	4
2	1	0	5		ВЭ	4	1	0	0	0	1	0	5
2	2	2	6		DZ					1	0	1	7
3	0	1	7	1	DD	6	1	1	1	0	0	0	6
3	3	2	8	I DD					1	1	0	8	
(a) COO (b) HiCOO													

For the tensor: Reduce its storage and memory footprints

For matrices: Better data locality

Construct HiCOO Representation

- Morton-order sorting for the input COO tensor.
- Partition to blocks and determine each block location.
- Construct HiCOO representation by compressing index length.

Outline

Background
HiCOO Format
Multicore CP-ALS
Distributed CPDs

Two-level Blocking for Efficient Thread Parallelism

- O Use two-level blocking strategy
 - Large bulks (logical) + small blocks (physical)
 - To avoid using locks, we add a bit extra storage for scheduling information.

Hicoo

Platform and Dataset

- (23)
- **Platform**: Intel Xeon CPU E7-4850 platform consisting 56 physical cores with gcc 5.4.1 and parallelized by OpenMP.
- Dataset: FROSTT [Smith et al. 2017] and HaTen2 [Jeon et al. 2015]

Tensors	Order	Dimensions	#Nonzeros	Density	
nell2	3	12K imes 9K imes 29K	77 M	$2.4 imes10^{-5}$	
choa	3	$712K \times 10K \times 767$	27M	5.0×10^{-6}	
darpa	3	22K imes 22K imes 24M	28M	$2.4 imes10^{-9}$	
fb-m	3	$23M \times 23M \times 166$	100M	1.1×10^{-9}	
fb-s	3	39M imes 39M imes 532	1 40M	$1.7 imes 10^{-10}$	
deli	3	$533K \times 17M \times 2.5M$	1 40M	6.1×10^{-12}	
nell1	3	3M imes 2M imes 25M	1 44M	$9.1 imes 10^{-13}$	
crime	4	6K imes 24 imes 77 imes 32	5M	$1.5 imes 10^{-2}$	
nips	4	$2K \times 3K \times 14K \times 17$	3M	1.8×10^{-6}	
enron	4	6K imes 6K imes 244K imes 1K	54M	$5.5 imes 10^{-9}$	
flickr	4	$320K \times 28M \times 2M \times 731$	11 3M	1.1×10^{-14}	
deli4d	4	$533K \times 17M \times 2M \times 1K$	140M	$4.3 imes10^{-15}$	

DESCRIPTION OF SPARSE TENSORS.

J. Li, J. Sun, R. Vuduc. "HiCOO: Hierarchical Storage of Sparse Tensors". 2018

Multicore MTTKRP

Multicore CP-ALS

• HiCOO outperforms COO by up to 9.4× and CSF up to 3.4×.

Outline

Background
HiCOO Format
Multicore CP-ALS
Distributed CPDs

Data Distribution

• Tensor:

- Two-level blocking
- Bulk level: node partitioning to ensure nonzero balance
- Block level: ensure fast local computation
- Factor matrices
 - Each processor owns the portion of factor matrices its local tensor needs.
 - Some duplication exists.

Data Distribution Cont.

- X: 4*4*4 sparse tensor
- Processors are split to 2*2*2 grids.
- Use sub-communicator to update factor matrices.

Platform and Dataset

- Platform: Cori supercomputer in NERSC, which is Cray XC40.
 Each node is Intel Xeon CPU E5-2698 v3 ("Haswell") consisting 32 physical cores. We use Intel MPI 2018 version.
 - We test 32 to 1024 processors with 32 processors per node.
- **Dataset**: Synthetic tensors from Poisson distribution.

Tensors	Order	Dimensions	#Nonzeros	Density
synl	3	$10K \times 10K \times 10K$	100M	1.0×10^{-4}
syn2	3	50K imes 50K imes 50K	125M	$1.0 imes 10^{-6}$
syn3	3	$40K \times 40K \times 40K$	128M	$2.0 imes10^{-6}$

Distributed MTTKRP Performance

Tensors

Distributed CP-ALS Performance

COO

CP-ALS time using 1024 procs

Distributed CompPhi Performance

Distributed CP-APR Performance

Conclusion and Future Work

Conclusion

• HiCOO WORKS!

- Future work
 - Combine multicore and distributed parallelism together to build hybrid MPI+OpenMP HiCOO CPDs.
 - Also include our GPU implementations.
 - Consider CP-APR algorithms to Newton-based optimization methods.

ParTI! Project

(35)

Contributors

Yuchen Ma Undergrad, HDU

Nick Liu Undergrad, GaTech

Srinivas Eswar PhD, GaTech

Junghyun Kim Undergrad, GaTech

Richard Vuduc Professor, GaTech

Acknowledgement

Related Work

- S. Smith et al. "A Medium-Grained Algorithm for Distributed Sparse Tensor Factorization", IPDPS'16
- O. Kaya et al. "Scalable Sparse Tensor Decompositions in Distributed Memory Systems", SC'15
- E. Solomonik et al. "Sparse Tensor Algebra as a Parallel Programming Model", TR, 2015
- S. Rajbhandari et al. "A communication-optimal framework for contracting distributed tensors", SC'14
- W. Austin et al. "Parallel Tensor Compression for Large-Scale Scientific Data", IPDPS'16
- J. Choi et al. "DFacTo: Distributed Factorization of Tensors", NIPS'14