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Roadmap
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Multi-Aspect Data??

E. Papalexakis @ SIAM-ALA18 3



Multi-View Social 
Networks
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Social Network Matrix
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Matrix Factorization

Users

Users

Work 
contacts

College
Friends

Each block in the data is a 
latent (“hidden”) concept
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What about the rest of the views??

If we aggregate, we ignore important structure!!
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Tensors
• Multi-dimensional matrices
• Model multi-aspect datasets
• Long list of applications: Chemometrics, 

Psychometrics, Signal Processing, Machine 
Learning, Data Mining

X
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What are we looking for?

Blocks within the data
Subsets / co-clusters of:
1) Users (“senders”)
2) Users (“receivers”)
3) Means of communication

X
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X

Blocks are rank-one tensors
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a1

b1

c1

=

Direct extension of matrix case!
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CP/PARAFAC Decomposition
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Figure 1: The relative cost of SCOUP-SMT (with respect to the
ALS algorithm) as a function of the fraction of the wall-clock time
of ALS that the computation required, vividly demonstrates the
gains of SCOUP-SMT in terms of speedup. In particular, for the en-
tire BRAINQ dataset which is very dense (see Sec. 4), the speedup
incurred by the parallel version of SCOUP-SMT on 4 cores, was in
the range of 50-100 times. This Figure also shows the behavior of
SCOUP-SMT with respect to the sampling parameter s. As s in-
creases, SCOUP-SMT runs faster but the relative cost increases as
well.

Symbol Description
CMTF Coupled Matrix-Tensor Factorization
ALS Alternating Least Squares
x,x,X,X scalar, vector, matrix, tensor (respectively)
A�B Khatri-rao product (see [12]).
A ⇤B Hadamard (elementwise) product.
A

† Pseudoinverse of A (see Sec. 2)
kAkF Frobenius norm of A.
a � b � c (a � b � c) (i, j, k) = a(i)b(j)c(k)
(i) as superscript Indicates the i-th iteration
A

i
1, ai

1 series of matrices or vectors, indexed by i.
X(i) i-th mode unfolding of tensor X (see [11]).
I Set of indices.
x(I) Spanning indices I of x.

Table 1: Table of symbols

Matrices record dyadic properties, like “people recommending
products”. Tensors are the n-mode generalizations, capturing 3-
and higher-way relationships. For example “subject-verb-object”
relationships, such as the ones recorded by the Read the Web -
NELL project [1] (and have been recently used in this context [10]
[19]) naturally lead to a 3-mode tensor. In this work, our working
example of a tensor has three modes. The first mode contains a
number of nouns; the second mode corresponds to the brain activ-
ity, as recorded by an fMRI machine; and the third mode identifies
the human subject corresponding to a particular brain activity mea-
surement.

Earlier [19] we introduced a scalable and parallelizable tensor
decomposition which uses mode sampling. In this work, we fo-
cus on a more general and expressive framework, that of Coupled
Matrix-Tensor Factorizations.

2.2 Coupled Matrix-Tensor Factorization

X

⇡
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Figure 2: PARAFAC decomposition of a three-way tensor of a brain ac-
tivity tensor as sum of F outer products (rank-one tensors), reminiscing of
the rank-F singular value decomposition of a matrix. Each component cor-
responds to a latent concept of, e.g. "insects", "tools" and so on, a set of
brain regions that are most active for that particular set of words, as well as
groups of persons.

Oftentimes, two tensors, or a matrix and a tensor, may have one
mode in common; consider the example that we mentioned earlier,
where we have a word by brain activity by human subject tensor,
we also have a semantic matrix that provides additional information
for the same set of words. In this case, we say that the matrix and
the tensor are coupled in the ’subjects’ mode.

X

voxels

words

persons

Y1

question

word

Figure 3: Coupled Matrix - Tensor example: Tensors often share one or
more modes (with thick, wavy line): X is the brain activity tensor and Y
is the semantic matrix. As the wavy line indicates, these two datasets are
coupled in the ’word’ dimension.

In this work we focus on three mode tensors, however, every-
thing we mention extends directly to higher modes. In the general
case, a three mode tensor X may be coupled with at most three ma-
trices Yi, i = 1 · · · 3, in the manner illustrated in Figure 3 for one
mode. The optimization function that encodes this decomposition
is:

min

A,B,C,D,E,G
kX�

X

k

ak � bk � ckk2F + (1)

kY1 �AD

T k2F + kY2 �BE

T k2F + kY3 �CG

T k2F

min

A,B,C
kX�

X

k

ak � bk � ckk2F + (2)

where ak is the k-th column of A. The idea behind the coupled
matrix-tensor decomposition is that we seek to jointly analyze X

and Yi, decomposing them to latent factors who are coupled in
the shared dimension. For instance, the first mode of X shares the
same low rank column subspace as Y1; this is expressed through
the latent factor matrix A which jointly provides a basis for that
subspace.

2.3 The Alternating Least Squares Algorithm
One of the most popular algorithms to solve PARAFAC (as in-

troduced in Figure 2) is the so-called Alternating Least Squares
(ALS); the basic idea is that by fixing two of the three factor matri-
ces, we have a least squares problem for the third, and we thus do
so iteratively, alternating between the matrices we fix and the one

R

R R R
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DBLP Multi-View Graph

Algorithm 1: GRAPHFUSE

Input: Multi-graph G in tensor form X of size I ⇥ J ⇥K, number of clusters R, sparsity penalty factor �.
Output: Assigments to clusters ↵I and ↵J . Matrix C of size K ⇥R that shows the contribution of each one of the K views to each one of the R clusters.

1: {A,B,C} = PARAFAC SLF (X, R� 1, �).
2: for i = 1 · · · I do
3: if A(i, :) = 0 then
4: ↵I(i) = R
5: else
6: ↵I(i) = argmaxA(i, :)
7: end if
8: end for
9: Repeat iteration 2-8 for all J rows of B. Labels are output in ↵J .

Fig. 2. (top) SYNTHETIC-2 SIM and (bottom) SYNTHETIC-3 DIF share the same clustering scheme, with different amount of cross edges and cluster densities.
DIF multi-graph, by construction, is harder to cluster than SIM.

(a) citation (b) co-auth. (c) co-term

Fig. 3. Spy-plots of 3 views in DBLP-1

(a) citation (b) co-auth. (c) co-term

Fig. 4. Spy-plots of 3 views in DBLP-2

B. Clustering accuracy

In order to evaluate the performance of our proposed
methods, we use the Normalized Mutual Information, a widely
used metric for computing clustering accuracy of a method
against the desired ground truth clustering [12]. Moreover, we
compare our methods, in terms of NMI, with two baseline
approaches, which we briefly describe in the sequel:

BASELINE-1 algorithm sums all the adjacency matrices of a
multi-graph obtaining a new aggregate sum-matrix and applies
a k-way spectral clustering over this aggregate [20]. The k-way
spectral clustering is based on the k-means algorithm that is
applied on the Laplacian of the sum-matrix.

BASELINE-2 algorithm first constructs the spectral kernel for
each graph view and then sums the spectral kernels summa-
rizing all the dimensions of the multi-graph. Successively, the
k-means algorithm is applied to the matrix containing the sum
of the kernels in order to obtain the final clustering. Details
for this algorithm may be found in [19].

In Table I we show the NMI results on all datasets for all
methods. We observe that MULTICLUS always outperforms
baseline methods on all synthetic datasets. As for GRAPH-
FUSE, it has good performance over SYNTHETIC-1 and SYNT-
2-SIM while, for SYNT-3-DIF, the results are on par with the
baselines. Recall that by construction SYNT-3-DIF is difficult
to cluster (see Fig.2 bottom), hence the drop in performance
for all methods.

With respect to the real datasets, GRAPHFUSE obtains
the best scores over both DBLP-1 and DBLP-2, while MUL-
TICLUS has comparable behaviour with the baselines. We
notice that NMI scores are overall lower on real datasets, as
they have much less structure than the synthetic ones (see
Fig.3) in addition to a lot more noise (see Fig.4). Nevertheless,
GRAPHFUSE achieves significantly better accuracy compared
to other methods. These encouraging results underline the
merits of modeling the multi-graph clustering problem using
tensors, as they seem to well exploit the interrelations of the
views.

• Assignment of authors to research communities
• Measure NMI (Normalized Mutual Information)
• Baselines

² Spectral clustering on sum of matrices / views
² Linked Matrix Factorization [Tang et al. ICDM 2009]

• GRAPHFUSE outperforms “2D” baselines
[Papalexakis, Akoglu, Ienco Fusion 2013]

E. Papalexakis @ SIAM-ALA18 14



Semi-supervised Community 
Detection

• What if we have very few 
community labels?

• Use “Guilt-by-association”
² Also called homophily

• Propagate labels in the 
graph

• BUT: this ignores multi-
view structure!

E. Papalexakis @ SIAM-ALA18

Fast Belief Propagation [Koutra et al. 2011]
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Semi-supervised Community 
Detection

E. Papalexakis @ SIAM-ALA18
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Coupling as semi-supervision!

SDM 2018 w/ Ekta Gujral
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SMACD: Semi-supervised Multi-
Aspect Community Detection

E. Papalexakis @ SIAM-ALA18
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pose element-wise non-negativity constraints (denoted
as A � 0) to all factor matrices.
Latent Sparsity Constraint: In order to (a) further
enhance interpretability and (b) suppress noise, we
impose latent sparsity to the factors of the model.
Intuitively, we would like the coe�cients of the factor
matrices to be non-zero only when a node belongs to
a particular community, thus eliminating the need for
ad-hoc thresholding. To that end we introduce `1 norm
regularization for all factors which promotes a sparse
solution.

The proposed model is:

min
A�0,B�0,C�0,D�0

kX �
X

r

A(:, r) � B(:, r) � C(:, r)k2F + kY � AD

T k2F

+ �

X

i,r

|A(i, r)| + �

X

j,r

|B(j, r)| + �

X

k,r

|C(k, r)| + �d

X

l,r

|D(l, r)|
(2.1)

where � is the sparsity regularizer penalty. The
above objective function is highly non-convex and thus
hard to directly optimize. However, we use Alternating
Least Squares (ALS), a form of Block Coordinate De-
scent (BCD) optimization algorithm, in order to solve
the problem of Eq. 2.1. The reason why we choose
ALS over other existing approaches, such as Gradient
Descent [1], , is the fact that ALS o↵ers ease of im-
plementation and flexibility of adding constraints and
regularizers, does not introduce any additional parame-
ters that may influence convergence, and as a family of
algorithms has been very extensively studied and used
in the context of tensor decompositions. The main idea
behind ALS is the following: when fixing all optimiza-
tion variables except for one, the problem essentially
boils down to a constrained and regularized linear least
squares problem which can be solved optimally. Thus,
ALS cycles over all the optimization variables and up-
dates them iteratively until the value of the objective
function stops changing between consecutive iterations.
In ALS/BCD approaches, such as the one proposed
here, when every step of the algorithm is solved opti-
mally, then the algorithm decreases the objective func-
tion monotonically.

In the following lines we demonstrate the derivation
of one of the ALS steps. Let us denote X(i) the
i-th mode matricization or unfolding of X, i.e., the
unfolding of all slabs of X into an I ⇥ JK matrix
(we refer the interested reader to [15] for a discussion
on matricization), then because of properties of the
CP/PARAFAC model [15], fixing B,C,D we have

min
A�0

kX(1) � A[(B � C)T k2F + kY � AD

T k2F + �

X

i,r

|A(i, r)| )

min
A�0

k[ X(1) ;Y] � A[(B � C)T D

T ]k2F + �

X

i,r

|A(i, r)| )

min
A�0

k[L � AM]k2F + �

X

i,r

|A(i, r)|(2.2)

where L = [ X(1) ;Y] , and M = [(B � C)T DT ].
This problem is essentially a Lasso regression on the
columns ofA [23] and we use coordinate descent to solve
it optimally . The update formulas for B,C,D follow
the same derivation after fixing all but the matrix that is
being updated. We omit the full listing of the algorithm
due to space restrictions.

2.4 Overlapping Communities Our goal is
to design an algorithm which consumes ten-
sor X = {X1, X2....., XN} along with small

B
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C

B

A

C

B

A

C

Overlapping 
Network

Coupling

Decom
position

Figure 2: SMACD suc-
cessfully combines multi-
view graph information and
semi-supervision.

amount of labels Y and
it outputs the set of
collection of subsets of
Nodes V which we con-
sidered as overlapping
clusters. Thus, we will
refer to nodes with mul-
tiple classes as overlap-
ping nodes. In real-
world networks, these
nodes represent bridges
between di↵erent com-
munities. For this rea-
son, the ability to iden-

tify these bridges or overlapping nodes, although often
neglected, is necessary for evaluating the accuracy of
any community detection algorithms. Given X and Y,
CP decomposition is used to learn latent factors which
detect community structure.

Multi-view connectivity of tensor and coupling with
label matrix can increase the robustness of community
detection in the case of highly-mixed communities.
Overlapping communities amounts to soft clustering
over the nodes, as opposed to hard clustering which
forces each node to belong to a unique community. The
advocated approach only requires slight modifications
in Step 2 to yield soft community assignments, that is,
by treating Ank as the normalized a�liation of node n
to community k, and requiring Ank � t per node n.

Once the algorithm returns the solution for
NNSCMTF, the rows of factor matrix A provides the
community association in networks with overlapping
communities where a node can be associated with more
than one community. To evaluate SMACD’s result with
ground truth communities, we compared resultant Ai,j

with threshold t and node is assigned with community
’r’ if A(i, j) � t. Each node’s predicted label ( or labels)
is ordered incrementally based on corresponding value
of A(i, j).

PredictedLabel(s){i} =

⇢
indices(A(i, j)), if A(i, j) � t

R+ 1, otherwise
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SMACD: Semi-supervised Multi-
Aspect Community Detection

E. Papalexakis @ SIAM-ALA18
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Figure 6: Experimental results for NMI, ARI and Purity. SHOCD mostly outperforms baselines and, in particular, works better in very hard
scenarios such as the MIT dataset.

GraphFuse [14]: GraphFuse is a tensor decomposition based ap-
proach which can be seen as a special case of SHOCD when there
is no semi-supervision. �e sparsity penalty factor � for DBLP-I,
DBLP-II, CiteSeer, Cora, WebKB and MIT is set for �= 0.000001,
0.0001, 0.000001, 0.1, 0.00005 and 0.00001, respectively and a maxi-
mum of 150 iterations was used for convergence.
WSSNMTF and NG-WSSNMTF [19]: �e details for the methods
are described in [19]. We used the SVD matrix initialization. �e
sparsity penalty parameter � for WSSNMTF and NG-WSSNMTF
are chosen as DBLP-I and DBLP-II (�1 = 0.01, �2 = 0.01) , for
CiteSeer (�1 = 1, �2 = 1) , Cora (�1 = 0.01, �2 = 10) ,WebKB
(�1 = 0.01, �2 = 0.01) and MIT (�1 = 1, �2 = 1000). �ese � values
are chosen to lead to best clustering performance and max 100
iterations are used for reaching the convergence.
Fast Belief Propagation (FaBP) [25]: FaBP is a fast, iterative
Guilt-by-Association technique, in particular conducting Belief
Propagation. A belief in our case is a community label for each node,
and the algorithm is iteratively propagating this label throughout
the multi-graph resulting in an estimation of the beliefs (or com-
munity labels) for every node.
SMGI [23]: Sparse Multiple Graph Integration method is another
method of integrating multiple graphs for label propagation, which
introduces sparse graph weights which eliminate the irrelevant
views in the multi-view graph.
AWGL [28]: Parameter-Free Auto-Weighted Multiple Graph Learn-
ing is the latest auto-weighted multiple graph learning framework,
which can be applied to multi-view unsupervised (AWGL-C) as
well as semi-supervised (AWGL) classi�cation task.
Tuning SHOCD In order to be on-par with the baselines, we tuned
SHOCD’s parameter � so that we obtain themaximumperformance.
We provided 10% labels in matrix and rest of labels are empty.
�e maximum number of iterations for SHOCD is set to 103. We
perform experiments with various values of � ranging from 10�8 to
106 on all real multi-view networks to explore the behaviour of our
algorithm. � is chosen to give best clustering results in terms of
NMI, for DBLP-I, DBLP-II, CiteSeer, Cora, WebKB and MIT values
for �= 0.0001,0.005, 0.0001,1, 0.000001 and 0.000005, respectively.
For both the synthetic data, penalty factor is set to 1.

3.4 Experimental Results
On di�erent proportions of labeled data, we investigate the multi-
graph with and without label propagation and compare our method

with multiple graph leaning methods for semi-supervised cluster-
ing as well as unsupervised clustering method. �e purpose of
using unsupervised method is to describe that label propagation
helps in improving the clustering accuracy of multi-view graphs.

3.4.1 Comparison with Baselines. For all datasets we compute
Normalized Mutual Information, Purity and Adjacent Random
Index. For SHOCD, AWGL , SMGI and FaBP we use labels for 10%
of the nodes in each dataset. �e results for the Synthetic data are
shown in Figure 7, with each bar-plot corresponding to a di�erent
method. We observe that SHOCD performed be�er than other
approaches when applied on SYN-I and SYN-II. SYN-I is designed
with high cluster density in layer 2 and 3, and noisy links, and
has high number of cross-community edges between nodes. Given
that, we found that SHOCD achieved the highest NMI, ARI and
Purity.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SYN-I SYN-II SYN-I SYN-II SYN-I SYN-II

NMI ARI Purity

WSSNMTF NG-WSSNMTF Graphfuse AWGL-C

FaBP AWGL SMGI SHOCD
Figure 7: Experimental results of SYN-I and SYN-II dataset: SHOCD
outperforms the baselines

�emost interesting comparison, however, is on the real datasets,
since they present more challenging cases than the synthetic ones.
Figure 6 shows the comparisons between methods. SHOCD out-
performs the other state-of-the-art approaches in most of the real
multi-view networks, with the exception of Cora. In the cases of
DBLP-I and DBLP-II, SHOCD gave be�er results compared to the
baselines , speci�cally in terms of NMI and Purity. For Citeseer,

7

SMACD
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Works well for
small #labels!!
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Unsupervised Fake News 
Identification

E. Papalexakis @ SIAM-ALA18

Terms

Satire

Junk
Science

• Bag-of-words typically loses context info
• We need to capture context/spatial 

relations of different (groups of) terms
How is fake news written?

BREAKING BOMBSHELL: NYPD Blows Whistle on 
New Hillary Emails: Money Laundering, Sex Crimes 
with Children, Child Exploitation, Pay to Play, Perjury

13

Lot of information in 
title

Simple and repetitive 
content

Children Child

Horne, et al. (ICWSM 2017)

Pay Play

http://snap.stanford.edu/www2017tutorial/docs/050-hoax.pdf
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Unsupervised Fake News 
Identification
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Fake

News

(“Fake”, “News”) co-occur 
f times within k terms of each other

X

Terms
Terms

X(i,j,k) = f: word j and word k co-occur f times in article i

WSDM18 MIS2 Workshop [Best Paper Award] w/ Mehdi Hosseini
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Unsupervised Fake News 
Identification

E. Papalexakis @ SIAM-ALA18

WSDM18 MIS2 Workshop [Best Paper Award] w/ Mehdi Hosseini

• Homogeneity @ K
² Sort the values of each latent 

factor
² Take the top-K
² Measure homogeneity of article 

labels
² Higher is better

• Diversity of outliers @ K
² Within the top-K find articles 

with diff. label from the 
dominant one

² Count their distinct labels
² Lower is better

(a) homogeniety (b) outliers diversity (c) rank sensitivity

(d) bias (e) hate (f) conspiracy

(g) satire (h) state (i) junksci
Figure 4: �e results of proposed Tier-2 decomposition with � = 10 a) homogeneity of ensemble co-cluster is almost 13% more than 1-tier
CP/PARAFAC. b) diversity of outliers reduces by one on average comparing to 1-tier algorithms. in c) sensitivity to di�erent SMR ranks
d-f)kmeans on constructed ensemble matrix of CP/PARAFAC. state, satire, junksci and biased clustered with low homogeneity. g-l) average
homogeneity in di�erent categories. all categories are clustered with an average of 90% homogenity.

purity of some factors. Later, we will discuss the homogeneity of
each new category separately.

4.2.2 Outlier variety. Fig. 4b illustrates the varieties of outliers
using the proposed algorithm. As one can see, not only the number
of outliers but also the varieties of outliers reduce signi�cantly.
In some factors, there exist only one type of outlier. Comparing
the proposed method with tier-1 CP/PARAFAC reveals that outlier
variety reduces by more than one on average. �is indicates that
the proposed algorithm e�ectively suppresses outliers.

Table 2 describes the percentage of categories existed as outliers
in other categories. Conspiracy is the only outlier of state category
and the dominant outliers of bias. Moreover, it seems similarity in
hate and satire news although the class of hate news has a profound
homogeneity.

4.2.3 Categories identified. We investigate the homogeneity
and outliers of di�erent news categories individually. As seen in
Fig. 4 g-l, all of categories are clustered successfully. Although the

Table 2: Outliers of each category.
category outliers (in descending order) - percentage of

outliers
Satire Conspiracy (< 50%), JunkSci (< 50%)
Bias Conspiracy (< 70%), State (< 20%), JunkSci (<

10%)
Conspir-
acy

Bias(< 50%), State (< 30%), hate (< 10%)

JunkSci Satire (< 50%), Conspiracy (< 50%)
Hate Satire (< 95%), Bias(< 5%)
State Conspiracy (< 99%)

results seems similar to tier-1 CP/PARAFAC, the improvement to
each news category is because of eliminating the irrelevant news.
It means that comparing the varieties of outliers in this stage and
1-tier CP/PARAFAC shows that relevant news is substituted with
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JunkSci Satire (< 50%), Conspiracy (< 50%)
Hate Satire (< 95%), Bias(< 5%)
State Conspiracy (< 99%)

results seems similar to tier-1 CP/PARAFAC, the improvement to
each news category is because of eliminating the irrelevant news.
It means that comparing the varieties of outliers in this stage and
1-tier CP/PARAFAC shows that relevant news is substituted with

6
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Semi-supervised Fake News 
Detection

E. Papalexakis @ SIAM-ALA18 23
arxiv.org/pdf/1804.09088.pdf w/ Gisel Guacho, Sara Abdali, Neil Shah



Semi-supervised Fake News 
Detection

E. Papalexakis @ SIAM-ALA18 24
arxiv.org/pdf/1804.09088.pdf w/ Gisel Guacho, Sara Abdali, Neil Shah

State-of-the-art accuracy with extremely few labels!
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https://www.pe.com/2018/04/13/is-this-article-fake-news-uc-riverside-team-has-an-algorithm-to-help-you-decide/

https://ucrtoday.ucr.edu/52434
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Tensors in Data Science
• Naturally model multi-aspect data
• Very powerful modeling tools
• Big Challenges

² C1: Data Size & Scalability
² C2: Model Selection, Quality &

Interpretability
?

??

?

E. Papalexakis @ SIAM-ALA18 27



Fast and Scalable Tensor 
Decompositions

• Exploiting Sparsity
² Tensor Toolbox for Matlab [Kolda et al.]
² GigaTensor [Kang et al. 2012]
² FlexiFaCT [Beutel et al. 2014]
² DFacto [Choi et al. 2014]
² SPLATT [Smith et al. 2015]
² ...

• All above methods are exact
² Most of them focus on the ”MTTKRP” operation

• Can we do something by approximating?

E. Papalexakis @ SIAM-ALA18 28



Approximate “Sketching” Methods

Hashing

[Wang et al. 2015]

Compression

Tucker Compression
[Bro et al. 1998]

PARACOMP [Sidiropoulos et al. 2014]

Sampling

Tensor CUR [Mahoney et al. 2008]

ParCube [Papalexakis et al. 2012]

Walk’n’Merge [Erdos et al 2013]

MACH [Tsourakakis 2010]

SPALS [Cheng et al 2016]

CPRAND[Battaglino et al 2017]

E. Papalexakis @ SIAM-ALA18 29



Approximate “Sketching” Methods

Hashing

[Wang et al. 2015]

Compression

Tucker Compression
[Bro et al. 1998]

PARACOMP [Sidiropoulos et al. 2014]

Sampling

Tensor CUR [Mahoney et al. 2008]

ParCube [Papalexakis et al. 2012]

Walk’n’Merge [Erdos et al 2013]

MACH [Tsourakakis 2010]

SPALS [Cheng et al 2016]

CPRAND[Battaglino et al 2017]
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ParCube: Sampling-based Parallel 
Tensor Decomposition

Xr

X1

X

≈

≈

…

FACTORMERGE

Papalexakis et al. ECML-PKDD 2012 w/ Christos Faloutsos, Nikos Sidiropoulos
E. Papalexakis @ SIAM-ALA18 31



Does it work?

Achieves comparable accuracy to exact algorithm

1
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90% sparser
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Speedup

Baseline
(ALS)

~ 1 day

4 Intel Xeon E74850 
512Gb RAM, Fedora 14

Data size
~0.5Gb
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Incremental Decomposition

E. Papalexakis @ SIAM-ALA18

SDM 2018 w/ Ekta Gujral & Ravdeep Pasricha

How can we incrementally update the decomposition?

• Tensor is updated in a 
streaming fashion

• New slices arrive
² New snapshots on a 

temporal graph
² New article
² …

X

34



SamBaTen: Sampling-based Batch 
Incremental Tensor Decomposition

E. Papalexakis @ SIAM-ALA18

X

1) Sample
incoming slice

2) Decompose
in parallel

3) Project back
from summary space

4)          Update
Cr vectors with new entry

Existing Samples

…

…

+…+

+…+

+…+

SDM 2018 w/ Ekta Gujral & Ravdeep Pasricha
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SamBaTen: Sampling-based Batch 
Incremental Tensor Decomposition

E. Papalexakis @ SIAM-ALA18

SDM 2018 w/

Dataset CPU Time (sec) Fitness SAMBATEN w.r.t
I=J=K CP

ALS

OnlineCP SDT RSLT SAMBATEN CP

ALS

OnlineCP SDT RSLT

NIPS 177.46 372.03 1608.23 1596.07 43.98 0.96 0.98 0.78 0.82
NELL 8783.27 42325.22 65325.22 63485.98 983.83 0.95 0.81 0.76 0.81

Facebook-wall 3041.98 N/A N/A N/A 736.07 0.97 N/A N/A N/A
Facebook-links 2689.69 N/A N/A N/A 343.32 0.96 N/A N/A N/A

Amazon N/A N/A N/A N/A 4892.07 N/A N/A N/A N/A
Patent N/A N/A N/A N/A 8068.27 N/A N/A N/A N/A

TABLE VI: SAMBATEN performance for real dataset. We see that SAMBATEN outperformed the baselines for all the large scaled
tensors.

I=J=K 200 400 600 800 1000

w/ GETRANK 0.48 0.57 0.58 0.59 0.55
w/o GETRANK 0.46 0.53 0.55 0.54 0.52

TABLE VII: FMS score for synthetic dataset of batch size 50
with sampling factor 2 for each dimension.

Dataset Sampling Factor 2 5 10 15 20

NIPS w/ GETRANK 0.26 0.53 0.45 0.48 0.36
w/o GETRANK 0.24 0.46 0.36 0.24 0.22

NELL w/ GETRANK 0.48 0.37 0.48 0.43 0.26
w/o GETRANK 0.25 0.16 0.38 0.37 0.24

TABLE VIII: FMS score for NIPS and NELL dataset with batch
size 500, R = 5, and same sampling factor for each dimension.

3) Tuning of Sampling Factor s: The sampling factor plays
an important role in SAMBATEN. We performed experiments
to evaluate the impact of changing sampling factor on SAM-
BATEN. For these experiments , we fixed batch size to 50
for all datasets. We see in figure 9 that increasing sampling
factor results in reduction of CPU time (as sparsity of sub
sampled tensor increased) and it reduces the fitness of output
up-to 2-3%. In sum, these observations demonstrate that: 1) a
suitable sampling factor on sub-sampled tensor could improve
the fitness and result in better tensor decomposition, and 2)
the higher sampling factor is, the lower the CPU time. This
result partially answers Q4.
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Fig. 9: SAMBATEN outputs sampling factor : CPU Time (sec)
and Relative Fitness on different datasets.

4) Influence of Repetition Factor r: We evaluate the per-
formance for parameter setting r i.e number of paralleldecom-
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Fig. 10: SAMBATEN outputs repetition factor r: FMS score and
Relative Fitness on synthetic and NIPS real world datasets.

positions. For these experiments, we choose batch size and
sampling rate for synthetic 500⇥ 500⇥ 500 dataset and NIPS
real world dataset as provided in table II and III, respectively.
We can see that with higher values of the repetition factor r,
FMS score and Relative Fitness (SAMBATEN vs CP ALS) is
improved as shown in figure 10. We experiment on varying
repetition factor r with Sampling factor s on NIPS real world
dataset to check the performance of our method as shown
in figure 11. Note that higher FMS score indicates a better
decomposition and, similarly, the lower the fitness score, the
better decomposition. This result completes the answer to Q4.
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Fig. 11: SAMBATEN outputs for repetition factor r and Sampling
factor s: FMS score and Relative Fitness for NIPS real world
dataset.

V. RELATED WORK

In this section, we provide review of the work related
to our algorithm. At large, incremental tensor methods in
the literature can be categorized into three main categories:
1) Tucker decomposition, 2) CP decomposition, 3) Tensor
completion
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Model Selection & Quality

• Rank Estimation
² Given a model (e.g. PARAFAC), choose the 

right number of components
² Do this without any ground truth

E. Papalexakis @ SIAM-ALA18 37



Core Consistency Diagnostic 101 

E. Papalexakis @ SIAM-ALA18

X
≈

A
B?

G

G �

�

Core has important 
modeling quality info

• We derive an equivalent formula for computing COR-
CONDIA, and propose an efficient algorithm, able to
scale on very high dimensional sparse tensors.

• We apply our algorithm to a big real-world time-
evolving social network dataset, demonstrating its
practicality in the analysis of big tensor/graph data.

• We make our code publicly available at http://

www.cs.cmu.edu/

˜

epapalex/src/efficient_

corcondia.zip

2. BACKGROUND & PROBLEM FORMULATION

2.1. A Note on Notation

A tensor is denoted by X. A matrix is denoted by X. A vector
is denoted by x. The symbol � denotes the outer product.
The symbol ⌦ denotes the Kronecker product. The symbol †
denotes the Moore-Penrose pseudoinverse. The symbol vec ()
denotes the vectorization operation.

2.2. Brief Introduction to Tensor Decompositions

Given a tensor X, we can decompose it according to the
PARAFAC decomposition [9] as a sum of rank-one tensors:

X ⇡
RX

r=1

ar � br � cr

where the (i, j, k) entry of ar � br � cr is ar(i)br(j)cr(k).
Usually, PARAFAC is represented in its matrix form [A,B,C],
where the columns of matrix A are the ar vectors (and ac-
cordingly for B,C). The PARAFAC decomposition is es-
pecially useful when we are interested in extracting the true
latent factors that generate the tensor.

Another very popular Tensor decomposition is the Tucker
3 model [15], where a tensor is decomposed into rank-one
factors times a core tensor:

X ⇡
PX

p=1

QX

q=1

RX

r=1

G(p, q, r)up � vq �wr

where U,V,W are orthogonal. The Tucker 3 model is espe-
cially used for compression. Furthermore, PARAFAC can be
seen as a restricted Tucker 3 model, where the core tensor G
is super-diagonal, i.e. non-zero values are only in the entries
where i = j = k. This observation will be useful in order to
motivate the CORCONDIA diagnostic.

2.3. Brief Introduction to CORCONDIA

As outlined in the Introduction, there exist a few diagnos-
tics/heuristics for assessing the modelling quality of the
PARAFAC decomposition. In this work, we will focus on
CORCONDIA [12, 13], which is the simplest and most

intuitive to describe. However, [14] which builds upon COR-
CONDIA can also benefit from our proposed algorithm.

In a nutshell, the idea behind CORCONDIA is the fol-
lowing: Given a tensor X and its PARAFAC decomposition
A,B,C, one could imagine fitting a Tucker model where
matrices A,B,C are the loading matrices of the Tucker 3
model and G is the core tensor (which we need to solve for).
Since, as we already mentioned, PARAFAC can be seen as a
restricted Tucker 3 model with super-diagonal core tensor, if
our PARAFAC modelling of X using A,B,C is good, core
tensor G should be as close to super-diagonal as possible.
If there are deviations from the super-diagonal, then this is a
good indication that our PARAFAC model is somehow flawed
(either the decomposition rank is not appropriate, or the data
do not have the appropriate structure).

As it is highlighted in [12], since matrices A,B,C are not
orthogonal, we may not use typical algorithms that are used
to fit the Tucker model (e.g page 72 of [12]). Instead, we can
pose the problem as the following least squares problem:

min
G

kvec (X)� (A⌦B⌦C) vec (G) k2F

with solution: vec (G) = (A⌦B⌦C)† vec (X)

3. PROBLEM DEFINITION & PROPOSED METHOD

Albeit simple and elegant, the solution of the Least Squares
problem that lies in the heart of CORCONDIA suffers
in the case of high dimensional data. In particular, this
straightforward solution requires to first compute and store
(A⌦B⌦C) and then pseudoinvert it. Consider a 104 ⇥
104 ⇥ 104 tensor; even for a very low rank decomposition of
R = 10, the aforementioned Kronecker product will be of
size 1012 ⇥ 103, a fact which renders computing and storing
such a matrix highly impractical (if not outright impossible),
and subsequently, computing its pseudoinverse largely in-
tractable. Even if the factor matrices A,B,C are sparse [16]
(resulting in a sparse Kronecker product), pseudoinverting
a matrix of such large dimensions is very computationally
challenging.

In this section, we describe our proposed algorithm. Our
“wish-list” of properties for our algorithm is the following:

• Avoid materializing any Kronecker product.
• Avoid directly pseudo-inverting the (potentially huge)

aforementioned Kronecker product.
• Exploit any sparse structure in the factor matrices
A,B,C and/or the tensor X.

In order to achieve the above, we need to reformulate the
computation of CORCONDIA.

Claim 1. The pseudoinverse (A⌦B⌦C)† can be rewritten
as

(Va ⌦Vb ⌦Vc)
�
⌃a

�1 ⌦⌃b
�1 ⌦⌃c

�1� ⇣Ua
T ⌦Ub

T ⌦Uc
T
⌘

[Bro, Kiers Journal of Chemometrics 2003]
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Rank Estimation for CP/PARAFAC

• Maximize both #components and “quality” of decomposition
• Quality is defined through Core Consistency [Bro et al. 2003]

solution that, as we demonstrate in the next Section, can help
data mining practitioners.
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(a) Sparse count data with integer
factors
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(b) Data generated as described in
[7]

Figure 1: Rank estimation error on synthetic data.

5 Data Mining Case Study
Section 5.1 takes 10 diverse real datasets shown in Table 2
and investigates their rank structure. In Section 5.2 we apply
AUTOTEN to one of the datasets of Table 2 and we analyze
the results, as part of an exploratory data mining study.

5.1 Rank Structure of Real Datasets Since exploration
of the rank structure of a dataset, using the Core Consistency
diagnostic, is an integral part of AUTOTEN, we deem neces-
sary to dive deeper into that process. In this case study we are
analyzing the rank structure of 10 real datasets, as captured
by the Core Consistency under Frobenius norm loss (using
our algorithm from [28], as well as Core Consistency with
KL-Divergence loss (introduced here). Most of the datasets
we use are publicly available. ENRON3 is a social network
dataset, recording the number of emails exchanged between
employees of the company for a period of time, during the
company crisis. Reality Mining [10] is a multi-view
social network dataset, recording relations between MIT stu-
dents (who calls whom, who messages whom, who is close
to whom and so on). Facebook [33] is a time evolving
snapshot of Facebook, recording people posting on other
peoples’ Walls. Taxi4 is a dataset of taxi trajectories in Bei-
jing; we discretize latitude and longitude to a 100⇥100 grid.
DBLP is a dataset recording which researcher to researcher
connections, from three different viewpoints (first view is co-
authorship, second view is citation, and third view records
whether two authors share at least three keywords in their
title or abstract of their papers). Netflix comes from the
Netflix prize dataset and records movie ratings by users over
time. Amazon co-purchase data records items bought
together, and the category of the first of the two products.
Amazon metadata records customers who reviewed a

3http://www.cs.cmu.edu/˜enron/
4http://research.microsoft.com/apps/pubs/?id=

152883

product, and the corresponding product category. Yelp con-
tains reviews of Yelp users for various businesses (from the
data challenge5). Finally, Airport6 contains records of
flights between different airports, and the operating airline.

We ran our algorithms for F = 2 · · · 50, and truncated
negative values to zero. For KL-Divergence and datasets
Facebook, Netflix, Yelp, and Airport we used
smaller versions (first 500 rows for Netflix and Yelp,
and first 1000 rows for Facebook and Airport), due to
high memory requirements of Matlab; this means that the
corresponding figures describe the rank structure of a smaller
dataset, which might be different from the full one. Figure 2
shows the Core Consistency when using Frobenius norm as
a loss, and Fig. 3 when using KL-Divergence. The way to
interpret these figures is the following: assuming a CP ALS
(Fig. 2) or a CP APR (Fig. 3) model, each figure shows the
modelling quality of the data for a given rank. This sheds
light to the rank structure of a particular dataset (although
that is not to say that it provides a definitive answer about
its true rank). For the given datasets, we observe a few in-
teresting differences in structure: for instance, ENRON and
Taxi in Fig. 2 seem to have good quality for a few com-
ponents. On the other hand, Reality Mining, DBLP,
and Amazon metadata have reasonably acceptable qual-
ity for a larger range of components, with the quality de-
creasing as the number gets higher. Another interesting ob-
servation is that Yelp seems to be modelled better using a
high number of components. Figures that are all-zero merely
show that no good structure was detected for up to 50 com-
ponents, however, this might indicate that such datasets (e.g.
Netflix) have an even higher number of components. Fi-
nally, contrasting Fig. 3 to Fig. 2, we observe that in many
cases using the KL-Divergence is able to discover better
structure than the Frobenius norm (e.g. ENRON and Amazon
co-purchase).
5.2 AutoTen in practice We used AUTOTEN to analyze
the Taxi dataset shown in Table 2.The data we have span an
entire week worth of measurements, with temporal granular-
ity of minutes. First, we tried quantizing the latitude and lon-
gitude into a 1000⇥ 1000 grid; however, AUTOTEN warned
us that the decomposition was not able to detect good and
coherent structure in the data, perhaps due to extreme spar-
sity. Subsequently, we modelled the data using a 100 ⇥ 100
grid and AUTOTEN was able to detect good structure. In par-
ticular, AUTOTEN output 8 rank-one components, choosing
Frobenius norm as a loss function.

In Figure 4 we show 4 representative components of the
decomposition. In each sub-figure, we overlay the map of
Beijing with the coordinates that appear to have high activity
in the particular component; every sub-figure also shows the
temporal profile of the component. The first two components

5https://www.yelp.com/dataset_challenge/dataset
6http://openflights.org/data.html
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E. Papalexakis @ SIAM-ALA18 39



Balancing Interpretability and 
Predictive Quality

E. Papalexakis @ SIAM-ALA18

Best candidate!
Good candidate!

✖! Eliminated candidate!
X

R = 1!

R = Rmax!

…
!

Decompose!
  in parallel !

✖!
✖!✖!

# components (R)!

qu
al

ity
 !

Scoreboard!

• CP/PARAFAC has been successful in Collaborative 
Filtering [Xiong et al 2010 SDM]

• Cross-validation on held-out has been used by 
the N-way Toolbox for CP/PARAFAC.

• What about scoring a balance between prediction 
and interpretability?
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Balancing Interpretability and 
Predictive Quality

E. Papalexakis @ SIAM-ALA18

Work in progress – ASILOMAR 2017 w/ Ishmam Zabir

Lower is 
Better
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Roadmap
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Future Directions

• Fake News & User Personality Mining
• Mental State Estimation Using Online 

Behavior & Smartphone Usage
• Sports Analytics using Tensors
• Interplay of Tensor Methods and Deep 

Learning

E. Papalexakis @ SIAM-ALA18 43



Thank you! Questions?

• How to reach me: http://www.cs.ucr.edu/~epapalex/

E. Papalexakis @ SIAM-ALA18
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Multi Aspect Data
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