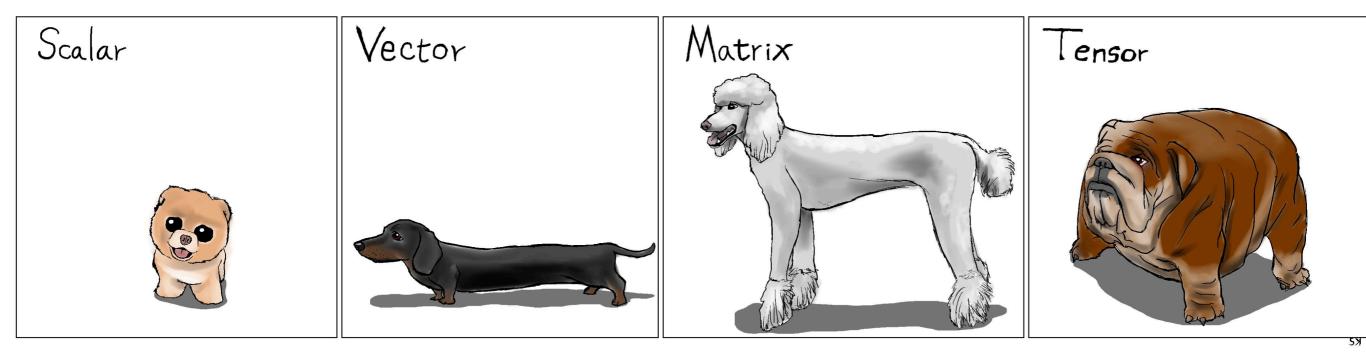
Tensor Contraction with Extended BLAS Kernels on CPU and GPU

Yang Shi University of California, Irvine, EECS

Joint work with U.N. Niranjan, Animashree Anandkumar and Cris Cecka

SIAM-ALA18



Why we need tensor?

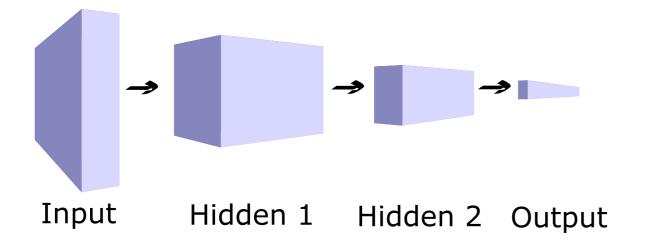
Why we need tensor?

Modern data is inherently multi-dimensional

Why we need tensor?

Modern data is inherently multi-dimensional

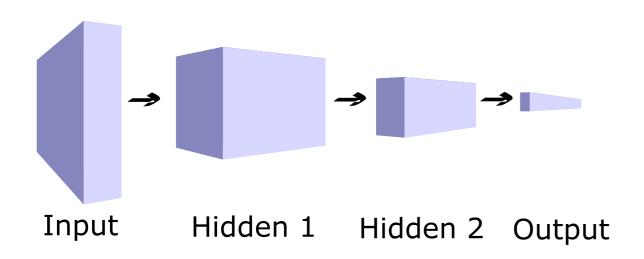
Neural Networks

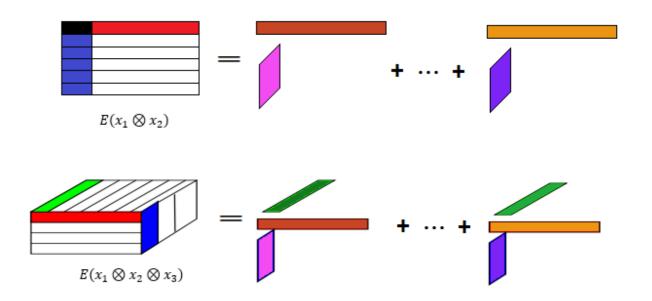


Why we need tensor?

Neural Networks

Modern data is inherently multi-dimensional



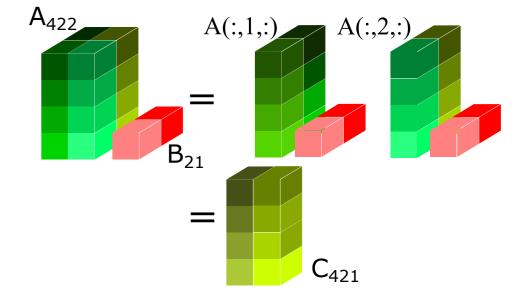


Method of Moment

What is tensor contraction?

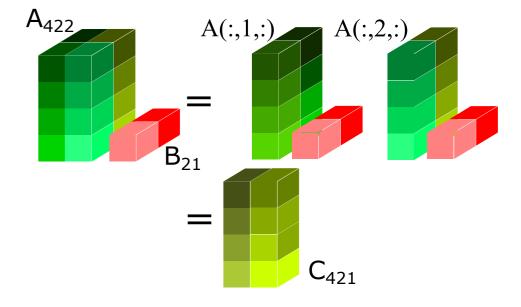
What is tensor contraction?

$$C_{\mathcal{C}} = A_{\mathcal{A}} B_{\mathcal{B}}$$



What is tensor contraction?

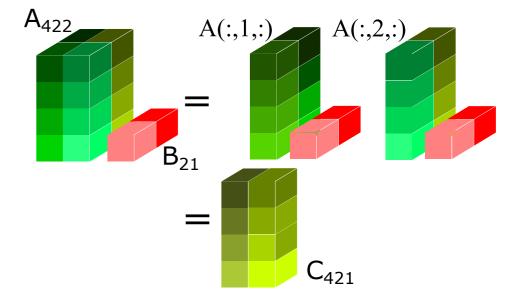
$$C_{\mathcal{C}} = A_{\mathcal{A}} B_{\mathcal{B}}$$



Why do we need tensor contraction?

What is tensor contraction?

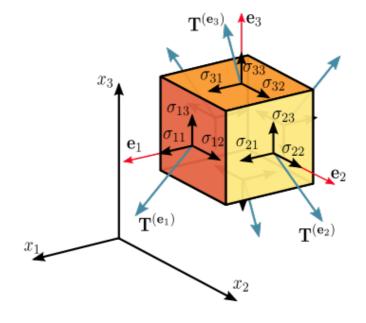
$$C_{\mathcal{C}} = A_{\mathcal{A}} B_{\mathcal{B}}$$



Why do we need tensor contraction?

Physics

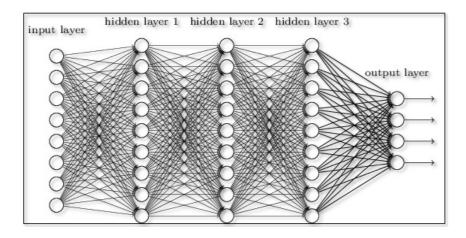
Chemistry



Why do we need tensor contraction?

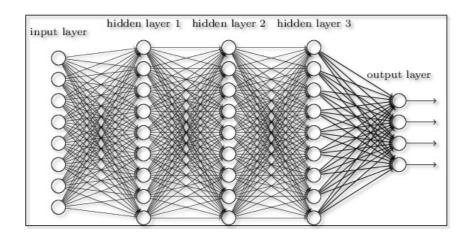
Why do we need tensor contraction?

Deep Learning



Why do we need tensor contraction?

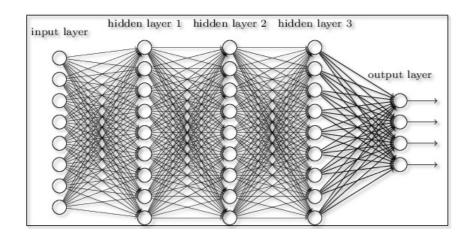
Deep Learning



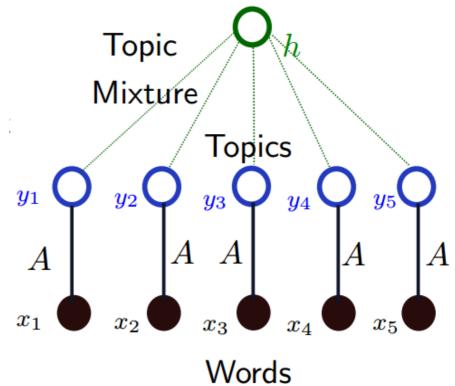
Learning latent variable model with tensor decomposition
 Example: Topic modeling

Why do we need tensor contraction?

Deep Learning

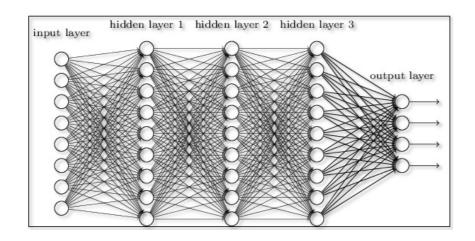


Learning latent variable model with tensor decomposition
 Example: Topic modeling



Why do we need tensor contraction?

Deep Learning

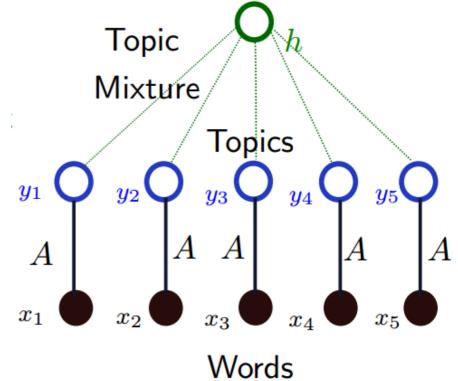


Learning latent variable model with tensor decomposition
 Example: Topic modeling

h: Proportion of topics in a document h = i with prob. w_i

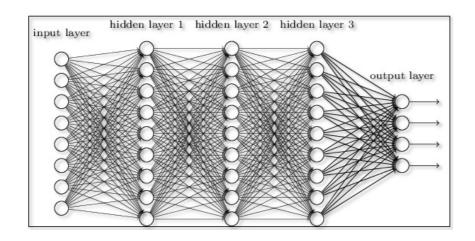
A: Topic-word matrix

 $A(i,j) = \mathcal{P}(x_m = i | y_m = j)$



Why do we need tensor contraction?

Deep Learning



Learning latent variable model with tensor decomposition
 Example: Topic modeling

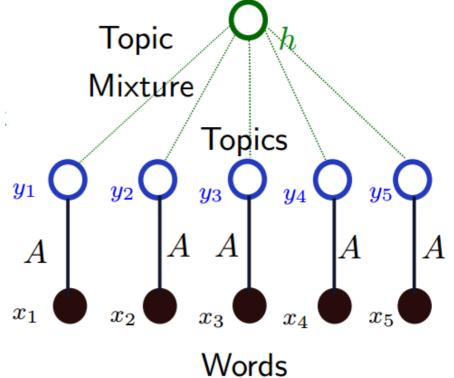
h: Proportion of topics in a document h = i with prob. w_i

A: Topic-word matrix

 $A(i,j) = \mathcal{P}(x_m = i | y_m = j)$

Third order moment:

$$M_3 = \mathbb{E}(x \otimes x \otimes x) = \sum_i w_i a_i \otimes a_i \otimes a_i$$



What do we have?

What do we have?

Tensor computation libraries:

• Arbitrary/restricted tensor operations of any order and dimension

• Such as: Matlab Tensortoolbox, BTAS, FTensor, Cyclops

What do we have?

Tensor computation libraries:

- Arbitrary/restricted tensor operations of any order and dimension
- Such as: Matlab Tensortoolbox, BTAS, FTensor, Cyclops

Efficient computing frame:

- Static analysis solutions: loop reorganization, fusion
- Parallel and distributed computing system: BatchedGEMM functions in MKL 11.3, CuBLAS v4.1: compute many matrix-matrix multiplies at once.

What do we have?

Tensor computation libraries:

- Arbitrary/restricted tensor operations of any order and dimension
- Such as: Matlab Tensortoolbox, BTAS, FTensor, Cyclops

Efficient computing frame:

- Static analysis solutions: loop reorganization, fusion
- Parallel and distributed computing system: BatchedGEMM functions in MKL 11.3, CuBLAS v4.1: compute many matrix-matrix multiplies at once.

What are the limitations?

What are the limitations?

• Explicit permutation takes long time in current tensor libraries:

What are the limitations?

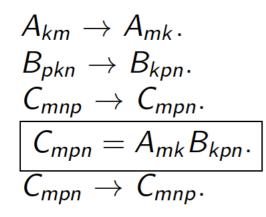
• Explicit permutation takes long time in current tensor libraries:

Consider $C_{mnp} = A_{km}B_{pkn}$

What are the limitations?

• Explicit permutation takes long time in current tensor libraries:

Consider $C_{mnp} = A_{km}B_{pkn}$



Tensor Contraction-Motivation What are the limitations?

• Explicit permutation takes long time in current tensor libraries:

Consider $C_{mnp} = A_{km}B_{pkn}$

 $egin{aligned} A_{km} &
ightarrow A_{mk}.\ B_{pkn} &
ightarrow B_{kpn}.\ C_{mnp} &
ightarrow C_{mpn}.\ \hline C_{mpn} &= A_{mk}B_{kpn}.\ \hline C_{mpn} &
ightarrow C_{mnp}. \end{aligned}$

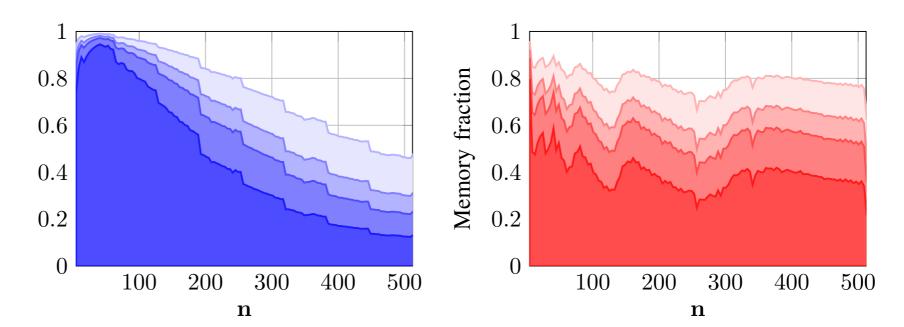


Figure: The fraction of time spent in copies/transpositions when computing Cmnp = AmkBpkn . Lines are shown with 1, 2, 3, and 6 total transpositions performed on either the input or output. (Left) CPU. (Right) GPU.

Propose tensor operation kernel: StridedBatchedGEMM

- Propose tensor operation kernel: StridedBatchedGEMM
 - Library-based approaches that avoid memory movement

- Propose tensor operation kernel: StridedBatchedGEMM
 - Library-based approaches that avoid memory movement
 - Constant-strided BatchedGEMM that has more optimization opportunities

- Propose tensor operation kernel: StridedBatchedGEMM
 - Library-based approaches that avoid memory movement
 - Constant-strided BatchedGEMM that has more optimization opportunities
- Provide evaluation strategies for tensor contractions

- Propose tensor operation kernel: StridedBatchedGEMM
 - Library-based approaches that avoid memory movement
 - Constant-strided BatchedGEMM that has more optimization opportunities
- Provide evaluation strategies for tensor contractions
- Apply to tensor decomposition

- Propose tensor operation kernel: StridedBatchedGEMM
 - Library-based approaches that avoid memory movement
 - Constant-strided BatchedGEMM that has more optimization opportunities
- Provide evaluation strategies for tensor contractions
- Apply to tensor decomposition
- Introduce TensorLy: Tensor learning in python

BLAS(Basic Linear Algebra Subprograms): Low-level routines for performing common linear algebra operations.

BLAS(Basic Linear Algebra Subprograms): Low-level routines for performing common linear algebra operations.

Level 1	Level 2	Level 3
$y \leftarrow \alpha x + y$	$y \leftarrow \alpha op(A)x + \beta y$	$C \leftarrow \alpha op(A)op(B) + \beta C$

BLAS(Basic Linear Algebra Subprograms): Low-level routines for performing common linear algebra operations.

Level 1	Level 2	Level 3
$y \leftarrow \alpha x + y$	$y \leftarrow \alpha op(A)x + \beta y$	$C \leftarrow \alpha op(A)op(B) + \beta C$

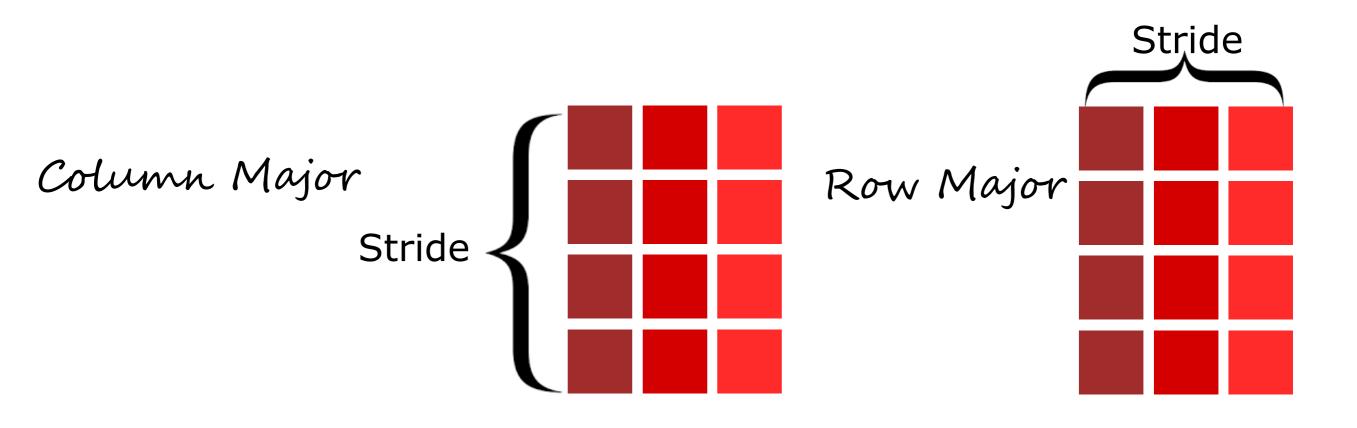
Example: GEMM(ORDER, TRANSA, TRANSB, M, N, K, α , A, LDA, B, LDB, β , C, LDC)

BLAS Operations

BLAS(Basic Linear Algebra Subprograms): Low-level routines for performing common linear algebra operations.

Level 1	Level 2	Level 3
$y \leftarrow \alpha x + y$	$y \leftarrow \alpha op(A)x + \beta y$	$C \leftarrow \alpha op(A)op(B) + \beta C$

Example: GEMM(ORDER, TRANSA, TRANSB, M, N, K, α , A, LDA, B, LDB, β , C, LDC)

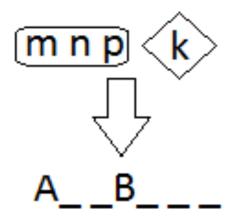


Focusing: one-index contraction

Extended BLAS Kernel for tensor one-index contraction

 $C = \alpha op(A)op(B) + \beta C$

$$C_{mnp} = A_{**} \times B_{***}$$

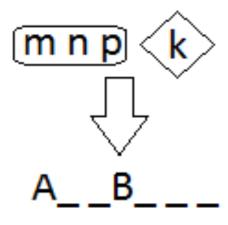


Focusing: one-index contraction

Extended BLAS Kernel for tensor one-index contraction

 $C = \alpha op(A)op(B) + \beta C$

$$C_{mnp} = A_{**} \times B_{***}$$



If fixing indices of C, there are total $3 \times 2 \times 3 \times 2 \times 1 = 36$ cases.

Case	Contraction	Kernel1	Kernel2	Kernel3
1.1	$A_{mk}B_{knp}$	$C_{m(np)} = A_{mk}B_{k(np)}$	$C_{mn[p]} = A_{mk}B_{kn[p]}$	$C_{m[n]p} = A_{mk}B_{k[n]p}$

Table: Example: possible mappings to Level 3 BLAS routines

Case	Contraction	Kernel1	Kernel2	Kernel3
1.1	$A_{mk}B_{knp}$	$C_{m(np)} = A_{mk}B_{k(np)}$	$C_{mn[p]} = A_{mk}B_{kn[p]}$	$C_{m[n]p} = A_{mk}B_{k[n]p}$

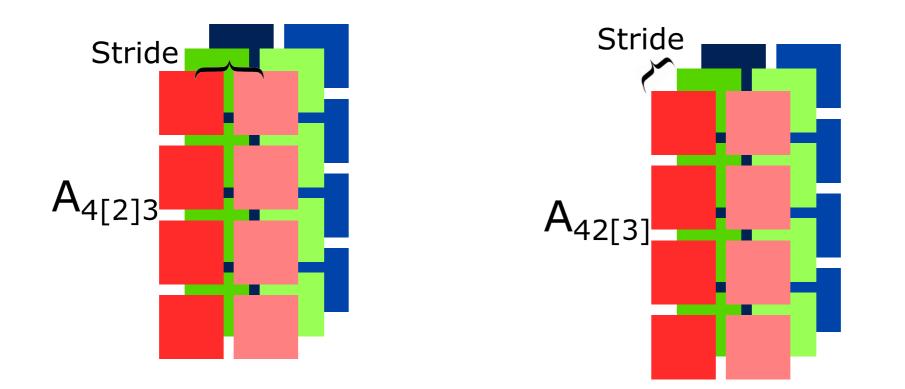
Table: Example: possible mappings to Level 3 BLAS routines

StridedBatchedGEMM(ORDER, TRANSA, TRANSB, M, N, K, α , A, LDA, LOA, B, LDB, LOB, β , C, LDC, LOC, P)

Case	Contraction	Kernel1	Kernel2	Kernel3
1.1	$A_{mk}B_{knp}$	$C_{m(np)} = A_{mk}B_{k(np)}$	$C_{mn[p]} = A_{mk}B_{kn[p]}$	$C_{m[n]p} = A_{mk}B_{k[n]p}$

Table: Example: possible mappings to Level 3 BLAS routines

StridedBatchedGEMM(ORDER, TRANSA, TRANSB, M, N, K, α , A, LDA, LOA, B, LDB, LOB, β , C, LDC, LOC, P)



Example

Case	Contraction	Kernel1	Kernel2	Kernel3	Case	Contraction	Kernel1	Kernel2
1.1	$A_{mk}B_{knp}$	$C_{m(np)} = A_{mk}B_{k(np)}$	$C_{mn[p]} = A_{mk}B_{kn[p]}$	$C_{m[n]p} = A_{mk}B_{k[n]p}$	4.1	$A_{kn}B_{kmp}$	$C_{mn[p]} = B_{\underline{k}m[p]}^{\top} A_{kn}$	
1.2	$A_{mk}B_{kpn}$	$C_{mn[p]} = A_{mk}B_{k[p]n}$	$C_{m[n]p} = A_{mk}B_{kp[n]}$		4.2	$A_{kn}B_{kpm}$	$C_{mn[p]} = B_{k[p]m}^{\top} A_{kn}$	
1.3	$A_{mk}B_{nkp}$	$C_{mn[p]} = A_{mk} B_{nk[p]}^\top$			4.3	$A_{kn}B_{mkp}$	$C_{mn[p]} = B_{mk[p]}A_{kn}$	
1.4	$A_{mk}B_{pkn}$	$C_{m[n]p} = A_{mk} B_{pk[n]}^{\top}$			4.4	$A_{kn}B_{pkm}$	$TRANS(A_{kn}^{ op}B_{pk[m]}^{ op})$	$C_{[m][n]p} = B_{pk[m]}A_{k[n]}$
1.5	$A_{mk}B_{npk}$	$C_{m(np)} = A_{mk} B_{(np)k}^{\top}$	$C_{mn[p]} = A_{mk} B_{n[p]k}^\top$		4.5	$A_{kn}B_{mpk}$	$C_{mn[p]} = B_{m[p]k}A_{kn}$	
1.6	$A_{mk}B_{pnk}$	$C_{m[n]p} = A_{mk} B_{p[n]k}^\top$			4.6	$A_{kn}B_{pmk}$	$TRANS(A_{kn}^{\top}B_{p[m]k}^{\top})$	$C_{[m][n]p} = B_{p[m]k}A_{k[n]}$
2.1	$A_{km}B_{knp}$	$C_{m(np)} = A_{km}^{\top} B_{k(np)}$	$C_{mn[p]} = A_{km}^\top B_{kn[p]}$	$C_{m[n]p} = A_{km}^\top B_{k[n]p}$	5.1	$A_{pk}B_{kmn}$	$C_{(mn)p} = B_{k(mn)}^{ op} A_{pk}^{ op}$	$C_{m[n]p} = B_{km[n]}^{ op} A_{pk}^{ op}$
2.2	$A_{km}B_{kpn}$	$C_{mn[p]} = A_{km}^\top B_{k[p]n}$	$C_{m[n]p} = A_{km}^\top B_{kp[n]}$		5.2	$A_{pk}B_{knm}$	$C_{m[n]p} = B_{k[n]m}^{\top} A_{pk}^{\top}$	
2.3	$A_{km}B_{nkp}$	$C_{mn[p]} = A_{km}^{\top} B_{nk[p]}^{\top}$			5.3	$A_{pk}B_{mkn}$	$C_{m[n]p} = B_{mk[n]} A_{pk}^{\top}$	
2.4	$ A_{km}B_{pkn} $	$C_{m[n]p} = A_{km}^\top B_{pk[n]}^\top$			5.4	$ A_{pk}B_{nkm} $	$TRANS(B_{nk[m]}A_{pk}^{ op})$	$ C_{[m]n[p]} = B_{nk[m]}A_{[p]k} $
2.5	$ A_{km}B_{npk} $	$C_{m(np)} = A_{km}^\top B_{(np)k}^\top$	$C_{mn[p]} = A_{km}^\top B_{n[p]k}^\top$		5.5	$ A_{pk}B_{mnk} $	$C_{(mn)p} = B_{(mn)k} A_{pk}^{ op}$	$C_{m[n]p} = B_{m[n]k} A_{pk}^{\top}$
2.6	$A_{km}B_{pnk}$	$C_{m[n]p} = A_{km}^{ op} B_{p[n]k}^{ op}$			5.6	$A_{pk}B_{nmk}$	$TRANS(B_{n[m]k}A_{pk}^{ op})$	$C_{[m]n[p]} = B_{n[m]k} A_{[p]k}$
3.1	$A_{nk}B_{kmp}$	$C_{mn[p]} = B_{\underline{k}m[p]}^{\top} A_{\underline{n}k}^{\top}$			6.1	$A_{kp}B_{kmn}$	$C_{(mn)p} = B_{k(mn)}^{ op} A_{kp}$	$C_{m[n]p} = B_{km[n]}^{\top} A_{kp}$
3.2	$ A_{nk}B_{kpm} $	$C_{mn[p]} = B_{k[p]m}^\top A_{nk}^\top$			6.2	$ A_{kp}B_{knm} $	$C_{m[n]p} = B_{k[n]m}^\top A_{kp}$	
3.3	$ A_{nk}B_{mkp} $	$C_{mn[n]} = B_{mk[n]}A_{mk}^{\dagger}$			6.3	$A_{kp}B_{mkn}$	$C_{m[n]p} = B_{mk[n]}A_{kp}$	
3.4	$A_{nk}B_{pkm}$	$TRANS(A_{nk}B_{pk[m]}^{ op})$	$C_{[m][n]p} = B_{pk[m]}A_{[n]k}$		6.4	$A_{kp}B_{nkm}$	$TRANS(B_{nk[m]}A_{kp})$	$C_{[m]n[p]} = B_{nk[m]}A_{k[p]}$
3.5	$A_{nk}B_{mpk}$	$C_{mn[p]} = B_{m[p]k} A_{nk}^{\dagger}$			6.5	$A_{kp}B_{mnk}$	$C_{(mn)p} = B_{(mn)k} A_{kp}$	$C_{m[n]p} = B_{m[n]k} A_{kp}$
3.6	$A_{nk}B_{pmk}$	$TRANS(A_{nk}B_{p[m]k}^{\top})$	$C_{[m][n]p} = B_{p[m]k} A_{[n]k}$		6.6	$A_{kp}B_{nmk}$	$TRANS(B_{n[m]k}A_{kp})$	$C_{[m]n[p]} = B_{n[m]k} A_{k[p]}$

Example

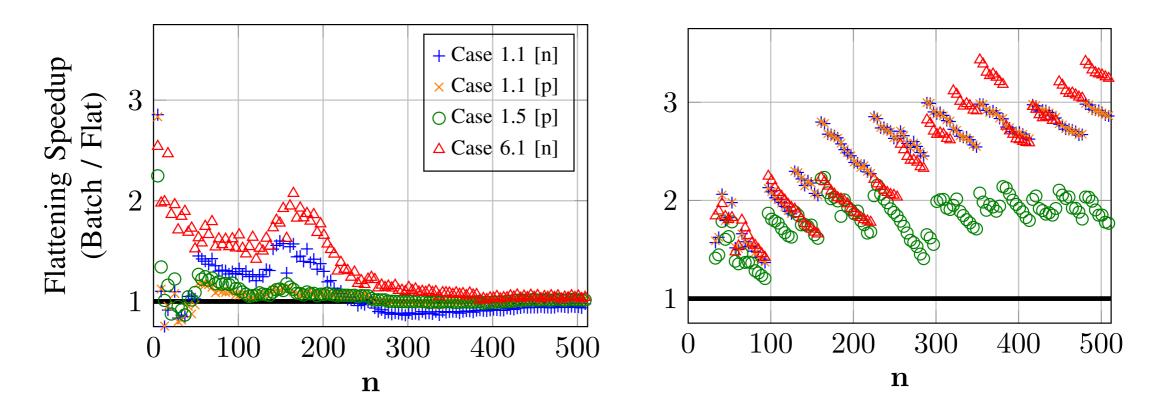
Case	Contraction	Kernel1	Kernel2	Kernel3	Case	Contraction	Kernel1	Kernel2
1.1	$A_{mk}B_{knp}$	$C_{m(np)} = A_{mk}B_{k(np)}$	$C_{mn[p]} = A_{mk}B_{kn[p]}$	$C_{m[n]p} = A_{mk}B_{k[n]p}$	4.1	$A_{kn}B_{kmp}$	$C_{mn[p]} = B_{\underline{k}m[p]}^{\top} A_{kn}$	
1.2	$A_{mk}B_{kpn}$	$C_{mn[p]} = A_{mk}B_{k[p]n}$	$C_{m[n]p} = A_{mk}B_{kp[n]}$		4.2	$A_{kn}B_{kpm}$	$C_{mn[p]} = B_{k[p]m}^{\top} A_{kn}$	
1.3	$A_{mk}B_{nkp}$	$C_{mn[p]} = A_{mk} B_{nk[p]}^\top$			4.3	$A_{kn}B_{mkp}$	$C_{mn[p]} = B_{mk[p]}A_{kn}$	
1.4	$A_{mk}B_{pkn}$	$C_{m[n]p} = A_{mk} B_{pk[n]}^{\top}$			4.4	$A_{kn}B_{pkm}$	$TRANS(A_{kn}^{\top}B_{pk[m]}^{\top})$	$C_{[m][n]p} = B_{pk[m]}A_{k[n]}$
1.5	$A_{mk}B_{npk}$	$C_{m(np)} = A_{mk} B_{(np)k}^{\top}$	$C_{mn[p]} = A_{mk} B_{n[p]k}^\top$		4.5	$A_{kn}B_{mpk}$	$C_{mn[p]} = B_{m[p]k} A_{kn}$	
1.6	$A_{mk}B_{pnk}$	$C_{m[n]p} = A_{mk} B_{p[n]k}^{ op}$			4.6	$A_{kn}B_{pmk}$	$TRANS(A_{kn}^{\top}B_{p[m]k}^{\top})$	$C_{[m][n]p} = B_{p[m]k} A_{k[n]}$
2.1	$A_{km}B_{knp}$	$C_{m(np)} = A_{km}^{\top} B_{k(np)}$	$C_{mn[p]} = A_{km}^\top B_{kn[p]}$	$C_{m[n]p} = A_{km}^\top B_{k[n]p}$	5.1	$A_{pk}B_{kmn}$	$C_{(mn)p} = B_{k(mn)}^{ op} A_{pk}^{ op}$	$C_{m[n]p} = B_{km[n]}^{ op} A_{pk}^{ op}$
2.2	$A_{km}B_{kpn}$	$C_{mn[p]} = A_{km}^\top B_{k[p]n}$	$C_{m[n]p} = A_{km}^\top B_{kp[n]}$		5.2	$A_{pk}B_{knm}$	$C_{m[n]p} = B_{k[n]m}^{\top} A_{pk}^{\uparrow}$	
2.3	$A_{km}B_{nkp}$	$C_{mn[p]} = A_{km}^\top B_{nk[p]}^\top$			5.3	$A_{pk}B_{mkn}$	$C_{m[n]p} = B_{mk[n]} A_{pk}^\top$	
2.4	$A_{km}B_{pkn}$	$C_{m[n]p} = A_{km}^\top B_{pk[n]}^\top$			5.4	$A_{pk}B_{nkm}$	$TRANS(B_{nk[m]}A_{pk}^{ op})$	$C_{[m]n[p]} = B_{nk[m]}A_{[p]k}$
2.5	$ A_{km}B_{npk} $	$C_{m(np)} = A_{km}^\top B_{(np)k}^\top$	$C_{mn[p]} = A_{km}^\top B_{n[p]k}^\top$		5.5	$ A_{pk}B_{mnk} $	$C_{(mn)p} = B_{(mn)k} A_{pk}^{\top}$	$C_{m[n]p} = B_{m[n]k} A_{pk}^\top$
2.6	$A_{km}B_{pnk}$	$C_{m[n]p} = A_{km}^\top B_{p[n]k}^\top$			5.6	$A_{pk}B_{nmk}$	$TRANS(B_{n[m]k}A_{pk}^{\top})$	$C_{[m]n[p]} = B_{n[m]k} A_{[p]k}$
3.1	$A_{nk}B_{kmp}$	$C_{mn[p]} = B_{\underline{k}m[p]}^{\top} A_{\underline{n}k}^{\top}$			6.1	$A_{kp}B_{kmn}$	$C_{(mn)p} = B_{k(mn)}^{\top} A_{kp}$	$C_{m[n]p} = B_{km[n]}^\top A_{kp}$
3.2	$ A_{nk}B_{kpm} $	$C_{mn[p]} = B_{k[p]m}^\top A_{nk}^\top$			6.2	$ A_{kp}B_{knm} $	$C_{m[n]p} = B_{k[n]m}^{\top} A_{kp}$	
3.3	$ A_{nk}B_{mkp} $	$C_{mn[p]} = B_{mk[p]} A_{nk}^{\top}$			6.3	$A_{kp}B_{mkn}$	$C_{m[n]p} = B_{mk[n]}A_{kp}$	
3.4	$A_{nk}B_{pkm}$	$TRANS(A_{nk}B_{pk[m]}^{ op})$	$C_{[m][n]p} = B_{pk[m]}A_{[n]k}$		6.4	$A_{kp}B_{nkm}$	$TRANS(B_{nk[m]}A_{kp})$	$C_{[m]n[p]} = B_{nk[m]}A_{k[p]}$
3.5	$A_{nk}B_{mpk}$	$C_{mn[p]} = B_{m[p]k} A_{nk}^{\dagger}$			6.5	$A_{kp}B_{mnk}$	$C_{(mn)p} = B_{(mn)k}A_{kp}$	$C_{m[n]p} = B_{m[n]k} A_{kp}$
3.6	$A_{nk}B_{pmk}$	$TRANS(A_{nk}B_{p[m]k}^{\top})$	$C_{[m][n]p} = B_{p[m]k} A_{[n]k}$		6.6	$A_{kp}B_{nmk}$	$TRANS(B_{n[m]k}A_{kp})$	$C_{[m]n[p]} = B_{n[m]k} A_{k[p]}$

Table: List of 36 possible single mode contraction operations between a second-order tensor and a third-order tensor and possible mappings to Level-3 BLAS routines

Analysis

Flatten v.s. SBGEMM

Case	Contraction	Kernel1	Kernel2	Kernel3
1.1	$A_{mk}B_{knp}$	$C_{m(np)} = A_{mk}B_{k(np)}$	$C_{mn[p]} = A_{mk}B_{kn[p]}$	$C_{m[n]p} = A_{mk}B_{k[n]p}$

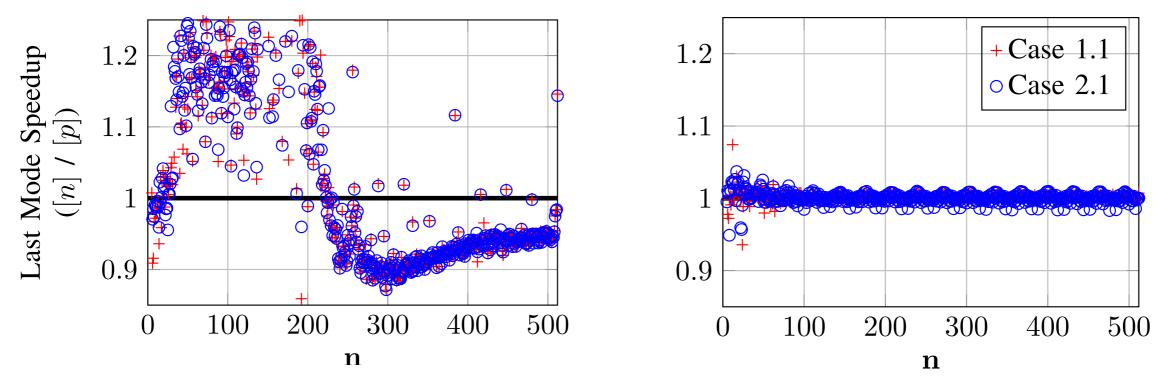


Prefer flatten than SBGEMM

Analysis

Batching in last mode v.s. middle mode

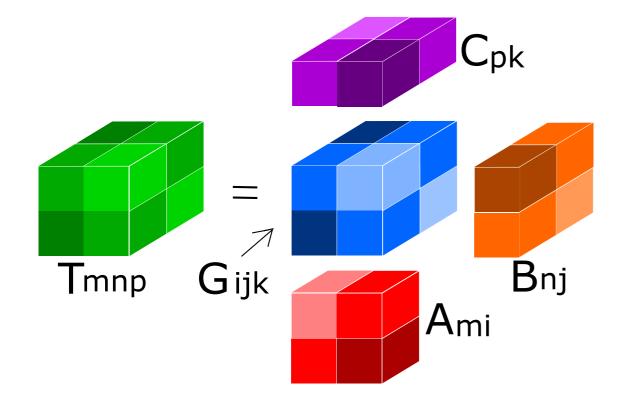
Case	Contraction	Kernel1	Kernel2	Kernel3
1.1	$A_{mk}B_{knp}$	$C_{m(np)} = A_{mk} B_{k(np)}$	$C_{mn[p]} = A_{mk} B_{kn[p]}$	$C_{m[n]p} = A_{mk}B_{k[n]p}$
2.1	$A_{km}B_{knp}$	$C_{m(np)} = A_{km}^{\top} B_{k(np)}$	$C_{mn[p]} = A_{km}^\top B_{kn[p]}$	$C_{m[n]p} = A_{km}^\top B_{k[n]p}$



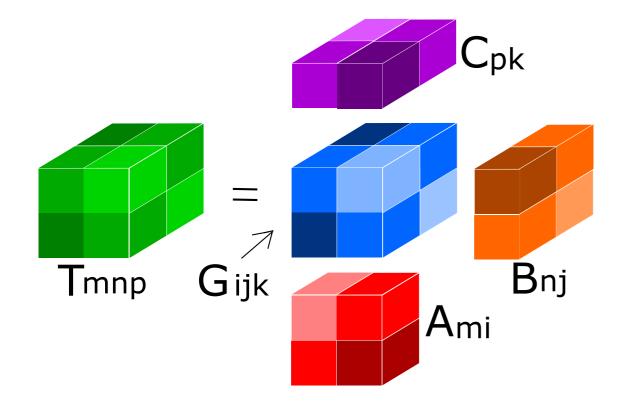
On CPU, it's better to batch in last mode when tensor size is small/moderate

$$T_{mnp} = G_{ijk} A_{mi} B_{nj} C_{pk}$$

$$T_{mnp} = G_{ijk} A_{mi} B_{nj} C_{pk}$$

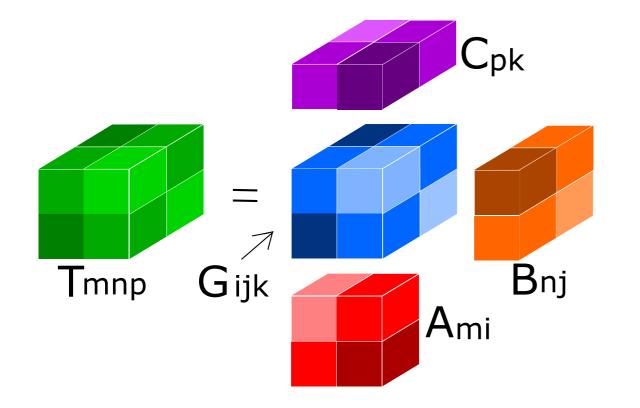


$$T_{mnp} = G_{ijk} A_{mi} B_{nj} C_{pk}$$



Main Steps:

$$T_{mnp} = G_{ijk} A_{mi} B_{nj} C_{pk}$$



Main Steps:

•
$$Y_{mjk} = T_{mnp}B_{nj}^t C_{pk}^t$$

• $Y_{ink} = T_{mnp}A_{mi}^{t+1}C_{pk}^t$

•
$$Y_{ijp} = T_{mnp} B_{nj}^{t+1} A_{mi}^{t+1}$$

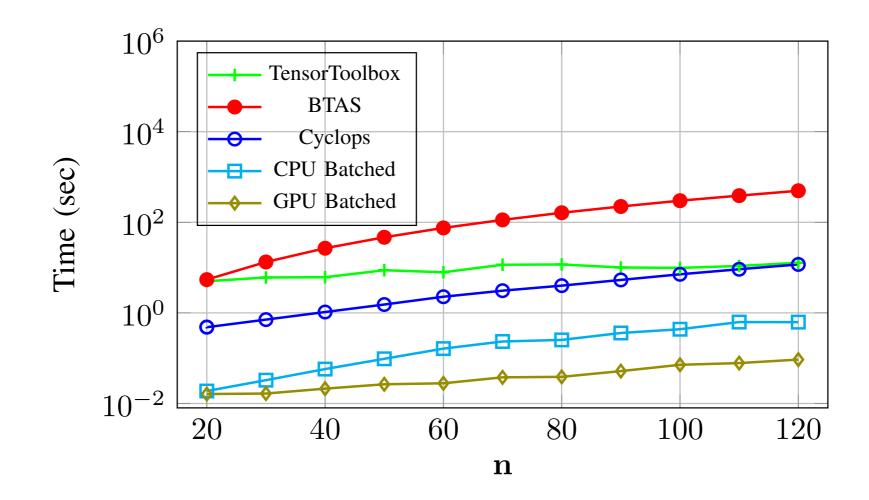


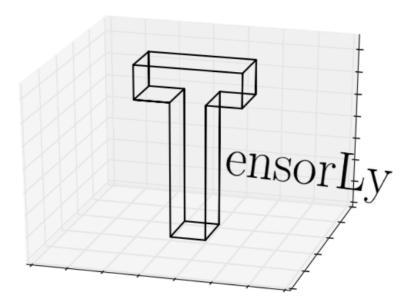
Figure: Performance on Tucker decomposition.

Conclusion

- StridedBatchedGEMM for generalized tensor contractions.
- Avoid explicit transpositions or permutations.
- 10x(GPU) and 2x(CPU) speedup on small and moderate sized tensors.
- Available in CuBLAS 8.0.

Introduction of TensorLy

by Jean Kossaifi, Imperial College London Yannis Panagakis, Imperial College London Anima Anandkumar, Caltech



Introduction of TensorLy

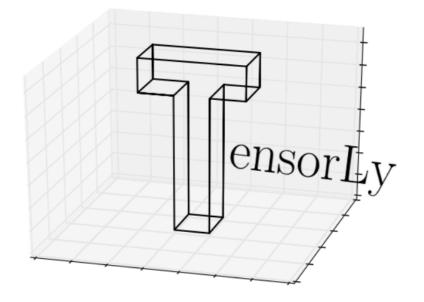
by Jean Kossaifi, Imperial College London Yannis Panagakis, Imperial College London Anima Anandkumar, Caltech

• Open source

Homepage: http://tensorly.org/dev/

Github: https://github.com/tensorly/tensorly

Suitable for academic / industrial applications



Introduction of TensorLy

by Jean Kossaifi, Imperial College London Yannis Panagakis, Imperial College London Anima Anandkumar, Caltech

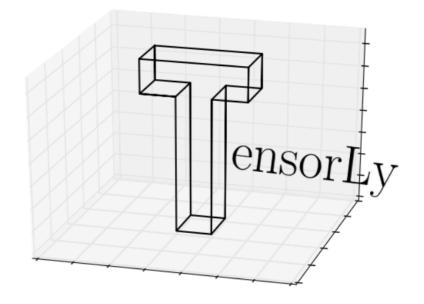
• Open source

Homepage: http://tensorly.org/dev/

Github: https://github.com/tensorly/tensorly

Suitable for academic / industrial applications

Reliability and easy to use

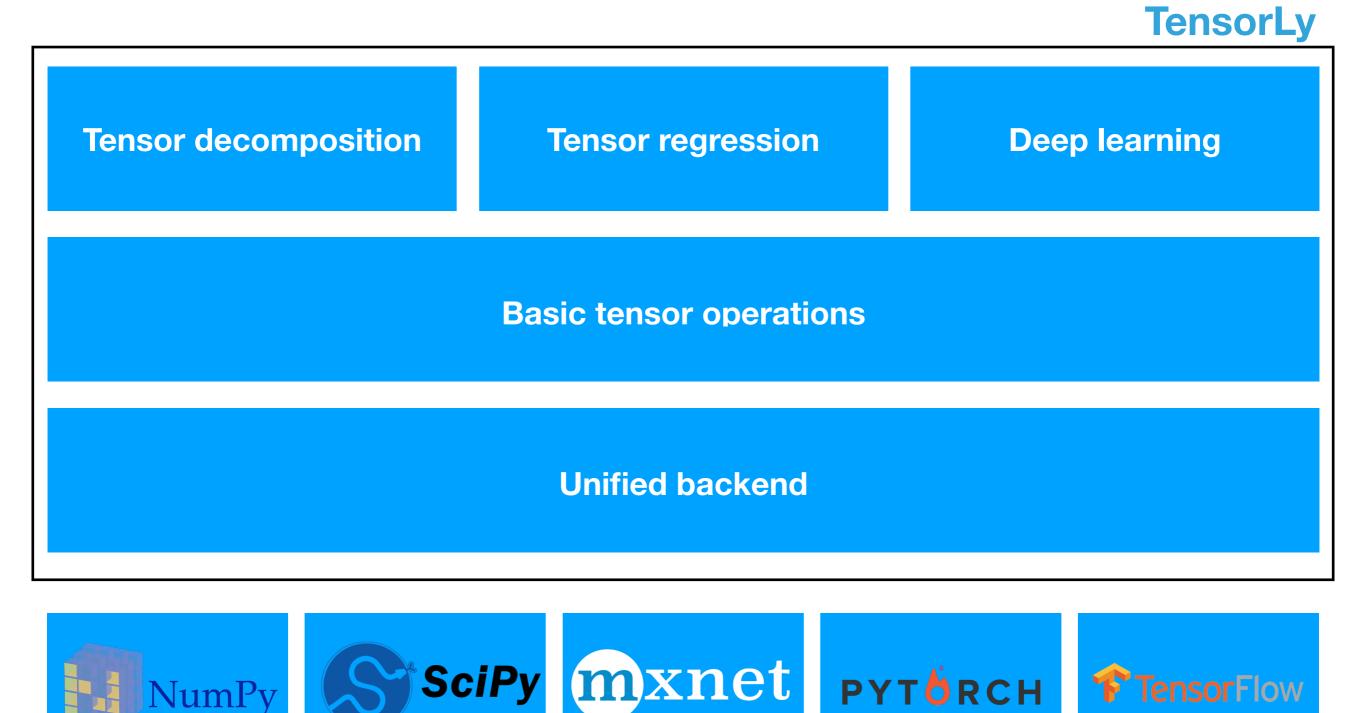


Depends only on NumPy, SciPy [Optionally Matplotlib, MXNet and PyTorch]

Exhaustive documentation, Unit-testing for all functions

Fast

User-friendly API



TensorLy Operators

- Kronecker
- Khatri-rao
- Hadamard products
- Tensor unfolding/folding/vectorization
- N-mode product

<pre>khatri_rao (matrices[, skip_matrix, reverse])</pre>	Khatri-Rao product of a list of matrices
kronecker (matrices[, skip_matrix, reverse])	Kronecker product of a list of matrices
<pre>mode_dot (tensor, matrix_or_vector, mode)</pre>	n-mode product of a tensor and a matrix or vector at the specified mode
<pre>multi_mode_dot (tensor, matrix_or_vec_list[,])</pre>	n-mode product of a tensor and several matrices or vectors over several modes
<pre>proximal.soft_thresholding (tensor, threshold)</pre>	Soft-thresholding operator
<pre>proximal.svd_thresholding (matrix, threshold)</pre>	Singular value thresholding operator
proximal.procrustes (matrix)	Procrustes operator
<pre>inner (tensor1, tensor2[, n_modes])</pre>	Generalised inner products between tensors

- CANONICAL-POLYADIC (CP)
- Non-negative CP Tucker (HO-SVD)
- Non-negative Tucker
- Robust Tensor PCA

	<pre>parafac (tensor, rank[, n_iter_max, init,])</pre>	CANDECOMP/PARAFAC decomposition via alternating least squares (ALS)
)	<pre>non_negative_parafac (tensor, rank[,])</pre>	Non-negative CP decomposition
	<pre>tucker (tensor[, rank, ranks, n_iter_max,])</pre>	Tucker decomposition via Higher Order Orthogonal Iteration (HOI)
	<pre>partial_tucker (tensor, modes[, rank,])</pre>	Partial tucker decomposition via Higher Order Orthogonal Iteration (HOI)
Ì	<pre>non_negative_tucker (tensor, rank[,])</pre>	Non-negative Tucker decomposition
	<pre>robust_pca (X[, mask, tol, reg_E, reg_J,])</pre>	Robust Tensor PCA via ALM with support for missing values

TensorLy Example

from tensorly.decomposition import parafac

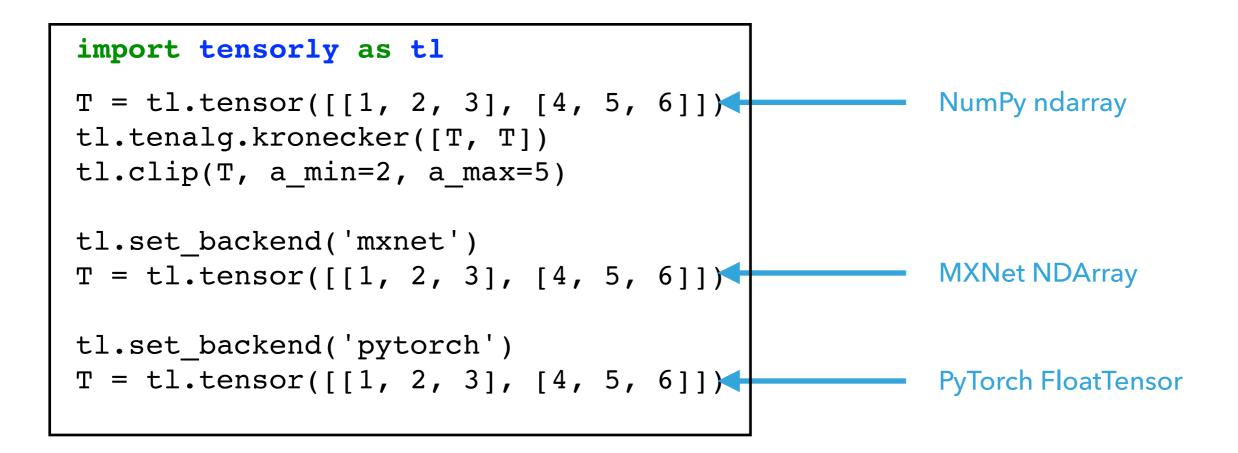
```
factors = parafac(image, rank=50, init='random')
cp_reconstruction = tl.kruskal_to_tensor(factors)
```

from tensorly.decomposition import tucker

core, factors = tucker(image, ranks=(50, 50, 3), init='random')
tucker_reconstruction = tl.tucker_to_tensor(core, factors)

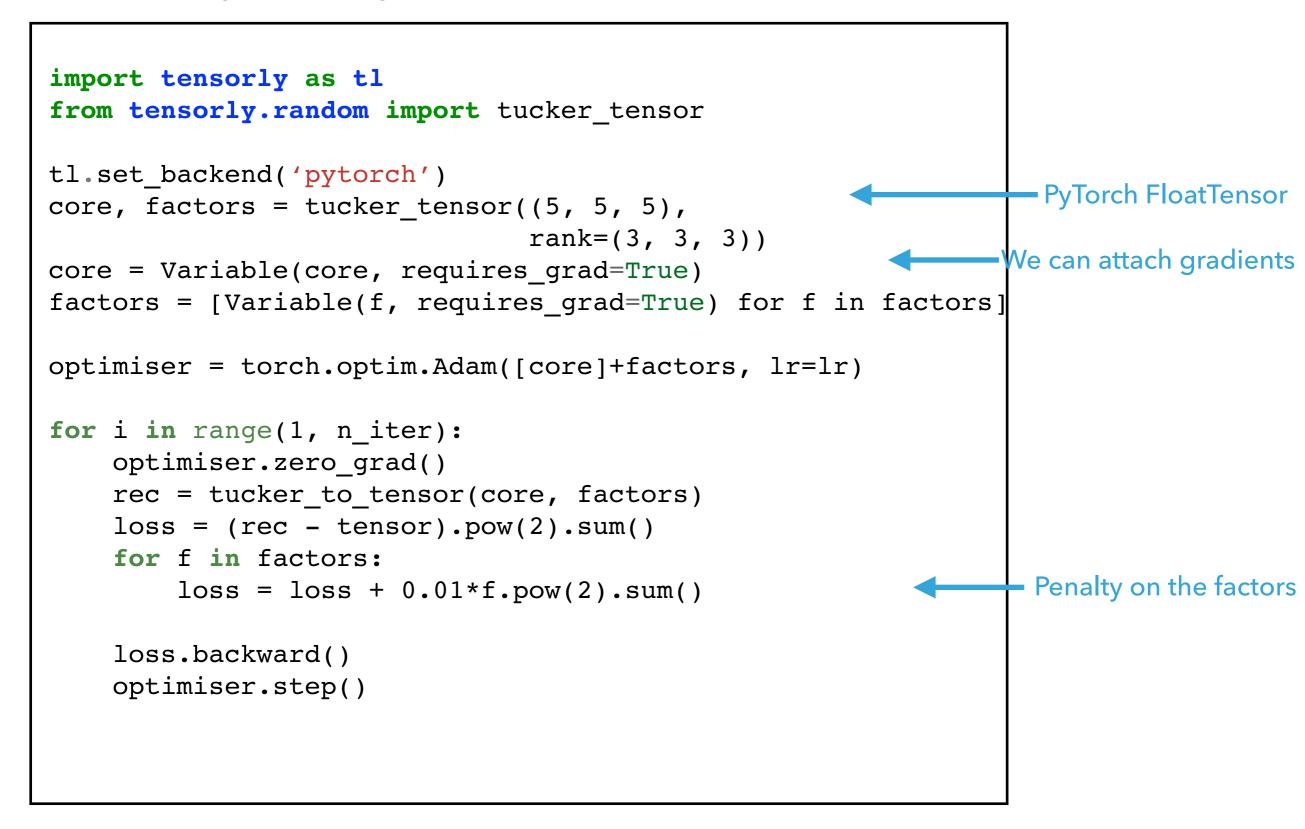
TensorLy Backend

tl.set_backend('numpy') # or 'mxnet' or 'pytorch'



TensorLy Example

Back-propagate through tensor operations with PyTorch



Contribute to TensorLy

Contributions welcome!

- · If you have a cool tensor method you want to add
- If you spot a bug

Thank you!

Questions?