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h: Proportion of topics in a document 

A: Topic-word matrix

Third order moment:

• Learning latent variable model with tensor decomposition 
    Example: Topic modeling
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What are the limitations?
• Explicit permutation takes long time in current tensor libraries:

 Figure:  The fraction of time spent in copies/transpositions when computing
Cmnp  = AmkBpkn . Lines are shown with 1, 2, 3, and 6 total transpositions
performed on either the input or output. (Left) CPU. (Right) GPU.
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Overview
• Propose tensor operation kernel: StridedBatchedGEMM

• Library-based approaches that avoid memory movement
• Constant-strided BatchedGEMM that has more 
  optimization opportunities

• Provide evaluation strategies for tensor contractions

• Apply to tensor decomposition

• Introduce TensorLy: Tensor learning in python
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Extended BLAS Operator

If fixing indices of C, there are total 3 x 2 x 3  x 2  x 1 = 36 cases.

Focusing: one-index contraction
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 Table: List of 36 possible single mode contraction operations between a second-order 
 tensor and a third-order tensor and possible mappings to Level-3 BLAS routines



Analysis
Flatten v.s. SBGEMM
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Analysis
Batching in last mode v.s. middle mode
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Application: Tucker Decomposition
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Figure: Performance on Tucker decomposition.



Conclusion

• StridedBatchedGEMM for generalized tensor contractions.

• Avoid explicit transpositions or permutations.

• 10x(GPU) and 2x(CPU) speedup on small and moderate sized tensors.

• Available in CuBLAS 8.0.



Introduction of TensorLy
by Jean Kossaifi, Imperial College London 
     Yannis Panagakis, Imperial College London 
     Anima Anandkumar, Caltech



Introduction of TensorLy

• Open source

by Jean Kossaifi, Imperial College London 
     Yannis Panagakis, Imperial College London 
     Anima Anandkumar, Caltech

Github: https://github.com/tensorly/tensorly

Suitable for academic / industrial applications

Homepage: http://tensorly.org/dev/



Introduction of TensorLy

• Open source

• Reliability and easy to use

by Jean Kossaifi, Imperial College London 
     Yannis Panagakis, Imperial College London 
     Anima Anandkumar, Caltech

Github: https://github.com/tensorly/tensorly

Suitable for academic / industrial applications

Depends only on NumPy, SciPy [Optionally Matplotlib, MXNet and PyTorch]

Exhaustive documentation, Unit-testing for all functions

Fast

Homepage: http://tensorly.org/dev/



User-friendly API

Unified backend

Basic tensor operations

Tensor decomposition Tensor regression Deep learning

TensorLy



TensorLy Operators

• Kronecker

• Khatri-rao

• Hadamard products 

• Tensor unfolding/folding/vectorization 

• N-mode product 


• CANONICAL-POLYADIC (CP) 

• Non-negative CP Tucker (HO-SVD) 

• Non-negative Tucker 

• Robust Tensor PCA



TensorLy Example

from tensorly.decomposition import tucker

core, factors = tucker(image, ranks=(50, 50, 3), init='random')
tucker_reconstruction = tl.tucker_to_tensor(core, factors)

from tensorly.decomposition import parafac

factors = parafac(image, rank=50, init='random')
cp_reconstruction = tl.kruskal_to_tensor(factors)



TensorLy Backend

tl.set_backend(‘numpy’) # or ‘mxnet’ or ‘pytorch’

import tensorly as tl

T = tl.tensor([[1, 2, 3], [4, 5, 6]])
tl.tenalg.kronecker([T, T])
tl.clip(T, a_min=2, a_max=5)

tl.set_backend('mxnet')
T = tl.tensor([[1, 2, 3], [4, 5, 6]])

tl.set_backend('pytorch')
T = tl.tensor([[1, 2, 3], [4, 5, 6]])

NumPy ndarray

MXNet NDArray

PyTorch FloatTensor



TensorLy Example

import tensorly as tl
from tensorly.random import tucker_tensor

tl.set_backend(‘pytorch’)
core, factors = tucker_tensor((5, 5, 5),
                              rank=(3, 3, 3))
core = Variable(core, requires_grad=True)
factors = [Variable(f, requires_grad=True) for f in factors]

optimiser = torch.optim.Adam([core]+factors, lr=lr)

for i in range(1, n_iter):
    optimiser.zero_grad()
    rec = tucker_to_tensor(core, factors)
    loss = (rec - tensor).pow(2).sum()
    for f in factors:
        loss = loss + 0.01*f.pow(2).sum()

    loss.backward()
    optimiser.step()

Back-propagate through tensor operations with PyTorch

PyTorch FloatTensor

We can attach gradients

Penalty on the factors



Contribute to TensorLy
Contributions welcome!

• If you have a cool tensor method you want to add

• If you spot a bug



Thank you!

Questions?


