
Tensor Contraction with
Extended BLAS Kernels

on CPU and GPU
Yang Shi

University of California, Irvine, EECS

Joint work with U.N. Niranjan, Animashree Anandkumar and Cris Cecka

SIAM-ALA18

Tensor Contraction-Motivation

Tensor Contraction-Motivation

Why we need tensor?

Tensor Contraction-Motivation

Why we need tensor?
Modern data is inherently multi-dimensional

Tensor Contraction-Motivation

Why we need tensor?
Modern data is inherently multi-dimensional

Input Hidden 1 Hidden 2 Output

Neural Networks

Tensor Contraction-Motivation

Why we need tensor?
Modern data is inherently multi-dimensional

Input Hidden 1 Hidden 2 Output

Neural Networks Method of Moment

Tensor Contraction-Motivation
What is tensor contraction?

Tensor Contraction-Motivation
What is tensor contraction?

=

=

A(:,1,:) A(:,2,:)A422

B21

C421

Tensor Contraction-Motivation
What is tensor contraction?

=

=

A(:,1,:) A(:,2,:)A422

B21

C421

Why do we need tensor contraction?

Tensor Contraction-Motivation
What is tensor contraction?

=

=

A(:,1,:) A(:,2,:)A422

B21

C421

Why do we need tensor contraction?

•Physics
•Chemistry

Why do we need tensor contraction?

Tensor Contraction-Motivation

•Deep Learning

Why do we need tensor contraction?

Tensor Contraction-Motivation

•Deep Learning

Why do we need tensor contraction?

Tensor Contraction-Motivation

• Learning latent variable model with tensor decomposition
 Example: Topic modeling

•Deep Learning

Why do we need tensor contraction?

Tensor Contraction-Motivation

• Learning latent variable model with tensor decomposition
 Example: Topic modeling

•Deep Learning

Why do we need tensor contraction?

Tensor Contraction-Motivation

h: Proportion of topics in a document

A: Topic-word matrix

• Learning latent variable model with tensor decomposition
 Example: Topic modeling

•Deep Learning

Why do we need tensor contraction?

Tensor Contraction-Motivation

h: Proportion of topics in a document

A: Topic-word matrix

Third order moment:

• Learning latent variable model with tensor decomposition
 Example: Topic modeling

Tensor Contraction-Motivation
What do we have?

Tensor Contraction-Motivation
What do we have?

Tensor computation libraries:

• Arbitrary/restricted tensor operations

of any order and dimension

•Such as: Matlab Tensortoolbox,

BTAS, FTensor, Cyclops

Tensor Contraction-Motivation
What do we have?

Tensor computation libraries:

• Arbitrary/restricted tensor operations

of any order and dimension

•Such as: Matlab Tensortoolbox,

BTAS, FTensor, Cyclops

Efficient computing frame:

• Static analysis solutions: loop reorganization,
 fusion

• Parallel and distributed computing system:
 BatchedGEMM functions in MKL 11.3,
 CuBLAS v4.1: compute many matrix-matrix
 multiplies at once.

Tensor Contraction-Motivation
What do we have?

Tensor computation libraries:

• Arbitrary/restricted tensor operations

of any order and dimension

•Such as: Matlab Tensortoolbox,

BTAS, FTensor, Cyclops

Efficient computing frame:

• Static analysis solutions: loop reorganization,
 fusion

• Parallel and distributed computing system:
 BatchedGEMM functions in MKL 11.3,
 CuBLAS v4.1: compute many matrix-matrix
 multiplies at once.

What are the limitations?
Tensor Contraction-Motivation

What are the limitations?
• Explicit permutation takes long time in current tensor libraries:

Tensor Contraction-Motivation

What are the limitations?
• Explicit permutation takes long time in current tensor libraries:

Tensor Contraction-Motivation

 Consider

What are the limitations?
• Explicit permutation takes long time in current tensor libraries:

Tensor Contraction-Motivation

 Consider

What are the limitations?
• Explicit permutation takes long time in current tensor libraries:

 Figure: The fraction of time spent in copies/transpositions when computing
Cmnp = AmkBpkn . Lines are shown with 1, 2, 3, and 6 total transpositions
performed on either the input or output. (Left) CPU. (Right) GPU.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

n

M
e
m

o
r
y

f
r
a
c
t
i
o
n

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

n

Tensor Contraction-Motivation

 Consider

Overview

Overview
• Propose tensor operation kernel: StridedBatchedGEMM

Overview
• Propose tensor operation kernel: StridedBatchedGEMM

• Library-based approaches that avoid memory movement

Overview
• Propose tensor operation kernel: StridedBatchedGEMM

• Library-based approaches that avoid memory movement
• Constant-strided BatchedGEMM that has more
 optimization opportunities

Overview
• Propose tensor operation kernel: StridedBatchedGEMM

• Library-based approaches that avoid memory movement
• Constant-strided BatchedGEMM that has more
 optimization opportunities

• Provide evaluation strategies for tensor contractions

Overview
• Propose tensor operation kernel: StridedBatchedGEMM

• Library-based approaches that avoid memory movement
• Constant-strided BatchedGEMM that has more
 optimization opportunities

• Provide evaluation strategies for tensor contractions

• Apply to tensor decomposition

Overview
• Propose tensor operation kernel: StridedBatchedGEMM

• Library-based approaches that avoid memory movement
• Constant-strided BatchedGEMM that has more
 optimization opportunities

• Provide evaluation strategies for tensor contractions

• Apply to tensor decomposition

• Introduce TensorLy: Tensor learning in python

BLAS Operations

BLAS Operations
BLAS(Basic Linear Algebra Subprograms): Low-level routines
for performing common linear algebra operations.

BLAS Operations
BLAS(Basic Linear Algebra Subprograms): Low-level routines
for performing common linear algebra operations.

BLAS Operations
BLAS(Basic Linear Algebra Subprograms): Low-level routines
for performing common linear algebra operations.

BLAS Operations
BLAS(Basic Linear Algebra Subprograms): Low-level routines
for performing common linear algebra operations.

Stride

C!"#$% M&j'(

Stride

R M j !

Extended BLAS Operator

Extended BLAS Operator
Focusing: one-index contraction

Extended BLAS Operator

If fixing indices of C, there are total 3 x 2 x 3 x 2 x 1 = 36 cases.

Focusing: one-index contraction

Extended BLAS Operator

 Table: Example: possible mappings to Level 3 BLAS routines

Extended BLAS Operator

 Table: Example: possible mappings to Level 3 BLAS routines

Extended BLAS Operator

 Table: Example: possible mappings to Level 3 BLAS routines

Extended BLAS Operator

tride

2]3

Stride

[3]

Example

Example

 Table: List of 36 possible single mode contraction operations between a second-order
 tensor and a third-order tensor and possible mappings to Level-3 BLAS routines

Analysis
Flatten v.s. SBGEMM

0 100 200 300 400 500

1

2

3

n

Fl
at

te
ni

ng
Sp

ee
du

p
(B

at
ch

/F
la

t)

Case 1.1 [n]
Case 1.1 [p]
Case 1.5 [p]
Case 6.1 [n]

0 100 200 300 400 500

1

2

3

n

Prefer flatten than SBGEMM

Analysis
Batching in last mode v.s. middle mode

0 100 200 300 400 500

0.9

1

1.1

1.2

n

L
a
s
t

M
o
d
e

S
p
e
e
d
u
p

(
[n
]

/
[p
])

0 100 200 300 400 500

0.9

1

1.1

1.2

n

Case 1.1
Case 2.1

On CPU, it’s better to batch in last mode when tensor size is small/moderate

Application: Tucker Decomposition

Application: Tucker Decomposition

Application: Tucker Decomposition

 mnp ijk
 mi

 njT G
A

B

 pkC

Application: Tucker Decomposition

Main Steps:

 mnp ijk
 mi

 njT G
A

B

 pkC

Application: Tucker Decomposition

Main Steps:

 mnp ijk
 mi

 njT G
A

B

 pkC

Application: Tucker Decomposition

20 40 60 80 100 120
10�2

100

102

104

106

n

T
i
m

e
(
s
e
c
)

TensorToolbox

BTAS

Cyclops

CPU Batched

GPU Batched

Figure: Performance on Tucker decomposition.

Conclusion

• StridedBatchedGEMM for generalized tensor contractions.

• Avoid explicit transpositions or permutations.

• 10x(GPU) and 2x(CPU) speedup on small and moderate sized tensors.

• Available in CuBLAS 8.0.

Introduction of TensorLy
by Jean Kossaifi, Imperial College London
 Yannis Panagakis, Imperial College London
 Anima Anandkumar, Caltech

Introduction of TensorLy

• Open source

by Jean Kossaifi, Imperial College London
 Yannis Panagakis, Imperial College London
 Anima Anandkumar, Caltech

Github: https://github.com/tensorly/tensorly

Suitable for academic / industrial applications

Homepage: http://tensorly.org/dev/

Introduction of TensorLy

• Open source

• Reliability and easy to use

by Jean Kossaifi, Imperial College London
 Yannis Panagakis, Imperial College London
 Anima Anandkumar, Caltech

Github: https://github.com/tensorly/tensorly

Suitable for academic / industrial applications

Depends only on NumPy, SciPy [Optionally Matplotlib, MXNet and PyTorch]

Exhaustive documentation, Unit-testing for all functions

Fast

Homepage: http://tensorly.org/dev/

User-friendly API

Unified backend

Basic tensor operations

Tensor decomposition Tensor regression Deep learning

TensorLy

TensorLy Operators

• Kronecker

• Khatri-rao

• Hadamard products

• Tensor unfolding/folding/vectorization

• N-mode product

• CANONICAL-POLYADIC (CP)

• Non-negative CP Tucker (HO-SVD)

• Non-negative Tucker

• Robust Tensor PCA

TensorLy Example

from tensorly.decomposition import tucker

core, factors = tucker(image, ranks=(50, 50, 3), init='random')
tucker_reconstruction = tl.tucker_to_tensor(core, factors)

from tensorly.decomposition import parafac

factors = parafac(image, rank=50, init='random')
cp_reconstruction = tl.kruskal_to_tensor(factors)

TensorLy Backend

tl.set_backend(‘numpy’) # or ‘mxnet’ or ‘pytorch’

import tensorly as tl

T = tl.tensor([[1, 2, 3], [4, 5, 6]])
tl.tenalg.kronecker([T, T])
tl.clip(T, a_min=2, a_max=5)

tl.set_backend('mxnet')
T = tl.tensor([[1, 2, 3], [4, 5, 6]])

tl.set_backend('pytorch')
T = tl.tensor([[1, 2, 3], [4, 5, 6]])

NumPy ndarray

MXNet NDArray

PyTorch FloatTensor

TensorLy Example

import tensorly as tl
from tensorly.random import tucker_tensor

tl.set_backend(‘pytorch’)
core, factors = tucker_tensor((5, 5, 5),
 rank=(3, 3, 3))
core = Variable(core, requires_grad=True)
factors = [Variable(f, requires_grad=True) for f in factors]

optimiser = torch.optim.Adam([core]+factors, lr=lr)

for i in range(1, n_iter):
 optimiser.zero_grad()
 rec = tucker_to_tensor(core, factors)
 loss = (rec - tensor).pow(2).sum()
 for f in factors:
 loss = loss + 0.01*f.pow(2).sum()

 loss.backward()
 optimiser.step()

Back-propagate through tensor operations with PyTorch

PyTorch FloatTensor

We can attach gradients

Penalty on the factors

Contribute to TensorLy
Contributions welcome!

• If you have a cool tensor method you want to add

• If you spot a bug

Thank you!

Questions?

