
Randomized Algorithms for
Rounding the Tensor Train Format

Grey Ballard
joint with Hussam Al Daas, Paul Cazeaux, Eric Hallman,

Agnieszka Miedlar, Mirjeta Pasha, Tim Reid, and Arvind Saibaba

SIAM Applied Linear Algebra
May 21, 2021



Tensor Train (TT) can make very high dimensional
problems tractable

Ω

D1 D2 D3

D4 D5 D6

D7 D8 D9

Consider the parameter-dependent PDE:

−div(σ(x , y ;ρ)∇(u(x , y ;ρ))) = f (x , y) in Ω,

u(x , y ;ρ) = 0 on ∂Ω,

where σ is defined as:

σ(x , y ;ρ) =

{
1 + ρi if (x , y) ∈ Di

1 elsewhere

known as cookies problem [Tob12]

Solving for all parameter values simultaneously, u is 11-D
With mild assumptions, solution u has low TT ranks
TT-based iterative linear solver exploits low-rank structure

can solve problem for high spatial and parameter resolution

Ballard 1



TT Rounding

Given a tensor in TT format, often need to compress the ranks
algebraic operations on TT formats over-extend ranks
recompression (rank truncation) subject to error threshold

or subject to target ranks

analogous to floating point rounding

Low-rank matrix addition example
consider A1BT

1 + A2BT
2 , where each factor has r columns

can represent this in low-rank format
[
A1 A2

] [
B1 B2

]T

which now has rank 2r
goal is to compute low-rank approximation with rank k < 2r

Ballard 2



TT Rounding

Given a tensor in TT format, often need to compress the ranks
algebraic operations on TT formats over-extend ranks
recompression (rank truncation) subject to error threshold

or subject to target ranks

analogous to floating point rounding

Low-rank matrix addition example
consider A1BT

1 + A2BT
2 , where each factor has r columns

can represent this in low-rank format
[
A1 A2

] [
B1 B2

]T

which now has rank 2r
goal is to compute low-rank approximation with rank k < 2r

Ballard 2



Randomized Low-Rank Matrix Approximation [HMT11]

Randomized algorithm for low-rank approximation of matrix X:
function [U,V] = RAND-LOW-RANK(X)

Y = XΩ . Ω is random matrix with k columns
[U,∼] = QR(Y) . (tall-skinny) QR decomposition
VT = UT X . X ≈ UVT

Same algorithm tailored for rank-r matrix X = ABT (r > k ):
function [U,V] = RAND-ROUNDING(A,B)

Y = A(BT Ω) . Ω is random matrix with k columns
[U,∼] = QR(Y) . (tall-skinny) QR decomposition
VT = (UT A)BT . ABT ≈ UVT

Ballard 3



Randomized Low-Rank Matrix Approximation [HMT11]

Randomized algorithm for low-rank approximation of matrix X:
function [U,V] = RAND-LOW-RANK(X)

Y = XΩ . Ω is random matrix with k columns
[U,∼] = QR(Y) . (tall-skinny) QR decomposition
VT = UT X . X ≈ UVT

Same algorithm tailored for rank-r matrix X = ABT (r > k ):
function [U,V] = RAND-ROUNDING(A,B)

Y = A(BT Ω) . Ω is random matrix with k columns
[U,∼] = QR(Y) . (tall-skinny) QR decomposition
VT = (UT A)BT . ABT ≈ UVT

Ballard 3



Matrix Rounding

Randomized algorithm for rank-r matrix X = ABT :
function [U,V] = RAND-ROUNDING(A,B)

Y = A(BT Ω) . Ω is random matrix with k columns
[U,∼] = QR(Y) . (tall-skinny) QR decomposition
VT = (UT A)BT . ABT ≈ UVT

Deterministic algorithm (from Hussam’s talk):
function [U,V] = DET-ROUNDING(A,B)

[QA,RA] = QR(A) . (tall-skinny) QR decomposition
[QB,RB] = QR(B) . (tall-skinny) QR decomposition
[ÛR, Σ̂R, V̂R] = TSVD(RART

B , k) . k th truncated SVD
U = QAÛR
V = QB(V̂RΣ̂R) . ABT ≈ UVT

Ballard 4



Benefits of randomization for matrix rounding

1 if A is m × r , B is n × r , and they are rounded to rank k ,
reduces computation from O((m + n)r2) to O((m + n)rk)

2 shifts some computational burden from QR to matrix
multiplication, which often has higher performance

3 opens possibility of choosing Ω for faster multiplication

4 enables cheaper rounding of sums of s low-rank matrices:
A1BT

1 + A2BT
2 + · · ·+ AsBT

s
sketch of the sum is the sum of the sketches
cost of randomized algorithm is linear rather than quadratic in s

Ballard 5



Tensor Train (TT) Notation

i

j

k

l
m

I1

R1

I2

R1
R2

I3

R2
R3

I4

R3
R4

I5

R4

X ≈ {TX ,n},X ∈ RI1×I2×I3×I4×I5 TX ,n ∈ RRn−1×In×Rn

are TT cores

xijklm ≈
R1∑
α=1

R2∑
β=1

R3∑
γ=1

R4∑
δ=1

TX ,1(i, α)TX ,2(α, j, β)TX ,3(β, k , γ)TX ,4(γ, l, δ)TX ,5(δ,m)

Ballard 6



Important core unfoldings

H(TX,n) ∈ RRn−1×InRn and V(TX,n) ∈ RRn−1In×Rn

are horizontal and vertical unfoldings of nth core

In

Rn−1
Rn

TX,n

Rn

Rn−1 · · ·
Rn

· · ·
Rn

In

H(TX,n)

Rn

Rn−1

...

Rn−1

...

Rn−1

In

V(TX,n)

Ballard 7



Deterministic TT Rounding Algorithm [Ose11]

function {TZ,n} = TT-ROUNDING({TX,n})
. Orthogonalization Phase
for n = N down to 2 do

[Yn,Rn] = QR(H(TX,n)T ) . (tall-skinny) QR factorization
V(TX,n−1) = V(TX,n−1) · RT . Apply R to previous core

. Truncation Phase
Z = X

for n = 1 to N − 1 do
[Yn,Rn] = QR(V(TZ,n)) . (tall-skinny) QR factorization
[ÛR , Σ̂, V̂] ≈ TSVD(Rn) . Truncated SVD of R
V(TZ,n) = APPLY-Q(Yn, ÛR) . Form explicit Û
H(TZ,n+1)T = APPLY-Q(Yn+1, V̂Σ̂) . Apply Σ̂V̂

T
to next core

Ballard 8



More details on TT rounding...

TT rounding does truncated SVDs on X(1), X(1:2), X(1:3), etc.,
and we have matrix expressions of those unfoldings [ADBB20]

X(1:n) = (IIn ⊗Q(1:n−1)) · V(TX,n) · H(TX,n+1) · (IIn+1 ⊗ Z(1))
I 1
··

·I n
−

1

Rn−1

IIn ⊗Q(1:n−1)

I 1
··
·I

n

InRn−1

V(TX,n)

Rn

H(TX,n+1)

In+1Rn+1

In+2· · ·IN
Rn+1

IIn+1 ⊗ Z(1)

In+1 · · · IN

Ballard 9



Opportunities for randomized low-rank approximation

Suppose you want to compute the (randomized) truncated SVD
of a rank-r matrix QABTZT, where A and B are tall and skinny
with r columns, and

Q

A

r

BT

ZT

1 Q, B, and Z are all column orthonormal
use RAND-LOW-RANK(A)

2 Q is column orthonormal but B and Z are not
use RAND-ROUNDING(A,ZB)

3 none of Q, B, and Z is column orthonormal
use GEN-NYSTRÖM(QABTZT) [Nak20]

Ballard 10



RAND-ROUNDING(A,ZB)

Most important computation: Y = ABT ZT Ω

Y

k

=

A

r

BT

ZT

Ω

k

Z is structured, represents trailing TT cores
we choose structured Ω to exploit TT format

Ballard 11



TT-like structure of Ω

TX,n TX,n+1 TX,n+2 · · · TX,N−1 TX,N

TO,n+1 TO,n+2 · · · TO,N−1 TO,N

Rn−1 Rn Rn+1 RN−1

k k k

In In+1 In+2 IN−1 IN

In+1 In+2 IN−1 IN

A B Z

Ω

Tensor network diagram: vertices represent tensors, edges represent modes,

connected edges represent contractions

Ballard 12



Summary of Algorithms

Deterministic
uses orthogonalization phase and truncation phase

Orthogonalize-then-Randomize (Orth-Rand)
uses same orthogonalization phase and randomizes
truncation phase with Gaussian projection
can use adaptive range-finder algorithm

Randomize-then-Orthogonalize (One-Sided)
avoids TT orthogonalization, uses TT-structured random
projection
can exploit linearity in sums of TT tensors

Generalized Nyström (Two-Sided)
avoids orthogonalization phase and uses TT-structured
random projection on left and right

Ballard 13



Experimental results for single synthetic tensor

We round a synthetic TT tensor:

Y = X + 10−4 ·N,

where ‖X‖ = ‖N‖ = 1 and each has 10 modes of dimension 1000
with all TT ranks equal to 50, using target ranks between 35 and 65

35 40 45 50 55 60 65

10−4

10−3

10−2

10−1

100

101

102

Target rank

R
el

at
iv

e
E

rr
or

Deterministic
Orth-Rand
One-Sided
Two-Sided

35 40 45 50 55 60 65

1

1.1

1.2

1.3

1.4

Target rank

S
pe

ed
up

Deterministic
Orth-Rand
One-Sided
Two-Sided

Ballard 14



Experimental results for cookies problem

We solve the cookies problem with 4 cookies using a tensor with
dimension 1781×n×n×n×n using TT-GMRES

bottleneck is rounding sum of TT tensors

deterministic algorithm forms the sum and rounds via orthogonalization

randomized One-Sided algorithm exploits the sum of sketches,
gets same answers

0 5 10 15

10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration

R
es

id
ua

lN
or

m

n=10
n=20
n=50

n=100

0

50

100

M
ax

TT
R

ank
ofK

rylov
Vector

10 20 50 100

0

100

200

300

n

Ti
m

e

Deterministic
Randomized

Ballard 15



Summary

TT rounding is key operation for TT arithmetic
efficient deterministic algorithms exploit low-rank structure

Randomized algorithms can reduce arithmetic cost and
maintain sufficient accuracy

benefits depend on ratio of two low ranks

Randomized approaches yield more benefits for
higher-level problems, like rounding sums of TT tensors

bottleneck within Krylov solver that exploits TT structure

Ballard 16



Thanks for your attention!

ballard@wfu.edu

ballard@wfu.edu


References I

Hussam Al Daas, Grey Ballard, and Peter Benner.
Parallel algorithms for tensor train arithmetic.
Technical Report 2011.06532, arXiv, 2020.

N. Halko, P. Martinsson, and J. Tropp.
Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions.
SIAM Review, 53(2):217–288, 2011.

Yuji Nakatsukasa.
Fast and stable randomized low-rank matrix approximation.
Technical Report 2009.11392, arXiv, 2020.

Ivan Oseledets.
Tensor-train decomposition.
SIAM Journal on Scientific Computing, 33(5):2295–2317, 2011.

Ballard 17



References II

Christine Tobler.

Low-rank Tensor Methods for Linear Systems and Eigenvalue
Problems.

PhD thesis, ETH Zurich, 2012.

Ballard 18



Motivation: what if you have to solve many PDEs?

A single PDE simulation can already create a ton of data...
what if we have design/uncertain parameters?

Suppose you have 10 parameters, each with 10 possible values

now you have to run your simulation 1010 times...
and store all this data...

If the resulting data could be compressed, why not compute the
compressed representation from the start?

Ballard 19



More details on TT rounding...

TT rounding does SVDs on X(1), X(1:2), X(1:3), etc.,
so we seek similar matrix expressions of those unfoldings

The unfolding of X that maps the first n tensor dimensions to
rows can be expressed as a product of four matrices:

X(1:n) = (IIn ⊗Q(1:n−1)) · V(TX,n) · H(TX,n+1) · (IIn+1 ⊗ Z(1))

where Q is I1 × · · · × In−1 × Rn−1 with

Q(i1, . . . , in−1, rn−1) = TX,1(i1, :) · TX,2(:, i2, :) · · ·TX,n−1(:, in−1, rn−1),

and Z is Rn+1 × In+2 × · · · × IN with

Z(rn+1, in+2, . . . , iN) = TX,n+2(rn+1, in+2, :)·TX,n+3(:, in+3, :) · · ·TX,N(:, iN).

Ballard 20



Time breakdown of (parallel) TT rounding

320 640 1280 2560 5120
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of Cores

Fr
ac

tio
n

of
Ti

m
e

Other
SVD (comp)

MultR (comm)
MultR (comp)
AppQ (comm)
AppQ (comp)
TSQR (comm)
TSQR (comp)

TT tensor: In = 512K , Rn = 60→ 30, N = 50
70-80% of time spent in QR computations

Ballard 21


