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Tensor decomposition models are sums of rank-one terms

Canonycal Polyadic Decomposition:

𝒯 =
𝑟

∑
𝑞=1

𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞
=

𝒯 =

+ ⋯ +

𝑎1 ⊗ 𝑏1 ⊗ 𝑐1 + ⋯ + 𝑎𝑟 ⊗ 𝑏𝑟 ⊗ 𝑐𝑟
Tucker Decomposition:

𝒯 =
𝑟1,𝑟2,𝑟3

∑
𝑞1,𝑞2,𝑞3=1

𝑔𝑞1𝑞2𝑞3
𝑎𝑞1

⊗ 𝑏𝑞2
⊗ 𝑐𝑞3

≈

𝒯 ≈ (𝐴 ⊗ 𝐵 ⊗ 𝐶) 𝒢

Definition: tensor [CP] rank
rank(𝒯) = min{𝑟 | 𝒯 = ∑𝑟

𝑞=1 𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞}

Tensor CP rank coincides with matrix “usual” rank!
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Making use of low-rank representations

Let 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑟], 𝐵 and 𝐶 similarly built.

Uniqueness of the CPD
Under mild conditions

𝑘𝑟𝑎𝑛𝑘(𝐴) + 𝑘𝑟𝑎𝑛𝑘(𝐵) + 𝑘𝑟𝑎𝑛𝑘(𝐶) − 2 ≥ 2𝑟,

the CPD of 𝒯 is essentially unique (i.e.) the rank-one terms are unique.

This means we can interpret the rank-one terms 𝑎𝑞, 𝑏𝑞, 𝑐𝑞
→ Source Separation!

Compression (also true for other models)
The CPD involves 𝑟(𝐼 + 𝐽 + 𝐾 − 2) parameters, while 𝒯 contains 𝐼𝐽𝐾 entries.

If the rank is small, this means huge compression/dimensionality reduction for function approximation.
• missing values completion, denoising
• imposing sparse structure to solve other problems (PDE, neural networks, dictionary learning…)
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Approximate CPD

• Often, 𝒯 ≈
𝑟

∑
𝑞

𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞 for small 𝑟.

• However, the generic rank (i.e. rank of random tensor) is very large.
• Therefore if 𝒯 = ∑𝑟

𝑞 𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞 + 𝒩 with 𝒩 some small Gaussian noise, it has
approximatively rank lower than 𝑟 but its exact rank is large.

Best low-rank approximate CPD
For a given rank 𝑟, the cost function

𝜂(𝐴, 𝐵, 𝐶) = ‖𝒯 −
𝑟

∑
𝑞=1

𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞‖2
𝐹

has the following properties:
• it is infinitely differentiable.
• it is non-convex in (𝐴, 𝐵, 𝐶), but quadratic in 𝐴 or 𝐵 or 𝐶.
• its minimum may not be attained (ill-posed problem).
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Approximate Nonnegative CPD

Low-rank 𝑟 approximate NCPD
Given a tensor 𝒯, find tensor 𝒢∗ = ∑𝑟

𝑞=1 𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞 that minimizes

𝜂(𝐴, 𝐵, 𝐶) = ‖𝒯 −
𝑟

∑
𝑞=1

𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞‖2
𝐹 so that 𝑎𝑞 ≥ 0, 𝑏𝑞 ≥ 0, 𝑐𝑞 ≥ 0

• The minimum is always attained (coercivity)!
• The cost is not smooth anymore.

Well-posedness
Approximate NCPD is well posed:

• the best low nonnegative rank approximation 𝒢∗ exists. [Lim, Comon 2009]
• most of the time, tensor 𝒢∗ is unique [Qi, Lim, Comon 2016]

My favorite class of algorithms to solve aNCPD: block-coordinate descent!
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Nonconvex optimization algorithms, an incomplete list

All at once
• Conjugate gradient
• ADMM
• Levenberg Marquardt and others

nonnegativity imposed by interior point methods,
squaring or active set.

X ADMM < AOADMM, PG < APG
X Typically slower than BCD
O Very efficient near optimum

Block coordinate (alternating)
• Alternating proximal gradient
• Alternating nonnegative least squares (ANLS)
• HALS
• Multiplicative updates
• AOADMM

nonnegativity imposed mostly by proximal step.

O Easy to design and implement
O Convex optimization tools
O Fast in practice
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Problematic

Be cheap, be fast.
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How to make tensor algorithms faster?

HPC
Not my expertise…

• n-mode product
• NNLS
• ??

Sampling and
Randomization

• Compression
• Sketching
• Subtensor sampling
• Fiber sampling
• Element-wise sampling

Acceleration

• Adagrad
• Momentum
• Quantification
• Extrapolation

−𝜂∇𝑦𝑘
𝑓

𝛽Δ𝑥

𝑦𝑘

𝑥𝑘+1

𝑥𝑘

𝑦𝑘+1
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Reminder 1: Alternating nonnegative least squares for aNCPD

Problem:
𝑎𝑟𝑔𝑚𝑖𝑛

𝑎𝑞≥0,𝑏𝑞≥0,𝑐𝑞≥0
‖𝒯 − ∑𝑟

𝑞=1 𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞‖2
𝐹

Equivalent problem:

𝑎𝑟𝑔𝑚𝑖𝑛
𝐴≥0,𝐵≥0,𝐶≥0

‖𝑇[1] − 𝐴(𝐵 ⊙ 𝐶)𝑇‖2
𝐹 →

fix𝐵,𝐶
𝑎𝑟𝑔𝑚𝑖𝑛

𝐴≥0
‖𝑇[1] − 𝐴(𝐵 ⊙ 𝐶)𝑇‖2

𝐹

where 𝑇[1] is an unfolding of 𝒯 and ⊙ is the Khatri Rao product and 𝐴 = [𝑎1, … , 𝑎𝑟].

The ANLS algorithm (or any typical BCD algorithm)
loop until convergence:

• Update 𝐴 using NNLS(𝑇[1], 𝐵 ⊙ 𝐶)
• Update 𝐵 using NNLS(𝑇[2], 𝐴 ⊙ 𝐵)
• Update 𝐶 using NNLS(𝑇[3], 𝐴 ⊙ 𝐶)
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Reminder 2: NonNegative Least Squares

U update problem: NNLS
𝑎𝑟𝑔𝑚𝑖𝑛

𝑋≥0
‖𝑌 − 𝐴𝑋‖2

𝐹

Convex!

Algorithms:
• Active set [Lawson Hanson 1974, Bro 1997]
• Hierarchical Alternating Least Squares (HALS)
• Block Principal Pivoting [Kim Park 2011]
• Any proximal gradient method

Note: HALS is also a BCD algorithm.
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Reminder 3: Nesterov extrapolation for convex optimization

Given a (strongly) convex differentiable form 𝑓, 𝐿 Lipschitz continuous, solve

𝑎𝑟𝑔𝑚𝑖𝑛
𝑥∈[0,1]𝑛

𝑓(𝑥)

Fast gradient algorithm (simplified)
• 𝜂 = 1/𝐿; initialize 𝑥; 𝑦 = 𝑥
• loop until convergence:

1 𝑥𝑜𝑙𝑑 = 𝑥
2 𝛽 = some formula(𝛽)
3 𝑥 = 𝑦 − 𝜂∇𝑦𝑓
4 𝑦 = 𝑥 + 𝛽(𝑥 − 𝑥𝑜𝑙𝑑)

Note: Step 3. can be replaced by a proximal
gradient step to account for constraints.

−𝜂∇𝑦𝑘
𝑓

𝛽Δ𝑥

𝑦𝑘

𝑥𝑘+1

𝑥𝑘

𝑦𝑘+1

Improves gradient descent convergence rate for strongly convex maps from 𝒪( 1
𝑘 ) to 𝒪( 1

𝑘2 ).
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Contribution: Heuristic Extrapolation in BCD algorithms

Heuristic Extrapolation with Restart (HER)
• Introduce pairing variables
• Update a block, then extrapolate heuristically
• Perform restart if error increases

Different from
• using extrapolation in the updates
• using extrapolation after each outer loop

16/22



17/22

Extrapolation for ANLS using HALS with restart: E-HALS

The E-HALS algorithm
• initialize 𝐴, 𝐵, 𝐶; 𝐴𝑦 = 𝐴, 𝐵𝑦 = 𝐵, 𝐶𝑦 = 𝐶
• loop until convergence:

1 𝐴𝑜𝑙𝑑 = 𝐴, 𝐵𝑜𝑙𝑑 = 𝐵; 𝐶𝑜𝑙𝑑 = 𝐶
2 Update 𝛽 with heuristic (next slide)

3 Update 𝐴 using NNLS(𝑇[1], 𝐵𝑦 ⊙ 𝐶𝑦)
4 Extrapolate 𝐴𝑦 = [𝐴 + 𝛽(𝐴 − 𝐴𝑜𝑙𝑑)]+

5 Update 𝐵 using NNLS(𝑇[2], 𝐴𝑦 ⊙ 𝐶𝑦)
6 Extrapolate 𝐵𝑦 = [𝐵 + 𝛽(𝐵 − 𝐵𝑜𝑙𝑑)]+

7 Update 𝐶 using NNLS(𝑇[3], 𝐴𝑦 ⊙ 𝐵𝑦)
8 Extrapolate 𝐶𝑦 = [𝐶 + 𝛽(𝐶 − 𝐶𝑜𝑙𝑑)]+

• if cost function increases, restart 𝐴𝑦 = 𝐴, 𝐵𝑦 = 𝐵, 𝐶𝑦 = 𝐶
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A remark on restart

At each iteration,
1 if error has decreased, increase 𝛽 up to a threshold 𝛽𝑚𝑎𝑥.
2 if error has increased, restart, decrease 𝛽 and 𝛽𝑚𝑎𝑥.

In any case, 𝛽 ∈]0, 𝛽𝑚𝑎𝑥] with 𝛽𝑚𝑎𝑥 ≤ 1.

To perform restart, denoting 𝐹(𝐴, 𝐵, 𝐶) = ‖𝑇[3] − 𝐶(𝐴 ⊙ 𝐵)𝑇‖2
𝐹, we check if

𝐹(𝐴𝑘
𝑦, 𝐵𝑘

𝑦 , 𝐶𝑘) < 𝐹(𝐴𝑘−1
𝑦 , 𝐵𝑘−1

𝑦 , 𝐶𝑘−1).

Using pairing variables 𝐴𝑦, 𝐵𝑦 instead of 𝐴, 𝐵 allows to save computation time.
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Experimental Results: setup

Balanced dimensions
• 𝑟 = 10
• 𝐼 = 𝐽 = 𝐾 = 50
• Uniform 𝐴, 𝐵, 𝐶
• noiseless

Difficulty:

Unbalanced dimensions
• 𝑟 = 12
• 𝐼 = 150
• 𝐽 = 103

• 𝐾 = 35
• Uniform 𝐴, 𝐵, 𝐶
• noiseless

We test with HALS and ADMM nnls solvers, more in the paper!
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Plots
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Figure: Convergence of algorithms : A-HALS and AO-ADMM without HER (solid purple) and with HER
(dotted orange). Balanced dimensions, ill-conditionned factors
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A few other extrapolation methods
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Figure: Comparing AHALS with different acceleration frameworks on synthetic datasets
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Conclusion and perspectives

Conclusions
• A heuristic to extrapolate BCD algorithms for tensor decomposition is proposed.
• It accelerates all BCD algorithms we could try.
• Sometimes no sensible acceleration.
• Costs virtually nothing.

Perspectives
• Integration within sketching methods? [Tried CPRAND, mitigated results]
• Convergence proof? Under which assumptions?
• Try on other problems solved with BCD?

Thank you for your attention
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