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5-way tensor  fensor Decomposition
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|Bayes rule
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'Model choices

Gaussian random variables
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Prior for tensor decomposition components
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Assuming statistical independence
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'Model choices

Gaussian random variables
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'Model choices

Gaussian random variables
Statistical independence
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'Model choices

Gaussian random variables
Statistical independence
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'Model choices

Gaussian random variables
Statistical independence
Block-coordinate descent
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Block-coordinate descent
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| Alternating update
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| Alternating update
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|Recursive computation
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|Recursive computation
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Alternating linear scheme in a Bayesian framework
for low-rank tensor approximation

Clara Menzen*, Manon Kok*, and Kim Batselier*

Abstract. Multiway data often naturally occurs in a tensorial format which can be approxi-
mately represented by a low-rank tensor decomposition. This is useful because complexity can be
significantly reduced and the treatment of large-scale data sets can be facilitated. In this paper, we
find a low-rank representation for a given tensor by solving a Bayesian inference problem. This is
achieved by dividing the overall inference problem into sub-problems where we sequentially infer the
posterior distribution of one tensor decomposition component at a time. This leads to a probabilistic
interpretation of the well-known iterative algorithm alternating linear scheme (ALS). In this way, the
consideration of measurement noise is enabled, as well as the incorporation of application-specific
prior knowledge and the uncertainty quantification of the low-rank tensor estimate. To compute the
low-rank tensor estimate from the posterior distributions of the tensor decomposition components,
we present an algorithm that performs the unscented transform in tensor train format.
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ArXiv:2012.11228




