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down-sampled onto different grid length-scales
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Notation
Operation to go up /¢ length-scales: exty(T)
Operation to go down £ length-scales: avey(T)
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Definition

Let r = (rp,...,r.) be a vector of rank bounds for each grid-scale. For any
compressed tensor format F, define the multiresolution F,-format by

L
MSz =3 T:T =Y exti_(Tk), Tk € Fr,, Tk € RZ XX

k=0

e Store as much information as possible on coarser (= cheaper) grid scales
* Tradeoff: down-sampling error vs low-rank error




Example: hyperspectral wavelength data

Tensor S € R xn2xns3

Oregon State University, SAMSON dataset
NASA JPL, AVIRIS Data

US Army Corps of Engineers, HyperCube
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M = number of iterations
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Example: video data



Multiscale Tensor-train







Theoretical difficulties

* Multiresolution format not closed — even for closed base formats!

Example

T<n>=[g Q]—[ﬁ—iﬂ (Va1 va—1] r=(1,1)

T - T = [3'8],
T+al11] =] .%1] rank 2

* Propagates to e.g., canonical decomposition and tensor-train format



Theoretical remedies

» “Stable” sequences still converge for closed base formats

DEFINITION 4.2. A sequence of tensors T\™) in MSx. with
L
(4.2) T™ = 3" eaty_(T")
k=0

is called stable if there is a constant C < oo such that ||T,§n) | < C|T™)| for each
k=0,...,L and n.

THEOREM 4.3. The format F is closed if and only if, for all possible rank vectors
r, all stable, convergent sequences in M Sx, converge to a tensor in MSr,.




Compressing tensors into format

Non-convex problem.
1. Start with initial approximation leizo extL_k(TISO)) toT

2. For k =1 : max iterations, improve the approximation on the
k:th scale by the update equation

T( (- = argmin || T — ZextL T( )) — Zextl_ g(T(" 1))
SEFy 1<k 0>k

—ext;_,(S)l-

Can be shown to reduce to an optimal tensor approximation problem on each scale
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Can be shown to reduce to an optimal tensor approximation problem on each scale
Local convergence guarantees with linear convergence



Thank you for listening!

Conclusion

* Simple black-box augmentation of tensor formats for data with multiple length scales
* |nteresting theoretical and numerical properties

Future work

* Adaptive rank allocation schemes
e Sketching algorithms

Happy to discuss! oscarmi@mit.edu



Theoretical remedies

THEOREM 4.3. The format F 1is closed if and only if, for all possible rank vectors
r, all stable, convergent sequences in M Sx, converge to a tensor in MSr,.

Proof:
«<: taker = (0,...,0,7)

=: take 7™ in MSr, T =T
For large n, ||T™ < T + 1, so [Ty || < C||T| + C

Convergent subsequences Ténj) converge in ., , by closedness




