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Motivation: Kernel Methods

Model pairwise interactions between sets of points defined by kernel κ

Applications where kernel methods are used:

Integral equations (Green’s Function), n-body problems, Gaussian
processes

Major challenges include

Number of interaction points often large
Kernel matrices are dense, difficult to store and compute with

General approach: store kernel matrix efficiently as a rank-structured
matrix in a hierarchical form

Forms include H-matrices, H2-matrices, Hierarchical Semiseparable
(HSS) matrices, Hierarchical Off-Diagonal Low Rank (HODLR)
matrices
Constructed by recursively identifying and compressing off-diagonal
blocks in low-rank form
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Problem Setup

Ns source points X = {x1, . . . , xNs} in Bs = [a1, b1]× · · · × [aD , bD ]

Nt target points Y = {y1, . . . , yNt
} in Bt = [c1, d1]× · · · × [cD , dD ]

kernel κ : RD × RD → R
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Computing requires NsNt interactions, compressing with an SVD would be
very expensive
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Computing requires NsNt interactions, compressing with an SVD would be
very expensive

Main idea: approximate κ using Chebyshev interpolation and tensor
compression methods
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Multivariate Chebyshev Interpolation

For two spatial dimensions (D = 2):

κ(x , y) = f (x1, x2, y1, y2) = f (ξ1, ξ2, ξ3, ξ4)

≈
n∑

j1=1

· · ·
n∑

j4=1

f (η
(1)
j1
, η

(2)
j2
, η

(3)
j3
, η

(4)
j4

)

(
4∏

k=1

S
[αk ,βk ]
n (η

(k)
jk
, ξk)

)

with

ξj = xj , ξj+2 = yj

η
(k)
jk

Chebyshev points in interval [αk , βk ]

αj = aj , βj = bj , αj+2 = cj , βj+2 = dj

n number of Chebyshev points per dimension

S
[a,b]
n Chebyshev polynomial interpolant
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Chebyshev Interpolation as a Tensor

κ(x , y) = f (x1, x2, y1, y2) = f (ξ1, ξ2, ξ3, ξ4)

≈
n∑

j1=1

· · ·
n∑

j4=1

f (η
(1)
j1
, η
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(3)
j3
, η

(4)
j4

)

(
4∏

k=1

S
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n (η

(k)
jk
, ξk)

)

Can be written in tensor form:

f (ξ1, ξ2, ξ3, ξ4) ≈M
4

×
k=1

sk(ξk)

where

Mj1,j2,j3,j4 = f (η
(1)
j1
, η

(2)
j2
, η

(3)
j3
, η

(4)
j4

), with M∈ Rn×n×n×n

sk(ξk) =
[
S
[αk ,βk ]
n (η

(k)
1 , ξk) . . . S

[αk ,βk ]
n (η

(k)
n , ξk)

]
∈ R1×n

Rachel Minster (NCSU) (1North Carolina State University 2Tufts University)Tensor Methods for Kernel Matrices 5/21/21 5 / 16



Our Tensor-based Compression Approach

Idea: Use tensor compression methods on M to obtain Tucker
approximation M̂ = [G;A1,A2,A3,A4]

Three new randomized methods for compressing M
Method 1: uses row interpolatory decomposition to approximate
mode unfoldings

Method 2: Method 1 but with a subsampled tensor

Method 3: uses a Kronecker product of random Gaussian matrices
instead of a single Gaussian matrix

κ(x , y) = f (ξ1, ξ2, ξ3, ξ4) ≈ M̂
4

×
k=1

sk(ξk)

= G
4

×
i=1

Ai

4

×
k=1

sk(ξk) = G
4

×
k=1

sk(ξk)Ak
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Low-rank Approximation to Kernel Matrix

For a single pair of points,

κ(x , y) = G
4

×
k=1

sk(ξk)Ak = G
4

×
k=1

ŝk(ξk)

= (ŝ2(ξ2)⊗ ŝ1(ξ1))G(1:2)

(
ŝ>4 (ξ4)⊗ ŝ>3 (ξ3)

)

Collect ŝ matrices for all points:

Uj =
[
ŝ j(x1) . . . ŝ j(xNs )

]> ∈ RNs×r , j = 1, 2

Vj =
[
ŝ j(y1) . . . ŝ j(yNt )

]> ∈ RNt×r , j = 3, 4

Then interaction matrix approximation is

K(X ,Y ) ≈ (U2 n U1)G(1:2)(V4 n V3)>
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ŝ j(y1) . . . ŝ j(yNt )
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Randomized Row Interpolatory Decomposition (RRID)1

Gives low-rank approximation using randomized range finder and subset
selection

Main Steps

For a matrix X ∈ Rm×n,
target rank r , oversampling
parameter p > 0 such that
r + p < m,

1 Estimate range of X

2 Subset selection to identify
indices J

3 Compute approximation matrix
F so X ≈ FX (J , :)

Details

Draw Ω ∈ Rn×(r+p) a Gaussian
random matrix

Form product Y = XΩ

Compute thin QR Y = QR

R(Q) ≈ R(X )

Use pivoted QR on Q>

Gives indices J of
well-conditioned rows of Q

Compute F = Q (Q(J , :))−1

1Halko, Martinsson, Tropp, SIAM Review, 2011

Rachel Minster (NCSU) (1North Carolina State University 2Tufts University)Tensor Methods for Kernel Matrices 5/21/21 8 / 16



Randomized Row Interpolatory Decomposition (RRID)1

Gives low-rank approximation using randomized range finder and subset
selection

Main Steps

For a matrix X ∈ Rm×n,
target rank r , oversampling
parameter p > 0 such that
r + p < m,

1 Estimate range of X

2 Subset selection to identify
indices J

3 Compute approximation matrix
F so X ≈ FX (J , :)

Details

Draw Ω ∈ Rn×(r+p) a Gaussian
random matrix

Form product Y = XΩ

Compute thin QR Y = QR

R(Q) ≈ R(X )

Use pivoted QR on Q>

Gives indices J of
well-conditioned rows of Q

Compute F = Q (Q(J , :))−1

1Halko, Martinsson, Tropp, SIAM Review, 2011

Rachel Minster (NCSU) (1North Carolina State University 2Tufts University)Tensor Methods for Kernel Matrices 5/21/21 8 / 16



Randomized Row Interpolatory Decomposition (RRID)1

Gives low-rank approximation using randomized range finder and subset
selection

Main Steps

For a matrix X ∈ Rm×n,
target rank r , oversampling
parameter p > 0 such that
r + p < m,

1 Estimate range of X

2 Subset selection to identify
indices J

3 Compute approximation matrix
F so X ≈ FX (J , :)

Details

Draw Ω ∈ Rn×(r+p) a Gaussian
random matrix

Form product Y = XΩ

Compute thin QR Y = QR

R(Q) ≈ R(X )

Use pivoted QR on Q>

Gives indices J of
well-conditioned rows of Q

Compute F = Q (Q(J , :))−1

1Halko, Martinsson, Tropp, SIAM Review, 2011

Rachel Minster (NCSU) (1North Carolina State University 2Tufts University)Tensor Methods for Kernel Matrices 5/21/21 8 / 16



Randomized Row Interpolatory Decomposition (RRID)1

Gives low-rank approximation using randomized range finder and subset
selection

Main Steps

For a matrix X ∈ Rm×n,
target rank r , oversampling
parameter p > 0 such that
r + p < m,

1 Estimate range of X

2 Subset selection to identify
indices J

3 Compute approximation matrix
F so X ≈ FX (J , :)

Details

Draw Ω ∈ Rn×(r+p) a Gaussian
random matrix

Form product Y = XΩ

Compute thin QR Y = QR

R(Q) ≈ R(X )

Use pivoted QR on Q>

Gives indices J of
well-conditioned rows of Q

Compute F = Q (Q(J , :))−1

1Halko, Martinsson, Tropp, SIAM Review, 2011

Rachel Minster (NCSU) (1North Carolina State University 2Tufts University)Tensor Methods for Kernel Matrices 5/21/21 8 / 16



Randomized Row Interpolatory Decomposition (RRID)1

Gives low-rank approximation using randomized range finder and subset
selection

Main Steps

For a matrix X ∈ Rm×n,
target rank r , oversampling
parameter p > 0 such that
r + p < m,

1 Estimate range of X

2 Subset selection to identify
indices J

3 Compute approximation
matrix F so X ≈ FX (J , :)

Details

Draw Ω ∈ Rn×(r+p) a Gaussian
random matrix

Form product Y = XΩ

Compute thin QR Y = QR

R(Q) ≈ R(X )

Use pivoted QR on Q>

Gives indices J of
well-conditioned rows of Q

Compute F = Q (Q(J , :))−1

1Halko, Martinsson, Tropp, SIAM Review, 2011

Rachel Minster (NCSU) (1North Carolina State University 2Tufts University)Tensor Methods for Kernel Matrices 5/21/21 8 / 16



Method 1: Randomized Interpolatory Tensor
Decomposition

Compresses tensor M∈ Rn×n×n×n

Easily extendable to d-dimensional tensors

Process:

For mode 1:
1 Unfold M→ M(1)

2 Apply RRID with target rank r to M(1) ≈ A1M(1)(J1, :)

Repeat for modes 2-4 to obtain matrices A2,A3,A4 and index sets
J2,J3,J4
Compute core G =M(J1,J2,J3,J4)

Gives approximation M̂ = G ×1 A1 ×2 A2 ×3 A3 ×4 A4
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Method 2: Randomized Interpolatory Tensor Decomp.
with Block Selection

Similar to Method 1, but working with subsampled tensor instead of M to
decrease computational cost

Process:

For mode 1:
1 Sample tensor: form index set I of size b, and extract subsampled

tensor X =M(:, I, I, I)

2 Unfold X → X(1)

3 Apply RRID with target rank r to X(1) ≈ A1X(1)(J1, :)
Repeat for modes 2-4 to obtain matrices A2,A3,A4 and index sets
J2,J3,J4
Compute core G =M(J1,J2,J3,J4)

Gives approximation M̂ = G ×1 A1 ×2 A2 ×3 A3 ×4 A4
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Computational Cost

Parameters:

n: number of Chebyshev nodes

r : target rank

p: oversampling parameter

b: size of index set for Method 2

Compression Method Computational Cost (flops) Kernel Evals.

Method 1 O
(
rn4
)

n4

Method 2 O(b3n) b3n + (r + p)4

Method 3 O
(
rn4
)

n4
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Numerical Results Setup

Generate Ns = Nt = 5000 random points within boxes of length
L = 5, D = 10 units apart, with angle θ = π/4

n = 30 Chebyshev nodes

oversampling parameter p = 5, ` = r + p

kernel κ(x , y) = 1/‖x − y‖2
Error is computed in the ∞-norm
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Accuracy with different kernels
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Accuracy while varying distance D between boxes
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Accuracy with increasing n
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Conclusions

Contributions:

Use of tensor-based methods for computing efficient low-rank kernel
approximations

for any number of spatial dimensions

New randomized tensor compression methods for low-rank Tucker
approximations

Reduce computational costs of standard algorithms
Similar accuracy to standard algorithms
Error analysis included in preprint

In preparation: Minster, Saibaba, Kilmer, Efficient Tensor-based
Approximation to Kernel Interactions
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