Efficient Tensor-based Approximations to Kernel Interactions

Rachel Minster¹, Arvind K. Saibaba¹, Misha E. Kilmer²

¹North Carolina State University ²Tufts University

5/21/21

Acknowledgements to NSF DMS 1821149 and DMS 1745654 for funding

Rachel Minster (NCSU)

Tensor Methods for Kernel Matrices

5/21/21 1/16

Motivation: Kernel Methods

- $\bullet\,$ Model pairwise interactions between sets of points defined by kernel $\kappa\,$
- Applications where kernel methods are used:
 - Integral equations (Green's Function), *n*-body problems, Gaussian processes
- Major challenges include
 - Number of interaction points often large
 - Kernel matrices are dense, difficult to store and compute with

- Model pairwise interactions between sets of points defined by kernel κ
- Applications where kernel methods are used:
 - Integral equations (Green's Function), *n*-body problems, Gaussian processes
- Major challenges include
 - Number of interaction points often large
 - Kernel matrices are dense, difficult to store and compute with
- General approach: store kernel matrix efficiently as a rank-structured matrix in a hierarchical form
 - Forms include *H*-matrices, *H*²-matrices, Hierarchical Semiseparable (HSS) matrices, Hierarchical Off-Diagonal Low Rank (HODLR) matrices
 - Constructed by recursively identifying and compressing off-diagonal blocks in low-rank form

Problem Setup

- N_s source points $\boldsymbol{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_{N_s}\}$ in $\mathcal{B}_s = [a_1, b_1] \times \dots \times [a_D, b_D]$
- N_t target points $\boldsymbol{Y} = \{\boldsymbol{y}_1, \dots, \boldsymbol{y}_{N_t}\}$ in $\mathcal{B}_t = [c_1, d_1] \times \dots \times [c_D, d_D]$ • kernel $\kappa : \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$

Problem Setup

- N_s source points $\boldsymbol{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_{N_s}\}$ in $\mathcal{B}_s = [a_1, b_1] \times \dots \times [a_D, b_D]$
- N_t target points $\boldsymbol{Y} = \{\boldsymbol{y}_1, \dots, \boldsymbol{y}_{N_t}\}$ in $\mathcal{B}_t = [c_1, d_1] \times \dots \times [c_D, d_D]$
- kernel $\kappa : \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$

Define interaction matrix

$$\mathcal{K}(\boldsymbol{X}, \boldsymbol{Y}) = \begin{bmatrix} \kappa(\boldsymbol{x}_1, \boldsymbol{y}_1) & \kappa(\boldsymbol{x}_1, \boldsymbol{y}_2) & \dots & \kappa(\boldsymbol{x}_1, \boldsymbol{y}_{N_t}) \\ \kappa(\boldsymbol{x}_2, \boldsymbol{y}_1) & \kappa(\boldsymbol{x}_2, \boldsymbol{y}_2) & \dots & \kappa(\boldsymbol{x}_2, \boldsymbol{y}_{N_t}) \\ \vdots & \vdots & \ddots & \vdots \\ \kappa(\boldsymbol{x}_{N_s}, \boldsymbol{y}_1) & \kappa(\boldsymbol{x}_{N_s}, \boldsymbol{y}_2) & \dots & \kappa(\boldsymbol{x}_{N_s}, \boldsymbol{y}_{N_t}) \end{bmatrix}$$

Computing requires $N_s N_t$ interactions, compressing with an SVD would be very expensive

Problem Setup

- N_s source points $\boldsymbol{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_{N_s}\}$ in $\mathcal{B}_s = [a_1, b_1] \times \dots \times [a_D, b_D]$
- N_t target points $\boldsymbol{Y} = \{\boldsymbol{y}_1, \dots, \boldsymbol{y}_{N_t}\}$ in $\mathcal{B}_t = [c_1, d_1] \times \dots \times [c_D, d_D]$ • kernel $\kappa : \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$

Define interaction matrix

$$\mathcal{K}(\boldsymbol{X}, \boldsymbol{Y}) = \begin{bmatrix} \kappa(\boldsymbol{x}_1, \boldsymbol{y}_1) & \kappa(\boldsymbol{x}_1, \boldsymbol{y}_2) & \dots & \kappa(\boldsymbol{x}_1, \boldsymbol{y}_{N_t}) \\ \kappa(\boldsymbol{x}_2, \boldsymbol{y}_1) & \kappa(\boldsymbol{x}_2, \boldsymbol{y}_2) & \dots & \kappa(\boldsymbol{x}_2, \boldsymbol{y}_{N_t}) \\ \vdots & \vdots & \ddots & \vdots \\ \kappa(\boldsymbol{x}_{N_s}, \boldsymbol{y}_1) & \kappa(\boldsymbol{x}_{N_s}, \boldsymbol{y}_2) & \dots & \kappa(\boldsymbol{x}_{N_s}, \boldsymbol{y}_{N_t}) \end{bmatrix}$$

Computing requires $N_s N_t$ interactions, compressing with an SVD would be very expensive

Main idea: approximate κ using Chebyshev interpolation and tensor compression methods

Rachel Minster (NCSU)

Multivariate Chebyshev Interpolation

For two spatial dimensions (D = 2):

$$\kappa(\mathbf{x}, \mathbf{y}) = f(x_1, x_2, y_1, y_2) = f(\xi_1, \xi_2, \xi_3, \xi_4)$$

$$\approx \sum_{j_1=1}^n \cdots \sum_{j_4=1}^n f(\eta_{j_1}^{(1)}, \eta_{j_2}^{(2)}, \eta_{j_3}^{(3)}, \eta_{j_4}^{(4)}) \left(\prod_{k=1}^4 S_n^{[\alpha_k, \beta_k]}(\eta_{j_k}^{(k)}, \xi_k)\right)$$

with

- *n* number of Chebyshev points per dimension
- $S_n^{[a,b]}$ Chebyshev polynomial interpolant

Multivariate Chebyshev Interpolation

For two spatial dimensions (D = 2):

$$\kappa(\mathbf{x}, \mathbf{y}) = f(x_1, x_2, y_1, y_2) = f(\xi_1, \xi_2, \xi_3, \xi_4)$$

$$\approx \sum_{j_1=1}^n \cdots \sum_{j_4=1}^n f(\eta_{j_1}^{(1)}, \eta_{j_2}^{(2)}, \eta_{j_3}^{(3)}, \eta_{j_4}^{(4)}) \left(\prod_{k=1}^4 S_n^{[\alpha_k, \beta_k]}(\eta_{j_k}^{(k)}, \xi_k)\right)$$

with

- *n* number of Chebyshev points per dimension
- $S_n^{[a,b]}$ Chebyshev polynomial interpolant

Chebyshev Interpolation as a Tensor

$$\kappa(\mathbf{x}, \mathbf{y}) = f(x_1, x_2, y_1, y_2) = f(\xi_1, \xi_2, \xi_3, \xi_4)$$

$$\approx \sum_{j_1=1}^n \cdots \sum_{j_4=1}^n f(\eta_{j_1}^{(1)}, \eta_{j_2}^{(2)}, \eta_{j_3}^{(3)}, \eta_{j_4}^{(4)}) \left(\prod_{k=1}^4 S_n^{[\alpha_k, \beta_k]}(\eta_{j_k}^{(k)}, \xi_k)\right)$$

Can be written in tensor form:

$$f(\xi_1,\xi_2,\xi_3,\xi_4) \approx \mathcal{M} \bigotimes_{k=1}^4 \boldsymbol{s}_k(\xi_k)$$

where

•
$$\mathcal{M}_{j_1, j_2, j_3, j_4} = f(\eta_{j_1}^{(1)}, \eta_{j_2}^{(2)}, \eta_{j_3}^{(3)}, \eta_{j_4}^{(4)})$$
, with $\mathcal{M} \in \mathbb{R}^{n \times n \times n \times n}$
• $\mathbf{s}_k(\xi_k) = \left[S_n^{[\alpha_k, \beta_k]}(\eta_1^{(k)}, \xi_k) \quad \dots \quad S_n^{[\alpha_k, \beta_k]}(\eta_n^{(k)}, \xi_k) \right] \in \mathbb{R}^{1 \times n}$

Rachel Minster (NCSU)

Our Tensor-based Compression Approach

Idea: Use tensor compression methods on \mathcal{M} to obtain Tucker approximation $\widehat{\mathcal{M}} = [\mathcal{G}; A_1, A_2, A_3, A_4]$

Three new randomized methods for compressing \mathcal{M}

- Method 1: uses row interpolatory decomposition to approximate mode unfoldings
- Method 2: Method 1 but with a subsampled tensor
- Method 3: uses a Kronecker product of random Gaussian matrices instead of a single Gaussian matrix

Our Tensor-based Compression Approach

Idea: Use tensor compression methods on \mathcal{M} to obtain Tucker approximation $\widehat{\mathcal{M}} = [\mathcal{G}; A_1, A_2, A_3, A_4]$

Three new randomized methods for compressing \mathcal{M}

- Method 1: uses row interpolatory decomposition to approximate mode unfoldings
- Method 2: Method 1 but with a subsampled tensor
- Method 3: uses a Kronecker product of random Gaussian matrices instead of a single Gaussian matrix

Our Tensor-based Compression Approach

Idea: Use tensor compression methods on \mathcal{M} to obtain Tucker approximation $\widehat{\mathcal{M}} = [\mathcal{G}; A_1, A_2, A_3, A_4]$

Three new randomized methods for compressing $\mathcal M$

- Method 1: uses row interpolatory decomposition to approximate mode unfoldings
- Method 2: Method 1 but with a subsampled tensor
- Method 3: uses a Kronecker product of random Gaussian matrices instead of a single Gaussian matrix

$$\kappa(\mathbf{x}, \mathbf{y}) = f(\xi_1, \xi_2, \xi_3, \xi_4) \approx \widehat{\mathcal{M}} \bigotimes_{k=1}^{4} \mathbf{s}_k(\xi_k)$$
$$= \mathcal{G} \bigotimes_{i=1}^{4} A_i \bigotimes_{k=1}^{4} \mathbf{s}_k(\xi_k) = \mathcal{G} \bigotimes_{k=1}^{4} \mathbf{s}_k(\xi_k) A_k$$

Low-rank Approximation to Kernel Matrix

For a single pair of points,

$$\begin{aligned} \kappa(\mathbf{x},\mathbf{y}) &= \mathcal{G} \bigotimes_{k=1}^{4} \mathbf{s}_{k}(\xi_{k}) \mathcal{A}_{k} = \mathcal{G} \bigotimes_{k=1}^{4} \widehat{\mathbf{s}}_{k}(\xi_{k}) \\ &= \left(\widehat{\mathbf{s}}_{2}(\xi_{2}) \otimes \widehat{\mathbf{s}}_{1}(\xi_{1})\right) \mathcal{G}_{(1:2)}\left(\widehat{\mathbf{s}}_{4}^{\top}(\xi_{4}) \otimes \widehat{\mathbf{s}}_{3}^{\top}(\xi_{3})\right) \end{aligned}$$

5/21/21 7/16

Low-rank Approximation to Kernel Matrix

For a single pair of points,

$$\kappa(\mathbf{x}, \mathbf{y}) = \mathcal{G} \bigotimes_{k=1}^{4} \mathbf{s}_{k}(\xi_{k}) A_{k} = \mathcal{G} \bigotimes_{k=1}^{4} \widehat{\mathbf{s}}_{k}(\xi_{k})$$
$$= (\widehat{\mathbf{s}}_{2}(\xi_{2}) \otimes \widehat{\mathbf{s}}_{1}(\xi_{1})) \mathcal{G}_{(1:2)} \left(\widehat{\mathbf{s}}_{4}^{\top}(\xi_{4}) \otimes \widehat{\mathbf{s}}_{3}^{\top}(\xi_{3})\right)$$

Collect \hat{s} matrices for all points:

•
$$U_j = \begin{bmatrix} \widehat{s}_j(x_1) & \dots & \widehat{s}_j(x_{N_s}) \end{bmatrix}^\top \in \mathbb{R}^{N_s \times r}, \quad j = 1, 2$$

• $V_j = \begin{bmatrix} \widehat{s}_j(y_1) & \dots & \widehat{s}_j(y_{N_t}) \end{bmatrix}^\top \in \mathbb{R}^{N_t \times r}, \quad j = 3, 4$

Low-rank Approximation to Kernel Matrix

For a single pair of points,

$$\begin{split} \kappa(\mathbf{x},\mathbf{y}) &= \mathcal{G} \bigotimes_{k=1}^{4} \mathbf{s}_{k}(\xi_{k}) \mathcal{A}_{k} = \mathcal{G} \bigotimes_{k=1}^{4} \widehat{\mathbf{s}}_{k}(\xi_{k}) \\ &= \left(\widehat{\mathbf{s}}_{2}(\xi_{2}) \otimes \widehat{\mathbf{s}}_{1}(\xi_{1})\right) \mathcal{G}_{(1:2)} \left(\widehat{\mathbf{s}}_{4}^{\top}(\xi_{4}) \otimes \widehat{\mathbf{s}}_{3}^{\top}(\xi_{3})\right) \end{split}$$

Collect \hat{s} matrices for all points:

•
$$U_j = \begin{bmatrix} \widehat{s}_j(x_1) & \dots & \widehat{s}_j(x_{N_s}) \end{bmatrix}^\top \in \mathbb{R}^{N_s \times r}, \quad j = 1, 2$$

• $V_j = \begin{bmatrix} \widehat{s}_j(y_1) & \dots & \widehat{s}_j(y_{N_t}) \end{bmatrix}^\top \in \mathbb{R}^{N_t \times r}, \quad j = 3, 4$

Then interaction matrix approximation is

$$\mathcal{K}(\boldsymbol{X}, \boldsymbol{Y}) pprox (U_2 \ltimes U_1) \mathcal{G}_{(1:2)} (V_4 \ltimes V_3)^{ op}$$

Randomized Row Interpolatory Decomposition (RRID)¹

Gives low-rank approximation using randomized range finder and subset selection

¹Halko, Martinsson, Tropp, SIAM Review, 2011

Main Steps

For a matrix $X \in \mathbb{R}^{m \times n}$, target rank r, oversampling parameter p > 0 such that r + p < m,

- Estimate range of X
- Subset selection to identify indices *J*
- Ompute approximation matrix
 F so X ≈ FX(J,:)

¹Halko, Martinsson, Tropp, SIAM Review, 2011

Main Steps

For a matrix $X \in \mathbb{R}^{m \times n}$, target rank r, oversampling parameter p > 0 such that r + p < m,

- Estimate range of X
- Subset selection to identify indices *J*
- Ompute approximation matrix
 F so X ≈ FX(J,:)

<u>Details</u>

- Draw $\Omega \in \mathbb{R}^{n \times (r+p)}$ a Gaussian random matrix
- Form product $Y = X\Omega$
- Compute thin QR Y = QR
 - $\mathcal{R}(Q) \approx \mathcal{R}(X)$
- Use pivoted QR on Q^{\top}
 - Gives indices ${\mathcal J}$ of
 - well-conditioned rows of Q

• Compute $F = Q(Q(\mathcal{J}, :))^{-1}$

¹Halko, Martinsson, Tropp, SIAM Review, 2011

Main Steps

For a matrix $X \in \mathbb{R}^{m \times n}$, target rank r, oversampling parameter p > 0 such that r + p < m,

- Estimate range of X
- Subset selection to identify indices *J*
- Ompute approximation matrix
 F so X ≈ FX(J,:)

<u>Details</u>

- Draw $\Omega \in \mathbb{R}^{n \times (r+p)}$ a Gaussian random matrix
- Form product $Y = X\Omega$
- Compute thin QR Y = QR
 R(Q) ≈ R(X)
- Use pivoted QR on Q^{\top}
 - Gives indices $\mathcal J$ of well-conditioned rows of Q

• Compute $F = Q(Q(\mathcal{J}, :))^{-1}$

¹Halko, Martinsson, Tropp, SIAM Review, 2011

Main Steps

For a matrix $X \in \mathbb{R}^{m \times n}$, target rank r, oversampling parameter p > 0 such that r + p < m,

- Estimate range of X
- Subset selection to identify indices *J*
- Sompute approximation matrix F so $X \approx FX(\mathcal{J}, :)$

<u>Details</u>

- Draw $\Omega \in \mathbb{R}^{n \times (r+p)}$ a Gaussian random matrix
- Form product $Y = X\Omega$
- Compute thin QR Y = QR• $\mathcal{R}(Q) \approx \mathcal{R}(X)$
- Use pivoted QR on $Q^{ op}$
 - Gives indices ${\mathcal J}$ of
 - well-conditioned rows of Q

• • = • • =

• Compute $F = Q(Q(\mathcal{J}, :))^{-1}$

¹Halko, Martinsson, Tropp, SIAM Review, 2011

Compresses tensor $\mathcal{M} \in \mathbb{R}^{n \times n \times n \times n}$

• Easily extendable to *d*-dimensional tensors

Process:

• For mode 1:

 $Infold <math>\mathcal{M} \to M_{(1)}$

- 2 Apply RRID with target rank r to $M_{(1)} \approx A_1 M_{(1)}(\mathcal{J}_1, :)$
- Repeat for modes 2-4 to obtain matrices A_2, A_3, A_4 and index sets $\mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4$
- Compute core $\mathcal{G} = \mathcal{M}(\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4)$
- Gives approximation $\widehat{\mathcal{M}} = \mathcal{G} \times_1 A_1 \times_2 A_2 \times_3 A_3 \times_4 A_4$

Compresses tensor $\mathcal{M} \in \mathbb{R}^{n \times n \times n \times n}$

• Easily extendable to *d*-dimensional tensors

Process:

- For mode 1:
 - $Infold <math>\mathcal{M} \to \mathcal{M}_{(1)}$
 - 2 Apply RRID with target rank r to $M_{(1)} \approx A_1 M_{(1)}(\mathcal{J}_1, :)$
- Repeat for modes 2-4 to obtain matrices A_2, A_3, A_4 and index sets $\mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4$
- Compute core $\mathcal{G} = \mathcal{M}(\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4)$
- Gives approximation $\widehat{\mathcal{M}} = \mathcal{G} \times_1 A_1 \times_2 A_2 \times_3 A_3 \times_4 A_4$

Compresses tensor $\mathcal{M} \in \mathbb{R}^{n \times n \times n \times n}$

• Easily extendable to *d*-dimensional tensors

Process:

- For mode 1:
 - $Infold <math>\mathcal{M} \to \mathcal{M}_{(1)}$
 - 2 Apply RRID with target rank r to $M_{(1)} \approx A_1 M_{(1)}(\mathcal{J}_1, :)$
- Repeat for modes 2-4 to obtain matrices A_2, A_3, A_4 and index sets $\mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4$
- Compute core $\mathcal{G} = \mathcal{M}(\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4)$
- Gives approximation $\widehat{\mathcal{M}} = \mathcal{G} \times_1 A_1 \times_2 A_2 \times_3 A_3 \times_4 A_4$

Compresses tensor $\mathcal{M} \in \mathbb{R}^{n \times n \times n \times n}$

• Easily extendable to *d*-dimensional tensors

Process:

- For mode 1:
 - $Infold <math>\mathcal{M} \to \mathcal{M}_{(1)}$
 - 2 Apply RRID with target rank r to $M_{(1)} \approx A_1 M_{(1)}(\mathcal{J}_1, :)$
- Repeat for modes 2-4 to obtain matrices A_2, A_3, A_4 and index sets $\mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4$
- Compute core $\mathcal{G} = \mathcal{M}(\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4)$
- Gives approximation $\widehat{\mathcal{M}} = \mathcal{G} \times_1 A_1 \times_2 A_2 \times_3 A_3 \times_4 A_4$

Similar to Method 1, but working with subsampled tensor instead of ${\cal M}$ to decrease computational cost

Process:

- For mode 1:
 - Sample tensor: form index set I of size b, and extract subsampled tensor X = M(:, I, I, I)
 - **2** Unfold $\mathcal{X} \to X_{(1)}$
 - **③** Apply RRID with target rank *r* to $X_{(1)} \approx A_1 X_{(1)}(\mathcal{J}_1, :)$
- Repeat for modes 2-4 to obtain matrices A_2, A_3, A_4 and index sets $\mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4$
- Compute core $\mathcal{G} = \mathcal{M}(\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4)$
- Gives approximation $\widehat{\mathcal{M}} = \mathcal{G} \times_1 A_1 \times_2 A_2 \times_3 A_3 \times_4 A_4$

ヘロト 人間ト 人間ト 人間ト

Similar to Method 1, but working with subsampled tensor instead of ${\cal M}$ to decrease computational cost

Process:

- For mode 1:
 - Sample tensor: form index set I of size b, and extract subsampled tensor X = M(:, I, I, I)
 - **2** Unfold $\mathcal{X} \to X_{(1)}$
 - **③** Apply RRID with target rank *r* to $X_{(1)} \approx A_1 X_{(1)}(\mathcal{J}_1, :)$
- Repeat for modes 2-4 to obtain matrices A_2, A_3, A_4 and index sets $\mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4$
- Compute core $\mathcal{G} = \mathcal{M}(\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4)$
- Gives approximation $\widehat{\mathcal{M}} = \mathcal{G} \times_1 A_1 \times_2 A_2 \times_3 A_3 \times_4 A_4$

ヘロト 人間 と 人 ヨ と

Similar to Method 1, but working with subsampled tensor instead of ${\cal M}$ to decrease computational cost

Process:

- For mode 1:
 - Sample tensor: form index set I of size b, and extract subsampled tensor X = M(:, I, I, I)
 - **2** Unfold $\mathcal{X} \to X_{(1)}$
 - Solution Apply RRID with target rank r to $X_{(1)} \approx A_1 X_{(1)}(\mathcal{J}_1, :)$
- Repeat for modes 2-4 to obtain matrices A_2, A_3, A_4 and index sets $\mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4$
- Compute core $\mathcal{G} = \mathcal{M}(\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4)$
- Gives approximation $\widehat{\mathcal{M}} = \mathcal{G} \times_1 A_1 \times_2 A_2 \times_3 A_3 \times_4 A_4$

ヘロト 人間 と 人 ヨ と

Similar to Method 1, but working with subsampled tensor instead of ${\cal M}$ to decrease computational cost

Process:

- For mode 1:
 - Sample tensor: form index set I of size b, and extract subsampled tensor X = M(:, I, I, I)
 - **2** Unfold $\mathcal{X} \to X_{(1)}$
 - **3** Apply RRID with target rank r to $X_{(1)} \approx A_1 X_{(1)}(\mathcal{J}_1, :)$
- Repeat for modes 2-4 to obtain matrices A_2, A_3, A_4 and index sets $\mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4$
- Compute core $\mathcal{G} = \mathcal{M}(\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_4)$
- Gives approximation $\widehat{\mathcal{M}} = \mathcal{G} \times_1 A_1 \times_2 A_2 \times_3 A_3 \times_4 A_4$

ヘロト 人間ト 人間ト 人間ト

Parameters:

- n: number of Chebyshev nodes
- r: target rank
- p: oversampling parameter
- b: size of index set for Method 2

Compression Method	Computational Cost (flops)	Kernel Evals.
Method 1	$\mathcal{O}\left(rn^{4} ight)$	n ⁴
Method 2	$\mathcal{O}(b^3n)$	$b^3n + (r + p)^4$
Method 3	$\mathcal{O}\left(rn^{4} ight)$	n^4

Numerical Results Setup

- Generate $N_s = N_t = 5000$ random points within boxes of length L = 5, D = 10 units apart, with angle $\theta = \pi/4$
- *n* = 30 Chebyshev nodes
- oversampling parameter p = 5, $\ell = r + p$

• kernel
$$\kappa(x,y) = 1/\|x-y\|_2$$

• Error is computed in the ∞ -norm

Accuracy with different kernels

5/21/21 13/16

Accuracy while varying distance D between boxes

5/21/21 14/16

Accuracy with increasing n

5/21/21 15/16

< 行

Contributions:

- Use of tensor-based methods for computing efficient low-rank kernel approximations
 - for any number of spatial dimensions
- New randomized tensor compression methods for low-rank Tucker approximations
 - Reduce computational costs of standard algorithms
 - Similar accuracy to standard algorithms
 - Error analysis included in preprint

In preparation: Minster, Saibaba, Kilmer, *Efficient Tensor-based* Approximation to Kernel Interactions