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Motivation: Kernel Methods

@ Model pairwise interactions between sets of points defined by kernel k

@ Applications where kernel methods are used:

o Integral equations (Green's Function), n-body problems, Gaussian
processes

@ Major challenges include

e Number of interaction points often large
o Kernel matrices are dense, difficult to store and compute with
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Motivation: Kernel Methods

Model pairwise interactions between sets of points defined by kernel s

Applications where kernel methods are used:

o Integral equations (Green's Function), n-body problems, Gaussian
processes

Major challenges include

e Number of interaction points often large
o Kernel matrices are dense, difficult to store and compute with

@ General approach: store kernel matrix efficiently as a rank-structured
matrix in a hierarchical form
o Forms include H-matrices, H2-matrices, Hierarchical Semiseparable
(HSS) matrices, Hierarchical Off-Diagonal Low Rank (HODLR)
matrices
o Constructed by recursively identifying and compressing off-diagonal
blocks in low-rank form
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Problem Setup

e N source points X = {x1,...,xp,} in Bs = [a1, b1] X --- X [ap, bp]

o N target points Y = {yy,...,yp,} in By = [c1,d1] X --- x [cp, dp]
o kernel K : RP x RP — R

dy
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Problem Setup

e N source points X = {x1,...,xn,} in Bs = [a1, b1] X --- X [ap, bp]
o N; target points Y = {y;,...,yp,} in By = [c1,d1] X -+ x [cp, dp]
o kernel k: RP x RP — R

Define interaction matrix

K(xl’yl) K(Xl,yz) K(xlayNt)

K(x2,y1)  K(x2,¥2) ... K(x2,yp,)
Kxvy=| 0T R o

/{(XNSMY].) K/(XNS7y2) K/(sthny)

Computing requires NgN; interactions, compressing with an SVD would be
very expensive
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Problem Setup

e N source points X = {x1,...,xn,} in Bs = [a1, b1] X --- X [ap, bp]
o N; target points Y = {y;,...,yp,} in By = [c1,d1] x -+ X [cp, dp]
o kernel k: RP x RP 5 R

Define interaction matrix

ﬁ(x]-?yl) H(Xl,yz) H(XlﬂyNt)

K(XQ,y) K(Xg,y) K‘(X2ay t)
KX, y)y=| 77 T o

K’(st’yl) ’i(stvyZ) K/(XNs’yNt)

Computing requires NgN; interactions, compressing with an SVD would be
very expensive

Main idea: approximate x using Chebyshev interpolation and tensor
compression methods
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Multivariate Chebyshev Interpolation

For two spatial dimensions (D = 2):

k(x,y) = f(x1, x2, y1,y2) = f(&1,62,&3,64)

4
~ (1) (3,4 lak,Bc] ¢, (k)
Z ann ’njz ’7713 A )<H5”k k(njk > €k )>

A=l =1 k=1
with
° &= &2 =Y
° 771( ) Chebyshev points in interval [ay, Bk]
o o = aj,[j = bj, ajy2 = ¢, Bj2 = d
@ n number of Chebyshev points per dimension

° S,[,a’b] Chebyshev polynomial interpolant
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Chebyshev Interpolation as a Tensor

k(x,y) = f(x1, x2, y1,y2) = f(£1,62, &3, 64)

N ~ (1) 3) RN
NZ Zf(njl ’nj2 ’7713 ’7714 <HS o njk ’ )>

Can be written in tensor form:

4
f(€1,82,&3,84) = M X (k)
k:1

where
o Mj1,j2,j3,j4 = f(nj(11)7nj(2 )7771(3)7"71(4)) with M € Rnxnxnxn
o si(&k) = [Sr[yak’ﬁk (nlk)afk) . SlewBd (0 e, )] € R1xn
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Our Tensor-based Compression Approach

Idea: Use tensor compression methods on M to obtain Tucker
approximation M = [G; A1, A, Az, A4]

Three new randomized methods for compressing M

@ Method 1: uses row interpolatory decomposition to approximate
mode unfoldings

@ Method 2: Method 1 but with a subsampled tensor

@ Method 3: uses a Kronecker product of random Gaussian matrices
instead of a single Gaussian matrix
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Our Tensor-based Compression Approach

Idea: Use tensor compression methods on M to obtain Tucker
approximation M = [G; A1, Az, A3, A4l
Three new randomized methods for compressing M

@ Method 1: uses row interpolatory decomposition to approximate
mode unfoldings

@ Method 2: Method 1 but with a subsampled tensor

@ Method 3: uses a Kronecker product of random Gaussian matrices
instead of a single Gaussian matrix
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Our Tensor-based Compression Approach

Idea: Use tensor compression methods on M to obtain Tucker
approximation M = [G; A1, Az, A3, A4l
Three new randomized methods for compressing M

@ Method 1: uses row interpolatory decomposition to approximate
mode unfoldings

@ Method 2: Method 1 but with a subsampled tensor

@ Method 3: uses a Kronecker product of random Gaussian matrices
instead of a single Gaussian matrix

4
k(x,y) = f(£1,62,63,64) = M X s,(ék)
k=1

4 4 4
=G X A X sk(&k) =G X sk(&k)Ax
k=1

i=1 k=1
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Low-rank Approximation to Kernel Matrix

For a single pair of points,
4

4
k(x,y) =G X sk(&k)Ak = G X 5k(&k)

k=1 k=1

— (52(&2) @ 31(61)) G (35 (60) @ 51 (&9))

Rachel Minster (NCSU) Tensor Methods for Kernel Matrices



Low-rank Approximation to Kernel Matrix

For a single pair of points,
4

4
k(x,y) =G X sk(&k)Ak = G X 5k(&k)

k=1 k=1

— (52(&2) @ 31(61)) G (35 (60) @ 51 (&9))

Collect s matrices for all points:

°o U=[80a) - §lw)] eRM, j=12
~ ~ T ;
o Vi=[sn) ... silm)] €RM, j=34
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Low-rank Approximation to Kernel Matrix

For a single pair of points,
4

4
k(x,y) =G X sk(&k)Ak = G X 5k(&k)

k=1 k=1

— (52(&2) @ 31(61)) G (35 (60) @ 51 (&9))

Collect s matrices for all points:

°o U=[80a) - §lw)] eRM, j=12
~ ~ T ;
o Vi=[sn) ... silm)] €RM, j=34

Then interaction matrix approximation is

K(X,Y) ~ (Uz x Ur)Grpy(Va x Va)T

Rachel Minster (NCSU) Tensor Methods for Kernel Matrices



Randomized Row Interpolatory Decomposition (RRID)!

Gives low-rank approximation using randomized range finder and subset
selection

1Halko, Martinsson, Tropp, SIAM Review, 2011
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Randomized Row Interpolatory Decomposition (RRID)!

Gives low-rank approximation using randomized range finder and subset
selection

Main Steps

For a matrix X € R™*",
target rank r, oversampling
parameter p > 0 such that
r+p<m,

© Estimate range of X

@ Subset selection to identify
indices J

© Compute approximation matrix
Fso X~ FX(J,:)

1Halko, Martinsson, Tropp, SIAM Review, 2011
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Randomized Row Interpolatory Decomposition (RRID)!

Gives low-rank approximation using randomized range finder and subset
selection

Main Steps

For a matrix X € R™*",
target rank r, oversampling
parameter p > 0 such that
r+p<m,

Details
e Draw Q € R™(r*+P) 3 Gaussian
random matrix
@ Form product Y = XQ
o Compute thin QR Y = QR
@ Estimate range of X o R(Q)~ R(X)
@ Subset selection to identify
indices J

© Compute approximation matrix
Fso X~ FX(J,:)

1Halko, Martinsson, Tropp, SIAM Review, 2011
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Randomized Row Interpolatory Decomposition (RRID)!

Gives low-rank approximation using randomized range finder and subset
selection

Main Steps

For a matrix X € R™*",
target rank r, oversampling
parameter p > 0 such that
r+p<m,

Details

© Estimate range of X

@ Subset selection to identify o Use pivoted QR on QT

indices J e Gives indices J of

) ) ) well-conditioned rows of @
© Compute approximation matrix

Fso X~ FX(J,:)

1Halko, Martinsson, Tropp, SIAM Review, 2011
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Randomized Row Interpolatory Decomposition (RRID)!

Gives low-rank approximation using randomized range finder and subset
selection

Main Steps Details
For a matrix X € R™*",
target rank r, oversampling
parameter p > 0 such that
r+p<m,
© Estimate range of X
@ Subset selection to identify
indices J
© Compute approximation 1
matrix F so X ~ FX(7,:) o Compute F = Q(Q(J,1))

1Halko, Martinsson, Tropp, SIAM Review, 2011
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Method 1: Randomized Interpolatory Tensor

Decomposition

Compresses tensor M € RM*mxnxn

o Easily extendable to d-dimensional tensors

Process:
@ For mode 1:
© Unfold M — My
@ Apply RRID with target rank r to M1y = A M)(J1,:)
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Method 1: Randomized Interpolatory Tensor

Decomposition

Compresses tensor M € RM*mxnxn

o Easily extendable to d-dimensional tensors

Process:
@ For mode 1:
© Unfold M — My
@ Apply RRID with target rank r to M1y = A M)(J1,:)

@ Repeat for modes 2-4 to obtain matrices Ay, Az, A4 and index sets

T2, T3, T
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Method 1: Randomized Interpolatory Tensor

Decomposition

Compresses tensor M € RM*mxnxn

o Easily extendable to d-dimensional tensors

Process:
@ For mode 1:
© Unfold M — My
@ Apply RRID with target rank r to M1y = A M)(J1,:)

@ Repeat for modes 2-4 to obtain matrices Ay, Az, A4 and index sets

j27\737t74
e Compute core G = M(J1, T2, T3, Ta)
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Method 1: Randomized Interpolatory Tensor

Decomposition

Compresses tensor M € RM*mxnxn

o Easily extendable to d-dimensional tensors

Process:
@ For mode 1:
© Unfold M — My
@ Apply RRID with target rank r to M1y = A M)(J1,:)

@ Repeat for modes 2-4 to obtain matrices Ay, Az, A4 and index sets

j27\737t74
e Compute core G = M(J1, T2, T3, Ta)

o Gives approximation M\: G x1 A1 X5 Ay X3 A3 X4 Ag
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Method 2: Randomized Interpolatory Tensor Decomp.

with Block Selection

Similar to Method 1, but working with subsampled tensor instead of M to
decrease computational cost

Process:
@ For mode 1:
© Sample tensor: form index set Z of size b, and extract subsampled
tensor X = M(:,Z,Z,7)
@ Unfold X — X(l)
© Apply RRID with target rank r to X(1) ~ A1 X(1)(J1, 1)
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Method 2: Randomized Interpolatory Tensor Decomp.

with Block Selection

Similar to Method 1, but working with subsampled tensor instead of M to
decrease computational cost

Process:
@ For mode 1:
© Sample tensor: form index set Z of size b, and extract subsampled
tensor X = M(:,Z,Z,7)
@ Unfold X — X(l)
© Apply RRID with target rank r to X(1) ~ A1 X(1)(J1, 1)
@ Repeat for modes 2-4 to obtain matrices Ay, As, A4 and index sets

T2, T3, Ja
e Compute core G = M(J1, T2, T3, Ja)

o Gives approximation ./T/l\ =G X1 A1 X2 As X3 A3 X4 Ay
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Computational Cost

Parameters:
@ n: number of Chebyshev nodes
@ r: target rank
@ p: oversampling parameter
@ b: size of index set for Method 2

Compression Method | Computational Cost (flops) | Kernel Evals.

Method 1 O (rm*) n*
Method 2 O(b3n) b3n+ (r + p)*
Method 3 O (rm*) n*
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Numerical Results Setup

@ Generate Ny = N; = 5000 random points within boxes of length
L =15, D =10 units apart, with angle § = /4

n = 30 Chebyshev nodes

oversampling parameter p=5,/=r+p

kernel k(x,y) = 1/||x — y||2

Error is computed in the co-norm

targets

sources
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Accuracy with different kernels
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Accuracy while varying distance D between boxes
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Rachel Minster (NCSU)

D=171
——Method 1
" — — Method 2 5
Method 3 :‘:)
-------- HosvD || &
N >
' 5
\ ®
N o
N
- 107%
15 20 25 30 10 15 20 25 30
¢
D=15
10710
s
)
2 1012
K5
®
107
15 20 25 30 10 15 20 25 30
¢

Tensor Methods for Kernel Matrices




Accuracy with increasing n
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Conclusions

Contributions:
@ Use of tensor-based methods for computing efficient low-rank kernel
approximations
e for any number of spatial dimensions

@ New randomized tensor compression methods for low-rank Tucker
approximations

e Reduce computational costs of standard algorithms
e Similar accuracy to standard algorithms
e Error analysis included in preprint

In preparation: Minster, Saibaba, Kilmer, Efficient Tensor-based
Approximation to Kernel Interactions
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