Tensor Analysis – Applications and Algorithms

Christos Faloutsos CMU

Roadmap

- Applications pattern discovery
 - Brain scans coupled matrix-tensor factorization
 - Power grid
- Applications anomaly detection 4
- Algorithms
- Conclusions

Roadmap

- Applications pattern discovery
 - Brain scans coupled matrix-tensor factorization
 - Power grid
- Applications anomaly detection 4
- Algorithms
- Conclusions

- Brain Scan Data*
 - 9 persons
 - 60 nouns
- Questions
 - 218 questions
 - 'is it alive?', 'can you eat it?'

*Mitchell et al. *Predicting human brain activity associated with the meanings of nouns*. Science,2008. Data@ www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html

- Brain Scan Data*
 - 9 persons
 - 60 nouns
- Questions
 - 218 questions
 - 'is it alive?', 'can you eat it?'

Patterns?

Carnegie Mellon

Nouns	Nouns	Nouns	Nouns
beetle	bear	glass	bed
pants	COW	tomato	house
bee	coat	bell	car
Questions	Questions	Questions	Questions
can it cause you pain?	does it grow?	can you pick it up?	does it use electricity?
do you see it daily?	is it alive?	can you hold it in one hand?	can you sit on it?
is it conscious?	was it ever alive?	is it smaller than a golfball?'	does it cast a shadow?
Group1	Group 2	Group 3	Group 4

Nouns

0.05

0.04

0.03

0.02

0.01

Small items -> Premotor cortex

glass tomato bell **Questions**

UnsupervisedMatches intuition

can you pick it up? can you hold it in one hand? is it smaller than a golfball?'

Group 3

Small items -> Premotor cortex

Nouns

glass tomato bell

Questions

can you pick it up? can you hold it in one hand? is it smaller than a golfball?'

Group 3

Evangelos Papalexakis, Tom Mitchell, Nicholas Sidiropoulos, Christos Faloutsos, Partha Pratim Talukdar, Brian Murphy, *Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor Factorizations by 200x*, SDM 2014

Roadmap

- Applications pattern discovery
 - Brain scans coupled matrix-tensor factorization
 - Power grid
- Applications anomaly detection 4
- Algorithms
- Conclusions

Carnegie Mellon

PowerCast

Mining electric power data

Hyun Ah Song, Bryan Hooi, Marko Jereminov, Amritanshu Pandey, Larry Pileggi, and CF, *PowerCast: Mining and Forecasting Power Grid Sequences*, PKDD'17, Skopje, FYROM

Problem definition

- Given: real and imaginary current and voltage
- Forecast: power demand in the future, and
- **Guess**: how the forecasts will change under various scenarios (e.g. population drops in half, etc)

SIAM, July 2017

PowerCast

 $I_r(t) = G(t)V_r(t) - B(t)V_i(t) + \alpha_r(t)$ $I_i(t) = B(t)V_r(t) + G(t)V_i(t) + \alpha_i(t)$

PowerCast

Tensor factors (concepts)

Forecast

SIAM, July 2017

Carnegie Mellon

Carnegie Mellon

Roadmap

- Applications pattern discovery
- Applications anomaly detection
 - Phone-call data
 - Intrusion detection
- Algorithms
- Conclusions

Anomalies in phone-call data

• PARAFAC decomposition

- 4M x 15 days

• Results for who-calls-whom-when

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

• Anomalous communities in phone call data:

Tencent, 6/22

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

Roadmap

- Applications pattern discovery
- Applications anomaly detection
 - Phone-call data
 - Intrusion detection
- Algorithms
- Conclusions

ParCube at Work: Port-Scanning

Papalexakis et al. ECML-PKDD 2012

Roadmap

- Applications pattern discovery
- Applications anomaly detection
- Algorithms
 - ParCube (and TurboSMT)
 - S-HOT for higher order Tucker
- Conclusions

Carnegie Mellon ParCube/Turbo-SMT: Triple-sparse Parallel Tensor & Coupled Decomposition

Papalexakis et al. ECML-PKDD 2012 / SDM 2014

Speedup

4 Intel Xeon E74850 512Gb RAM, Fedora 14

Roadmap

- Applications pattern discovery
- Applications anomaly detection
- Algorithms
 - ParCube (and TurboSMT)
- S-HOT for higher order Tucker
- Conclusions

S-HOT: Scalable High-Order Tucker Decomposition

Tucker Decomposition:
X
C
A⁽²⁾
C
C

Jinoh Oh, Kijung Shin, Evangelos E. Papalexakis, Christos Faloutsos, and Hwanjo Yu, *S-HOT: Scalable High-Order Tucker Decomposition*, WSDM 2017

High-Order Tucker Decomposition (Example)

- Input tensor
 - X: a 5-way sparse tensor
 - (size: 1M ... 1M, #non-zeros: 100M)
- Output tensors:
 - C: a 5-way core tensor
 - (size: 10 ... 10, #non-zeros : ~100K)
 - $-A, ..., A^{(5)}$: factor matrices

(size: 1M 10, #non-zeros : ~10M)

High-Order Tucker Decomposition (Main idea)

Algorithm 1: Tucker-ALS

SIA1, July 2011

(v) v. 1°aivuisos, 2017

High-Order Tucker Decomposition (Main idea)

Algorithm 1: Tucker-ALS

SIA1, July 2011

(v) v. 1°aiouisos, 2017

Scalability of S-HOT

• Baselines: Standard ALS (Naïve), & (opt)

SIAM, July 2017

Scalability of S-HOT

- Baselines: Standard ALS (Naïve), & (opt)
- I = 1M; J=10; M=1B; N=5 modes

Method	Space Requirements for Intermediate Data		
Wiethou	(in Theory)	(in Example)	
BaselineNaive	MJ^{N-1}	$\sim 40 \mathrm{TB}$	
BaselineOpt [12]	IJ^{N-1}	$\sim 40 \mathrm{GB}$	
HATEN2 [8]	$\max(IJ^{N-1}, M(N-1)J)$	$\sim 160 \text{GB}$	
S-HOT	$\max(I, J^{N-1})$	$\sim 4 \mathrm{MB}$	
S-HOT _{scan}	J^{N-1}	$\sim 40 \mathrm{KB}$	

keywords)

Discovery using S-HOT

• Microsoft Academic Graph

(42M papers \times 25K venues \times 115M authors \times 54K

<u>CS-related</u> International Conference on Networking(ICN), Wired/Wireless Internet Communications(WWIC), Database and Expert Systems Applications(DEXA), Data Mining and Knowledge Discovery, IEEE Transactions on Robotics, ...

- <u>Nanotech.</u> Nature Nanotechnology, PLOS ONE, Journal of Experimental Nanoscience, Journal of Nanoscience and Nanotechnology, Journal of Semiconductors, Trends in Biotechnology, ...
- <u>Clinical</u> European Journal of Cancer, PLOS Biology, Clinical and Applied Thrombosis-Hemostasis, Journal of Infection Prevention, RBMC Clinical Pharmacology, Regional Anesthesia and Pain ...

SIAM, July 2017

Discovery using S-HOT

• Microsoft Academic Graph

(42M papers \times 25K venues \times 115M authors \times 54K keywords)

<u>CS-related</u> International Conference on Networking(ICN), Wired/Wireless Internet Communications(WWIC), Database and Expert Systems Applications(DEXA), Data Mining and Knowledge Discovery, IEEE Transactions on Robotics, ...

Roadmap

- Applications pattern discovery
- Applications anomaly detection
- Algorithms
 - ParCube (and TurboSMT)
 - S-HOT for higher order Tucker
- Conclusions

Carnegie Mellon

Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

CONCLUSION#1

• MANY applications for tensors

Nouns

glass tomato

bell

Questions

can you pick it up? can you hold it in one hand? is it smaller than a golfball?'

CONCLUSION#2

• Domain-experts: valuable

 $I_r(t) = G(t)V_r(t) - B(t)V_i(t) + \alpha_r(t)$ $I_i(t) = B(t)V_r(t) + G(t)V_i(t) + \alpha_i(t)$

Thank you!

• Domain-experts: valuable

 $I_r(t) = G(t)V_r(t) - B(t)V_i(t) + \alpha_r(t)$ $I_i(t) = B(t)V_r(t) + G(t)V_i(t) + \alpha_i(t)$

