
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Portability	and	Scalability	of	Sparse	Tensor	
Decompositions	on	CPU/MIC/GPU	Architectures	

Christopher	Forster,	Keita	Teranishi,	Greg	Mackey,	Daniel	
Dunlavy and	Tamara	Kolda

SAND2017-6575	C

Sparse	Tensor	Decomposition

§ Develop	production	quality	library	software	to	perform	CP	
factorization	with	Alternating	Poisson	Regression on	HPC	platforms
§ SparTen

§ Support	several	HPC	platforms
§ Node	parallelism	(Multicore,	Manycore and	GPUs)

§ Major	Questions
§ Software	Design
§ Performance	Tuning

§ This	talk
§ We	are	interested	in	two	major	variants	

§ Multiplicative	Updates
§ Projected	Damped	Newton	for	Row-subproblems

2

CP	Tensor	Decomposition

3

§ Express	the	important	feature	of	data	using	a	small	number	of	
vector	outer	products

Key references: Hitchcock (1927), Harshman (1970), Carroll and Chang (1970)

CANDECOMP/PARAFAC (CP) Model

Model:

Poisson	for	Sparse	Count	Data

4

Gaussian (typical) Poisson
The random variable x is a

continuous real-valued number.
The random variable x is a

discrete nonnegative integer.

Model: Poisson distribution (nonnegative factorization)

Sparse	Poisson	Tensor	Factorization

5

§ Nonconvex	problem!
§ Assume	R	is	given

§ Minimization	problem	with	constraint
§ The	decomposed	vectors	must	be	non-negative

§ Alternating	Poisson	Regression		(Chi	and	Kolda,	2011)
§ Assume	(d-1)	factor	matrices	are	known	and	solve	for	the	remaining	one

New	Method:
Alternating	Poisson	Regression	(CP-APR)

6

Repeat until converged…

Fix B,C;
solve	forA

Fix A,C;
solve	for B

Fix A,B;
solve	for C

Theorem: The CP-APR algorithm will converge to a constrained
stationary point if the subproblems are strictly convex and solved
exactly at each iteration. (Chi and Kolda, 2011)

Convergence
Theory

CP-APR

7

Minimization problem is expressed as:

CP-APR

8

Minimization problem is expressed as:

• 2 major approaches
• Multiplicative Updates like Lee & Seung

(2000) for matrices, but extended by Chi and
Kolda (2011) for tensors

• Newton and Quasi-Newton method for Row-
subpblems by Hansen, Plantenga and Kolda
(2014)

Key	Elements	of	MU	and	PDNR	methods

§ Key	computations
§ Khatri-Rao	Product
§ Modifier	(10+	iterations)

§ Key	features
§ Factor	matrix	is	
updated	all	at	once

§ Exploits	the	convexity	
of	row	subproblems for	
global	convergence

§ Key	computations
§ Khatri-Rao	Product
§ Constrained	Non-linear	
Newton-based		
optimization	for	each	
row

§ Key	features
§ Factor	matrix	can	be	

updated	by	rows
§ Exploits	the	convexity	of	

row-subproblems

9

Multiplicative Update (MU) Projected Damped Newton for Row-
subproblems (PDNR)

CP-APR-MU

10

Key Computations

CP-APR-PDNR

11

Key Computations

Algorithm 1: CPAPR-PDNR algorithm

1 CPAPR PDNR (X ,M);

Input : Sparse N -mode Tensor X of size I

1

⇥ I

2

⇥ . . . IN and the

number of components R

Output: Kruskal Tensor M = [�;A

(1)

. . . A

(N)

]

2 Initialize
3 repeat
4 for n = 1, . . . , N do
5 Let ⇧

(n)
= (A

(N) � · · ·�A

(n+1) �A

(n�1) � . . . A

(1)

)

T

6 for i = 1, . . . , In do

7 Find b

(n)
i s.t. min

b(n)
i �0

f

row

(b

(n)
i , x

(n)
i ,⇧

(n)
)

8 end

9 � = e

T
B

(n)
where B

(n)
= [b

(n)
1

. . . b

(n)
In

]

T

10 A

(n) B

(n)
⇤

�1

, where ⇤ = diag(�)

11 end

12 until all mode subproblems converged ;

PARALLEL	CP-APR	ALGORITHMS

12

Parallelizing	CP-APR
§ Focus	on	on-node	parallelism	for	multiple	architectures

§ Multiple	choices	for	programming	
§ OpenMP,	OpenACC, CUDA,	Pthread …
§ Manage	different	low-level	hardware	features	(cache,	device	memory,	NUMA…)

§ Our	Solution:	Use	Kokkos for	productivity	and	performance	portability		
§ Abstraction	of	parallel	loops
§ Abstraction	Data	layout	(row-major,	column	major,	programmable	memory)
§ Same	code	to	support	multiple	architectures

13

Kokkos

Intel Multicore Intel Manycore NVIDIA GPU IBM PowerAMD Multicore/APU ARM

Support multiple
Architectures

What	is	Kokkos?

§ Templated	C++	Library	by	Sandia	National	Labs	(Edwards,	et	al)	
§ Serve	as	substrate	layer	of	sparse	matrix	and	vector	kernels
§ Support	any	machine	precisions

§ Float
§ Double
§ Quad	and	Half	float	if	needed.

§ Kokkos::View()	accommodates	performance-aware	
multidimensional	array	data	objects
§ Light-weight	C++	class	to

§ Parallelizing	loops	using	C++	language	standard
§ Lambda	
§ Functors

§ Extensive	support	of	atomics

14

Parallel	Programing	with	Kokkos

§ Provide	parallel	loop	operations	using	C++	language	features
§ Conceptually,	the	usage	is	no	more	difficult	than	OpenMP.	

The	annotations	just	go	in	different	places. 15

for (size_t i = 0; i < N; ++i)
{

/* loop body */
}

#pragma omp parallel for
for (size_t i = 0; i < N; ++i)
{

/* loop body */
}

parallel_for ((N, [=], (const size_t i)
{

/* loop body */
});

Se
ria

l
O

pe
nM

P
Ko

kk
os

Kokkos information courtesy of Carter Edwards

Why	Kokkos?

§ Comply	C++	language	standard!
§ Support	multiple	back-ends

§ Pthread,	OpenMP,	CUDA,	Intel	TBB	and	Qthread

§ Support	multiple	data	layout	options
§ Column	vs	Row	Major	
§ Device/CPU	memory

§ Support	different	parallelism
§ Nesting	support
§ Vector,	threads,	Warp,	etc.
§ Task	parallelism	(under	development)

16

Array	Access	by	Kokkos

17

Row-major
Thread 0 reads

Thread 1 reads

Column-major

Thread 0 reads

Thread 1 reads

Kokkos::View<double **, Layout, Space>

View<double **, Right, Space> View<double **, Left, Space>

Array	Access	by	Kokkos

18

Row-major

Thread 0 reads

Thread 1 reads

Contiguous reads per thread

Column-major

Thread 0 reads

Thread 1 reads

C
oalesced reads w

ithin w
arp

View<double **, Right, Host> View<double **, Left, CUDA>

Kokkos::View<double **, Layout, Space>

Parallel	CP-APR-MU

19

Data Parallel

Parallel	CP-APR-PDNR

20

Data Parallel

Task Parallel

Notes	on	Data	Structure

§ Use	Kokkos::View	
§ Sparse	Tensor	

§ Similar	to	the	Coordinate	(COO)	Format	in	Sparse	Matrix	representation

§ Kruskal Tensor	&	Khatri	Rao	Product	
§ Provides	options	for	row	or	column	major

§ Kokkos::View	provides	an	option	to	define	the	leading	dimension.
§ Determined	during	compile	or	run	time	

§ Avoid	Atomics
§ Expensive	in	CPUs	and	Manycore
§ Use	extra	indexing	data	structure

§ CP-APR-PDNR
§ Creates	a	pool	of	tasks
§ A	dedicated	buffer	space	(Kokkos::View)	is	assigned	to	individual	task

21

PERFORMANCE

22

Performance	Test
§ Strong	Scalability

§ Problem	size	is	fixed
§ Random	Tensor

§ 3K	x	4K	x	5K,	10M	nonzero	entries
§ 100	outer	iterations

§ Realistic	Problems	
§ Count	Data	(Non-negative)	
§ Available	at	http://frostt.io/
§ 10	outer	iterations

§ Double	Precision

23

Data Dimensions Nonzeros Rank
LBNL 2K x 4K x 2K x 4K x 866K 1.7M 10
NELL-2 12K x 9K x 29K 77M 10
NELL-1 3M x 2M x 25M 144M 10
Delicious 500K x 17M x 3M x 1K 140M 10

CPAPR-MU	on	CPU	(Random)

24

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Ex
ec

ut
io

n
Ti

m
e

(s
)

Core Count

CP-APR-MU method, 100 outer-iterations, (3000 x 4000 x 5000,
10M nonzero entries), R=10, PC cluster, 2 Haswell (14 core) CPUs

per node, MKL-11.3.3, HyperThreading disabled

Pi Phi+ Update

Results:	CPAPR-MU	Scalability

25

Data
Haswell CPU

1-core

2 Haswell
CPUs

14-cores

2 Haswell
CPUs

28-cores
KNL

68-core CPU
NVIDIA

P100 GPU
Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup

Random 1715* 1 279 6.14 165 10.39 20 85.74 10 171.5
LBNL 131 1 32 4.09 32 4.09 103 1.27
NELL-2 1226 1 159 7.77 92 13.32 873 1.40
NELL-1 5410 1 569 9.51 349 15.50 1690 3.20
Delicious 5761 1 2542 2.26 2524 2.28

100 outer iterations for the random problem
10 outer iterations for realistic problems
* Pre-Kokkos C++ code on 2 Haswell CPUs:

1-core, 2136 sec
14-cores, 762 sec
28-cores, 538 sec

CPAPR-PDNR		on	CPU(Random)

26

0
100
200
300
400
500
600
700
800
900

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Ex
ec

ut
io

n
Ti

m
e

(s
)

Core Count

CPAPR-PDNR method, 100 outer-iterations, 1831221 inner
iterations total, (3000 x 4000 x 5000, 10M nonzero entries), R=10,

PC cluster, 2 Haswell (14 core) CPUs per node, MKL-11.3.3,
HyperThreading disabled

Pi RowSub

Results:	CPAPR-PDNR	Scalability

27

Data
Haswell CPU

1 core
2 Haswell CPUs

14 cores
2 Haswell CPUs

28 cores
Time(s) Speedup Time(s) Speedup Time(s) Speedup

Random 817* 1 73 11.19 44 18.58

LBNL 441 1 187 2.35 191 2.30

NELL-2 2162 1 326 6.63 319 6.77

NELL-1 17212 1 4241 4.05 3974 4.33

Delicious 18992 1 3684 5.15 3138 6.05

100 outer iterations for the random problem
10 outer iterations for realistic problems
* Pre-Kokkos C++ code spends 3270 sec on 1 core

Performance	Issues

§ Our	implementation	exhibits	very	good	scalability	with	the	
random	tensor.
§ Similar	mode	sizes
§ Regular	distribution	of	nonzero	entries

§ Some	cache	effects
§ Kokkos is	NUMA-aware	for	contiguous	memory	access	(first-touch)

§ Some	scalability	issues	with	the	realistic	tensor	problems.
§ Irregular	nonzero	distribution	and	disparity	in	mode	sizes
§ Task-parallel	code	may	have	some	memory	locality	issues	to	access		

sparse	tensor,	Kruskal Tensor,	and	Khatori-Rao	product
§ Preprocessing	could	improve	the	locality

§ Explicit	Data	partitioning	(Smith	and	Karypis)	
§ Possible	to	implement	using	Kokkos

28

Memory	Bandwidth	(Stream	Benchmark)

§ All	cores	deliver	approximately	8x	performance	improvement	
from	single	thread

§ Hard	to	scale	using	all	cores	with	memory-bound	code.

29

0

20000

40000

60000

80000

100000

120000

0 5 10 15 20 25 30

M
By

te
s/

Se
c

of Cores

Stream Benchmark on 2x 14 core Intel Haswell
CPUs

Conclusion

§ Development	of	Portable	on-node	Parallel	CP-APR	Solvers	
§ Data	parallelism	for	MU	method
§ Mixed	Data/Task	parallelism	for	PDNR	method
§ Multiple	Architecture	Support	using	Kokkos

§ Scalable	Performance	for	random	sparse	tensor

§ Future	Work
§ Projected	Quasi-Newton	for	Row-subproblems (PQNR)	
§ GPU	and	Manycore support	for	PDNR	and	PQNR
§ Performance	tuning	to	handle	irregular	nonzero	distributions	and	

disparity	in	mode	sizes

30

