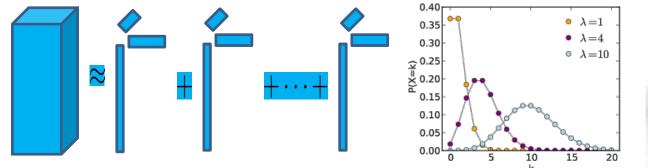
Exceptional service in the national interest





Portability and Scalability of Sparse Tensor Decompositions on CPU/MIC/GPU Architectures

Christopher Forster, Keita Teranishi, Greg Mackey, Daniel Dunlavy and Tamara Kolda

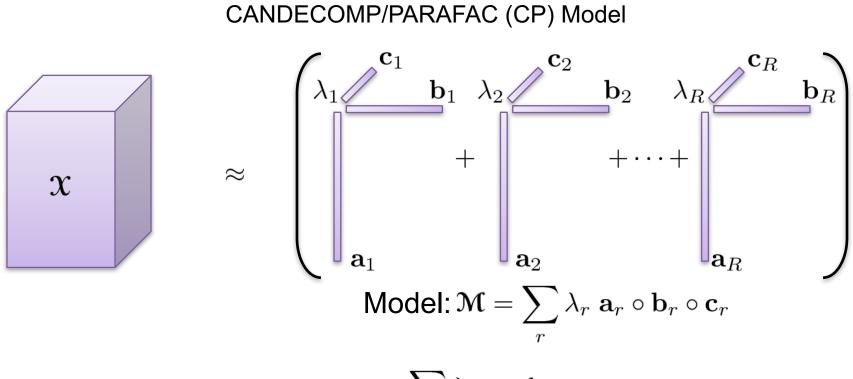
SAND2017-6575 C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sparse Tensor Decomposition

- Develop production quality library software to perform CP factorization with Alternating Poisson Regression on HPC platforms
 - SparTen
- Support several HPC platforms
 - Node parallelism (Multicore, Manycore and GPUs)
- Major Questions
 - Software Design
 - Performance Tuning
- This talk
 - We are interested in two major variants
 - Multiplicative Updates
 - Projected Damped Newton for Row-subproblems

CP Tensor Decomposition



$$x_{ijk} \approx m_{ijk} = \sum_{r} \lambda_r \ a_{ir} \ b_{jr} \ c_{kr}$$

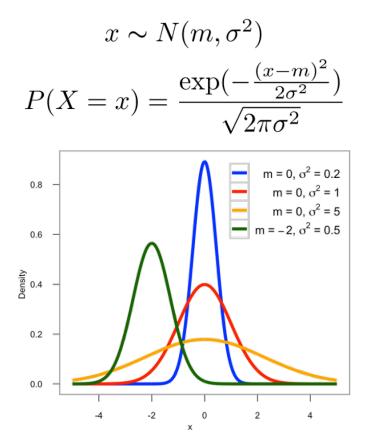
 Express the important feature of data using a small number of vector outer products

Key references: Hitchcock (1927), Harshman (1970), Carroll and Chang (1970)

Poisson for Sparse Count Data

Gaussian (typical)

The random variable x is a continuous real-valued number.

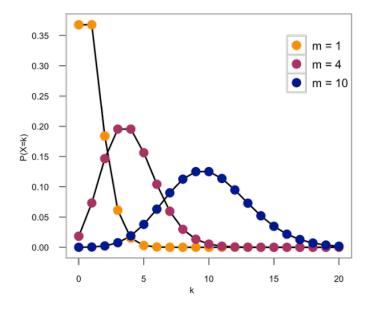


Poisson

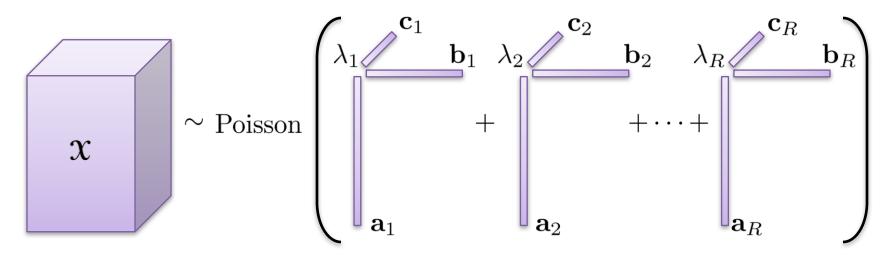
The random variable x is a discrete nonnegative integer.

 $x \sim \text{Poisson}(m)$

 $P(X = x) = \frac{\exp(-m)m^x}{x!}$



Sparse Poisson Tensor Factorization Distance



<u>Model</u>: Poisson distribution (nonnegative factorization) $x_{ijk} \sim \text{Poisson}(m_{ijk})$ where $m_{ijk} = \sum \lambda_r \ a_{ir} \ b_{jr} \ c_{kr}$

- Nonconvex problem!
 - Assume R is given
- Minimization problem with constraint
 - The decomposed vectors must be non-negative
- Alternating Poisson Regression (Chi and Kolda, 2011)
 - Assume (d-1) factor matrices are known and solve for the remaining one

New Method: Alternating Poisson Regression (CP-APR)

Repeat until converged...

Convergence

Theory

1.
$$\bar{\mathbf{A}} \leftarrow \arg\min_{\bar{\mathbf{A}} \ge 0} \sum_{ijk} m_{ijk} - x_{ijk} \log m_{ijk}$$
 s.t. $\mathcal{M} = \sum_{r} \bar{\mathbf{a}}_{r} \circ \mathbf{b}_{r} \circ \mathbf{c}_{r}$
2. $\lambda \leftarrow \mathbf{e}^{\mathsf{T}} \bar{\mathbf{A}}; \mathbf{A} \leftarrow \bar{\mathbf{A}} \cdot \operatorname{diag}(1/\lambda)$
3. $\bar{\mathbf{B}} \leftarrow \arg\min_{\bar{\mathbf{B}} \ge 0} \sum_{ijk} m_{ijk} - x_{ijk} \log m_{ijk}$ s.t. $\mathcal{M} = \sum_{r} \mathbf{a}_{r} \circ \bar{\mathbf{b}}_{r} \circ \mathbf{c}_{r}$
4. $\lambda \leftarrow \mathbf{e}^{\mathsf{T}} \bar{\mathbf{B}}; \mathbf{B} \leftarrow \bar{\mathbf{B}} \cdot \operatorname{diag}(1/\lambda)$
5. $\bar{\mathbf{C}} \leftarrow \arg\min_{\bar{\mathbf{C}} \ge 0} \sum_{ijk} m_{ijk} - x_{ijk} \log m_{ijk}$ s.t. $\mathcal{M} = \sum_{r} \mathbf{a}_{r} \circ \mathbf{b}_{r} \circ \bar{\mathbf{c}}_{r}$
6. $\lambda \leftarrow \mathbf{e}^{\mathsf{T}} \bar{\mathbf{C}}; \mathbf{C} \leftarrow \bar{\mathbf{C}} \cdot \operatorname{diag}(1/\lambda)$
Fix $\mathbf{A}, \mathbf{B};$ solve for \mathbf{C}

Theorem: The CP-APR algorithm will **converge to a constrained stationary point** if the subproblems are strictly convex and solved exactly at each iteration. (Chi and Kolda, 2011)

CP-APR

Algorithm 1: CPAPR, Alternating Block Framework

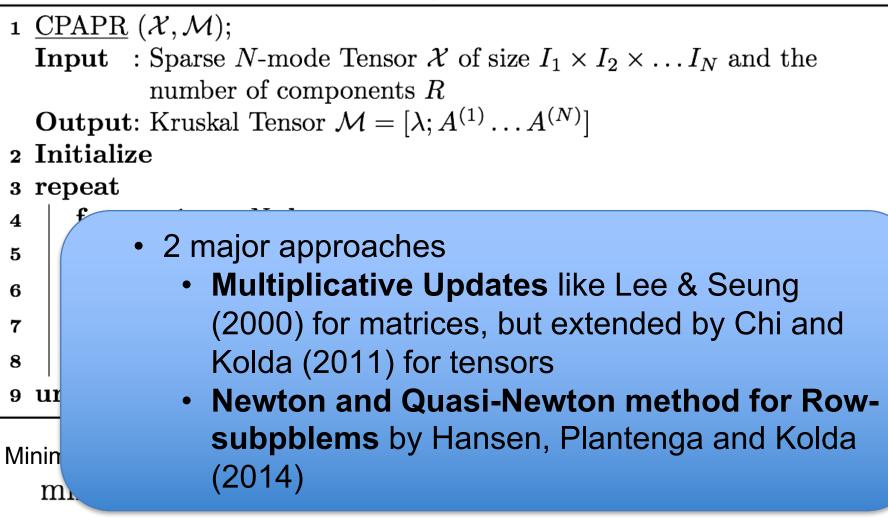
1 <u>CPAPR</u> $(\mathcal{X}, \mathcal{M});$ **Input** : Sparse N-mode Tensor \mathcal{X} of size $I_1 \times I_2 \times \ldots I_N$ and the number of components R**Output**: Kruskal Tensor $\mathcal{M} = [\lambda; A^{(1)} \dots A^{(N)}]$ Initialize 2 repeat 3 for $n = 1, \ldots, N$ do 4 Let $\Pi^{(n)} = (A^{(N)} \odot \cdots \odot A^{(n+1)} \odot A^{(n-1)} \odot \ldots A^{(1)})^T$ 5 Compute $\bar{A}^{(n)}$ that minimize $f(\bar{A}^{(n)})$ s.t. $\bar{A}^{(n)} \ge 0$ 6 $A^{(n)} \leftarrow \bar{A}^{(n)}$ 7 end 8

9 until all mode subproblems converged;

Minimization problem is expressed as: $\min_{\bar{A}^{(n)}>0} f(\bar{A}^{(n)}) = e^T [\bar{A}^{(n)}\Pi^{(n)} - X_{(n)} * \log(\bar{A}^{(n)}\Pi^{(n)})]e$

CP-APR

Algorithm 1: CPAPR, Alternating Block Framework



Key Elements of MU and PDNR methods Sandia Laboratories

Multiplicative Update (MU)

- Key computations
 - Khatri-Rao Product $\Pi^{(n)}$
 - Modifier (10+ iterations)

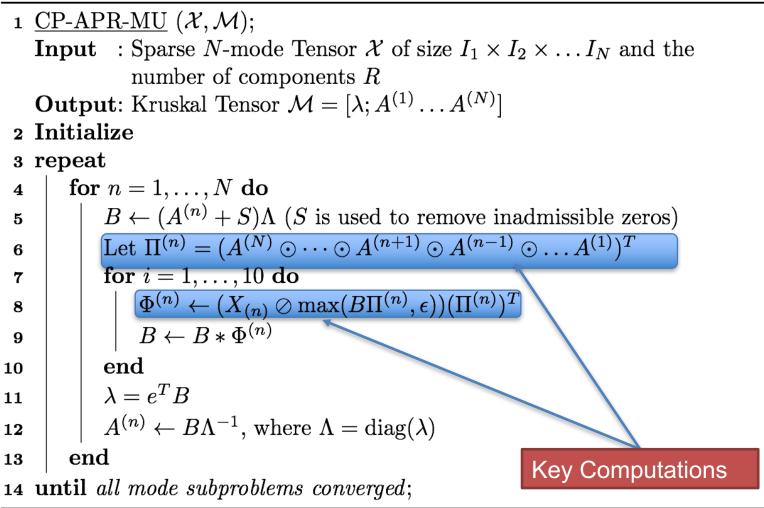
- Key features
 - Factor matrix is updated all at once
 - Exploits the convexity of row subproblems for global convergence

Projected Damped Newton for Rowsubproblems (PDNR)

- Key computations
 - Khatri-Rao Product $\Pi^{(n)}$
 - Constrained Non-linear Newton-based optimization for each row
- Key features
 - Factor matrix can be updated by rows
 - Exploits the convexity of row-subproblems

CP-APR-MU

Algorithm 1: CP-APR-MU, Multiplicative Update



CP-APR-PDNR

Algorithm 1: CPAPR-PDNR algorithm

- 1 <u>CPAPR_PDNR</u> $(\mathcal{X}, \mathcal{M});$
 - **Input** : Sparse *N*-mode Tensor \mathcal{X} of size $I_1 \times I_2 \times \ldots I_N$ and the number of components R

Output: Kruskal Tensor $\mathcal{M} = [\lambda; A^{(1)} \dots A^{(N)}]$

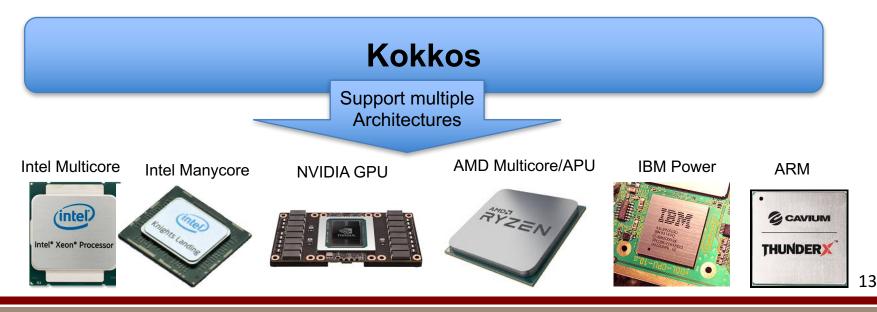
2 Initialize

4 for
$$n = 1, ..., N$$
 do
5 let $\Pi^{(n)} = (A^{(N)} \odot \cdots \odot A^{(n+1)} \odot A^{(n-1)} \odot \ldots A^{(1)})^T$
6 for $i = 1, ..., I_n$ do
7 lend
8 end
9 end
10 $\lambda = e^T B^{(n)}$ where $B^{(n)} = [b_1^{(n)} \dots b_{I_n}^{(n)}]^T$
10 $A^{(n)} \leftarrow B^{(n)} \Lambda^{-1}$, where $\Lambda = \text{diag}(\lambda)$
11 lend
12 until all mode subproblems converged;

PARALLEL CP-APR ALGORITHMS

Parallelizing CP-APR

- Focus on on-node parallelism for multiple architectures
 - Multiple choices for programming
 - OpenMP, OpenACC, CUDA, Pthread ...
 - Manage different low-level hardware features (cache, device memory, NUMA...)
 - Our Solution: Use Kokkos for productivity and performance portability
 - Abstraction of parallel loops
 - Abstraction Data layout (row-major, column major, programmable memory)
 - Same code to support multiple architectures

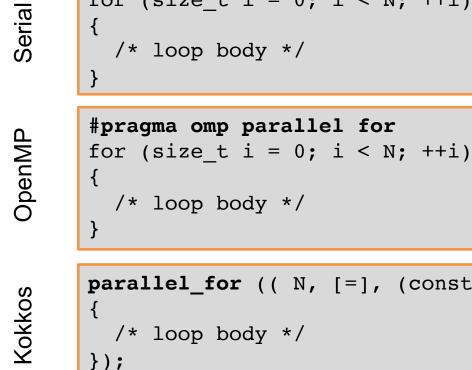


What is Kokkos?

Templated C++ Library by Sandia National Labs (Edwards, et al)

- Serve as substrate layer of sparse matrix and vector kernels
- Support any machine precisions
 - Float
 - Double
 - Quad and Half float if needed.
- Kokkos::View() accommodates performance-aware multidimensional array data objects
 - Light-weight C++ class to
- Parallelizing loops using C++ language standard
 - Lambda
 - Functors
- Extensive support of atomics

Parallel Programing with Kokkos



```
for (size t i = 0; i < N; ++i)
  /* loop body */
```

```
parallel_for (( N, [=], (const size t i)
  /* loop body */
```

- Provide parallel loop operations using C++ language features
- Conceptually, the usage is no more difficult than OpenMP. The annotations just go in different places.

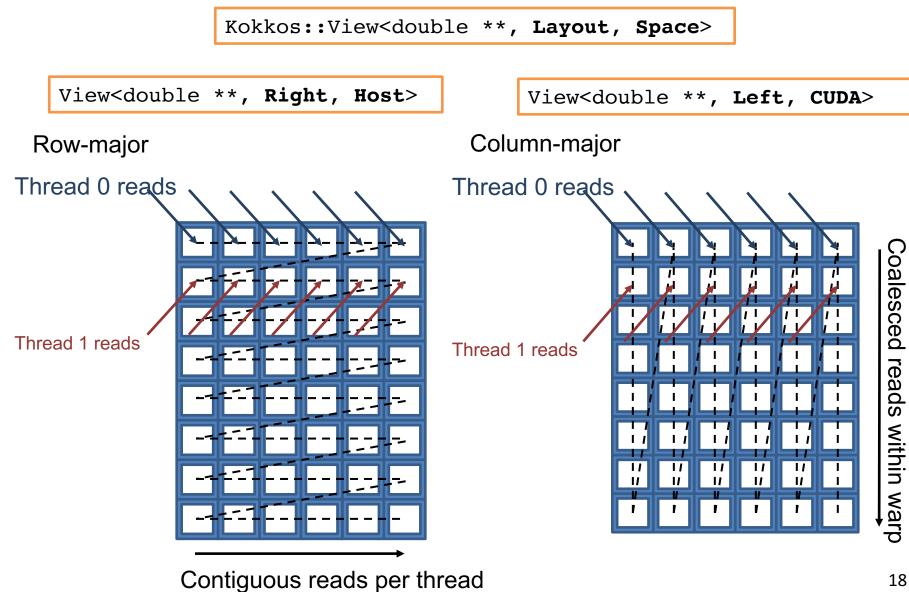
Why Kokkos?

- Comply C++ language standard!
- Support multiple back-ends
 - Pthread, OpenMP, CUDA, Intel TBB and Qthread
- Support multiple data layout options
 - Column vs Row Major
 - Device/CPU memory
- Support different parallelism
 - Nesting support
 - Vector, threads, Warp, etc.
 - Task parallelism (under development)

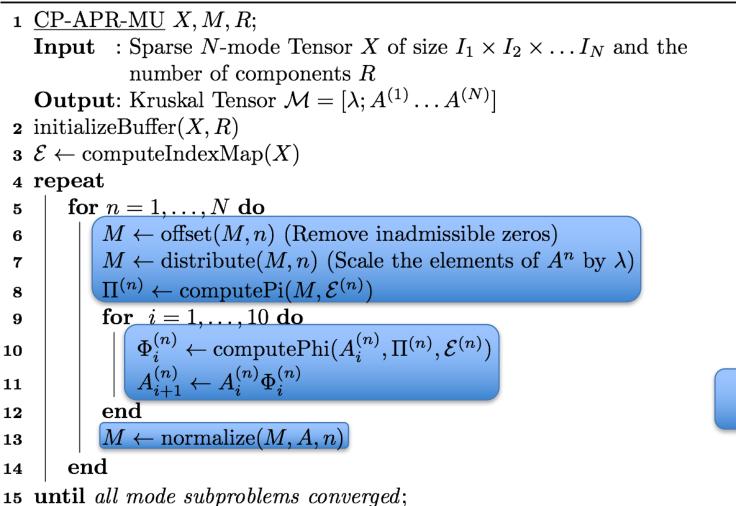
Array Access by Kokkos



Array Access by Kokkos

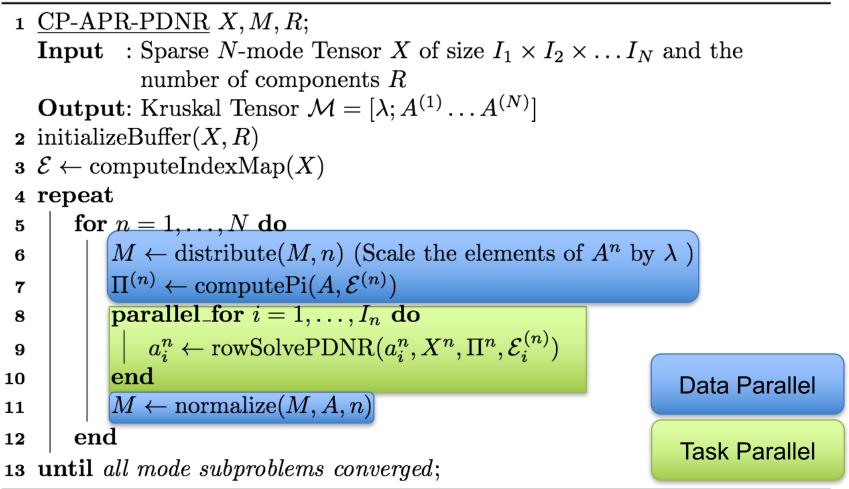


Parallel CP-APR-MU



Data Parallel

Parallel CP-APR-PDNR



Notes on Data Structure

- Use Kokkos::View
- Sparse Tensor
 - Similar to the Coordinate (COO) Format in Sparse Matrix representation
- Kruskal Tensor & Khatri Rao Product
 - Provides options for row or column major
 - Kokkos::View provides an option to define the leading dimension.
 - Determined during compile or run time
- Avoid Atomics
 - Expensive in CPUs and Manycore
 - Use extra indexing data structure
- CP-APR-PDNR
 - Creates a pool of tasks
 - A dedicated buffer space (Kokkos::View) is assigned to individual task

PERFORMANCE

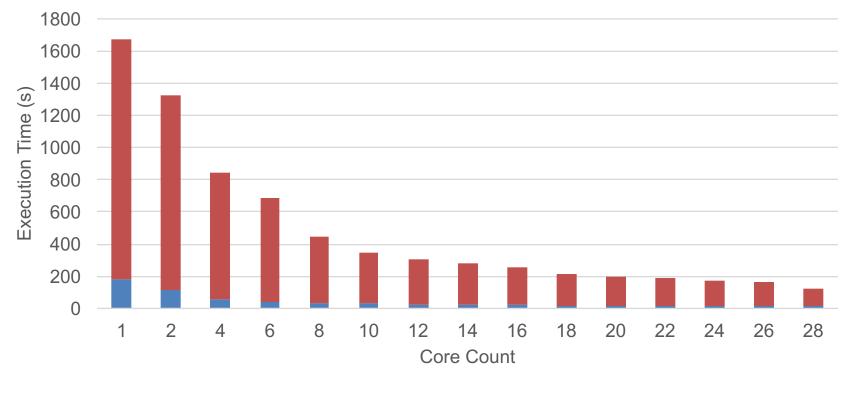
Performance Test

- Strong Scalability
 - Problem size is fixed
- Random Tensor
 - 3K x 4K x 5K, 10M nonzero entries
 - 100 outer iterations
- Realistic Problems
 - Count Data (Non-negative)
 - Available at <u>http://frostt.io/</u>
 - 10 outer iterations
- Double Precision

Data	Dimensions	Nonzeros	Rank	
LBNL	2K x 4K x 2K x 4K x 866K	1.7M	10	
NELL-2	12K x 9K x 29K	77M	10	
NELL-1	3M x 2M x 25M	144M	10	
Delicious	500K x 17M x 3M x 1K	140M	10	

CPAPR-MU on CPU (Random)

CP-APR-MU method, 100 outer-iterations, (3000 x 4000 x 5000, 10M nonzero entries), R=10, PC cluster, 2 Haswell (14 core) CPUs per node, MKL-11.3.3, HyperThreading disabled



Pi Phi+ Update

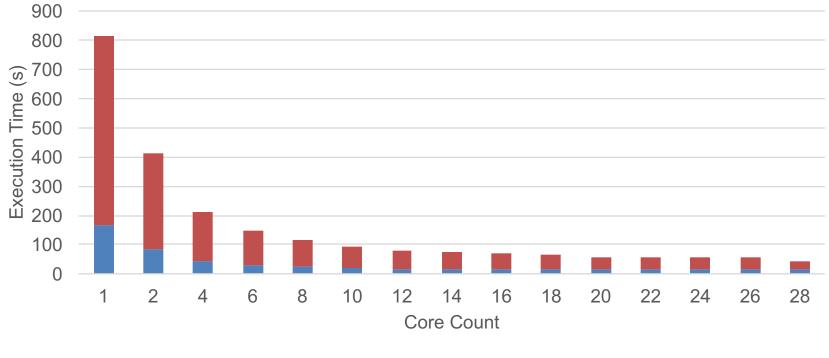
Results: CPAPR-MU Scalability

Data	Haswell CPU 1-core		2 Haswell CPUs 14-cores		2 Haswell CPUs 28-cores		KNL 68-core CPU		NVIDIA P100 GPU	
	Time(s)	Speedup	Time(s)	Speedup	Time(s)	Speedup	Time(s)	Speedup	Time(s)	Speedup
Random	1715*	1	279	6.14	165	10.39	20	85.74	10	171.5
LBNL	131	1	32	4.09	32	4.09	103	1.27		
NELL-2	1226	1	159	7.77	92	13.32	873	1.40		
NELL-1	5410	1	569	9.51	349	15.50	1690	3.20		
Delicious	5761	1	2542	2.26	2524	2.28				

100 outer iterations for the random problem 10 outer iterations for realistic problems * Pre-Kokkos C++ code on 2 Haswell CPUs: 1-core, 2136 sec 14-cores, 762 sec 28-cores, 538 sec

CPAPR-PDNR on CPU(Random)

CPAPR-PDNR method, 100 outer-iterations, 1831221 inner iterations total, (3000 x 4000 x 5000, 10M nonzero entries), R=10, PC cluster, 2 Haswell (14 core) CPUs per node, MKL-11.3.3, HyperThreading disabled



■Pi ■RowSub

Results: CPAPR-PDNR Scalability

Data	Haswell CPU 1 core		2 Haswell CPUs 14 cores		2 Haswell CPUs 28 cores	
	Time(s)	Speedup	Time(s)	Speedup	Time(s)	Speedup
Random	817*	1	73	11.19	44	18.58
LBNL	441	1	187	2.35	191	2.30
NELL-2	2162	1	326	6.63	319	6.77
NELL-1	17212	1	4241	4.05	3974	4.33
Delicious	18992	1	3684	5.15	3138	6.05

100 outer iterations for the random problem

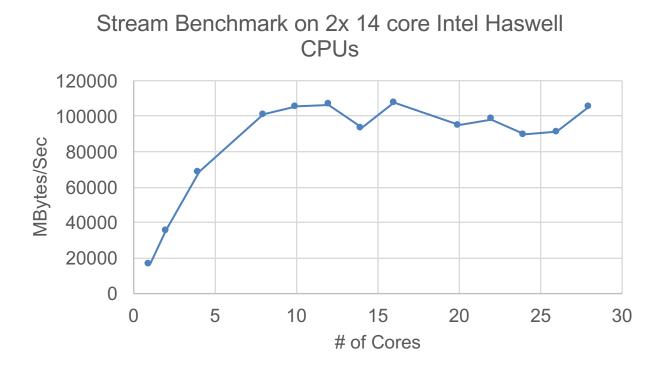
10 outer iterations for realistic problems

* Pre-Kokkos C++ code spends 3270 sec on 1 core

Performance Issues

- Our implementation exhibits very good scalability with the random tensor.
 - Similar mode sizes
 - Regular distribution of nonzero entries
 - Some cache effects
 - Kokkos is NUMA-aware for contiguous memory access (first-touch)
- Some scalability issues with the realistic tensor problems.
 - Irregular nonzero distribution and disparity in mode sizes
 - Task-parallel code may have some memory locality issues to access sparse tensor, Kruskal Tensor, and Khatori-Rao product
 - Preprocessing could improve the locality
 - Explicit Data partitioning (Smith and Karypis)
 - Possible to implement using Kokkos

Memory Bandwidth (Stream Benchmark



- All cores deliver approximately 8x performance improvement from single thread
- Hard to scale using all cores with memory-bound code.

Conclusion

- Development of Portable on-node Parallel CP-APR Solvers
 - Data parallelism for MU method
 - Mixed Data/Task parallelism for PDNR method
 - Multiple Architecture Support using Kokkos
- Scalable Performance for random sparse tensor
- Future Work
 - Projected Quasi-Newton for Row-subproblems (PQNR)
 - GPU and Manycore support for PDNR and PQNR
 - Performance tuning to handle irregular nonzero distributions and disparity in mode sizes