

Model-Driven Sparse CP Decomposition for Higher-Order Tensors

Jiajia Li¹, Jee Choi², Ioakeim Perros¹, Jimeng Sun¹, Richard Vuduc¹

 1 Computational Science & Engineering, Georgia Institute of Technology, GA, USA 2 IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

SIAM AN'17, July 12nd 2017

The problem

A 4th-Matriced Tensor Times Khatri-Rao Product (MTTKRP) sequence from a tensor decomposition.

The problem

A 4th-MTTKRP sequence from a tensor decomposition.

The problem

A 4th-MTTKRP sequence from a tensor decomposition.

The Problem

The problem

A 4th-MTTKRP sequence from a tensor decomposition.

The Problem

The problem

Outline

- Background
- Motivation
- Properties and Formats of Sparse Tensors
- Adaptive Tensor Memoization (ADATM)
- Experiments
- Conclusion

Background

Tensors

- Tensors, multi-way arrays, provide a natural way to represent multidimensional data.
 - Special cases: matrices (U) 2D tensors, vectors (x) - 1D tensors.
 - Tensor mode (*N*): also called dimension or order.
- A sparse tensor, a tensor consisting mostly of zero entries, widely exist in real applications.
- Tensor analysis is usually factorizing a tensor into interpretable components.
 - $\bullet~$ E.g. CP decomposition, where $\rm MTTKRP$ is a critical computational kernel.

A 3D CP decomposition on a sparse tensor from healthcare data.

Basic Tensor Operations

J. Li et.al. (CSE, GaTech)

Matriced Tensor Times Khatri-Rao Product (MTTKRP)

• Matriced Tensor Times Khatri-Rao Product (MTTKRP)

CP Decomposition

Input: An N^{th} -order sparse tensor $\mathbf{X} \in \mathbb{R}^{I \times \cdots \times I}$ and an integer rank \mathbb{R} : **Output:** Dense factors $\mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)}, \mathbf{A}^{(i)} \in \mathbb{R}^{I \times R}$ and weights λ : 1: Initialize $\mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)}$; 2: **do** 3: for $n = 1, \ldots, N$ do $\mathbf{V} \leftarrow \mathbf{A}^{(1)\dagger} \mathbf{A}^{(1)} \mathbf{*} \dots \mathbf{A}^{(n-1)\dagger} \mathbf{A}^{(n-1)} \mathbf{*}$ 4 $\mathbf{\Delta}^{(n+1)\dagger}\mathbf{\Delta}^{(n+1)} \ast \ldots \ast \mathbf{\Delta}^{(N)\dagger}\mathbf{\Delta}^{(N)}.$ $\tilde{\mathbf{A}}^{(n)} \leftarrow \mathbf{X}_{(n)}(\mathbf{A}^{(N)} \odot \cdots \odot \mathbf{A}^{(n+1)} \odot \mathbf{A}^{(n-1)} \odot \cdots \odot \mathbf{A}^{(1)}):$ 5: $\mathbf{\Delta}^{(n)} \leftarrow \widetilde{\mathbf{\Delta}}^{(n)} \mathbf{V}^{\dagger}$. 6. 7: Normalize columns of $A^{(n)}$ and store the norms as λ ; 8. end for 9: while Fit ceases to improve or maximum iterations exhausted. 10: Return: $[\lambda, A^{(1)}, \dots, A^{(N)}]$:

MTTKRP is the performance bottleneck.

 $T_{CP} \approx N(N^{\epsilon}mR + NIR^2) \approx NT_M,$ $IR \ll m,$ where $T_M = \mathcal{O}(N^{\epsilon}mR), \epsilon \in (0, 1]$ is the time for a single MTTKRP. Motivation

Motivation

$$\tilde{\mathbf{A}} \leftarrow \mathbf{X}_{(1)} \left(\mathbf{D} \odot \mathbf{C} \odot \mathbf{B} \right) \Leftrightarrow \begin{cases} \underline{\mathbf{Y}}^{(1)} = \underline{\mathbf{X}} \times_{4} \mathbf{D}; \\ \underline{\mathbf{Y}}^{(2)} = \underline{\mathbf{Y}}^{(1)} \diamond_{3} \mathbf{C}; \\ \tilde{\mathbf{A}} = \underline{\mathbf{Y}}^{(2)} \diamond_{2} \mathbf{B}; \end{cases}$$

$$\tilde{\mathbf{B}} \leftarrow \mathbf{X}_{(2)} \left(\mathbf{D} \odot \mathbf{C} \odot \tilde{\mathbf{A}} \right) \Leftrightarrow \begin{cases} \underline{\mathbf{Y}}^{(1)} = \underline{\mathbf{X}} \times_{4} \mathbf{D}; \\ \underline{\mathbf{Y}}^{(2)} = \underline{\mathbf{Y}}^{(1)} \diamond_{3} \mathbf{C}; \\ \tilde{\mathbf{B}} = \underline{\mathbf{Y}}^{(2)} \diamond_{1} \tilde{\mathbf{A}}; \end{cases}$$

An Mttkrp sequence has arithmetic redundancy.

Motivation

Motivation

$$\begin{split} \tilde{\mathbf{A}} &\leftarrow \mathbf{X}_{(1)} \left(\mathbf{D} \odot \mathbf{C} \odot \mathbf{B} \right) \Leftrightarrow \begin{cases} & \underline{\mathbf{Y}}^{(2)} = \underline{\mathbf{X}} \times_4 \mathbf{D}; \\ & \underline{\mathbf{Y}}^{(2)} = \underline{\mathbf{Y}}^{(1)} \diamond_3 \mathbf{C}; \\ & \tilde{\mathbf{A}} = \underline{\mathbf{Y}}^{(2)} \diamond_2 \mathbf{B}; \end{cases} \\ \tilde{\mathbf{B}} &\leftarrow \mathbf{X}_{(2)} \left(\mathbf{D} \odot \mathbf{C} \odot \tilde{\mathbf{A}} \right) \Leftrightarrow \begin{cases} & \underline{\mathbf{Y}}^{(1)} = \underline{\mathbf{X}} \times_4 \mathbf{D}; \\ & \underline{\mathbf{Y}}^{(2)} = \underline{\mathbf{Y}}^{(1)} \diamond_3 \mathbf{C}; \\ & \tilde{\mathbf{B}} = \underline{\mathbf{Y}}^{(2)} \diamond_1 \tilde{\mathbf{A}}; \end{cases} \end{split}$$

(- (1))

An Mttkrp sequence has arithmetic redundancy.

The time of an $\ensuremath{\mathrm{MTTKRP}}$ sequence grows with tensor order.

Special properties of Sparse $\mathrm{T}\mathrm{T}\mathrm{M}$ and q- $\mathrm{T}\mathrm{T}\mathrm{M}$

$\text{Sparse } \mathrm{T}\mathrm{T}\mathrm{M}$

Sparse $T{\rm\scriptscriptstyle TM}$ outputs a semi-sparse tensor:

- Its product mode becomes dense;
- Its index modes are unchanged.

Special properties of Sparse $\mathrm{T}\mathrm{T}\mathrm{M}$ and q- $\mathrm{T}\mathrm{T}\mathrm{M}$

$\text{Sparse } \mathrm{T}\mathrm{T}\mathrm{M}$

Sparse $\ensuremath{\mathrm{TTM}}$ outputs a semi-sparse tensor:

- Its product mode becomes dense;
- Its index modes are unchanged.

Sparse q- $\mathrm{T}\mathrm{T}\mathrm{M}$

The q- ${\rm TTM}$ of a semi-sparse tensor and a dense matrix yields another semi-sparse tensor:

- Its index modes are unchanged;
- Its product mode disappears.

Tensor Formats

vCSF

- The dashed indices are not actually stored, but reuse the indices in CSF tree [Smith et al].
- vCSF is associated with CSF format.

Memoized Intermediate Tensors:

Scheme B

Another scheme to save flops but minimize the amount of storage.

Schemes Comparison

Adaptive Tensor Memoization (ADATM)

- ADATM has an analytical performance model, which estimates both the time and storage, given some choice of intermediate tensors.
- \bullet User tells AdaTM how much extra storage is allowed, and $\rm ADATM$ selects the memoization strategy that approximately minimizes the time predicted by the model.
- For details, check the full paper:
 - "Model-Driven Sparse CP Decomposition for Higher-Order Tensors, 31st IEEE International Parallel & Distributed Processing Symposium (IPDPS17)"

The model-driven framework

Platforms and Datasets

Experimental Plat	forms Configu	uration	Sparse ten	sors			
	Intel	Intel	Dataset	Order	Ma× Mode size	NNZ	Density
Parameters	Core i7-4770K	Xeon E7-4820	nell2	3	30K	77M	1.3e-05
Microarchitecture	Haswell	Westmere	nell1	3	25M	144M	3.1e-13
Frequency	3.5 GHz	2.0 GHz	deli	3	17M	140M	6.1e-12
#Physical cores	4	16	ehr36	36	19	11K	4.7e-26
Memory size	32 GiB	512 GB	ehr71	71	21	221K	1.4e-55
Memory bandwidth	$25.6\mathrm{GB/s}$	34.2 GB/s	ehr85	85	21	920K	7.9e-68
Compiler	gcc 4.7.3	gcc 4.4.7					

Tensor source:

- Never Ending Language Learning (NELL) project, "nell1, nell2 with noun-verb-noun".
- Data crawled from tagging systems, "deli with user-item-tag".
- Electronic Health Records (EHR) by considering a specific group of similar diseases as one mode and the co-occurrence counts of different diagnoses as values to build the higher-order tensors.

Performance

Splatt [Smith et al.] Multi-threaded, using CSF format. Tensor Toolbox [Bader and Kolda] Sequential, using COO format.

nell2 nell1

1000

deli ehr36 ehr71 ehr85

Sparse Tensors

Storage

	Stora	Storage Space (MBytes)			Ratios		
Dataset	COO	CSF	CSF+vCSF	/CSF	/COO		
nell2	2290	2540	2581	102%	113%		
nell1	4280	6430	8510	132%	199%		
deli	4180	5570	11090	199%	265%		
ehr36	3.04	1.94	7.97	411%	262%		
ehr71	121	62	205	333%	169%		
ehr85	604	200	470	236%	78%		

Storage range:

- /CSF: 1-4×;
- /COO: 0.8-2.7×

Scalability

Comparable multi-threading Scalability

Better scalability in dimensionality.

Model Analysis

CPD Application

The speedup of AdaTM over Splatt on CP-ALS.

Conclusion

Summary

- \bullet We consider the ${\rm Mttkrp}$ sequence as it arises in the context of CPD.
- We identify a memoization technique that permits a gradual tradeoff of storage for time.
- We parameterize our algorithm and build a model-driven and user-guided framework for it.

Future

- Apply our adaptive tensor memoization algorithm to other tensor decompositions;
- We also believe a closer inspection of not just the arithmetic but also communication properties of our method coupled with more architecture-specific tuning are ripe opportunities.

Source code: https://github.com/hpcgarage/AdaTM.

References

References

- B. W. Bader and T. G. Kolda. Efficient MATLAB computations with sparse and factored tensors, SIAM Journal on Scientific Computing 30(1):205-231, December 2007.
- S. Smith, N. Ravindran, N. Sidiropoulos, and G. Karypis, "Splatt: Efficient and parallel sparse tensor-matrix multiplication," IPDPS, 2015.
- O. Kaya and B. Ucar, "Scalable sparse tensor decompositions in distributed memory systems," SC'15. New York, NY, USA: ACM, 2015, pp. 77:1–77:11.
- O. Kaya and B. Uar, "High performance parallel algorithms for the tucker decomposition of sparse tensors," ICPP, Aug 2016, pp. 103–112.
- J. H. Choi and S. Vishwanathan, "Dfacto: Distributed factorization of tensors," NIPS, 2014, pp. 1296–1304.
- M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, "Efficient and scalable computations with sparse tensors," HPEC, Sept 2012, pp. 1–6.
- ... and so on

Backup Slides

Two example 4-D tensor memoization algorithms

Comparison:

Storage: $\underline{\mathbf{Y}}^{(1)} + \underline{\mathbf{Y}}^{(2)}$ vs $\underline{\mathbf{Y}}^{(2)} + \underline{\mathbf{Z}}^{(2)}$ + permuted $\underline{\mathbf{X}}$. – Depend on the input sparse tensor. #Products: 9 vs 8.

Performance Analysis of an MTTKRP sequence

Problem: Find the number of memoized MTTKRPS n_p^* that minimizes the total number of products (TTM and q-TTM) n_O in an Nth-order MTTKRP sequence, given infinite storage space.

Suppose the input tensor $\underline{X} \in \mathbb{R}^{I \times \cdots \times I}$ is hypercubical and dense,

Lemma

 $n_p^* = \sqrt{N/2}$ minimizes the number of products n_O for an N^{th} -order MTTKRP sequence.

$$\begin{cases} n_p = 1, & n_O = N(N+1)/2 = \mathcal{O}(N^2) \\ n_p = N/2, & n_O = N^2/2 = \mathcal{O}(N^2) \\ n_p = n_p^*, & n_O = n_O^* = \mathcal{O}(N^{1.5}) \end{cases}$$

which is asymptotically better for higher-order tensors.

The model-driven framework

- $\mathbf{n}_{\mathbf{p}}$: The number of producer modes, with one per memoized MTTKRP. Its range is $n_{p} \in \{1, \dots, \sqrt{N/2}\}.$
- $\bullet~m_o\colon$ The order of modes of each sparse tensor.
- n_i : The number of intermediate semi-sparse tensors saved from each memoized MTTKRP. Its range is $\{1, \ldots, N/n_p 1\}$.
- $s = s(n_p, m_o, n_i)$: predicated total storage.
- $t = t(n_p, m_o, n_i)$: predicated total execution time. J. Li et.al. (CSE, GaTech)

References

Predictive model

$$t = 2\sum_{i=1}^{n_p} \left(\sum_{l=2}^{N} m_l R + \sum_{l=1}^{\frac{N}{n_p}-1} \sum_{j=2}^{l+1} m_j \right) R \triangleq 2\tilde{N}mR; \quad s = \sum_{i=1}^{n_p} \left(m_{CSF}^i + 8\sum_{l=\frac{N}{n_p}-n_i+1}^{\frac{N}{n_p}} m_l R \right)$$

Algorithms		#Flops	Tensor Storage Space (Bytes)		
Product	Ттм q-Ттм	2mR 2mR	m _{CSF} 8m		
One MTTKRP group	Memoized MTTKRP	$2\sum_{l=2}^{N}m_{l}R$	$m_{CSF} + 8 \sum_{l=\frac{N}{n_p} - n_i + 1}^{\frac{N}{n_p}} m_l R$		
	Partial MTTKRPS	$2\sum_{l=1}^{\frac{n}{p}-1}\sum_{j=2}^{l+1}m_jR$	-		
MTTKRP sequence	AdaTM Splatt	$2\sum_{i=1}^{n_{p}} \left(\sum_{l=2}^{N} m_{l}R + \sum_{l=1}^{\frac{N}{n_{p}}-1} \sum_{j=2}^{l+1} m_{j} \right) R$ $2NmR$	$\left \sum_{i=1}^{n_p} \left(m_{CSF}^i + 8 \sum_{l=\frac{N}{n_p}-n_i+1}^{\frac{N}{n_p}} m_l R \right) \right. \\ \left. m_{CSF}^i \right $		
		**	— N		

Indices and values use "uint64-t" and "double" respectively. m_l is the number of fibers at the l^{th} -level of a CSF tree, $m_{CSF} = 16 \sum_{l=1}^{N} m_l$.

J. Li et.al. (CSE, GaTech)

.