
Parallel Tensor Train Rounding
using Gram SVD

Hussam Al Daas1, Grey Ballard2, and Lawton Manning2

1 Rutherford Appleton Laboratories
2 Wake Forest University

SIAM Parallel Processing
February 26, 2022



Tensor Train (TT) can make very high dimensional
problems tractable

Ω

D1 D2 D3

D4 D5 D6

D7 D8 D9

Consider the parameter-dependent PDE:

−div(σ(x , y ;ρ)∇(u(x , y ;ρ))) = f (x , y) in Ω,

u(x , y ;ρ) = 0 on ∂Ω,

where σ is defined as:

σ(x , y ;ρ) =

{
1 + ρi if (x , y) ∈ Di

1 elsewhere

known as cookies problem [Tob12]

Solving for all parameter values simultaneously, u is 11-D
With mild assumptions, solution u has low TT ranks
TT-based iterative linear solver exploits low-rank structure

can solve problem for high resolution [Dol13]

Ballard 1



Tensor Train (TT) Notation

i

j

k

l
m

I1

R1

TX,1

I2

R1
R2

TX,2

I3

R2
R3

TX,3

I4

R3
R4

TX,4

I5

R4

TX,5

X ≈ {TX,n},X ∈ RI1×I2×I3×I4×I5 TX,n ∈ RRn−1×In×Rn

are TT cores

xijklm ≈
R1∑
α=1

R2∑
β=1

R3∑
γ=1

R4∑
δ=1

TX,1(i, α)TX,2(α, j, β)TX,3(β, k , γ)TX,4(γ, l, δ)TX,5(δ,m)

Ballard 2



TT-Rounding

Given a tensor in TT format, often need to compress the ranks
algebraic operations on TT formats over-extend ranks
recompression (rank truncation) subject to error threshold

or subject to target ranks

analogous to floating point rounding

Goal: compute truncated SVDs of matricized TT-format tensors
TT-ranks are ranks of unfoldings X(1:n) for 1 ≤ n ≤ N
if X is I1 × I2 × · · · × IN , then X(1:n) is (I1 · · · In)× (In+1 · · · IN)

X(1:n) is generally a huge matrix, but it is highly structured

Ballard 3



TT-Rounding

Given a tensor in TT format, often need to compress the ranks
algebraic operations on TT formats over-extend ranks
recompression (rank truncation) subject to error threshold

or subject to target ranks

analogous to floating point rounding

Goal: compute truncated SVDs of matricized TT-format tensors
TT-ranks are ranks of unfoldings X(1:n) for 1 ≤ n ≤ N
if X is I1 × I2 × · · · × IN , then X(1:n) is (I1 · · · In)× (In+1 · · · IN)

X(1:n) is generally a huge matrix, but it is highly structured

Ballard 3



2D TT-Rounding (Matrix Case)

Low-rank matrix addition example
consider A1BT

1 + A2BT
2 , where each factor has r columns

can represent this in low-rank format
[
A1 A2

] [
B1 B2

]T
which now has rank 2r
goal is to compute low-rank approximation with rank k < 2r

A1

r

BT
1 + A2

r

BT
2 = A

2r

BT

Ballard 4



Matrix Rounding via QR Decompositions

QR-based algorithm for rounding rank-r matrix X = ABT :
function [U,V] = QR-ROUNDING(A,B, k )

[QA,RA] = QR(A) . (tall-skinny) QR decomposition
[QB,RB] = QR(B) . (tall-skinny) QR decomposition
[ÛR, Σ̂R, V̂R] = TSVD(RART

B , k) . k th truncated SVD
U = QAÛR
V = QB(V̂RΣ̂R) . ABT ≈ UVT

Here’s the algebra:

ABT = QARA︸ ︷︷ ︸
A

RT
BQT

B︸ ︷︷ ︸
BT

≈ QA ÛRΣ̂RV̂
T
R︸ ︷︷ ︸

RART
B

QT
B = U︸︷︷︸

QAÛR

VT︸︷︷︸
Σ̂R V̂

T
RQT

B

Ballard 5



Matrix Rounding via Gram (1st attempt)

Gram SVD is a well-known method for computing singular
values of rectangular matrices

sing. values of X are square roots of eigenvalues of XTX
if X is tall and skinny then XTX is much smaller
sacrifices some accuracy of singular values and vectors

If X = ABT, then we can try direct application:
XTX = B(ATA)BT

XXT = A(BTB)AT

but we still have to orthogonalize one of the two factors in order
to compute the eigendecomposition

Ballard 6



Matrix Rounding via Gram SVD

Gram-based algorithm for rounding rank-r matrix X = ABT :
function [U,V] = GRAM-ROUNDING(A,B, k )

GA = ATA . symmetric matrix multiplication
GB = BTB . symmetric matrix multiplication
[VA,ΛA] = EIG(GA)
[VB,ΛB] = EIG(GB)
[Û, Σ̂, V̂] =TSVD(Λ1/2

A VT
AVBΛ

1/2
B , k ) . k th truncated SVD

U = A
(

VAΛ
−1/2
A Û

)
V = B

(
VBΛ

−1/2
B V̂Σ̂

)
. ABT ≈ UVT

Ballard 7



Matrix Rounding via Gram SVD (continued)

Here’s the algebra:

ABT = UAΣAVT
A︸ ︷︷ ︸

A

VBΣBUT
B︸ ︷︷ ︸

BT

= AVAΛ
−1/2
A Λ

1/2
A VT

A︸ ︷︷ ︸
A

VBΛ
1/2
B Λ

−1/2
B VT

BBT︸ ︷︷ ︸
BT

= (AVAΛ
−1/2
A︸ ︷︷ ︸

UA

) Λ
1/2
A VT

AVBΛ
1/2
B︸ ︷︷ ︸

M

(BVBΛ
−1/2
B︸ ︷︷ ︸

UB

)T

≈ (AVAΛ
−1/2
A︸ ︷︷ ︸

UA

)ÛΣ̂V̂
T

(BVBΛ
−1/2
B︸ ︷︷ ︸

UB

)T

= A(VAΛ
−1/2
A Û)︸ ︷︷ ︸

U

(Σ̂V̂
T
Λ

−1/2
B VT

B)BT︸ ︷︷ ︸
VT

Ballard 8



QR-Rounding vs Gram-Rounding

Gram-Rounding is at least twice as fast as QR-Rounding
Gram-Rounding does half the flops of QR-Rounding
Gram-Rounding dominated by matrix multiplication
QR-Rounding dominated by computing QR and applying Q

QR-Rounding is more accurate than Gram-Rounding
QR-Rounding computes singular values as small as σ1 · ε
Gram-Rounding computes singular values only to σ1 · ε1/2

Ballard 9



Tensor Train (TT) Notation

i

j

k

l
m

I1

R1

TX,1

I2

R1
R2

TX,2

I3

R2
R3

TX,3

I4

R3
R4

TX,4

I5

R4

TX,5

X ≈ {TX,n},X ∈ RI1×I2×I3×I4×I5 TX,n ∈ RRn−1×In×Rn

are TT cores

xijklm ≈
R1∑
α=1

R2∑
β=1

R3∑
γ=1

R4∑
δ=1

TX,1(i, α)TX,2(α, j, β)TX,3(β, k , γ)TX,4(γ, l, δ)TX,5(δ,m)

Ballard 10



Important core unfoldings

H(TX,n) ∈ RRn−1×InRn and V(TX,n) ∈ RRn−1In×Rn

are horizontal and vertical unfoldings of nth core

In

Rn−1
Rn

TX,n

Rn

Rn−1 · · ·
Rn

· · ·
Rn

In

H(TX,n)

Rn

Rn−1

...

Rn−1

...

Rn−1

In

V(TX,n)

Ballard 11



QR-Based TT Rounding Algorithm [Ose11]

function {TZ,n} = TT-ROUNDING({TX,n})
. Orthogonalization Phase
for n = N down to 2 do

[Yn,Rn] = QR(H(TX,n)T ) . (tall-skinny) QR factorization
V(TX,n−1) = V(TX,n−1) · RT . Apply R to previous core

. Truncation Phase
Z = X

for n = 1 to N − 1 do
[Yn,Rn] = QR(V(TZ,n)) . (tall-skinny) QR factorization
[ÛR , Σ̂, V̂] ≈ TSVD(Rn) . Truncated SVD of R
V(TZ,n) = APPLY-Q(Yn, ÛR) . Form explicit Û
H(TZ,n+1)T = APPLY-Q(Yn+1, V̂Σ̂) . Apply Σ̂V̂

T
to next core

We have parallelized this QR-based algorithm [DBB22] using
the parallel TSQR algorithm [DGHL12]

Ballard 12



More details on TT-Rounding...

TT-Rounding does truncated SVDs on X(1), X(1:2), X(1:3), etc.,
and here is the matrix expression of each unfolding [DBB22]:

X(1:n) = (IIn ⊗Q(1:n−1)) · V(TX,n) · H(TX,n+1) · (IIn+1 ⊗ Z(1))
I 1
··

·I n
−

1

Rn−1

IIn ⊗Q(1:n−1)

I 1
··
·I

n

InRn−1

V(TX,n)

Rn

H(TX,n+1)

In+1Rn+1

In+2· · ·IN
Rn+1

IIn+1 ⊗ Z(1)

In+1 · · · IN

Ballard 13



Main Ideas of Gram-Based TT-Rounding

Same matrix expression of nth unfolding:

X(1:n) = (IIn ⊗Q(1:n−1)) · V(TX,n)︸ ︷︷ ︸
A

·H(TX,n+1) · (IIn+1 ⊗ Z(1))︸ ︷︷ ︸
BT

just like matrix case, we need to compute ATA and BTB
two key differences:

A and B are both highly structured
we need Gram matrices for all 1 ≤ n ≤ N

we obtain efficiency by exploiting structure and by
exploiting the computational overlap across modes

Ballard 14



Tensor Network Diagram for TT

X(1:n) = (IIn ⊗Q(1:n−1)) · V(TX,n)︸ ︷︷ ︸
A

·H(TX,n+1) · (IIn+1 ⊗ Z(1))︸ ︷︷ ︸
BT

TX,1 TX,2 TX,3 TX,4 TX,5 TX,6
R1 R2 R3 R4 R5

I1 I2 I3 I4 I5 I6

A B
Q Z

X

Ballard 15



Tensor Network Diagram for Gram Matrix Computation

TX,1

TX,1

TX,2

TX,2

TX,3

TX,3

R1

R1

R2

R2

R3

R3

I1 I2 I3

A

A

GL
1

GL
2

GL
3

tensor network for GL
3 = ATA

TX,3

TX,3

R3

R3

I3GL
2

R2

R2

GL
3

TC,3

intermediate step,
computing GL

3 from GL
2

Ballard 16



Parallel Distribution

I1

R1

TX,1

I2

R1
R2

TX,2

I3

R2
R3

TX,3

I4

R3
R4

TX,4

I5

R4

TX,5

Each core distributed across all P processors
Local nth core dimensions are Rn−1 × In

P × Rn

Key: vertical and horizontal unfoldings are 1D-distributed

Ballard 17



Strong Scaling Results for Synthetic Tensors

We round synthetic tensors with input TT-ranks R = 20 (all modes)
down to R = 10, scaling up the number of processors

results on Andes (ORNL), with 2 16-core AMD EPYC procs per node

20 21 22 23 24 25 26 27
2−6

2−5

2−4

2−3

2−2

2−1

20

Cores

Ti
m

e
(s

)

QR
Gram

N=50, 2K× · · ·×2K (77 MB)

20 21 22 23 24 25 26 27 28 29 210211

2−6

2−3

20

23

26

Cores

Ti
m

e
(s

)

QR
Gram

N=16, 100M×50K×· · ·×50K×1M (8 GB)

Ballard 18



Weak Scaling Results for Synthetic Tensor

We round the 50-mode synthetic tensor with input TT-ranks R = 20
down to R = 10, scaling up processors with fixed local data

results on Andes (ORNL), with 2 16-core AMD EPYC procs per node

25 26 27 28 29 210 211
0

1

2

3

Cores

Ti
m

e
(s

)
QR
LRL

Dark signifies computation, light signifies communication

Ballard 19



Results for Cookies Problem

We solve the Cookies problem with Matlab implementation of
TT-GMRES [Dol13] and TT-Rounding (sequential)

we use 4 parameters (cookies) and vary spatial discretization

2855 11141 24981
0

100

200

300

400

Spatial Dimension

Ti
m

e
(s

)

QR
Gram

Dark signifies time in TT-Rounding

0 5 10 15 20

10−5

10−4

10−3

10−2

10−1

100

Iteration

R
el

.R
es

id
ua

lN
or

m
QR

Gram 0

20

40

60

80

100

M
ax

TT
R

ank
ofK

rylov
Vector

Gram has negligible effect on GMRES behavior

Ballard 20



Summary

TT format efficiently approximates high-dim. tensors
TT arithmetic causes rank growth, TT-Rounding is key
enables solving problems like parameter-dependent PDEs

TT-Rounding means truncated SVDs of unfoldings X(1:n)
QR-based approach most accurate but less efficient
Gram-based approach faster, can be accurate enough

Gram-based computation exploits TT structure
efficient contraction of tensor network
par. distribution allows for comm.-efficient matrix multiplies

Ballard 21



Thanks for your attention!

ballard@wfu.edu

MPI_ATTAC: Algorithms for Tensor Train Arithmetic and Computations
https://gitlab.com/aldaas/mpi_attac

Hussam Al Daas, Grey Ballard, and Lawton Manning.
Parallel Tensor Train Rounding using Gram SVD.

To appear in IPDPS 2022.

Hussam Al Daas, Grey Ballard, and Peter Benner.
Parallel Algorithms for Tensor Train Arithmetic.
SIAM Journal on Scientific Computing 2022.

https://dx.doi.org/10.1137/20M1387158

ballard@wfu.edu
https://gitlab.com/aldaas/mpi_attac
https://dx.doi.org/10.1137/20M1387158


More details on TT-Rounding...

TT-Rounding does SVDs on X(1), X(1:2), X(1:3), etc.,
so we seek similar matrix expressions of those unfoldings

The unfolding of X that maps the first n tensor dimensions to
rows can be expressed as a product of four matrices:

X(1:n) = (IIn ⊗Q(1:n−1)) · V(TX,n) · H(TX,n+1) · (IIn+1 ⊗ Z(1))

where Q is I1 × · · · × In−1 × Rn−1 with

Q(i1, . . . , in−1, rn−1) = TX,1(i1, :) · TX,2(:, i2, :) · · ·TX,n−1(:, in−1, rn−1),

and Z is Rn+1 × In+2 × · · · × IN with

Z(rn+1, in+2, . . . , iN) = TX,n+2(rn+1, in+2, :)·TX,n+3(:, in+3, :) · · ·TX,N(:, iN).

Ballard 22



Time Breakdown of Parallel QR-based TT-Rounding

320 640 1280 2560 5120
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of Cores

Fr
ac

tio
n

of
Ti

m
e

Other
SVD (comp)

MultR (comm)
MultR (comp)
AppQ (comm)
AppQ (comp)
TSQR (comm)
TSQR (comp)

TT tensor: In = 512K , Rn = 60→ 30, N = 50
70-80% of time spent in QR computations

Ballard 23



References I

Hussam Al Daas, Grey Ballard, and Peter Benner.
Parallel algorithms for tensor train arithmetic.
SIAM Journal on Scientific Computing, 44(1):C25–C53, 2022.

Jim Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou.
Communication-optimal parallel and sequential QR and LU
factorizations.
SIAM Journal on Scientific Computing, 34(1):A206–A239, 2012.

Sergey V. Dolgov.
TT-GMRES: solution to a linear system in the structured tensor
format.
Russian Journal of Numerical Analysis and Mathematical
Modelling, 28(2):149–172, 2013.

Ballard 24



References II

Ivan Oseledets.

Tensor-train decomposition.

SIAM Journal on Scientific Computing, 33(5):2295–2317, 2011.

Christine Tobler.

Low-rank Tensor Methods for Linear Systems and Eigenvalue
Problems.

PhD thesis, ETH Zurich, 2012.

Ballard 25


