
FIST-HOSVD:
Fused In-place Sequentially Truncated

Higher Order Singular Value Decomposition

SIAM PP
February 26, 2022

Benjamin Cobb∗, Hemanth Kolla›, Eric Phipps›, Ümit V. Çatalyürek∗

∗!"#$%&' ()*+&+,+" #- ."/0)#1#%2
›3')4&' 5'+&#)'1 6'7*

22

Tucker Decomposition

§ Tensor is a multi-dimensional array
§ Tucker decomposition compresses tensor

§ Smaller core tensor
§ Set of factor matrices corresponding to each dimension

33

Applications of Tucker Decomposition

§ Data Compression
§ TuckerMPI compressed over 6TB of simulation data into 167MB with 1e-2 relative error
§ Can reconstruct entire or part of dataset
§ Error tolerance related to truncation

§ Computer Vision
§ TensorFaces, Vasilescu et al.

§ Signal Porcessing
§ Lathauwer et al, Muti et al, and more

§ And many more…

§ Good at capturing latent multi-way relationships between variables
§ Lose information by just viewing as matrix

Figure courtesy of:

44

Computing Tucker via ST-HOSVD

§ Two computational bottlenecks
§ Tensor Times Matrix (TTM)
§ Gram

§ For tensor 𝑋 with dimensions 𝐼!×⋯×𝐼", let:
§ 𝐼!∗ = ∏#$%

& 𝐼#
§ 𝐼!' = ∏#$!(%

& 𝐼#
§ 𝐼!) = ∏#$%

!*% 𝐼#

§ mode-n TTM with 𝐽×𝐼# matrix: 𝑂(𝐽𝐼#∗)

§ Gram along mode-n: 𝑂 𝐼#𝐼#∗

§ Focusing on dense, single-node case

55

ST-HOSVD Limitations

§ In addition to original tensor, must allocate memory to store intermediate TTM results
§ In the worst case when there is little to no truncation, consumes 2x tensor size in memory

§ Memory is a limited resource
§ Often bottlenecked by tensor exceeding available memory

§ When tensor is larger than !
%

main memory (RAM), ST-HOSVD either:
§ Is unable to complete
§ Goes out-of-core à ST-HOSVD thrashes between RAM and Disk, potentially leading to

catastrophic performance degradation

§ We aim to alleviate this by computing the Tucker decomposition in-place
§ Overwrite the original tensor with core of Tucker decomposition
§ Memory Consumption: 𝑂(𝐼+,-. + ∏#$%

& 𝐼#) → 𝑂(𝐼+,-.)

66

Overview

§ Memory is a valuable, limited resource
§ Significantly decreased memory consumption of computing

dense Tucker
§ 𝑂(𝐼!"#$ +∏%&'

(𝐼%) → 𝑂(𝐼!"#$)
§ If the tensor can be held in memory then we can most likely

compute tucker
§ Maintain comparable or decrease runtime

77

Optimizations

§ Develop 3 novel optimizations to efficiently compute Tucker Decomposition in-place:
§ Kernel Fusion

§ Fuse TTM and Gram kernels together to improve memory locality
§ Tensor Tiling

§ Extend matrix tiling and cache blocking to fused kernel operation
§ In-place Transpose

§ Develop blocked in-place transpose algorithm based on cycle-following to
prepare cache blocks in-place

88

Kernel Fusion

§ Compute mode-(𝑛 + 1) Gram whilst computing mode-𝑛 TTM
§ Fuse TTM and Gram kernels together

§ Aim to keep everything in cache
§ Fusing kernels together is known to improve memory locality

§ Especially effective in GPU case à future work

99

Tensor Tiling

§ Pack columns into 𝐼+×𝐼+,-cache blocks
§ Write 𝐽×𝐼+,- TTM submatrix results in row-major order
§ Then logically transpose to 𝐼+,-×𝐽 column-major submatrices

§ No data movement required for logical transpose

§ Requires 𝐼+,- discontiguous memory accesses on 𝐼+ contiguous entries per block

§ Tensor layout evolves in memory over course of computation
§ Prepares tensor for subsequent iterations
§ Next dimension contiguous in memory

1010

In-place Transpose

§ Traditional Cycle-Following based In-place Transpose algorithm
§ Requires less element access than other in-place transpose algorithms
§ In practice suffers from poor memory locality due to almost pseudo-random element access

§ Developed blocked variant that improves memory locality, referred to as Interleaved In-Place Transpose (IIPT)

§ Plan to compare performance against existing in-place transpose algorithms in future work

1111

FIST-HOSVD

§ Interleaved In-place Transpose to prepare cache blocks

§ Copy cache blocks into auxiliary memory allocation
§ deinterleave cache blocks during copy

§ Perform fused multiplication on each cache block
§ Result overwrites corresponding section of tensor

§ Avoids allocating memory to hold intermediate TTM results

§ If the tensor can be held in memory with at least 𝑂(𝐼&'()) additional
elements worth of memory, then we can compute Tucker

1212

Experimental set-up
§ Each node has 28 cores and 256GB memory

§ Allocating more than this allocation either causes the program to terminate or the
node to crash

§ Three different datasets:
§ Randomly generated

§ Used to represent high-rank tensor
§ Each timeslice is: 64×64×64×64×64

§ Homogeneous Charge Compression Ignition (HCCI)
§ 4-th order tensor from a simulation of turbulent autoignition over a 2D spatial

domain
§ Each timeslice is: 672×672×33

§ Statistically Planar (SP)
§ 5-th order tensor from a simulation over a 3D spatial domain, 4-th mode is 11

solution variables at each grid point
§ Each timeslice is: 500×500×500×11

1313

Runtime Results

§ Fused implementations performs better along later dimensions due to cache blocking

§ Cache blocking incurs data movement overhead

§ Plan to add support for processing dimensions out of order in future work

§ Maintain comparable runtime

1414

Memory Consumption

§ FIST-HOSVD consumes significantly less memory than the other algorithms
§ 𝑂(𝐼&'() +∏*+!

" 𝐼*) → 𝑂(𝐼&'())

§ Compute memory consumption as: 𝑚𝑒𝑚𝑜𝑟𝑦 ℎ𝑖𝑔ℎ𝑤𝑎𝑡𝑒𝑟 𝑚𝑎𝑟𝑘 𝑜𝑓 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 − 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑟𝑖𝑔𝑛𝑎𝑙 𝑡𝑒𝑛𝑠𝑜𝑟

§ Allocated 1GB of auxiliary memory for FIST-HOSVD
§ Additional memory usage comes from Gram reduction

1515

Summary

§ Recap:
§ Memory Consumption: 𝑂(𝐼!"#$ + ∏%&'

(𝐼%) → 𝑂(𝐼!"#$)
§ Significantly decreased memory consumption of ST-HOSVD for dense Tucker
§ If tensor fits in memory, then FIST-HOSVD can most likely compute Tucker
§ Maintained comparable or decreased runtime

§ Future Work:
§ Add in support for processing dimensions in any order

§ Kernel fusion provides biggest performance improvements along later
dimensions

§ Compare IIPT algorithm to other in-place transpose algorithms
§ Complete GPU port

§ Everything implemented in Kokkos (portable framework)
§ Kernel fusion originally intended for GPU case
§ Device memory even more limited than host memory

1616

Thanks!

Questions?

1717

Backup Slides

1818

Runtime Tables

1919

Memory Consumption Tables

2020

How to compute Tucker

§ Several algorithms
§ HOOI, HOSVD, T-HOSVD, ST-HOSVD etc

§ Sequentially Truncated Higher Order Singular Value Decomposition
§ ST-HOSVD
§ Truncates tensor at each iteration to save on FLOPs
§ Arguably fastest and most common method to compute Tucker

2121

Helpful Notation
§ 𝑋 𝑖𝑠 𝑎 𝑡𝑒𝑛𝑠𝑜𝑟 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑁 𝑤𝑖𝑡ℎ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑠𝑖𝑧𝑒𝑠: 𝐼!× … 𝐼"

§ Assume starts stored in column major order

§ 𝑀𝑜𝑑𝑒 −
𝑛 𝑓𝑖𝑏𝑒𝑟𝑠: 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑡ℎ𝑒
𝑛#$ 𝑚𝑜𝑑𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑛𝑑 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠

§ 𝑀𝑜𝑑𝑒 − 𝑛 𝑚𝑎𝑡𝑟𝑖𝑐𝑖𝑧𝑎𝑡𝑖𝑜𝑛:𝑚𝑎𝑡𝑟𝑖𝑥 𝑤ℎ𝑜𝑠𝑒 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑟𝑒 𝑡ℎ𝑒
𝑚𝑜𝑑𝑒 − 𝑛 𝑡𝑒𝑛𝑠𝑜𝑟 𝑓𝑖𝑏𝑒𝑟𝑠 𝑜𝑓 𝑋, 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑋(&)

§ 𝑈𝑠𝑒𝑓𝑢𝑙 𝑣𝑎𝑙𝑢𝑒𝑠: 𝐼&(= ∏)*&+!
" 𝐼) , 𝐼&, = ∏)*!

&-! 𝐼)

2222

ST-HOSVD Bottlenecks

§ Two kernels: TTM and Gram
§ Tensor Times Matrix (TTM)

§ Can be viewed as batched matrix multiplication
§ Multiplies tensor along 𝑛,- dimension by 𝑅.×𝐼. matrix
§ Input tensor dimensions are: 𝐼'×…𝐼.…×𝐼(
§ Output tensor dimensions are: 𝐼'×…𝑅.…×𝐼(

§ Gram
§ Matricized tensor multiplied by its transpose
§ 𝐼)×(𝐼8 ∗ … 𝐼)98 ∗ 𝐼):8 …∗ 𝐼5) ∗ 𝐼)×(𝐼8 ∗ … 𝐼)98 ∗ 𝐼):8 …∗ 𝐼5).

§ Result is: symmetric 𝐼.×𝐼. matrix
§ Depending on size of 𝑅& relative to 𝐼&, require

asymptotically comparable amounts of work

2323

Benchmark results

§ 16×16×16×16×16×16×16
§ Dense, random tensor

§ Uses KokkosKernel’s SerialGemm
§ Run on IBM Power 9
§ Comparison of:

§ Unfused TTM + Gram
§ Fused
§ Fused+packed

2424

Another page of graphs

§ Later modes submatrices become very long
§ Start falling out of cache
§ Begin to require skinny matrix multiplications that many

GEMM kernels are not optimized for
§ Packed blocks maintain performance for later dimensions
§ Well worth the packing overhead

2525

Benchmark results (cont.)

§ 4 dense, random tensors
§ Error tolerance = 0

§ All use MKL

§ Run on Intel Xeon E5
§ 14 cores per socket
§ 2 sockets

§ Comparison of:
§ Proposed Fused+Packed
§ TuckerMPI
§ Matlab Tensor Toolbox

§ Fused+Packed scales better

2626

References

2727

References (Cont.)

