Parallel Randomized Algorithms for Tucker Decompositions

Rachel Minster, Zitong Li, Qiming Fang, Grey Ballard

Wake Forest University

2/26/22

Acknowledgements to NSF CCF 1942892 for funding
Motivation: Multidimensional data

Multidimensional data appears in many applications:

- Numerical simulations for PDE’s
- Facial recognition
- Hyperspectral imaging

Christophe, Duhamel, IEEE Transactions on Image Processing, 2009
Motivation: Multidimensional data

Multidimensional data appears in many applications:

- Numerical simulations for PDE’s
- Facial recognition
- Hyperspectral imaging

and is often large and difficult to store or compute with

Christophe, Duhamel, IEEE Transactions on Image Processing, 2009
Motivation: Multidimensional data

Multidimensional data appears in many applications:

- Numerical simulations for PDE’s
- Facial recognition
- Hyperspectral imaging

and is often large and difficult to store or compute with

Goal: efficiently obtain compressed representation of data

Method: use parallel, randomized algorithms for Tucker decompositions

- can obtain large compression ratios with high accuracy

Christophe, Duhamel, IEEE Transactions on Image Processing, 2009
Contributions

New parallel, randomized algorithms for computing the Tucker decomposition
- Uses a Kronecker product of random matrices to exploit structure
- Significantly reduces computational cost compared to deterministic and randomized counterparts

New parallel method of computing a multi tensor-times-matrix (multi-TTM) product, an “all-at-once” approach

Theoretical error bound for the algorithms
- Tail bound
Tensor-times-matrix (TTM) and Multi-TTM

Key tensor operations:

- **Tensor-times-matrix (TTM):** $\mathcal{X} \times_j U$
 - Tensor multiplied by a matrix in a single mode j
 - Computed as matrix multiplication: matrix times unfolded tensor

\[
\mathcal{X} \times_1 U \quad \rightarrow \quad U \quad \cdots \quad X_{(1)} \quad = \quad \cdots
\]
Key tensor operations:

- **Tensor-times-matrix (TTM):** $\mathcal{X} \times_j U$
 - Tensor multiplied by a matrix in a single mode j
 - Computed as matrix multiplication: matrix times unfolded tensor

- **Multi-TTM:** $\mathcal{X} \times_1 U_1 \times_2 U_2 \cdots \times_d U_d$ for d-mode tensor
 - Can be unfolded in j-th mode as
 $U_j X_{(j)} (U_d \otimes U_{d-1} \otimes \cdots \otimes U_{j+1} \otimes U_{j-1} \otimes \cdots \otimes U_1)^\top$
 - with \otimes the Kronecker product
Tucker Format

Approximates tensor \mathcal{X} as

$$\mathcal{X} \approx G \times_1 A_1 \times \cdots \times_d A_d$$

with $G \in \mathbb{R}^{r_1 \times \cdots \times r_d}$, $A_j \in \mathbb{R}^{n_j \times r_j}$

Popular algorithms: Higher Order SVD (HOSVD)\(^1\) and Sequentially Truncated Higher Order SVD (STHOSVD)\(^2\)

\(^1\)De Lathauwer, De Moor, Vandewalle, SIAM Journal on Matrix Analysis and Applications, 2000
\(^2\)Vannieuwenhoven, Vandebril, Meerbergen, SIAM Journal on Scientific Computing, 2012
Tucker Format

Approximates tensor \mathcal{X} as

$$\mathcal{X} \approx G \times_1 A_1 \times \cdots \times_d A_d$$

with $G \in \mathbb{R}^{r_1 \times \cdots \times r_d}$, $A_j \in \mathbb{R}^{n_j \times r_j}$

Popular algorithms: Higher Order SVD (HOSVD)1 and Sequentially Truncated Higher Order SVD (STHOSVD)2

General approach:

1. Unfold tensor along mode j
2. Compute rank-r_j SVD of mode unfolding
3. Factor matrix A_j formed from left singular vectors
4. Core (or partial core) formed via TTM’s

1De Lathauwer, De Moor, Vandewalle, SIAM Journal on Matrix Analysis and Applications, 2000

Tucker Format

General approach:
1. Unfold tensor along mode j
2. Compute rank-r_j SVD of mode unfolding
3. Factor matrix A_j formed from left singular vectors
4. Core (or partial core) formed via TTM’s

Our approach:
- Use a randomized algorithm\(^3\) to speed up SVD step
 - Use a Kronecker product of random matrices instead of single random matrix to exploit structure
- Implement in parallel
 - Use a new, faster parallel version of a key operation (multi-TTM) to significantly lower runtime

\(^3\)Ahmadi-Asl, Abukhovich, Asante-Menash, Chichocki, Phan, Tanaka, Oseledets, IEEE Access, 2021
Randomized Range Finder

For a matrix X, finds a matrix Q that estimates the range of X, or $X \approx QQ^\top X$

Inputs: matrix $X \in \mathbb{R}^{m \times n}$

- target rank $r \leq \text{rank } X$
- oversampling parameter p

Main Steps:

1. Draw $\Omega \in \mathbb{R}^{n \times (r+p)}$, a random matrix
2. Form product $Y = X\Omega$
3. Compute thin QR $Y = QR$

Halko, Martinsson, Tropp, SIAM Review, 2011
Randomized Range Finder

For a matrix X, finds a matrix Q that estimates the range of X, or $X \approx QQ^TX$

Inputs: matrix $X \in \mathbb{R}^{m \times n}$
target rank $r \leq \text{rank } X$
oversampling parameter p

Main Steps:

1. Draw $\Omega \in \mathbb{R}^{n \times (r+p)}$, a random matrix
2. Form product $Y = X\Omega$
3. Compute thin QR $Y = QR$

Idea: Use Kronecker product of k random matrices Φ_j as $\Omega = \Phi_1 \otimes \Phi_2 \otimes \cdots \otimes \Phi_k$ so that

$$Y = X\Omega = X(\Phi_1 \otimes \Phi_2 \otimes \cdots \otimes \Phi_k)$$

takes the form of an unfolded multi-TTM
Randomized HOSVD with Kronecker Product

Inputs: $\mathcal{X} \in \mathbb{R}^{n \times \cdots \times n}$, target rank (r, \ldots, r), oversampling parameter p

Main steps:

For modes $j = 1 : d$,

1. **Randomized range finder of unfolding $\mathcal{X}(j)$**

 a. Compute $Y(j) = \mathcal{X}(j)\Omega$ via Multi-TTM in all modes but j:

 $$Y = \mathcal{X} \times_1 \Phi_1^{(j)} \times \cdots \times_{j-1} \Phi_{j-1}^{(j)} \times_{j+1} \Phi_{j+1}^{(j)} \times \cdots \times_d \Phi_d^{(j)}$$

 b. Thin QR of $Y(j) = A_j R$ with $A_j \in \mathbb{R}^{n \times (r+p)}$

End for

3. Form core via multi-TTM: $\mathcal{G} = \mathcal{X} \times_1 A_1^\top \times \cdots \times_d A_d^\top$

4. Truncate down to target rank

Deterministic HOSVD on \mathcal{G}, combine factor matrices with A_j's
Randomized HOSVD with Kronecker Product

Inputs: $\mathcal{X} \in \mathbb{R}^{n \times \cdots \times n}$, target rank (r, \ldots, r), oversampling parameter p

Main steps:
For modes $j = 1 : d$,

1. **Randomized range finder of unfolding $X_{(j)}$**
 a. Compute $Y_{(j)} = X_{(j)} \Omega$ via Multi-TTM in all modes but j:
 $$Y = \mathcal{X} \times_1 \Phi_1^{(j)} \times \cdots \times_{j-1} \Phi_{j-1}^{(j)} \times_{j+1} \Phi_{j+1}^{(j)} \times \cdots \times_d \Phi_d^{(j)}$$
 b. Thin QR of $Y_{(j)} = A_j R$ with $A_j \in \mathbb{R}^{n \times (r+p)}$

End for

3. **Form core via multi-TTM:** $G = \mathcal{X} \times_1 A_1^T \times \cdots \times_d A_d^T$

4. **Truncate down to target rank**
 - Deterministic HOSVD on G, combine factor matrices with A_j's
Randomized HOSVD with Kronecker Product

Inputs: \(X \in \mathbb{R}^{n \times \cdots \times n} \), target rank \((r, \ldots, r)\), oversampling parameter \(p \)

Main steps:

For modes \(j = 1 : d \),

1. Randomized range finder of unfolding \(X(j) \)
 - Compute \(Y(j) = X(j)\Omega \) via Multi-TTM in all modes but \(j \):
 \[
 Y = X \times_1 \Phi_1^{(j)} \times \cdots \times_{j-1} \Phi_{j-1}^{(j)} \times_{j+1} \Phi_{j+1}^{(j)} \times \cdots \times_d \Phi_d^{(j)}
 \]
 - Thin QR of \(Y(j) = A_j R \) with \(A_j \in \mathbb{R}^{n \times (r+p)} \)

End for

3. Form core via multi-TTM: \(G = X \times_1 A_1^\top \times \cdots \times_d A_d^\top \)

4. **Truncate down to target rank**
 - Deterministic HOSVD on \(G \), combine factor matrices with \(A_j \)'s
Comparison: algorithm types

Standard approach: one random matrix $\Omega \in \mathbb{R}^{n^{d-1} \times (r+p)}$
- Computing $Y = X(j) \Omega \rightarrow$ one large matrix multiply

Our approach: Kronecker product of random matrices $\Omega = \Phi_1 \otimes \cdots \otimes \Phi_d$
with $\Phi_j \in \mathbb{R}^{n \times s}$, $s^{d-1} = r + p$
- Computing $Y = X(j) \Omega \rightarrow$ one multi-TTM with skinny matrices
Comparison: algorithm types

Standard approach: one random matrix $\Omega \in \mathbb{R}^{n^{d-1} \times (r+p)}$
- Computing $Y = X_{(j)}\Omega$ \rightarrow one large matrix multiply

Our approach: Kronecker product of random matrices $\Omega = \Phi_1 \otimes \cdots \otimes \Phi_d$
with $\Phi_j \in \mathbb{R}^{n \times s}$, $s^{d-1} = r + p$
- Computing $Y = X_{(j)}\Omega$ \rightarrow one multi-TTM with skinny matrices

Two options for our approach:

1. Use an independent products of Φ_j’s per mode

2. Reuse same Kronecker factors Φ_j in Ω_j (i.e., $\Omega_1 = \Phi_2 \otimes \cdots \otimes \Phi_d$)
Comparison: algorithm types

Standard approach: one random matrix \(\Omega \in \mathbb{R}^{n^{d-1} \times (r+p)} \)

- Computing \(Y = X_{(j)} \Omega \) → one large matrix multiply

Our approach: Kronecker product of random matrices \(\Omega = \Phi_1 \otimes \cdots \otimes \Phi_d \)
with \(\Phi_j \in \mathbb{R}^{n \times s} \), \(s^{d-1} = r + p \)

- Computing \(Y = X_{(j)} \Omega \) → one multi-TTM with skinny matrices

Two options for our approach:

1. Use an independent products of \(\Phi_j \)'s per mode
 - Generating and storing more random matrices
 - “rKron”

2. Reuse same Kronecker factors \(\Phi_j \) in \(\Omega_j \) (i.e., \(\Omega_1 = \Phi_2 \otimes \cdots \otimes \Phi_d \))
 - Allows for reuse of computations
 - Makes analysis more complicated
 - “rKron-reuse”
Theoretical Bound

Parameters:

- d-way tensor $\mathcal{X} \in \mathbb{R}^{n \times n \times \cdots \times n}$
- target rank (r, r, \ldots, r), oversampling parameter p
- $\alpha, \beta > 1$ satisfying $n > r + p \geq \frac{\alpha^2 \beta}{(\alpha - 1)^2} (r^2 + r)$
- SRHT-like random matrices: $\Phi = DH$
 - D diagonal Rademacher
 - H randomly sampled columns from Hadamard matrix

Error bound

Except with probability at most $\frac{d}{\beta}$,

$$
\| \mathcal{X} - \hat{\mathcal{X}} \|_F^2 \leq \left(1 + \frac{\alpha n^{2d-2}}{(r + p)^{d-1}} \right) \| \mathcal{X} - \hat{\mathcal{X}}_{\text{HOSVD}} \|_F^2
$$
Theoretical Bound

Error bound

Except with probability at most \(\frac{d}{\beta} \),

\[
\|X - \hat{X}\|_F^2 \leq \left(1 + \frac{\alpha n^{2d-2}}{(r+p)^{d-1}}\right) \|X - \hat{X}_{\text{HOSVD}}\|_F^2
\]

Notes:

- Pessimistic compared to accuracy shown in numerical results
- Uses SRHT-like random matrices that can be represented as a Kronecker product themselves
- Allows for independent product of random matrices per mode, or reuse of same product of random matrices
Numerical Results: Accuracy

Parameters:
- $500 \times 500 \times 500$ tensor with moderately decaying singular values
- target rank $(10, 10, 10)$, oversampling parameter 5, $s = 4$
- rand-HOSVD: Gaussian random matrix
- rKron, rKron-reuse: SRHT random matrices

Relative Error over 100 trials

<table>
<thead>
<tr>
<th>Method</th>
<th>Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>rand-HOSVD</td>
<td>1.05 $\times 10^{-4}$</td>
</tr>
<tr>
<td>rKron</td>
<td>1.1 $\times 10^{-4}$</td>
</tr>
<tr>
<td>rKron-reuse</td>
<td>1.15 $\times 10^{-4}$</td>
</tr>
</tbody>
</table>

[Graph showing relative error for rand-HOSVD, rKron, and rKron-reuse]
Numerical Results: Accuracy

- $500 \times 500 \times 500$ random tensor with true rank $(50, 50, 50)$ and 10^{-4} noise
- oversampling parameter 5, $s \leq 11$
- rand-HOSVD: Gaussian random matrix
- rKron, rKron-reuse: SRHT random matrices

Relative Error with increasing rank
Randomized HOSVD with Kronecker Product

Inputs: $\mathcal{X} \in \mathbb{R}^{n \times \cdots \times n}$, target rank (r, \ldots, r), oversampling parameter p

Main steps:

For modes $j = 1 : d$,

1. Randomized range finder of unfolding $X_{(j)}$

 a. Multi-TTM in all modes but j:
 $$Y = \mathcal{X} \times_1 \Phi_1^{(j)} \times \cdots \times_{j-1} \Phi_{j-1}^{(j)} \times_{j+1} \Phi_{j+1}^{(j)} \times \cdots \times_d \Phi_d^{(j)}$$

 b. Thin QR so that $X_{(j)} \approx A_j A_j^T X_{(j)}$

 End for

3. Form core via multi-TTM: $\mathcal{G} = \mathcal{X} \times_1 A_1^T \times \cdots \times_d A_d^T$

4. Truncate down to target rank

 a. Deterministic HOSVD on \mathcal{G}, combine factor matrices with A_j's
All-at-once multi-TTM

Goal: compute $\mathbf{Y} = \mathbf{X} \times_1 U_1 \times_2 U_2 \times \cdots \times_k U_k$ for $k \leq d$ matrices

Two approaches based on communication: in sequence and all-at-once
All-at-once multi-TTM

Goal: compute $\mathcal{Y} = \mathcal{X} \times_1 U_1 \times_2 U_2 \times \cdots \times_k U_k$ for $k \leq d$ matrices

Two approaches based on communication: in sequence and all-at-once

Example: 2 modes $\mathcal{X} \times_1 U^\top \times_2 V^\top = U^\top XV$

In sequence4:
- Compute local $U^\top X$, communicate result
- Compute local multiply with V, communicate result

4Ballard, Klinvex, Kolda, ACM TOMS, 2020
All-at-once multi-TTM

Goal: compute $\mathcal{Y} = \mathcal{X} \times_1 U_1 \times_2 U_2 \times \cdots \times_k U_k$ for $k \leq d$ matrices

Two approaches based on communication: in sequence and all-at-once

Example: 2 modes $\mathcal{X} \times_1 U^\top \times_2 V^\top = U^\top X V$

In sequence4:
- Compute local $U^\top X$, communicate result
- Compute local multiply with V, communicate result

All-at-once:
- Compute local $U^\top X V$
- Communicates final result

4Ballard, Klinvex, Kolda, ACM TOMS, 2020
Comparison: multi-TTM

In-sequence:
- fewer flops, more communication

All-at-once:
- slightly more flops, generally less communication
Comparison: multi-TTM

In-sequence:
- fewer flops, more communication
- better choice when matrices are fat

All-at-once:
- slightly more flops, generally less communication
- better choice when matrices are skinny
In-sequence:
- fewer flops, more communication
- better choice when matrices are fat
- In randomized HOSVD algorithm, use for core multi-TTM
 \[G = \mathcal{X} \times_1 A_1^\top \times \cdots \times_d A_d^\top \]
- factor matrices \(A_j \) have more \((r + p)\) columns

All-at-once:
- slightly more flops, generally less communication
- better choice when matrices are skinny
- In randomized HOSVD algorithm, use to compute sketch
 \[Y = \mathcal{X} \times_2 \Phi_2^\top \times \cdots \times_d \Phi_d^\top \]
- random matrices are very skinny (\(s \) columns)
Numerical Results: Parallel Runtime

Parameters:

- 4-way tensor, 250 in each mode
- 16 cores on single multicore server
- Gaussian random matrices

Runtime of multi-TTM methods with increasing number of columns s:

![Chart showing runtime of multi-TTM methods with increasing number of columns s.]
Numerical Results: Parallel Runtime

Parameters:
- 4-way tensor, 256 in each mode
- Target rank $(32, 32, 32, 32)$, $s = (3, 3, 4, 4)$
- Gaussian random matrices, rKron-reuse
- On Andes cluster (OLCF)

Runtime of full algorithms with increasing number of cores:
Conclusions

Contributions: new parallel, randomized algorithms for Tucker decompositions

- Use a Kronecker product of random matrices to exploit structure and employ multi-TTM instead of large matrix multiply
- Different versions: re-using or constructing independent Kronecker products
- New method for computing a multi-TTM in parallel
 - An all-at-once approach that can communicate less than standard approach
 - Works well with Kronecker product of random matrices in our Tucker algorithms