
Parallel Randomized Algorithms for
Tucker Decompositions

Rachel Minster, Zitong Li, Qiming Fang, Grey Ballard

Wake Forest University

2/26/22

Acknowledgements to NSF CCF 1942892 for funding

Rachel Minster (WFU) 2/26/22 1 / 17



Motivation: Multidimensional data

Multidimensional data appears in
many applications:

Numerical simulations for
PDE’s

Facial recognition

Hyperspectral imaging

and is often large and difficult to
store or compute with

Goal: efficiently obtain compressed representation of data

Method: use parallel, randomized algorithms for Tucker decompositions

can obtain large compression ratios with high accuracy

Christophe, Duhamel, IEEE Transactions on Image Processing, 2009
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Contributions

New parallel, randomized algorithms for computing the Tucker
decomposition

Uses a Kronecker product of random matrices to exploit structure

Significantly reduces computational cost compared to deterministic and
randomized counterparts

New parallel method of computing a multi tensor-times-matrix
(multi-TTM) product, an “all-at-once” approach

Theoretical error bound for the algorithms

Tail bound
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Tensor-times-matrix (TTM) and Multi-TTM

Key tensor operations:

Tensor-times-matrix (TTM): X ×j U

Tensor multiplied by a matrix in a single mode j
Computed as matrix multiplication: matrix times unfolded tensor

Multi-TTM: X ×1 U1 ×2 U2 · · · ×d Ud for d-mode tensor

Can be unfolded in j-th mode as

UjX(j)(Ud ⊗ Ud−1 ⊗ · · · ⊗ Uj+1 ⊗ Uj−1 ⊗ · · · ⊗ U1)>

with ⊗ the Kronecker product
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Tucker Format

Approximates tensor X as

X ≈ G ×1 A1 × · · · ×d Ad

with G ∈ Rr1×···×rd , Aj ∈ Rnj×rj

≈
X

A1 G
A2

A3

Popular algorithms: Higher Order SVD (HOSVD)1 and
Sequentially Truncated Higher Order SVD (STHOSVD)2

General approach:

1 Unfold tensor along mode j

2 Compute rank-rj SVD of mode unfolding

3 Factor matrix Aj formed from left singular vectors

4 Core (or partial core) formed via TTM’s

1De Lathauwer, De Moor, Vandewalle, SIAM Journal on Matrix Analysis and Applications, 2000
2Vannieuwenhoven, Vandebril, Meerbergen, SIAM Journal on Scientific Computing, 2012
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Tucker Format

General approach:

1 Unfold tensor along mode j

2 Compute rank-rj SVD of mode unfolding

3 Factor matrix Aj formed from left singular vectors

4 Core (or partial core) formed via TTM’s

Our approach:

Use a randomized algorithm3 to speed up SVD step

Use a Kronecker product of random matrices instead of single random
matrix to exploit structure

Implement in parallel

Use a new, faster parallel version of a key operation (multi-TTM) to
significantly lower runtime

3Ahmadi-Asl, Abukhovich, Asante-Menash, Chichocki, Phan, Tanaka, Oseledets, IEEE Access, 2021
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Randomized Range Finder

For a matrix X , finds a matrix Q that estimates the range of X , or
X ≈ QQ>X

Inputs: matrix X ∈ Rm×n

target rank r ≤ rankX
oversampling parameter p

Main Steps:

1 Draw Ω ∈ Rn×(r+p), a random matrix

2 Form product Y = XΩ

3 Compute thin QR Y = QR

Idea: Use Kronecker product of k random matrices Φj as
Ω = Φ1 ⊗ Φ2 ⊗ · · · ⊗ Φk so that

Y = XΩ = X (Φ1 ⊗ Φ2 ⊗ · · · ⊗ Φk)

takes the form of an unfolded multi-TTM

Halko, Martinsson, Tropp, SIAM Review, 2011
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Randomized HOSVD with Kronecker Product

Inputs: X ∈ Rn×···×n, target rank (r , . . . , r), oversampling parameter p

Main steps:

For modes j = 1 : d ,
1 Randomized range finder of unfolding X(j)

a Compute Y(j) = X(j)Ω via Multi-TTM in all modes but j :

Y = X ×1 Φ
(j)
1 × · · · ×j−1 Φ

(j)
j−1 ×j+1 Φ

(j)
j+1 × · · · ×d Φ

(j)
d

b Thin QR of Y(j) = AjR with Aj ∈ Rn×(r+p)

End for

3 Form core via multi-TTM: G = X ×1 A
>
1 × · · · ×d A>d

4 Truncate down to target rank
a Deterministic HOSVD on G, combine factor matrices with Aj ’s
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Comparison: algorithm types

Standard approach: one random matrix Ω ∈ Rnd−1×(r+p)

Computing Y = X(j)Ω → one large matrix multiply

Our approach: Kronecker product of random matrices Ω = Φ1 ⊗ · · · ⊗ Φd

with Φj ∈ Rn×s , sd−1 = r + p

Computing Y = X(j)Ω → one multi-TTM with skinny matrices

Two options for our approach:

1 Use an independent products of Φj ’s per mode

Generating and storing more random matrices
“rKron”

2 Reuse same Kronecker factors Φj in Ωj (i.e., Ω1 = Φ2 ⊗ · · · ⊗ Φd)

Allows for reuse of computations
Makes analysis more complicated
“rKron-reuse”
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Theoretical Bound

Parameters:

d-way tensor X ∈ Rn×n×···×n

target rank (r , r , . . . , r), oversampling parameter p

α, β > 1 satisfying n > r + p ≥ α2β
(α−1)2 (r2 + r)

SRHT-like random matrices: Φ = DH

D diagonal Rademacher
H randomly sampled columns from Hadamard matrix

Error bound

Except with probability at most d
β ,

‖X − X̂‖2
F ≤

(
1 +

αn2d−2

(r + p)d−1

)
‖X − X̂HOSVD‖2

F
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Theoretical Bound

Error bound

Except with probability at most d
β ,

‖X − X̂‖2
F ≤

(
1 +

αn2d−2

(r + p)d−1

)
‖X − X̂HOSVD‖2

F

Notes:

Pessimistic compared to accuracy shown in numerical results

Uses SRHT-like random matrices that can be represented as a
Kronecker product themselves

Allows for independent product of random matrices per mode, or
reuse of same product of random matrices
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Numerical Results: Accuracy

Parameters:

500× 500× 500 tensor with moderately decaying singular values

target rank (10, 10, 10), oversampling parameter 5, s = 4

rand-HOSVD: Gaussian random matrix

rKron, rKron-reuse: SRHT random matrices

Relative Error over 100 trials

rand-HOSVD rKron rKron-reuse

1.05

1.1

1.15
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R
e
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v
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HOSVD
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Numerical Results: Accuracy

500× 500× 500 random tensor with true rank (50, 50, 50) and 10−4

noise
oversampling parameter 5, s ≤ 11
rand-HOSVD: Gaussian random matrix
rKron, rKron-reuse: SRHT random matrices

Relative Error with increasing rank
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Randomized HOSVD with Kronecker Product

Inputs: X ∈ Rn×···×n, target rank (r , . . . , r), oversampling parameter p

Main steps:

For modes j = 1 : d ,
1 Randomized range finder of unfolding X(j)

a Multi-TTM in all modes but j :

Y = X ×1 Φ
(j)
1 × · · · ×j−1 Φ

(j)
j−1 ×j+1 Φ

(j)
j+1 × · · · ×d Φ

(j)
d

b Thin QR so that X(j) ≈ AjA
>
j X(j)

End for

3 Form core via multi-TTM: G = X ×1 A
>
1 × · · · ×d A>d

4 Truncate down to target rank
a Deterministic HOSVD on G, combine factor matrices with Aj ’s
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All-at-once multi-TTM

Goal: compute Y = X ×1 U1 ×2 U2 × · · · ×k Uk for k ≤ d matrices

Two approaches based on communication: in sequence and all-at-once

Example: 2 modes X ×1 U
> ×2 V

> = U>XV

U>

X

V
In sequence4:

Compute local U>X ,
communicate result

Compute local multiply with V ,
communicate result

All-at-once:

Compute local U>XV

Communicates final result

4Ballard, Klinvex, Kolda, ACM TOMS, 2020
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Comparison: multi-TTM

In-sequence:

fewer flops, more
communication

better choice when matrices
are fat

In randomized HOSVD
algorithm, use for core
multi-TTM
G = X ×1 A

>
1 × · · · ×d A>d

factor matrices Aj have more
(r + p) columns

All-at-once:

slightly more flops, generally
less communication

better choice when matrices
are skinny

In randomized HOSVD
algorithm, use to compute
sketch
Y = X ×2 Φ>2 × · · · ×d Φ>d
random matrices are very
skinny (s columns)
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Numerical Results: Parallel Runtime

Parameters:

4-way tensor, 250 in each mode

16 cores on single multicore server

Gaussian random matrices

Runtime of multi-TTM methods with increasing number of columns s:

2  3  4  5  16 32 64 128

s

0

5

10

15

T
im

e
 (

s
e

c
s
)

All-at-once comp

All-at-once comm

All-at-once overhead

In-sequence comp

In-sequence comm

In-sequence overhead
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Numerical Results: Parallel Runtime

Parameters:

4-way tensor, 256 in each mode

Target rank (32, 32, 32, 32), s = (3, 3, 4, 4)

Gaussian random matrices, rKron-reuse

On Andes cluster (OLCF)

Runtime of full algorithms with increasing number of cores:

32 64 128 256 512

Cores
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e
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rHOSVD core

rHOSVD RRF

STHOSVD core

STHOSVD SVD
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Conclusions

Contributions: new parallel, randomized algorithms for Tucker
decompositions

Use a Kronecker product of random matrices to exploit structure and
employ multi-TTM instead of large matrix multiply

Different versions: re-using or constructing independent Kronecker
products

New method for computing a multi-TTM in parallel

An all-at-once approach that can communicate less than standard
approach
Works well with Kronecker product of random matrices in our Tucker
algorithms
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