Parallel Randomized Algorithms for Tucker Decompositions

Rachel Minster, Zitong Li, Qiming Fang, Grey Ballard

Wake Forest University

2/26/22

Acknowledgements to NSF CCF 1942892 for funding

Rachel Minster (WFU)

Motivation: Multidimensional data

Multidimensional data appears in many applications:

- Numerical simulations for PDE's
- Facial recognition
- Hyperspectral imaging

Christophe, Duhamel, IEEE Transactions on Image Processing, 2009

Motivation: Multidimensional data

Multidimensional data appears in many applications:

- Numerical simulations for PDE's
- Facial recognition
- Hyperspectral imaging
- and is often large and difficult to store or compute with

Christophe, Duhamel, IEEE Transactions on Image Processing, 2009

Motivation: Multidimensional data

Multidimensional data appears in many applications:

- Numerical simulations for PDE's
- Facial recognition
- Hyperspectral imaging
- and is often large and difficult to store or compute with

Goal: efficiently obtain compressed representation of data

Method: use parallel, randomized algorithms for Tucker decompositions

• can obtain large compression ratios with high accuracy

Christophe, Duhamel, IEEE Transactions on Image Processing, 2009

- New parallel, randomized algorithms for computing the Tucker decomposition
 - Uses a Kronecker product of random matrices to exploit structure
 - Significantly reduces computational cost compared to deterministic and randomized counterparts
- New parallel method of computing a multi tensor-times-matrix (multi-TTM) product, an "all-at-once" approach
- Theoretical error bound for the algorithms
 - Tail bound

Tensor-times-matrix (TTM) and Multi-TTM

Key tensor operations:

- Tensor-times-matrix (TTM): $\mathcal{X} \times_{j} U$
 - Tensor multiplied by a matrix in a single mode *j*
 - Computed as matrix multiplication: matrix times unfolded tensor

Tensor-times-matrix (TTM) and Multi-TTM

Key tensor operations:

- Tensor-times-matrix (TTM): $\mathcal{X} \times_{j} U$
 - Tensor multiplied by a matrix in a single mode *j*
 - Computed as matrix multiplication: matrix times unfolded tensor

Multi-TTM: X ×1 U1 ×2 U2····×d Ud for d-mode tensor
 Can be unfolded in *i*-th mode as

$$U_j X_{(j)} (U_d \otimes U_{d-1} \otimes \cdots \otimes U_{j+1} \otimes U_{j-1} \otimes \cdots \otimes U_1)^\top$$

with \otimes the Kronecker product

Tucker Format

Approximates tensor \mathcal{X} as $\mathcal{X} \approx \mathcal{G} \times_1 A_1 \times \cdots \times_d A_d$ with $\mathcal{G} \in \mathbb{R}^{r_1 \times \cdots \times r_d}$, $A_j \in \mathbb{R}^{n_j \times r_j}$ \mathcal{X} \approx A_1 \mathcal{G} A_2

Popular algorithms: Higher Order SVD $(HOSVD)^1$ and Sequentially Truncated Higher Order SVD $(STHOSVD)^2$

¹De Lathauwer, De Moor, Vandewalle, SIAM Journal on Matrix Analysis and Applications, 2000 ²Vannieuwenhoven, Vandebril, Meerbergen, SIAM Journal on Scientific Computing, 2012∌ → ⊲ ≘

Tucker Format

Approximates tensor \mathcal{X} as $\mathcal{X} \approx \mathcal{G} \times_1 A_1 \times \cdots \times_d A_d$

with $\mathcal{G} \in \mathbb{R}^{r_1 imes \cdots imes r_d}$, $A_j \in \mathbb{R}^{n_j imes r_j}$

Popular algorithms: Higher Order SVD $(HOSVD)^1$ and Sequentially Truncated Higher Order SVD $(STHOSVD)^2$

General approach:

- Unfold tensor along mode j
- Ompute rank-r_j SVD of mode unfolding
- Sactor matrix A_j formed from left singular vectors
- Ore (or partial core) formed via TTM's

 $^{^1\}text{De}$ Lathauwer, De Moor, Vandewalle, SIAM Journal on Matrix Analysis and Applications, 2000 $^2\text{Vannieuwenhoven},$ Vandebril, Meerbergen, SIAM Journal on Scientific Computing, 2012 \mathbb{P}

General approach:

- Unfold tensor along mode j
- Ocompute rank-r_j SVD of mode unfolding
- Sactor matrix A_j formed from left singular vectors
- Ore (or partial core) formed via TTM's

Our approach:

- $\bullet~\mbox{Use}$ a randomized algorithm 3 to speed up SVD step
 - Use a Kronecker product of random matrices instead of single random matrix to exploit structure
- Implement in parallel
 - Use a new, faster parallel version of a key operation (multi-TTM) to significantly lower runtime

³Ahmadi-Asl, Abukhovich, Asante-Menash, Chichocki, Phan, Tanaka, Oseledets, IEEE Access, 2021 () Sector 2014 () Sector

For a matrix X, finds a matrix Q that estimates the range of X, or $X \approx Q Q^\top X$

Inputs: matrix $X \in \mathbb{R}^{m \times n}$ target rank $r \leq \operatorname{rank} X$ oversampling parameter p

Main Steps:

- Draw $\Omega \in \mathbb{R}^{n \times (r+p)}$, a random matrix
- **2** Form product $Y = X\Omega$
- Sompute thin QR Y = QR

Halko, Martinsson, Tropp, SIAM Review, 2011

For a matrix X, finds a matrix Q that estimates the range of X, or $X \approx Q Q^\top X$

Inputs: matrix $X \in \mathbb{R}^{m \times n}$ target rank $r \leq \operatorname{rank} X$ oversampling parameter p

Main Steps:

• Draw $\Omega \in \mathbb{R}^{n \times (r+p)}$, a random matrix

2 Form product
$$Y = X\Omega$$

• Compute thin QR
$$Y = QR$$

Idea: Use Kronecker product of k random matrices Φ_j as $\Omega = \Phi_1 \otimes \Phi_2 \otimes \cdots \otimes \Phi_k$ so that

$$Y = X\Omega = X(\Phi_1 \otimes \Phi_2 \otimes \cdots \otimes \Phi_k)$$

takes the form of an unfolded multi-TTM

Halko, Martinsson, Tropp, SIAM Review, 2011

Inputs: $\mathcal{X} \in \mathbb{R}^{n \times \cdots \times n}$, target rank (r, \ldots, r) , oversampling parameter p

Main steps:

For modes j = 1 : d,

Quarter State State

③ Form core via multi-TTM: $\mathcal{G} = \mathcal{X} imes_1 A_1^\top imes \cdots imes_d A_d^\top$

Truncate down to target rank

Deterministic HOSVD on \mathcal{G} , combine factor matrices with A_i 's

(日) (部) (注) (注) (注)

Inputs: $\mathcal{X} \in \mathbb{R}^{n \times \cdots \times n}$, target rank (r, \ldots, r) , oversampling parameter p

Main steps:

For modes j = 1 : d,

() Randomized range finder of unfolding $X_{(i)}$

(a) Compute $Y_{(j)} = X_{(j)}\Omega$ via Multi-TTM in all modes but *j*:

$$\mathcal{Y} = \mathcal{X} imes_1 \Phi_1^{(j)} imes \cdots imes_{j-1} \Phi_{j-1}^{(j)} imes_{j+1} \Phi_{j+1}^{(j)} imes \cdots imes_d \Phi_d^{(j)}$$

• Thin QR of $Y_{(j)} = A_j R$ with $A_j \in \mathbb{R}^{n \times (r+p)}$

End for

③ Form core via multi-TTM: $\mathcal{G} = \mathcal{X} imes_1 A_1^\top imes \cdots imes_d A_d^\top$

Truncate down to target rank

Deterministic HOSVD on \mathcal{G} , combine factor matrices with A_i 's

(日) (部) (注) (注) (注)

Inputs: $\mathcal{X} \in \mathbb{R}^{n \times \cdots \times n}$, target rank (r, \ldots, r) , oversampling parameter p

Main steps:

For modes j = 1 : d,

() Randomized range finder of unfolding $X_{(i)}$

• Compute $Y_{(j)} = X_{(j)}\Omega$ via Multi-TTM in all modes but *j*:

$$\mathcal{Y} = \mathcal{X} imes_1 \Phi_1^{(j)} imes \cdots imes_{j-1} \Phi_{j-1}^{(j)} imes_{j+1} \Phi_{j+1}^{(j)} imes \cdots imes_d \Phi_d^{(j)}$$

• Thin QR of $Y_{(j)} = A_j R$ with $A_j \in \mathbb{R}^{n \times (r+p)}$

End for

- **)** Form core via multi-TTM: $\mathcal{G} = \mathcal{X} imes_1 A_1^\top imes \cdots imes_d A_d^\top$
- Truncate down to target rank
 - Deterministic HOSVD on \mathcal{G} , combine factor matrices with A_i 's

(日) (部) (注) (注) (注)

Comparison: algorithm types

Standard approach: one random matrix $\Omega \in \mathbb{R}^{n^{d-1} \times (r+p)}$

• Computing $Y = X_{(j)}\Omega \rightarrow$ one large matrix multiply

Our approach: Kronecker product of random matrices $\Omega = \Phi_1 \otimes \cdots \otimes \Phi_d$ with $\Phi_i \in \mathbb{R}^{n \times s}$, $s^{d-1} = r + p$

• Computing $Y = X_{(j)}\Omega \rightarrow$ one multi-TTM with skinny matrices

Comparison: algorithm types

Standard approach: one random matrix $\Omega \in \mathbb{R}^{n^{d-1} \times (r+p)}$

• Computing $Y = X_{(j)}\Omega \quad o \quad$ one large matrix multiply

Our approach: Kronecker product of random matrices $\Omega = \Phi_1 \otimes \cdots \otimes \Phi_d$ with $\Phi_i \in \mathbb{R}^{n \times s}$, $s^{d-1} = r + p$

• Computing $Y = X_{(j)}\Omega \rightarrow$ one multi-TTM with skinny matrices

Two options for our approach:

() Use an independent products of Φ_j 's per mode

2 Reuse same Kronecker factors Φ_j in Ω_j (i.e., $\Omega_1 = \Phi_2 \otimes \cdots \otimes \Phi_d$)

Comparison: algorithm types

Standard approach: one random matrix $\Omega \in \mathbb{R}^{n^{d-1} \times (r+p)}$

• Computing $Y = X_{(j)}\Omega \rightarrow$ one large matrix multiply

Our approach: Kronecker product of random matrices $\Omega = \Phi_1 \otimes \cdots \otimes \Phi_d$ with $\Phi_i \in \mathbb{R}^{n \times s}$, $s^{d-1} = r + p$

• Computing $Y = X_{(j)}\Omega \rightarrow$ one multi-TTM with skinny matrices

Two options for our approach:

() Use an independent products of Φ_j 's per mode

- Generating and storing more random matrices
- "rKron"

2 Reuse same Kronecker factors Φ_j in Ω_j (i.e., $\Omega_1 = \Phi_2 \otimes \cdots \otimes \Phi_d$)

- Allows for reuse of computations
- Makes analysis more complicated
- "rKron-reuse"

イロト 不得 トイヨト イヨト ヨー つくつ

Theoretical Bound

Parameters:

- *d*-way tensor $\mathcal{X} \in \mathbb{R}^{n \times n \times \dots \times n}$
- target rank (r, r, \ldots, r) , oversampling parameter p

•
$$\alpha, \beta > 1$$
 satisfying $n > r + p \ge rac{lpha^2 eta}{(lpha - 1)^2} (r^2 + r)$

- SRHT-like random matrices: $\Phi = DH$
 - D diagonal Rademacher
 - H randomly sampled columns from Hadamard matrix

Error bound

Except with probability at most $\frac{d}{\beta}$,

$$\|\mathcal{X} - \widehat{\mathcal{X}}\|_{F}^{2} \leq \left(1 + \frac{\alpha n^{2d-2}}{(r+p)^{d-1}}\right) \|\mathcal{X} - \widehat{\mathcal{X}}_{\mathsf{HOSVD}}\|_{F}^{2}$$

Error bound

Except with probability at most $\frac{d}{\beta}$,

$$\|\mathcal{X} - \widehat{\mathcal{X}}\|_{F}^{2} \leq \left(1 + \frac{\alpha n^{2d-2}}{(r+p)^{d-1}}\right) \|\mathcal{X} - \widehat{\mathcal{X}}_{\mathsf{HOSVD}}\|_{F}^{2}$$

Notes:

- Pessimistic compared to accuracy shown in numerical results
- Uses SRHT-like random matrices that can be represented as a Kronecker product themselves
- Allows for independent product of random matrices per mode, or reuse of same product of random matrices

Parameters:

- 500 \times 500 \times 500 tensor with moderately decaying singular values
- target rank (10, 10, 10), oversampling parameter 5, s = 4
- rand-HOSVD: Gaussian random matrix
- rKron, rKron-reuse: SRHT random matrices

Relative Error over 100 trials

Numerical Results: Accuracy

- 500 \times 500 \times 500 random tensor with true rank (50, 50, 50) and 10^{-4} noise
- oversampling parameter 5, $s \leq 11$
- rand-HOSVD: Gaussian random matrix
- rKron, rKron-reuse: SRHT random matrices

Relative Error with increasing rank

Inputs: $\mathcal{X} \in \mathbb{R}^{n \times \cdots \times n}$, target rank (r, \ldots, r) , oversampling parameter p

Main steps:

For modes j = 1 : d,

(1) Randomized range finder of unfolding $X_{(j)}$

Multi-TTM in all modes but j:

 $Y = \mathcal{X} \times_1 \Phi_1^{(j)} \times \cdots \times_{j-1} \Phi_{j-1}^{(j)} \times_{j+1} \Phi_{j+1}^{(j)} \times \cdots \times_d \Phi_d^{(j)}$

) Thin QR so that
$$X_{(j)} pprox A_j A_j^ op X_{(j)}$$

End for

(

So Form core via multi-TTM: $\mathcal{G} = \mathcal{X} \times_1 A_1^\top \times \cdots \times_d A_d^\top$

- Truncate down to target rank
 - Deterministic HOSVD on \mathcal{G} , combine factor matrices with A_j 's

All-at-once multi-TTM

Goal: compute $\mathcal{Y} = \mathcal{X} \times_1 U_1 \times_2 U_2 \times \cdots \times_k U_k$ for $k \leq d$ matrices

Two approaches based on communication: in sequence and all-at-once

All-at-once multi-TTM

Goal: compute $\mathcal{Y} = \mathcal{X} \times_1 U_1 \times_2 U_2 \times \cdots \times_k U_k$ for $k \leq d$ matrices

Two approaches based on communication: in sequence and all-at-once Example: 2 modes $\mathcal{X} \times_1 U^\top \times_2 V^\top = U^\top X V$

In sequence⁴:

- Compute local U[⊤]X, communicate result
- Compute local multiply with V, communicate result

V

⁴Ballard, Klinvex, Kolda, ACM TOMS, 2020

Rachel Minster (WFU)

All-at-once multi-TTM

Goal: compute $\mathcal{Y} = \mathcal{X} \times_1 U_1 \times_2 U_2 \times \cdots \times_k U_k$ for $k \leq d$ matrices

Two approaches based on communication: in sequence and all-at-once Example: 2 modes $\mathcal{X} \times_1 U^\top \times_2 V^\top = U^\top X V$

In sequence⁴:

- Compute local U[⊤]X, communicate result
- Compute local multiply with *V*, communicate result

イロト イポト イヨト イヨト

All-at-once:

- Compute local $U^{\top}XV$
- Communicates final result

⁴Ballard, Klinvex, Kolda, ACM TOMS, 2020

Rachel Minster (WFU)

In-sequence:

• fewer flops, more communication

All-at-once:

• slightly more flops, generally less communication

In-sequence:

- fewer flops, more communication
- better choice when matrices are fat

All-at-once:

- slightly more flops, generally less communication
- better choice when matrices are skinny

In-sequence:

- fewer flops, more communication
- better choice when matrices are fat
- In randomized HOSVD algorithm, use for core multi-TTM $\mathcal{G} = \mathcal{X} \times_1 A_1^\top \times \cdots \times_d A_d^\top$
- factor matrices A_j have more
 (r + p) columns

All-at-once:

- slightly more flops, generally less communication
- better choice when matrices are skinny
- In randomized HOSVD algorithm, use to compute sketch

$$\mathcal{Y} = \mathcal{X} \times_2 \Phi_2^\top \times \cdots \times_d \Phi_d^\top$$

 random matrices are very skinny (s columns)

Numerical Results: Parallel Runtime

Parameters:

- 4-way tensor, 250 in each mode
- 16 cores on single multicore server
- Gaussian random matrices

Runtime of multi-TTM methods with increasing number of columns s:

Numerical Results: Parallel Runtime

Parameters:

- 4-way tensor, 256 in each mode
- Target rank (32, 32, 32, 32), s = (3, 3, 4, 4)
- Gaussian random matrices, rKron-reuse
- On Andes cluster (OLCF)

Runtime of full algorithms with increasing number of cores:

Contributions: new parallel, randomized algorithms for Tucker decompositions

- Use a Kronecker product of random matrices to exploit structure and employ multi-TTM instead of large matrix multiply
- Different versions: re-using or constructing independent Kronecker products
- New method for computing a multi-TTM in parallel
 - An all-at-once approach that can communicate less than standard approach
 - Works well with Kronecker product of random matrices in our Tucker algorithms