

Exceptional service in the national interest

Cyclic GCP-CPAPR Hybrid Feb. 26, 2022 Jeremy M. Myers^{1, 2} Daniel M. Dunlavy¹

¹ Sandia National Laboratories, Albuquerque, NM & Livermore, CA

² Department of Computer Science, College of William and Mary, Williamsburg, VA

SIAM Conference on Parallel Processing for Scientific Computing (PP22) MS71 Parallel Algorithms for Tensor Computations and their Applications

SAND2022-1347C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Low-Rank Canonical Polyadic (CP) Poisson Tensor Decomposition

Task

- Fit low-rank CP tensor model to Poisson-distributed nonnegative integer data.
- Nonlinear, non-convex optimization problem
- <u>Approach</u>: Use local method for maximum likelihood estimation from many initial guesses ("*multi-start*").
 - Current local methods converge to maximum likelihood estimator (MLE) only a fraction of solves.
 - Previous work: Examine trade-offs between several state-of-the-art local methods.[†]

Our Contributions

- Leverage trade-offs between multiple methods CP Poisson tensor decomposition in a hybrid fashion.
- Preliminary result: hybrid approach can minimize approximation error & reduce computational cost on synthetic data.

[†] Jeremy M. Myers and Daniel M. Dunlavy. Using computation effectively for scalable Poisson tensor factorization: Comparing methods beyond computational efficiency. In 2021 IEEE High Performance Extreme Computing Conference, HPEC 2021, Waltham, MA, USA, September 20-24, 2021, pages 1–7. IEEE, 2021.

Low-Rank CP Poisson Tensor Decomposition

- Let \mathcal{X} be a *d*-way tensor of size $n_1 \times \cdots \times n_d$ of Poisson-distributed non-negative integers.
- A low-rank CP Poisson tensor decomposition can be computed by estimating the parameters \mathcal{M}_i that minimizes the negative log-likelihood function (NLL):

$$\min_{\mathcal{M}} f(\mathcal{X}, \mathcal{M}) = \sum_{i} \mathcal{M}_{i} - \mathcal{X}_{i} \log(\mathcal{M}_{i}),$$

where i is a tuple over the tensor entries (multi-index), \mathcal{M} is a rank-*R* CP tensor model, and $A_k, k \in \{1, ..., d\}$ defined as:

$$\mathcal{M} = \sum_{r=1}^{R} \lambda_j A_1(:, r) \circ \cdots \circ A_d(:, r).$$

- The maximum likelihood estimator, \widehat{M}^* , estimates the global optimizer.
- Applications

- network analysis
- term-document analysis
- email analysis

- link prediction
- geospatial analysis
- web page analysis

Low-Rank CP Poisson Tensor Decomposition – Two Local methods

Generalized CP (GCP)

- General loss function framework.
- All-at-once, gradient descent
- Variant to consider: *GCP with Adam optimization (GCP-Adam).*
 - stochastic gradient descent
 - linear convergence
 - scalable: uses sampling for objective function estimation and gradient computations
 - lower fraction of multi-starts converge to MLE

CP Alternating Poisson Regression (CPAPR)

- Specialized framework for Poisson loss with identity link.
- Alternating, block-coordinate descent
- Variant to consider: *Multiplicative Updates (MU).*
 - fixed-point iteration
- sublinear convergence
- performant: rich in dense matrix operations
- higher fraction of multi-starts converge to MLE

Goal: *a hybrid method that leverages these advantages*

Inspired by Simulated Annealing[†]

• Model solution space as thermodynamic system & move to a state with the lowest possible energy/temperature.

```
While (not converged)
    "Heat" the system to rise above local minima via stochastic search.
    "Cool" the system toward global minimum via deterministic search.
```

 Heating & cooling steps often follow a *strategy*---some parameterization of stochastic and deterministic search.

Cyclic GCP-CPAPR Hybrid Approach

For l = 1,...,L
Perform heating step via GCP according to some strategy.
Perform cooling step via CPAPR according to some strategy.

• Possibly update strategy for each value of *l* (i.e., for each *cycle*).

Numerical Experiments

- **Synthetic tensor** *X***:** 1000 x 1000 x 1000, *R* = 20, 0.01% dense, 10% of nonzeros are noisy
- Out-of-sample validation set

- Run GCP-Adam & CPAPR-MU separately to convergence with very high precision & very large number of epochs (GCP) or iterations (CPAPR).
- Repeat for *N* = 10,000 random starting points for each method.
- Set MLE $\widehat{M}^* \coloneqq$ CP Poisson tensor model among all 20,000 approximations with lowest NLL value.

• Cyclic GCP-CPAPR Hybrid experiment

- Fix *W* = 100, a *work budget* for all experiments.
- Repeat for *n* = 100 random starting points.

```
for j = 0, ..., W,

k = W - j

run GCP-Adam starting with random \widehat{M} for maximum j epochs -> \widehat{M}_1

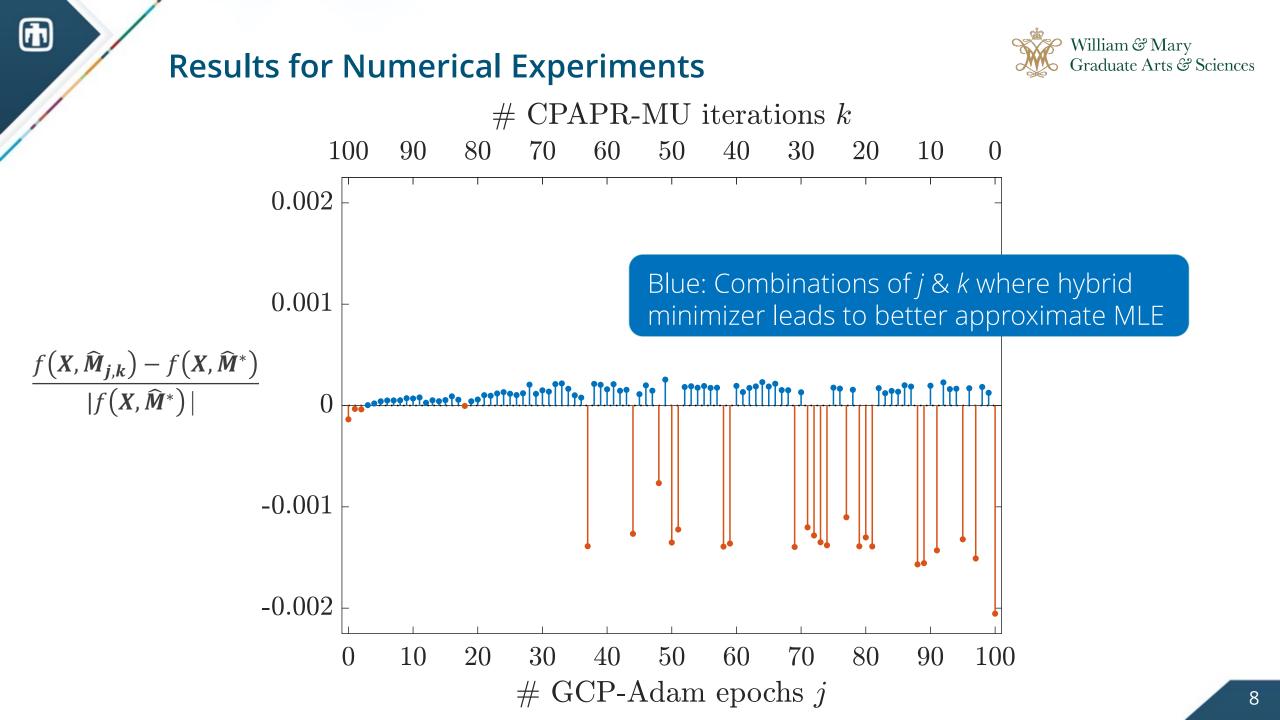
run CPAPR-MU starting with \widehat{M}_1 for maximum k iterations -> \widehat{M}_2

Set \widehat{M}_{j,k} = \widehat{M}_2 as the current estimator
```

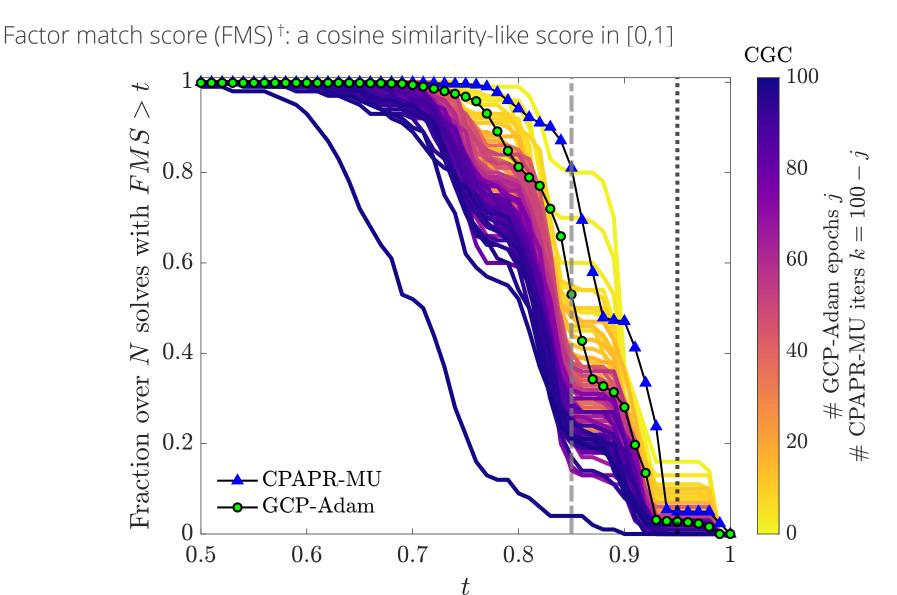
Results for Numerical Experiments

- <u>Recall:</u> Problem is non-convex, so we use multi-start to estimate MLE (global optimizer).
- $\hat{P}_A(\epsilon)$: estimates probability from our numerical experiments that method A converges to solution with NLL value in radius- ϵ ball of the MLE.

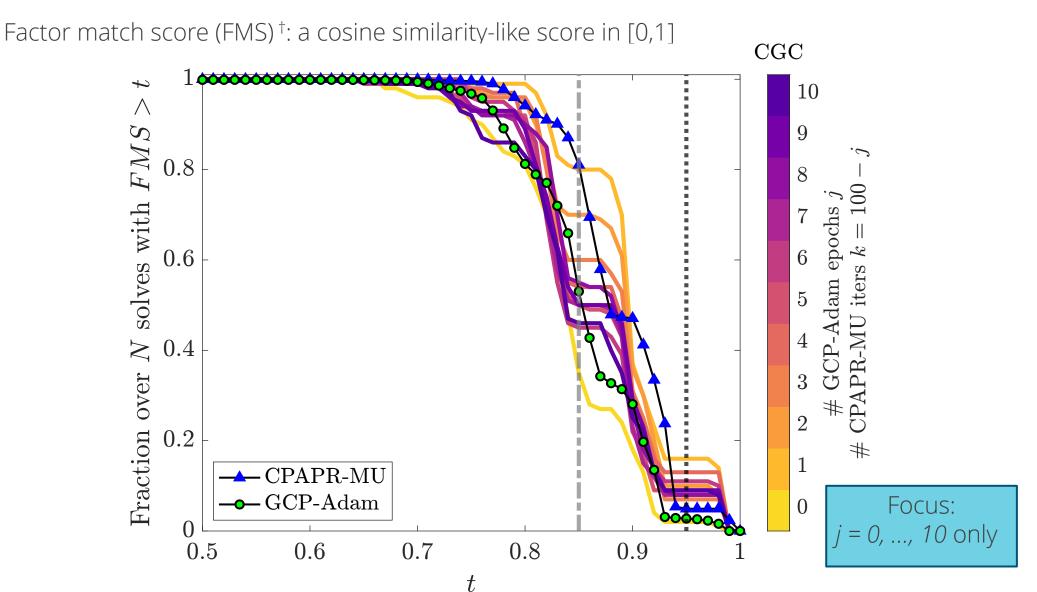
ϵ	$\widehat{P}_{GCP-Adam}$	$\widehat{P}_{CPAPR-MU}$	\widehat{P}_{hybrid}	Best hybrid pair <i>(j,k)</i>
10^{-1}	1.00	1.00	1.00	all
10^{-2}	0.27	0.69	0.65	(0,100)
10^{-3}	0	0.05	0.16	(1,99)
10^{-4}	0	< 0.01	0.13	(4,96)
10^{-5}	0	0	0.03	(8,92)
10^{-6}	0	0	0.01	(8,92)



Results for Numerical Experiments



Results for Numerical Experiments



[†]Eric C. Chi and Tamara G. Kolda. On Tensors, Sparsity, and Nonnegative Factorizations. SIAM Journal on Matrix Analysis and Applications, 33 (4): 1272–1299, January 2012. (Appendix E)

Conclusions and Future Work

Preliminary Conclusions regarding GCP-CPAPR Hybrid

- Can lead to better approximate MLEs (than using either method separately)
- Can be more computationally efficient (by using fewer multi-starts)

Ideas for Future Work

- Extend idea with *L* > 1 cycles
- Adaptive updates to strategies with *L* > 1 cycles
- Compare to black-box methods

Thank you!

Questions?

Jeremy Myers: <u>jmmyers@cs.wm.edu</u>, jermyer@sandia.gov Danny Dunlavy: <u>dmdunla@sandia.gov</u>