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Tensors



Real-World Tensors

Product reviews

Signal processing

Electronic health 
records

Recommendation systems

Law enforcement 
data
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Sparse Tensors



Sparse Tensors

Even harder to optimize than 
sparse matrix kernels:

● Curse of dimensionality
● Algorithm scalability
● Complex data compression



Tensor Decomposition

Canonical Polyadic Decomposition (CPD)



MTTKRP

● Bottleneck in well known CPD-ALS 

algorithm 

● M ← X
(1) 

C ⊙ B
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MTTKRP

● Challenges in optimizing MTTKRP:

○ Memory-intensive kernel

○ Complex data locality nature

○ Synchronization overhead when 

updating factor matrices

○ Load imbalance across threads

○ Limited memory on GPU accelerators
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State-of-the-Art Performance Issues

● Setup: 
○ Individual mode MTTKRP on 

MM-CSF framework
○ Normalized against best 

performing mode
○ Blue line is baseline
○ NVIDIA A100

● Higher is worse

Over an order of magnitude worse 
depending on the mode. All modes 
require the same number of FLOPs



State-of-the-Art Approaches

Name Data Format Load 
Balance

Synchronization Mode 
Orientation

Data 
Compression

Mode 
Algorithms

F-COO
[Liu et al. 2017]

List-
based

Optimal Reductions in shared 
memory

Mode-specific Multiple copies 
required

1

B-CSF
[Nisa et. al, 2019]

Tree-
based

Improved Minimized by data 
structure

Mode-specific Multiple copies 
required

N

MM-CSF 
[Nisa et. al, 2019]

Tree-
based

Improved Minimized by data 
structure

Mode-specific Single copy N
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Synchronization Mode 
Orientation

Data 
Compression

Mode 
Algorithms

F-COO
[Liu et al. 2017]

List-
based

Optimal Reductions in shared 
memory

Mode-specific Multiple copies 
required

1

B-CSF
[Nisa et. al, 2019]

Tree-
based

Improved Minimized by data 
structure

Mode-specific Multiple copies 
required

N

MM-CSF 
[Nisa et. al, 2019]

Tree-
based

Improved Minimized by data 
structure

Mode-specific Single copy N

→ State of the art approaches have tradeoffs that severely impact performance
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Blocked Linearized CoOrdinates (BLCO)

● A list-based yet highly compressed and 

massively parallel tensor format

● Index linearization maps multidimensional 

coordinates into linear space

● Adaptive blocking blocks the tensor to meet 

target GPU resource constraints

● Hierarchical conflict resolution resolves 

synchronization conflicts at multiple levels of 

the memory hierarchy



Index Linearization

● Element indices are linearized in 

one-dimensional space



Index Linearization

● Element indices are linearized in 

one-dimensional space

○ Highly compressed representation



Index Linearization

● Element indices are linearized in 

one-dimensional space

○ Highly compressed representation

○ More effective use of memory bandwidth



Index Linearization

● Element indices are linearized in 

one-dimensional space

○ Highly compressed representation

○ More effective use of memory bandwidth

○ Allows for fine-grained parallelism (load balance)



Index Linearization

● Element indices are linearized in 

one-dimensional space

○ Highly compressed representation

○ More effective use of memory bandwidth

○ Allows for fine-grained parallelism (load balance)

● Elements are linearized and ordered based on 

ALTO [Helal et. al, 2021]



Index Linearization

● Element indices are linearized in 

one-dimensional space

○ Highly compressed representation

○ More effective use of memory bandwidth

○ Allows for fine-grained parallelism (load balance)

● Elements are linearized and ordered based on 

ALTO [Helal et. al, 2021]

● Indices are then re-linearized

○ Allows for fast delinearization on GPUs
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Adaptive Blocking

● Linearization may exceed integer 

width (i.e. 64 bits)

● Block the tensor based on the 

excessive bits
○ Mode-agnostic approach

○ Adds minimal memory overhead

○ Blocks can be streamed for 

out-of-memory computation

○ Leverage list-based storage to expose 

fine grained parallel processing…
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Hierarchical Conflict Resolution

Figure source: https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/ 

● Synchronization overhead is expensive 

for list-based formats

○ Especially true on GPUs

● Leverage multiple memory levels 

hierarchically to minimize atomics

○ Register memory: segmented scan

○ Shared memory: software cache

○ Global memory: pull-based reduction

https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/


State-of-the-Art Approaches

Name Data Format Load 
Balance

Synchronization Mode 
Orientation

Data 
Compression

Mode 
Algorithms

F-COO
[Liu et al. 2017]

List-
based

Optimal Reductions in shared 
memory

Mode-specific Multiple copies 
required

1

B-CSF
[Nisa et. al, 2019]

Tree-
based

Improved Minimized by data 
structure

Mode-specific Multiple copies 
required

N

MM-CSF 
[Nisa et. al, 2019]

Tree-
based

Improved Minimized by data 
structure

Mode-specific Single copy N

BLCO
[this work]

List-based Optimal Reductions at 
multiple memory 
levels

Mode-agnostic Single copy, 
streamable

1



Evaluation Platform

GPUS:

● NVIDIA A100
● NVIDIA V100

Considered frameworks:

● MM-CSF
● F-COO
● Genten
● BLCO

Benchmark datasets: 11 real-world 
tensors from FROSTT

Compilation: double-precision / 
64-bit data types
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Framework Comparison

Higher is better

Speedup observed across 
different architectures
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State-of-the-Art Comparison

Higher is better
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the smallest of tensors



State-of-the-Art Comparison

Higher is better

Consistently better performance 
on even the largest of datasets
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Memory Traffic Analysis

MM-CSF 
achieves lower 
memory traffic 
by being more 
compressed 
overall



Memory Traffic Analysis

BLCO achieves 
higher memory 
throughput with 
hierarchical 
conflict resolution 
(using every level 
of memory)



Memory Traffic Analysis

BLCO also has 
less performance 
irregularity 
across the 
different modes



Closing Thoughts

● Tensors are becoming prevalent for data analysis

● Efficient tensor formats and algorithms are needed to maximize hardware 

utilization and throughput

● Our BLCO format outperforms state-of-the-art by up to 33.35x (avg 2.90x) 

through novel data compression and massively parallel computation

● Future work includes exploring heterogeneous shared-memory 

computation and extension to distributed-memory platforms



Thank you!


