
Andy Nguyen1, Ahmed E. Helal2, Fabio Checconi2, Jan Laukemann2,
Jesmin Jahan Tithi2, Yongseok Soh1, Teresa Ranadive3, Fabrizio Petrini2,

Jee Whan Choi1

1 University of Oregon 2 Intel Labs 3 Laboratory for Physical Sciences

February 25th @ SIAM PP ‘22

Efficient, Out-of-Memory Sparse MTTKRP
on Massively Parallel Architectures

Outline

● Introduction to sparse tensors

● Sparse tensor kernel: MTTKRP in CPD-ALS

● Prior state of the art approaches

● Our approach
○ Tensor data format

○ Parallel algorithm

○ Evaluations

● Closing thoughts

Tensors

Real-World Tensors

Product reviews

Signal processing

Electronic health
records

Recommendation systems

Law enforcement
data

Sparse Tensors

Sparse Tensors

Sparse Tensors

Even harder to optimize than
sparse matrix kernels:

● Curse of dimensionality
● Algorithm scalability
● Complex data compression

Tensor Decomposition

Canonical Polyadic Decomposition (CPD)

MTTKRP

● Bottleneck in well known CPD-ALS

algorithm

● M ← X
(1)

C ⊙ B

MTTKRP

● Challenges in optimizing MTTKRP:

MTTKRP

● Challenges in optimizing MTTKRP:

○ Memory-intensive kernel

MTTKRP

● Challenges in optimizing MTTKRP:

○ Memory-intensive kernel

○ Complex data locality nature

MTTKRP

● Challenges in optimizing MTTKRP:

○ Memory-intensive kernel

○ Complex data locality nature

○ Synchronization overhead when

updating factor matrices

MTTKRP

● Challenges in optimizing MTTKRP:

○ Memory-intensive kernel

○ Complex data locality nature

○ Synchronization overhead when

updating factor matrices

○ Load imbalance across threads

MTTKRP

● Challenges in optimizing MTTKRP:

○ Memory-intensive kernel

○ Complex data locality nature

○ Synchronization overhead when

updating factor matrices

○ Load imbalance across threads

○ Limited memory on GPU accelerators

State-of-the-Art Performance Issues

● Setup:
○ Individual mode MTTKRP on

MM-CSF framework
○ Normalized against best

performing mode
○ Blue line is baseline
○ NVIDIA A100

● Higher is worse

State-of-the-Art Performance Issues

● Setup:
○ Individual mode MTTKRP on

MM-CSF framework
○ Normalized against best

performing mode
○ Blue line is baseline
○ NVIDIA A100

● Higher is worse

Over an order of magnitude worse
depending on the mode. All modes
require the same number of FLOPs

State-of-the-Art Approaches

Name Data Format Load
Balance

Synchronization Mode
Orientation

Data
Compression

Mode
Algorithms

F-COO
[Liu et al. 2017]

List-
based

Optimal Reductions in shared
memory

Mode-specific Multiple copies
required

1

B-CSF
[Nisa et. al, 2019]

Tree-
based

Improved Minimized by data
structure

Mode-specific Multiple copies
required

N

MM-CSF
[Nisa et. al, 2019]

Tree-
based

Improved Minimized by data
structure

Mode-specific Single copy N

State-of-the-Art Approaches

Name Data Format Load
Balance

Synchronization Mode
Orientation

Data
Compression

Mode
Algorithms

F-COO
[Liu et al. 2017]

List-
based

Optimal Reductions in shared
memory

Mode-specific Multiple copies
required

1

B-CSF
[Nisa et. al, 2019]

Tree-
based

Improved Minimized by data
structure

Mode-specific Multiple copies
required

N

MM-CSF
[Nisa et. al, 2019]

Tree-
based

Improved Minimized by data
structure

Mode-specific Single copy N

→ State of the art approaches have tradeoffs that severely impact performance

Blocked Linearized CoOrdinates (BLCO)

● A list-based yet highly compressed and

massively parallel tensor format

Blocked Linearized CoOrdinates (BLCO)

● A list-based yet highly compressed and

massively parallel tensor format

● Index linearization maps multidimensional

coordinates into linear space

Blocked Linearized CoOrdinates (BLCO)

● A list-based yet highly compressed and

massively parallel tensor format

● Index linearization maps multidimensional

coordinates into linear space

● Adaptive blocking blocks the tensor to meet

target GPU resource constraints

Blocked Linearized CoOrdinates (BLCO)

● A list-based yet highly compressed and

massively parallel tensor format

● Index linearization maps multidimensional

coordinates into linear space

● Adaptive blocking blocks the tensor to meet

target GPU resource constraints

● Hierarchical conflict resolution resolves

synchronization conflicts at multiple levels of

the memory hierarchy

Index Linearization

● Element indices are linearized in

one-dimensional space

Index Linearization

● Element indices are linearized in

one-dimensional space

○ Highly compressed representation

Index Linearization

● Element indices are linearized in

one-dimensional space

○ Highly compressed representation

○ More effective use of memory bandwidth

Index Linearization

● Element indices are linearized in

one-dimensional space

○ Highly compressed representation

○ More effective use of memory bandwidth

○ Allows for fine-grained parallelism (load balance)

Index Linearization

● Element indices are linearized in

one-dimensional space

○ Highly compressed representation

○ More effective use of memory bandwidth

○ Allows for fine-grained parallelism (load balance)

● Elements are linearized and ordered based on

ALTO [Helal et. al, 2021]

Index Linearization

● Element indices are linearized in

one-dimensional space

○ Highly compressed representation

○ More effective use of memory bandwidth

○ Allows for fine-grained parallelism (load balance)

● Elements are linearized and ordered based on

ALTO [Helal et. al, 2021]

● Indices are then re-linearized

○ Allows for fast delinearization on GPUs

Adaptive Blocking

● Linearization may exceed integer

width (i.e. 64 bits)

Adaptive Blocking

● Linearization may exceed integer

width (i.e. 64 bits)

● Block the tensor based on the

excessive bits

Adaptive Blocking

● Linearization may exceed integer

width (i.e. 64 bits)

● Block the tensor based on the

excessive bits
○ Mode-agnostic approach

Adaptive Blocking

● Linearization may exceed integer

width (i.e. 64 bits)

● Block the tensor based on the

excessive bits
○ Mode-agnostic approach

○ Adds minimal memory overhead

Adaptive Blocking

● Linearization may exceed integer

width (i.e. 64 bits)

● Block the tensor based on the

excessive bits
○ Mode-agnostic approach

○ Adds minimal memory overhead

○ Blocks can be streamed for

out-of-memory computation

Adaptive Blocking

● Linearization may exceed integer

width (i.e. 64 bits)

● Block the tensor based on the

excessive bits
○ Mode-agnostic approach

○ Adds minimal memory overhead

○ Blocks can be streamed for

out-of-memory computation

○ Leverage list-based storage to expose

fine grained parallel processing…

Hierarchical Conflict Resolution

● Synchronization overhead is expensive

for list-based formats

○ Especially true on GPUs

Hierarchical Conflict Resolution

Figure source: https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/

● Synchronization overhead is expensive

for list-based formats

○ Especially true on GPUs

● Leverage multiple memory levels

hierarchically to minimize atomics

https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/

Hierarchical Conflict Resolution

Figure source: https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/

● Synchronization overhead is expensive

for list-based formats

○ Especially true on GPUs

● Leverage multiple memory levels

hierarchically to minimize atomics

○ Register memory: segmented scan

https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/

Hierarchical Conflict Resolution

Figure source: https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/

● Synchronization overhead is expensive

for list-based formats

○ Especially true on GPUs

● Leverage multiple memory levels

hierarchically to minimize atomics

○ Register memory: segmented scan

○ Shared memory: software cache

https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/

Hierarchical Conflict Resolution

Figure source: https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/

● Synchronization overhead is expensive

for list-based formats

○ Especially true on GPUs

● Leverage multiple memory levels

hierarchically to minimize atomics

○ Register memory: segmented scan

○ Shared memory: software cache

○ Global memory: pull-based reduction

https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/

State-of-the-Art Approaches

Name Data Format Load
Balance

Synchronization Mode
Orientation

Data
Compression

Mode
Algorithms

F-COO
[Liu et al. 2017]

List-
based

Optimal Reductions in shared
memory

Mode-specific Multiple copies
required

1

B-CSF
[Nisa et. al, 2019]

Tree-
based

Improved Minimized by data
structure

Mode-specific Multiple copies
required

N

MM-CSF
[Nisa et. al, 2019]

Tree-
based

Improved Minimized by data
structure

Mode-specific Single copy N

BLCO
[this work]

List-based Optimal Reductions at
multiple memory
levels

Mode-agnostic Single copy,
streamable

1

Evaluation Platform

GPUS:

● NVIDIA A100
● NVIDIA V100

Considered frameworks:

● MM-CSF
● F-COO
● Genten
● BLCO

Benchmark datasets: 11 real-world
tensors from FROSTT

Compilation: double-precision /
64-bit data types

Framework Comparison

Higher is better

Framework Comparison

Higher is better

Up to 2.90x speedup over prior
state of the art

Framework Comparison

Higher is better

Speedup observed across
different architectures

State-of-the-Art Comparison

Higher is better

State-of-the-Art Comparison

Higher is better

Worse performance on
the smallest of tensors

State-of-the-Art Comparison

Higher is better

Consistently better performance
on even the largest of datasets

Memory Traffic Analysis

Memory Traffic Analysis

MM-CSF
achieves lower
memory traffic
by being more
compressed
overall

Memory Traffic Analysis

BLCO achieves
higher memory
throughput with
hierarchical
conflict resolution
(using every level
of memory)

Memory Traffic Analysis

BLCO also has
less performance
irregularity
across the
different modes

Closing Thoughts

● Tensors are becoming prevalent for data analysis

● Efficient tensor formats and algorithms are needed to maximize hardware

utilization and throughput

● Our BLCO format outperforms state-of-the-art by up to 33.35x (avg 2.90x)

through novel data compression and massively parallel computation

● Future work includes exploring heterogeneous shared-memory

computation and extension to distributed-memory platforms

Thank you!

