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Introduction

Tensor decomposition: =⇒ minimize “distance” between tensor X
and decomposition model M:

minimize
s.t. constraints

∑
i

( x i︸︷︷︸
tensor entry

− m i︸︷︷︸
model entry

)2/2 vs. (1)

minimize
s.t. constraints

∑
i

(mi − xi log(mi)) + cX . (2)

CP–APR is most commonly used to solve (2).

All–at–once optimization algorithms often compute more accurate
decompositions than alternating algorithms.

CP–POPT outperforms CP–APR for tensors formed from network
traffic data sets, in terms of decomposition accuracy and latent
behavior detection.
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Introduction

One iteration of CP–POPT requires > 3x as much time to complete
as one iteration of CP–APR (shared memory).

CP–APR converges in fewer iterations than CP–POPT.

Implemented distributed memory version of CP–POPT to decrease
time required for CP-POPT to compute decompositions:

One iteration of CP–POPT often requires less time to complete than
one iteration of CP–APR.

For larger tensors, CP–POPT currently scales well as the number of
processors is increased, provided no tensor dimensions are too large.
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Background Information

A rank-R CP tensor decomposition M of X :

Each decomposition model entry is mijk =
∑R

r=1 a
(r)
i b

(r)
j c

(r)
k .

To compute a CP count tensor decomposition in practice, solve

minimize
s.t. all variables ≥0

∑
i

(mi − xi log(mi+ϵ)) + cX . (3)

Both CP–APR and CP–POPT compute accurate decompositions.
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CP–POPT–GDGN Algorithm

Summary of CP–POPT:

(i) Compute a Cauchy point z(k).

(ii) Use z(k) to determine which entries of the next iterate will be active
(fixed at zero).

(iii) “Scooch” certain entries of z(k) away from zero.

(iv) Compute a damped Newton based direction to update the free

variables and (ideally) obtain a point x
(k)
GN such that f (x

(k)
GN) < f (z(k)).

(v) Decide whether the next iterate should be given by x
(k)
GN or z(k).

(vi) Adjust the damping parameter for the next iteration.
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CP–POPT–GDGN Implementation and Data Sets

Implemented shared and distributed–memory verison of POPT into
ENSIGN.

Main bottleneck is solving linear system to obtain the generalized
damped Gauss–Newton direction.

System solved using PCG method with Jacobi preconditioner.

Data set Dimensions No. of Non-zeros

Chicago 6,186 x 24 x 77 x 32 5,330,673

LANL1
1,433 x 22,077 x 534,687 x

40,266,345
58,389 x 11

LANL2 3,761 x 11,154 x 8,711 x 75,147 x 9 69,082,467

LBNL
1,605 x 4,198 x 1,631 x

1,698,825
4,209 x 868,131

Plant 562 x 124 x 123 8,370

RL1 279 x 248 x 1,757 x 10 46,591

RL2 1,512 x 433 x 4,568 x 4,743 314,276

Table: Tensors generated from seven different data sets.
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Decomposition Accuracy

CP-APR CP-POPT

Chicago 4.2E-1 4.2E-1

LANL1 2.2E-11 2.2E-11

LANL2 3.5E-9 3.4E-9

LBNL 3.1E-11 2.6E-11

Plant 7.4E-3 7.4E-3

RL1 2.5E-4 2.5E-4

RL2 5.9E-8 5.7E-8

Table: Best value obtained for (3), divided by the number of tensor entries.

Figure: Objective value vs. time in seconds for each of the two large–scale tensors.
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Latent Behavior Detection

If C is a component from a decomposition M1, the behavior described
by C has also been detected by a second decomposition M2 if

⟨C,M2⟩F
∥C∥F∥M2∥F

≥ threshold.

In the LANL1 data set, POPT detected two behaviors that MU did
not; MU did not detect any additional behaviors.
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Distributed Memory Implementations

Implemented a distributed memory version of CP–POPT into ENSIGN
to compare to existing distributed memory version of CP–APR.

Data spread across nodes; all factor matrices are stored on all modes.

Each iteration of CP–POPT still often requires more computation
than CP–APR.

As computing resources are increased, the amount of time required to
perform local computation is reduced.

Nature of CP-POPT algorithm is more conducive to being exploited
in the distributed memory implementation.
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Decomposition Accuracy Over Time

Figure: Objective value vs. time in seconds for each of the two large–scale
tensors, using (top) one node and (bottom) two nodes.
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Algorithm Scalability

Figure: Time to convergence vs. no. CPUs for each of the two large–scale tensors.

CP-APR runs for 100 iterations; CP-POPT for 200.

Long third dimension in LANL1 tensor hinders CP-POPT scalability.

CP-POPT achieves good scalability on LANL2 tensor; converges in
about the same amount of time as CP-APR.
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Conclusions

CP-POPT often achieves more accurate decompositions than
CP-APR, but shared memory implementation is slow.

Distributed memory implementation of CP-POPT is not much slower
than distributed memory implementation of CP-APR, and is
occasionally faster.

In future, plan to split data along longest mode to reduce
communication for distributed CP-POPT and obtain more scalable
implementation.

Also, want to look into all-at-once optimization methods for other
types of tensors (e.g., binary tensors).

Ranadive (LPS) Distributed CP–POPT February 25th, 2022 13 / 14



14/14

References

ENSIGN Tensor Toolbox, Reservoir Labs. Accessed: Jul. 6, 2021. [Online]. Available:
https://www.reservoir.com/ensign/

M. Baskaran et al., “Memory-efficient parallel tensor decompositions,” in Proc. IEEE High
Perform. Extreme Comput. Conf., Waltham, MA, USA, Sept. 12–14, 2017.

E. C. Chi and T. G. Kolda, “On tensors, sparsity, and nonnegative factorizations,” SIAM
J. Matrix Anal. and Appl., vol. 33, pp. 1272–1299, 2013.

A.D. Kent, “Cybersecurity data sources for dynamic network research,” in Dynamic
Networks and Cyber–Security, World Scientific, 2015, ch. 2, pp. 37-65.

T.M. Ranadive and M.M. Baskaran, “An All–at–Once CP Decomposition Method for
Count Tensors” in Proc. IEEE High Perform. Extreme Comput. Conf., Sept. 20–21, 2021.

S. Smith et. al., FROSTT: The formidable repository of open sparse tensors and tools,
2017. [Online]. Available: http://frostt.io/

M. Turcotte, A. Kent and C. Hash, “Unified host and network data set,” in Data Science
for Cyber-Security, World Scientific, Nov. 2018, ch. 1, pp. 1-22.

Ranadive (LPS) Distributed CP–POPT February 25th, 2022 14 / 14


