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Introduction

@ Tensor decomposition: = minimize “distance” between tensor X’
and decomposition model M:
. - 2
minimize Z( Xi  —  m; )2 vs. (1)

s.t. constraints -
! tensor entry  model entry

iz, 2 (m = slog(m) + cx. @
1

e CP-APR is most commonly used to solve (2).

@ All-at—once optimization algorithms often compute more accurate
decompositions than alternating algorithms.

@ CP-POPT outperforms CP-APR for tensors formed from network
traffic data sets, in terms of decomposition accuracy and latent
behavior detection.

Ranadive (LPS) Distributed CP—-POPT February 25th, 2022



Introduction

@ One iteration of CP-POPT requires > 3x as much time to complete
as one iteration of CP—APR (shared memory).

@ CP-APR converges in fewer iterations than CP-POPT.

@ Implemented distributed memory version of CP-POPT to decrease
time required for CP-POPT to compute decompositions:

e One iteration of CP-POPT often requires less time to complete than
one iteration of CP—APR.

e For larger tensors, CP—POPT currently scales well as the number of
processors is increased, provided no tensor dimensions are too large.
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Background Information

@ A rank-R CP tensor decomposition M of X"
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@ Each decomposition model entry is mjj = 25:1 a

(p{elr)

i
@ To compute a CP count tensor decomposition in practice, solve
minimize Z (m; — x; log(mj+e¢)) + cx. (3)

s.t. all variables >0 -
i

@ Both CP-APR and CP-POPT compute accurate decompositions.
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CP-POPT-GDGN Algorithm

Summary of CP—-POPT:
(i) Compute a Cauchy point z(¥).

(ii) Use z() to determine which entries of the next iterate will be active
(fixed at zero).

(iii) “Scooch” certain entries of z(X) away from zero.

(iv) Compute a damped Newton based direction to update the free

variables and (ideally) obtain a point x) such that f(x&)) < £(z(¥)).

(v) Decide whether the next iterate should be given by xs;k,zI or z(%).

(vi) Adjust the damping parameter for the next iteration.
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CP-POPT-GDGN Implementation and Data Sets

@ Implemented shared and distributed—memory verison of POPT into
ENSIGN.

@ Main bottleneck is solving linear system to obtain the generalized
damped Gauss—Newton direction.

@ System solved using PCG method with Jacobi preconditioner.

Data set Dimensions No. of Non-zeros

Chicago 6,186 x 24 x 77 x 32 5,330,673
1,433 x 22,077 x 534,687 x

LANL1 58380 x 11 40,266,345

LANL2 3,761 x 11,154 x 8,711 x 75,147 x 9 69,082,467

1,605 x 4,198 x 1,631 x

LBNL 4,209 x 868,131 1,698,825
Plant 562 x 124 x 123 8,370
RL1 279 x 248 x 1,757 x 10 46,591
RL2 1,512 x 433 x 4,568 x 4,743 314,276

Table: Tensors generated from seven different data sets.
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Decomposition Accuracy

CP-APR  CP-POPT
Chicago | 4.2E-1 4.2E-1
LANL1 2.2E-11 2.2E-11
LANL2 3.5E-9 3.4E-9
LBNL 3.1E-11 2.6E-11

Plant 7.4E-3 7.4E-3
RL1 2.5E-4 2.5E-4
RL2 5.9E-8 5.7E-8

Table: Best value obtained for (3), divided by the number of tensor entries.
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Figure: Objective value vs. time in seconds for each of the two large—scale tensors.
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Latent Behavior Detection

o If C is a component from a decomposition M, the behavior described
by C has also been detected by a second decomposition My if

<Ca M2>F
ICllFIM2llF

@ In the LANL1 data set, POPT detected two behaviors that MU did
not; MU did not detect any additional behaviors.

> threshold.
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Distributed Memory Implementations

@ Implemented a distributed memory version of CP—POPT into ENSIGN
to compare to existing distributed memory version of CP-—APR.

@ Data spread across nodes; all factor matrices are stored on all modes.

@ Each iteration of CP-POPT still often requires more computation
than CP-APR.

@ As computing resources are increased, the amount of time required to
perform local computation is reduced.

o Nature of CP-POPT algorithm is more conducive to being exploited
in the distributed memory implementation.
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Decomposition Accuracy Over Time
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Figure: Objective value vs. time in seconds for each of the two large—scale
tensors, using (top) one node and (bottom) two nodes.
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Algorithm Scalability
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Figure: Time to convergence vs. no. CPUs for each of the two large—scale tensors.

@ CP-APR runs for 100 iterations; CP-POPT for 200.
@ Long third dimension in LANL1 tensor hinders CP-POPT scalability.

@ CP-POPT achieves good scalability on LANL2 tensor; converges in
about the same amount of time as CP-APR.
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Conclusions

@ CP-POPT often achieves more accurate decompositions than
CP-APR, but shared memory implementation is slow.

@ Distributed memory implementation of CP-POPT is not much slower
than distributed memory implementation of CP-APR, and is
occasionally faster.

@ In future, plan to split data along longest mode to reduce
communication for distributed CP-POPT and obtain more scalable
implementation.

@ Also, want to look into all-at-once optimization methods for other
types of tensors (e.g., binary tensors).
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