Fully Constrained PARAFAC2 with AO-ADMM

Marie Roald, Carla Schenker, Rasmus Bro, Jeremy E. Cohen, Evrim Acar SIAM PP22 - 2022-02-25

simulamet of the sub-

Applications

Applications

PARAFAC2 is a tensor decomposition method that allows the B mode to have a different factor matrix for each frontal slice

Different B factor

$\mathbf{X}_{k} \approx \mathbf{A} \operatorname{diag}\left(\mathbf{c}_{k:}\right) \mathbf{B}_{k}^{\mathsf{T}}$ $\mathbf{B}_{k}^{\mathsf{T}} \mathbf{B}_{k} = \Phi$

The PARAFAC2 model achieves uniqueness by imposing a constant cross product constraint on the evolving mode

$\mathbf{X}_k \approx \operatorname{Adiag}\left(\mathbf{c}_{k:}\right) \mathbf{B}_k^{\mathsf{T}}$

Constant cross product for each time step

[Harshman, RA. UCLA working papers in phonetics 1972]

 $\mathbf{B}_{k}^{\mathsf{T}}\mathbf{B}_{k}=\Phi$

 $\mathbf{X}_k \approx \operatorname{Adiag}\left(\mathbf{c}_{k:}\right) \mathbf{B}_k^{\mathsf{I}}$ $\mathbf{B}_k^\mathsf{T}\mathbf{B}_k = \Phi$

PARAFAC2 captures both the meaningful components and their evolution in time

However, the PARAFAC2 model fits the noise more than the PARAFAC model and yields noisy components

Therefore we want to encourage smooth components through regularisation

9
$$\mathbf{D}_k = \operatorname{diag}\left(\mathbf{c}_{k:}\right)$$

[Kiers HAL. et al. J. Chemometrics 1999]

We reformulate it to this problem

$$\begin{array}{ll} \underset{\mathbf{A}, \boldsymbol{\Delta}_{\mathbf{B}}, \{\mathbf{P}_{k}, \mathbf{D}_{k}\}_{k \leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A} \mathbf{D}_{k} \boldsymbol{\Delta}_{\mathbf{B}}^{\mathsf{T}} \mathbf{P}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} \\ \text{s.t.} & \mathbf{P}_{k}^{\mathsf{T}} \mathbf{P}_{k} = \mathbf{I} \quad \forall k \end{array}$$

10 $\mathbf{D}_k = \operatorname{diag}(\mathbf{c}_{k:})$

[Kiers HAL. et al. J. Chemometrics 1999]

[Kiers HAL. et al. J. Chemometrics 1999]

Previous work ensures smooth components by projecting the data onto a subspace of smooth data

Standard B-spline basis vectors

[Helwig, N.E. Biometrical Journal 2017]

Informed M-spline basis vectors [Afshar, A. et al. CIKM 2018]

Non-negativity has been imposed via a flexible coupling approach with HALS

$$\begin{array}{l} \underset{\mathbf{A}, \boldsymbol{\Delta}_{\mathbf{B}}, \mathbf{C}, \{\mathbf{P}_{k}, \mathbf{B}_{k}\}_{k \leq K}}{\text{minimize}} \sum_{k=1}^{K} \|\mathbf{X}_{k} - \mathbf{A}\mathbf{D}_{k}\mathbf{B}_{k}^{\mathsf{T}}\|^{2} + \mu \|\mathbf{B}_{k} - \mathbf{P}_{k}\boldsymbol{\Delta}_{\mathbf{B}}\|^{2} \\ \text{s.t.} \quad \mathbf{P}_{k}^{\mathsf{T}}\mathbf{P}_{k} = \mathbf{I} \end{array}$$

Non-negativity has been imposed via a flexible coupling approach with HALS

$$\begin{array}{l} \underset{\mathbf{A}, \boldsymbol{\Delta}_{\mathbf{B}}, \mathbf{C}, \{\mathbf{P}_{k}, \mathbf{B}_{k}\}_{k \leq K}}{\text{minimize}} \sum_{k=1}^{K} \|\mathbf{X}_{k} - \mathbf{A}\mathbf{D}_{k}\mathbf{B}_{k}^{\mathsf{T}}\|^{2} + \mu \|\mathbf{B}_{k} - \mathbf{P}_{k}\boldsymbol{\Delta}_{\mathbf{B}}\|^{2} \\ \text{s.t.} \quad \mathbf{P}_{k}^{\mathsf{T}}\mathbf{P}_{k} = \mathbf{I} \end{array}$$

Increase every iteration following some heuristic

Non-negativity has been imposed via a flexible coupling approach with HALS

Applications

For the AO-ADMM scheme, we fit the modes alternatingly and solve the regularised subproblems with ADMM

> Until convergence: Update A matrix Update B_k matrices Update C matrix (D_k matrices)

The ADMM updates for the A and C matrix are well known, so we focus on how to update the B_k matrices with regularisation

Until convergence: Update A matrix Update B_k matrices Update C matrix (D_k matrices)

We propose using ADMM to update the $B_{\overline{k}}$ components

We propose using ADMM to update the $\mathbf{B}_{\overline{k}}$ components

$\begin{array}{ll} \text{minimize} & f(\mathbf{x}) + g(\mathbf{z}_{\mathbf{x}}) \\ \mathbf{x}, \mathbf{z}_{\mathbf{x}} \end{array}$

Auxiliary variable for the regularisation

We propose using ADMM to update the $\mathbf{B}_{\overline{k}}$ components

Auxiliary variable for the regularisation

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k},\mathbf{Z}_{\mathbf{B}_{k}},\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A}\mathbf{D}_{k}\mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}}\mathbf{Y}_{\mathbf{B}_{k}} = \Phi, \qquad \forall k \end{array}$$

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k},\mathbf{Z}_{\mathbf{B}_{k}},\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A}\mathbf{D}_{k}\mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}}\mathbf{Y}_{\mathbf{B}_{k}} = \Phi, \qquad \forall k \end{array}$$

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k},\mathbf{Z}_{\mathbf{B}_{k}},\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A}\mathbf{D}_{k}\mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}}\mathbf{Y}_{\mathbf{B}_{k}} = \Phi, \qquad \forall k \end{array}$$

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k}, \mathbf{Z}_{\mathbf{B}_{k}}, \mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k \leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}} \left(\mathbf{Z}_{\mathbf{B}_{k}} \right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}} \mathbf{Y}_{\mathbf{B}_{k}} = \Phi, \qquad \forall k \end{array}$$

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k},\mathbf{Z}_{\mathbf{B}_{k}},\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A}\mathbf{D}_{k}\mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}}\mathbf{Y}_{\mathbf{B}_{k}} = \Phi, \qquad \forall k \end{array}$$

To obtain a problem that can be solved by ADMM, we use an implicit constraint instead of an explicit constraint for $\mathbf{Y}_{\mathbf{B}_k}$

$$\begin{array}{l} \underset{\left\{\mathbf{B}_{k}, \mathbf{Z}_{\mathbf{B}_{k}}, \mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k \leq K}}{\text{minimize}} & \sum_{k=1}^{K} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + g_{\mathbf{B}} \left(\mathbf{Z}_{\mathbf{B}_{k}} \right) + \iota_{\text{PF2}} \left(\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k \leq K} \right) \\ \text{s.t.} & \mathbf{B}_{k} = \mathbf{Z}_{\mathbf{B}_{k}}, \qquad \forall k \\ & \mathbf{B}_{k} = \mathbf{Y}_{\mathbf{B}_{k}}, \qquad \forall k \end{array}$$

$$\iota_{\mathrm{PF2}}\left(\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k\leq K}\right) = \begin{cases} 0, & \text{if } \mathbf{Y}_{\mathbf{B}_{k}}^{\mathsf{T}}\mathbf{Y}_{\mathbf{B}_{k}} = \Phi \quad \forall k \\ \infty, & \text{otherwise} \end{cases}$$

Using ADMM, we obtain the following update steps:

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{array}{l} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{\Delta}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} \end{array} \right\}$$

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\left\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\right\}_{k\leq K} \leftarrow \min_{\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)} + \mathbf{B}_{k}^{(t+1)} - \mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)} + \mathbf{B}_{k}^{(t+1)} - \mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}$$

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{aligned} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}\mathbf{B}_{k}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{\Delta}\mathbf{B}_{k}}^{(t)}) \right\|_{F}^{2} \end{aligned} \right\}$$

Update the components to fit the data well, while still being close to the auxiliary variables

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\left\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\right\}_{k\leq K} \leftarrow \min_{\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)} + \mathbf{B}_{k}^{(t+1)} - \mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Y}_{\mathbf{B}_k}^{(t+1)}$$

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{array}{l} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{\Delta}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} \right\}$$

Update first auxiliary variable to follow regularisation while being close to the components

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\}_{k\leq K} \leftarrow \min_{\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)} + \mathbf{B}_{k}^{(t+1)} - \mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Y}_{\mathbf{B}_k}^{(t+1)}$$

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{array}{l} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} \right\}$$

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

Update second auxiliary variable to follow the PF2 constraint while being close to the components

$$\left\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\right\}_{k\leq K} \leftarrow \min_{\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Z}_{\mathbf{B}_k}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)} + \mathbf{B}_{k}^{(t+1)} - \mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}$$

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{array}{l} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \left\{ \begin{array}{l} \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}\mathbf{B}_{k}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{\Delta}\mathbf{B}_{k}}^{(t)}) \right\|_{F}^{2} \end{array} \right\}$$

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\left\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\right\}_{k\leq K} \leftarrow \min_{\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

Update the first scaled dual variable to correct the regularisation coupling

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Z}_{\mathbf{B}_k}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Y}_{\mathbf{B}_k}^{(t+1)}$$

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{array}{l} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}\mathbf{B}_{k}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{\Delta}\mathbf{B}_{k}}^{(t)}) \right\|_{F}^{2} \right\}$$

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\left\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\right\}_{k\leq K} \leftarrow \min_{\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\left\{\mathbf{Y}_{\mathbf{B}_{k}}\right\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)} + \mathbf{B}_{k}^{(t+1)} - \mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Y}_{\mathbf{B}_k}^{(t+1)}$$

Update the second scaled dual variable to correct the constraint coupling

We repeat these steps N times or until convergence for every outer iteration

$$\mathbf{B}_{k}^{(t+1)} \leftarrow \min_{\mathbf{B}_{k}} \left\{ \begin{array}{l} \left\| \mathbf{A} \mathbf{D}_{k} \mathbf{B}_{k}^{\mathsf{T}} - \mathbf{X}_{k} \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Z}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} + \\ \frac{\rho_{k}}{2} \left\| \mathbf{B}_{k} - (\mathbf{Y}_{\mathbf{B}_{k}}^{(t)} - \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}) \right\|_{F}^{2} \right\}$$

$$\mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)} \leftarrow \min_{\mathbf{Z}_{\mathbf{B}_{k}}} \quad g_{\mathbf{B}}\left(\mathbf{Z}_{\mathbf{B}_{k}}\right) \quad + \quad \frac{\rho_{k}}{2} \left\|\mathbf{Z}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\{\mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)}\}_{k\leq K} \leftarrow \min_{\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k\leq K}} \iota_{\mathrm{PF2}}\left(\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k\leq K}\right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\|\mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_{k}}}^{(t)}\right)\right\|_{F}^{2}$$

$$\boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\mathbf{Z}_{\mathbf{B}_{k}}}^{(t)} + \mathbf{B}_{k}^{(t+1)} - \mathbf{Z}_{\mathbf{B}_{k}}^{(t+1)}$$

$$\boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t+1)} \leftarrow \boldsymbol{\mu}_{\boldsymbol{\Delta}_{\mathbf{B}_k}}^{(t)} + \mathbf{B}_k^{(t+1)} - \mathbf{Y}_{\mathbf{B}_k}^{(t+1)}$$

$$\{ \mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)} \}_{k \leq K} \leftarrow \min_{\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k \leq K}} \iota_{\mathrm{PF2}} \left(\{ \mathbf{Y}_{\mathbf{B}_{k}} \}_{k \leq K} \right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\| \mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\Delta \mathbf{B}_{k}}^{(t)} \right) \right\|_{F}^{2} \right)$$

$$\{ \mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)} \}_{k \leq K} \leftarrow \min_{\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k \leq K}} \iota_{\mathrm{PF2}} \left(\{ \mathbf{Y}_{\mathbf{B}_{k}} \}_{k \leq K} \right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\| \mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\Delta \mathbf{B}_{k}}^{(t)} \right) \right\|_{F}^{2} \right)$$

$$\{ \mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)} \}_{k \leq K} \leftarrow \min_{\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k \leq K}} \iota_{\mathrm{PF2}} \left(\{ \mathbf{Y}_{\mathbf{B}_{k}} \}_{k \leq K} \right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\| \mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\Delta \mathbf{B}_{k}}^{(t)} \right) \right\|_{F}^{2} \right)$$

$$\{ \mathbf{Y}_{\mathbf{B}_{k}}^{(t+1)} \}_{k \leq K} \leftarrow \min_{\{\mathbf{Y}_{\mathbf{B}_{k}}\}_{k \leq K}} \iota_{\mathrm{PF2}} \left(\{ \mathbf{Y}_{\mathbf{B}_{k}} \}_{k \leq K} \right) + \sum_{k=1}^{K} \frac{\rho_{k}}{2} \left\| \mathbf{Y}_{\mathbf{B}_{k}} - \left(\mathbf{B}_{k}^{(t+1)} + \boldsymbol{\mu}_{\Delta \mathbf{B}_{k}}^{(t)} \right) \right\|_{F}^{2} \right)$$

Applications

To evaluate the effect of adding constraints to PARAFAC2 models with AO-ADMM, we used numerical experiments on simulated data

For evaluating unimodal constraints we generated \mathbf{B}_k components as shifting gaussian PDFs with varying widths

A: Truncated normal (I=10)
B_k: PDF of Gaussian (J=50):

$$[\mathbf{b}_k]_r = \mathbf{p}_{GAUSS}(\mu_{kr}, \sigma_{kr})$$

 $\mu_{kr} \sim \mu_r + 0.41k$ (shifting)
 $\mu_r \sim \mathcal{N}(-7, 0)$
 $\sigma_{kr} \sim \sigma_r + \mathcal{N}(0, 0.1)$
 $\sigma_r \sim U(0.5, 1)$
C: Uniform (0.1, 1.1) (K=50)
 η : 0.33

41

$$\mathbf{X}_{\text{noise}} = \mathbf{X} + \eta \mathbf{\mathcal{E}} \frac{||\mathbf{X}||_F}{||\mathbf{\mathcal{E}}||_F} \ \mathbf{\mathcal{E}}_{ijk} \sim \mathcal{N}(0, 1)$$

50 different datasets each setup, decomposed with **20** random initialisations for all models, selected model (that is not degenerate) with lowest loss.

Constraining the B_k matrices improves accuracy in all modes

ALS: Non-negative **A** & **C** imposed with ALS **HALS:** Non negative **A**, **B**_ks & **C** imposed with flexible coupling with HALS **NN:** Non negative **A**, **B**_ks & **C** imposed with AO-ADMM **NN&U:** Non negative **A**, **B**_ks & **C** and unimodal **B**_ks imposed with AO-ADMM

$$\text{FMS} = \frac{1}{R} \sum_{r=1}^{R} \left| \mathbf{a}_{r}^{\mathsf{T}} \hat{\mathbf{a}}_{r} \tilde{\mathbf{b}}_{r}^{\mathsf{T}} \hat{\tilde{\mathbf{b}}}_{r} \mathbf{c}_{r}^{\mathsf{T}} \hat{\mathbf{c}}_{r} \right|$$

Constraining the B_k matrices improves accuracy in all modes

Constrained PARAFAC2 AO-ADMM also showed improved recovery and interpretability using various other constraints

PARAFAC2 AO-ADMM is faster than the flexible coupling with HALS scheme

3 components SSE 0.2 0. FMS 0.9 $_1^{\mathrm{Rel.}}$ A: Truncated normal (I=10) \mathbf{B}_{ι} : PDF of Gaussian (J=50): Ö $\begin{bmatrix} \mathbf{b}_k \end{bmatrix}_{j,r} = \begin{bmatrix} \mathbf{b}_0 \end{bmatrix}_{j+k \mod \mathcal{J}, r} \\ \begin{bmatrix} \mathbf{b}_0 \end{bmatrix}_{j,r} \end{bmatrix}$ Truncated normal 25502550 \cap Time [s] Time [s] C: Uniform (0.1, 1.1) (K=50) 5 components $\overset{\mathrm{SSE}}{0.2}$ η: 0.33 FMS 0.90.1 $\mathbf{\mathfrak{X}}_{\text{noise}} = \mathbf{\mathfrak{X}} + \eta \mathbf{\mathcal{E}} \frac{||\mathbf{\mathfrak{X}}||_{F}}{||\mathbf{\mathcal{E}}||_{F}} \ \mathbf{\mathcal{E}}_{ijk} \sim \mathcal{N}(0,1)$ 0 50100150100500 150Time [s] Time [s]

50 different datasets each setup, decomposed with **10** random initialisations for all models, selected model (that is not degenerate) with lowest loss.

45

Applications

Constrained PARAFAC2 can improve interpretability in a chemometrics application

arXiv: 2110.01278

Constrained PARAFAC2 can improve interpretability in a chemometrics application

arXiv: 2110.01278

Constrained PARAFAC2 can improve interpretability in a chemometrics application

arXiv: 2110.01278

54

More details are available in our papers and on GitHub

- Roald M, Schenker C, Calhoun VD, Adalı T, Bro R, Cohen JE, Acar E. An AO-ADMM approach to constraining PARAFAC2 on all modes. Submitted to SIMODS, arXiv:2110.01278
 - Code at: <u>GitHub.com/MarieRoald/PARAFAC2-AOADMM-SIMODS</u>

- Roald M, Schenker C, Cohen JE, Acar E. PARAFAC2 AO-ADMM: Constraints in all modes. In2021 29th European Signal Processing Conference (EUSIPCO) 2021 Aug 23 (pp. 1040-1044). IEEE.
 - Code at: <u>GitHub.com/MarieRoald/PARAFAC2-AOADMM-EUSIPCO21</u>

There is also a Python package for fitting constrained PARAFAC2 models with AO-ADMM

In summary, our AO-ADMM scheme allows for fitting PARAFAC2 with flexible constraints on all modes and such constraints can improve accuracy and interpretability

simulamet of the

> [Roald, M. et al. ICASSP 2020] [Roald, M. et al. EUSIPCO 2021] [Roald, M. et al. arXiv:2110.01278]

In summary, our AO-ADMM scheme allows for fitting PARAFAC2 with flexible constraints on all modes and such constraints can improve accuracy and interpretability

