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Block-Structured matrices

Block-structured matrices (e.g., block Toeplitz/block Hankel) arise in many
applications:

1 Signal processing

2 Finite difference discretizations of PDEs

3 Geostatistical/Spatiotemporal statistical applications

4 Image deblurring

Our approach: Use tensor decompositions to

1 provide a unified approach for handling structured matrices

2 leverage inherent multidimensional structure, and

3 produce accurate and efficient matrix approximations
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The talk in one slide

Applications:

1 System identification

2 Space-time covariance matrices

Extensions to multilevel structure
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Step 1: Mapping matrices to tensors

Consider a block matrix A ∈ R(`m)×(nq) with `× q blocks of size m× n each.

Idea: We identify

the unique set of blocks (A1, . . . ,Ap).

the locations of the blocks and frequency of appearance, in a data
structure E .

Construct a 3D tensor: TE [A] ∈ Rm×p×n

Advantage of our approach: treat all the structured matrices in the same
framework.
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Step 2: Tensor Compression

Tucker format
1 Higher Order Singular Value Decomposition (HOSVD), Sequentially

Truncated HOSVD, Higher Order Orthogonal Iteration
2 Randomized Algorithms for Tucker decomposition

CP format
1 Alternating least squares

Kolda, Bader, SIAM Review, 2009. Cichocki, Foundations and Trends in Machine
Learning, 2016. Minster, Saibaba, Kilmer, SIMODS, 2020.
Arvind K. Saibaba (NC State) Structured Matrix Approximations February 26, 2022 5 / 17



Step 3: Mapping compressed tensors to matrices
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Recovering structured matrix approximations

Suppose we have the compressed tensor in Tucker form

TE [A] ≈ T̂E [A] := [G; U,V,W]

with rank (r1, r2, r3) we can approximate

≈
∑

j
Cj

⊗
Dj

Sum of Kronecker products

ME [T̂E [A]] =

r2∑
j=1

Cj ⊗ (Usq(G:,j,:)W
>).

Here Cj =
∑p

k=1 Ek ⊗ vkj has the same structure as A

Similar expressions can be derived when CP decomposition is used.
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Error in the matrix approximation

Let A ∈ R(`m)×(qn) and let TE [·] and ME [·] be the matrix-to-tensor and
tensor-to-matrix mappings respectively.

Theorem (Kilmer, S.)

Let T̂E [A] ≈ TE [A] be a tensor approximation computed using any appropriate
method. Then the error in the matrix approximation satisfies

‖A−ME [T̂E [A]]‖F = ‖TE [A]− T̂E [A]‖F .

Main message:

1 The error in the tensor approximation equals error in matrix
approximation in the Frobenius norm

2 The error is independent of the particular format/tensor decomposition
that is used

3 The resulting matrix approximations are efficient to store and easy to
work with
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Tests from SuiteSparse Collection

Each matrix is of size (`n)× (`n) and is block tridiagonal.

Name ` n Target rank r Relative Error Compression
pde2961 63 47 20 8.36× 10−10 0.4470
t2d_q4 99 99 5 2.93× 10−15 0.034
t2d_q9 99 99 5 2.93× 10−15 0.034
fv2 99 99 5 2.28× 10−15 0.034
chem_master1 201 201 5 1.79× 10−15 0.030
ecology1(∗) 500 1000 5 6.10× 10−15 0.009

We report the name of the matrix, the number of block rows `, the size of each
block n, the target rank used, the relative error and the compression ratio. (∗)

used the leading principal submatrix of size 500000× 500000.
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System Identification

Consider the linear time invariant system

xk+1 = Axk + Buk

yk = Cxk + Duk

k = 0, 1, . . .

In the impulse response case, we are given data of the form of Markov
parameters

hj =

{
D j = 0
CAj−1B j = 1, 2, . . . ,

Goal

Given the Markov parameters {hk} recover the system matrices (A,B,C,D)
(up to a similarity transformation).

Up to a similarity transformation (TAT−1,TB,CT−1,D).
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Eigensystem Realization Algorithm

Form the block-Hankel matrix Hs defined as

Hs =


h1 h2 . . . hs

h2 h3 . . . hs+1

...
... . .

. ...
hs hs+1 . . . h2s−1

 ∈ R(ms)×(ns) (1)

Assume d� s, such that rank(Hs) = d ≤ min{sm, sn}.

Algorithm: Given target rank r ≤ d
1 Compute the reduced-SVD Hs ≈ UrΣrV

>
r

2 Partition the left singular vectors

Ur =

[
Υf

∗

]
=

[
∗
Υl

]
3 Compute Ar = Σ

−1/2
r Υ†fΥlΣ

1/2
r . Recover Br,Cr from the SVD.

Kung, 1978. Juang and Pappa, 1985.
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Numerical Results: Power systems

System System Size Inputs n Outputs m Target rank
Power System 155 50 155 75

Our approach: use the tensor-based framework for block-Hankel matrices.
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Decay of the singular values in each mode. Based on this decay we chose the
target rank (56, 50, 30).

Minster, Saibaba, Kar, Chakrabortty, SIMAX, 2021.
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Numerical Results: Power systems
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Computational runtime (seconds) and accuracy (Hausdorff distance)

s Size ERA RandERA TuckerERA Error
100 15500× 5000 68 1.83 0.79 0.05
200 31000× 10000 − 3.95 1.52 0.015
700 108500× 35000 − 15.10 6.62 0.01
1000 155000× 50000 − 20.21 10.38 0.01
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Multilevel approximations

Structured matrices may have recursive structure. Examples:

Block-Toeplitz with Toeplitz Blocks

Triply block Toeplitz

Suppose A has L levels of structure. Write

A =

p1∑
i1=1

· · ·
pL∑

iL=1

E
(1)
i1
⊗ · · · ⊗E

(L)
iL
⊗
√
η
(1)
i1
· · · η(L)

iL
A(i1,...,iL),

where

the matrices A(i1,...,iL) are the m× n non-redundant blocks at level L

the matrices E
(j)
k ∈ R`j×qj represent mapping matrices at level j

Remarks:

We work with tensors (and decompositions) of order L+ 2

We can extend our approach to handle arbitrary number of levels and
different structures at each level

Many connections to Tensor Train and Matrix Product Operators.
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Contributions

A new, unified approach for structured matrix approximations that
leverages tensor decompositions

Extensions to multilevel structures possible

Applications: System identification, spacetime covariances, image
deblurring

Arvind K. Saibaba (NC State) Structured Matrix Approximations February 26, 2022 16 / 17



Thank you!

Preprint: M.E. Kilmer and A.K. Saibaba, Structured Matrix Approximations
via Tensor Decompositions. arXiv preprint:
https://arxiv.org/abs/2105.01170

This material is partly based upon work supported by the National Science Foundation
under Grant No. DMS-1439786 and by the Simons Foundation Grant No. 5073.
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