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Block-Structured matrices

Block-structured matrices (e.g., block Toeplitz/block Hankel) arise in many
applications:

1 Signal processing

2 Finite difference discretizations of PDEs

3 Geostatistical/Spatiotemporal statistical applications

4 Image deblurring

Our approach: Use tensor decompositions to

1 provide a unified approach for handling structured matrices

2 leverage inherent multidimensional structure, and

3 produce accurate and efficient matrix approximations
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The talk in one slide

Applications:

1 System identification

2 Space-time covariance matrices

Extensions to multilevel structure
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Step 1: Mapping matrices to tensors

Consider a block matrix A ∈ R(`m)×(nq) with `× q blocks of size m× n each.

Idea: We identify

the unique set of blocks (A1, . . . ,Ap).

the locations of the blocks and frequency of appearance, in a data
structure E .

Construct a 3D tensor: TE [A] ∈ Rm×p×n

Advantage of our approach: treat all the structured matrices in the same
framework.
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Step 2: Tensor Compression

Tucker format
1 Higher Order Singular Value Decomposition (HOSVD), Sequentially

Truncated HOSVD, Higher Order Orthogonal Iteration
2 Randomized Algorithms for Tucker decomposition

CP format
1 Alternating least squares

Kolda, Bader, SIAM Review, 2009. Cichocki, Foundations and Trends in Machine
Learning, 2016. Minster, Saibaba, Kilmer, SIMODS, 2020.
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Step 3: Mapping compressed tensors to matrices
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Recovering structured matrix approximations

Suppose we have the compressed tensor in Tucker form

TE [A] ≈ T̂E [A] := [G; U,V,W]

with rank (r1, r2, r3) we can approximate

≈
∑

j
Cj

⊗
Dj

Sum of Kronecker products

ME [T̂E [A]] =

r2∑
j=1

Cj ⊗ (Usq(G:,j,:)W
>).

Here Cj =
∑p

k=1 Ek ⊗ vkj has the same structure as A

Similar expressions can be derived when CP decomposition is used.
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Error in the matrix approximation

Let A ∈ R(`m)×(qn) and let TE [·] and ME [·] be the matrix-to-tensor and
tensor-to-matrix mappings respectively.

Theorem (Kilmer, S.)

Let T̂E [A] ≈ TE [A] be a tensor approximation computed using any appropriate
method. Then the error in the matrix approximation satisfies

‖A−ME [T̂E [A]]‖F = ‖TE [A]− T̂E [A]‖F .

Main message:

1 The error in the tensor approximation equals error in matrix
approximation in the Frobenius norm

2 The error is independent of the particular format/tensor decomposition
that is used

3 The resulting matrix approximations are efficient to store and easy to
work with
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Tests from SuiteSparse Collection

Each matrix is of size (`n)× (`n) and is block tridiagonal.

Name ` n Target rank r Relative Error Compression
pde2961 63 47 20 8.36× 10−10 0.4470
t2d_q4 99 99 5 2.93× 10−15 0.034
t2d_q9 99 99 5 2.93× 10−15 0.034
fv2 99 99 5 2.28× 10−15 0.034
chem_master1 201 201 5 1.79× 10−15 0.030
ecology1(∗) 500 1000 5 6.10× 10−15 0.009

We report the name of the matrix, the number of block rows `, the size of each
block n, the target rank used, the relative error and the compression ratio. (∗)

used the leading principal submatrix of size 500000× 500000.
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System Identification

Consider the linear time invariant system

xk+1 = Axk + Buk

yk = Cxk + Duk

k = 0, 1, . . .

In the impulse response case, we are given data of the form of Markov
parameters

hj =

{
D j = 0
CAj−1B j = 1, 2, . . . ,

Goal

Given the Markov parameters {hk} recover the system matrices (A,B,C,D)
(up to a similarity transformation).

Up to a similarity transformation (TAT−1,TB,CT−1,D).
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Eigensystem Realization Algorithm

Form the block-Hankel matrix Hs defined as

Hs =


h1 h2 . . . hs

h2 h3 . . . hs+1

...
... . .

. ...
hs hs+1 . . . h2s−1

 ∈ R(ms)×(ns) (1)

Assume d� s, such that rank(Hs) = d ≤ min{sm, sn}.

Algorithm: Given target rank r ≤ d
1 Compute the reduced-SVD Hs ≈ UrΣrV

>
r

2 Partition the left singular vectors

Ur =

[
Υf

∗

]
=

[
∗
Υl

]
3 Compute Ar = Σ

−1/2
r Υ†fΥlΣ

1/2
r . Recover Br,Cr from the SVD.

Kung, 1978. Juang and Pappa, 1985.
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Numerical Results: Power systems

System System Size Inputs n Outputs m Target rank
Power System 155 50 155 75

Our approach: use the tensor-based framework for block-Hankel matrices.
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Decay of the singular values in each mode. Based on this decay we chose the
target rank (56, 50, 30).

Minster, Saibaba, Kar, Chakrabortty, SIMAX, 2021.
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Numerical Results: Power systems
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Computational runtime (seconds) and accuracy (Hausdorff distance)

s Size ERA RandERA TuckerERA Error
100 15500× 5000 68 1.83 0.79 0.05
200 31000× 10000 − 3.95 1.52 0.015
700 108500× 35000 − 15.10 6.62 0.01
1000 155000× 50000 − 20.21 10.38 0.01
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Multilevel approximations

Structured matrices may have recursive structure. Examples:

Block-Toeplitz with Toeplitz Blocks

Triply block Toeplitz

Suppose A has L levels of structure. Write

A =

p1∑
i1=1

· · ·
pL∑

iL=1

E
(1)
i1
⊗ · · · ⊗E

(L)
iL
⊗
√
η
(1)
i1
· · · η(L)

iL
A(i1,...,iL),

where

the matrices A(i1,...,iL) are the m× n non-redundant blocks at level L

the matrices E
(j)
k ∈ R`j×qj represent mapping matrices at level j

Remarks:

We work with tensors (and decompositions) of order L+ 2

We can extend our approach to handle arbitrary number of levels and
different structures at each level

Many connections to Tensor Train and Matrix Product Operators.
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Contributions

A new, unified approach for structured matrix approximations that
leverages tensor decompositions

Extensions to multilevel structures possible

Applications: System identification, spacetime covariances, image
deblurring
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Thank you!

Preprint: M.E. Kilmer and A.K. Saibaba, Structured Matrix Approximations
via Tensor Decompositions. arXiv preprint:
https://arxiv.org/abs/2105.01170

This material is partly based upon work supported by the National Science Foundation
under Grant No. DMS-1439786 and by the Simons Foundation Grant No. 5073.
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