Memory-Efficient Tensorized Embedding Layers for Neural Networks

Chunxing Yin and Richard Vuduc, Georgia Institute of Technology

Outline

- 1. Motivation
- 2. Tensor Train Decomposition
- 3. Model Accuracy
 - a. Recommendation model
 - b. Graph neural network
- 4. Training time and performance

Embedding Layer

 Deep Learning Recommendation System (DLRM)

Graph Neural Network (GNN)

Example graph

Visualization of node embedding

Challenges

- Tens of GB to TB size of embedding table
- Distribute on multiple CPUs
- 80% time spent in host-device communication [1]
- GPUs in distributed GNN are underutilized
- Parameter update computes on CPU

Each Averages Portion of the Gradients

General Embedding Compression Technique [2]

- Quantization
- Pruning
- Hashing

Tensorize Neural Network

- Replace full matrix/tensor parameters with a low-rank tensor decomposition
- A principled approach to compression
- In distributed GNN training
 - Enables data-parallelism
 - Reduce communication

Network	Task	Compr. Ratio	Accuracy Loss
Wide-ResNet [4]	Image	122x	2%
GRU [5]	Video	3000x	-120%
Transformer [6]	NLP	58.5x	4%

[4] Wang, Wenqi, et al. "Wide compression: Tensor ring nets." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2018.
[5] Yang, Yinchong, Denis Krompass, and Volker Tresp. "Tensor-train recurrent neural networks for video classification." *arXiv preprint arXiv:1707.01786* (2017).
[6] Khrulkov, Valentin, et al. "Tensorized embedding layers for efficient model compression." *arXiv preprint arXiv:1901.10787* (2019).

Background – Tensor Train Compression

Tensor Train (TT) decomposition factorize a tensor as a product of small tensors [7]

• For d-way tensor

 $\mathcal{A}(i_1,i_2,\ldots,i_d)=\mathcal{G}_1(:,i_1,:)\mathcal{G}_2(:,i_2,:)\ldots\mathcal{G}_d(:,i_d,:)$

where G_k is a 3-way tensor of size $R_{k-1} \times N_k \times R_k$, and $R_0 = R_d = 1$. The sequence R_i is referred to as **TT-ranks**, and each tensor G_i is called a **TT-core**

Small example^{*}

 $\mathcal{W}((i_1, j_1), (i_2, j_2), \dots, (i_d, j_d))$ = $\mathcal{G}_1(:, i_1, j_1, :)\mathcal{G}_2(:, i_2, j_2, :) \dots \mathcal{G}_d(:, i_d, j_d, :)$

TT-matrix example

- Matrix W of size 5,000,000 x 24
- Factorize dimensions
 5,000,000 = 100 x 200 x 250, 24 = 4 x 2 x 3
- Reshape W as a 6-way tensor ((100, 4), (200, 2), (250, 3))
- Decompose W using 3 TT-cores
 TT-core Shape:(1, 100, 4, R), (R, 200, 2, R), (R, 250, 3, 1)

[7] Oseledets, Ivan V. "Tensor-train decomposition." SIAM Journal on Scientific Computing 33.5 (2011): 2295-2317.
 * Novikov, Alexander. Tensor Train decomposition in machine learning. Powerpoint presentation.

Model Overview

Full Embedding

Memory Reduction with TT

- Compress the largest 3 to 7 embeddings
- Single embedding table
 reduction up to 1200x
 - Store 10M x 16 emb. by 3 TT-cores: (1, 200, 2, R), (R, 200, 2, R), (R, 250, 4, 1)
- Overall model reduction ranges from 4x to 120x

TeraByte Table Dime	Size (FP32)	
9994222	64	2.56 GB
9980333	64	2.55 GB
9946608	64	2.55 GB
9758201	64	2.50 GB
7267859	64	1.86 GB
1333352	64	0.34 GB
Others		0.22 GB
Total		12.58 GB

TT Model Quality

- With more emb. in TT format
 - Higher model reduction
 - Lower accuracy
 - For Kaggle, val. accuracy loss ranges from 0.03% to 0.3%
 - For Terabyte, TT-Rec outperforms baseline from 0.23% to 0.4%

* Note: Terabyte baseline have improved since the making of this plot.

TT-Rank 8 TT-Trank 16 TT-Rank 32 TT-Rank 64

(a) Kaggle

TT-Rank 8 TT-Trank 16 TT-Rank 32 TT-Rank 64

TT Model Quality

- With more emb. in TT format
 - Higher model reduction
 - Lower accuracy
 - For Kaggle, val. accuracy loss ranges from 0.03% to 0.3%
 - For Terabyte, TT-Rec outperforms baseline from 0.23% to 0.4%

* Note: Terabyte baseline have improved since the making of this plot.

 Using larger TT-ranks produces more accurate model at the expense of lower compression ratio

(a) Kaggle

Advantages of Tensorized Embedding

- Low rank representation
 - Compression
 - Preserve accuracy
 - Robust to overfitting and noise
- Generate a unique vector for each item
 - More stable than hashing
- Implicit item grouping and weight sharing

TT-emb vector construction

12

TT-emb vector construction

Connection to graph topology

13

TT-emb vector construction

14

- Parameter sharing through node reordering
- TT-cores correspond to recursive graph partitioning
- Align TT structure with graph topology to produce homophily representation

Accuracy with Node Reordering

- /ognb-products graph(2.5M nodes) trained with Graph Attention Network (GAT)
- Outperform the full embedding baseline
- Fine-grained graph partitioning helps improving model accuracy
- Produce better node embedding than the original dataset

Partition	0	4	16	256	800	1600	3200	#param Reduction
Full Emb	0.7485	-	-	-	-	-	-	1x
Rank 8	0.7448	0.745	0.748	0.7578	0.7535	0.7615	0.7628	5762x
Rank 16	0.7544	0.7629	0.7564	0.7681	0.7756	0.7713	0.7626	1580x
Rank 32	0.7632	0.7719	0.7671	0.7678	0.79	0.7647	0.78	415x

Training Time of DLRM

- Compare with Pytorch EmbeddingBag
- Increase emb. in TT format from 3 to 7
 - Reduces the model size by 46.5 and 37.4x for Kaggle and Terabyte respectively
 - Increase training time by 12.5% for Kaggle, and 11.8% for Terabyte with the optimal TT-rank
- Higher model size reduction come with higher training time overheads

Training Time of GNNs

- Full Emb: 90% time spent on update
- 30% time for emb lookup, 60% time for emb backprop
- Reduce training time of ogbn-papers100M by 4.6X
- Scales almost linearly with large TT-ranks
- Hardware
 - AWS EC2 g4dn-metal
 - 8 T4 GPUs, 2x24 cores, 384GB RAM

Summary

- Applied Tensor-train decomposition to compress embedding layers in recommendation system and GNNs
- Compress the embedding tables by 100x and 424x for the 2 models while preserving/improving the model accuracy
- Combine TT with hierarchical graph partitioning to generate homophily embedding
- Efficient implementation of TT-emb kernel

