
Parallel Algorithms for CP, Tucker,
and Tensor Train Decompositions

Grey Ballard

PACO 2019: 3rd Workshop on Power-Aware Computing
MPI Magdeburg

Nov 6, 2019



Motivation: multidimensional data analysis requires
scalable algorithms

Dynamic functional connectivity fMRI data

measures correlation between regions of
the brain over time

experiments can include cognitive task

study multiple subjects across groups

Time

200 regions × 200 regions × 225 time steps × 59 subjects
4 GB of data

Ballard 1



CP decomposition discovers patterns of
synchronization across brain networks

Ballard 2



Motivation: Numerical simulations producing more
data than we can handle

512× 512× 512 3D grid,
128 time steps, 64 variables:

8 terabytes of data
(double precision)

S3D MPI-based Combustion Code

direct numerical simulation of
engine combustion

run on supercomputers

single experiment produces
terabytes of data

storage resolution much less
than computed resolution

difficult to analyze or even
transfer data

Ballard 3



Tucker decomposition yields huge compression for
combustion simulation data

Natural five-way multiway structure
of scientific data

10−6 10−5 10−4 10−3 10−2

101

102

103

104

5

16

55

231

5,580

Approximation Error
C

om
pr

es
si

on
R

at
io

Compression rates as fidelity varies
for 550GB simulation dataset

Ballard 4



Motivation: what if you have to solve many PDEs?

A single PDE simulation can already create a ton of data...
what if we have design/uncertain parameters?

Suppose you have 10 parameters, each with 10 possible values

now you have to run your simulation 1010 times...
and store all this data...

If the resulting data could be compressed, why not compute the
compressed representation from the start?

Ballard 5



Tensor Train (TT) can break “curse of dimensionality”

For N-way problems that exhibit this compressible structure,
the Tensor Train format can reduce the number of parameters
from exponential to linear in N

e.g., Tucker reduces IN data to O(RN) for some small R
e.g., TT reduces IN data to O(NIL2) for some other small L

For moderately large N, full format is typically infeasible
start in TT format, perform arithmetic in TT format
key is to maintain low ranks using rounding procedure
TT makes some very high dimensional problems tractable

Ballard 6



Parallel Computation of CP Decompositions
with Nonnegativity Constraints

joint work with Srinivas Eswar1, Koby Hayashi1,
Ramakrishnan Kannan2, and Haesun Park1

1 Georgia Tech
2 Oak Ridge National Lab



CP Notation

X ≈ u1 ◦ v1 ◦w1 + · · ·+ uR ◦ vR ◦wR, X ∈ RI×J×K

X ≈ JU,V,WK , U ∈ RI×R,V ∈ RJ×R,W ∈ RK×R

are factor matrices

xijk ≈
R∑

r=1

uir vjr wkr , 1 ≤ i ≤ I,1 ≤ j ≤ J,1 ≤ k ≤ K

Ballard 7

Notation convention: scalar dimension N, index n with 1 ≤ n ≤ N



Alternating Optimization (AO)

Fixing all but one factor matrix, we have a linear nonnegative
least squares (NNLS) problem:

arg min
V≥0

∥∥∥∥∥X−
R∑

r=1

ûr ◦ vr ◦ ŵr

∥∥∥∥∥
or equivalently

arg min
V≥0

∥∥∥X(2) − V(Ŵ� Û)T
∥∥∥

F

� is the Khatri-Rao product, a column-wise Kronecker product

AO works by alternating over factor matrices, updating one at a
time by solving the corresponding linear NNLS problem

Ballard 8



Matricization/Unfolding: Viewing a tensor as a matrix

Ballard 9



Nonnegative (Linear) Least Squares

Our subproblem:

arg min
V≥0

∥∥∥X(2) − V(Ŵ� Û)T
∥∥∥

F

Many possible NNLS algorithms
Multiplicative Updates [LS99]
Hierarchical Alternating Least Squares [CZPA09]
Block Principal Pivoting [KP11]
Alternating Direction Method of Multipliers [LS15]
Nesterov-type Algorithm [LKL+17]

X(2)(Ŵ� Û) is called Matricized-Tensor Times Khatri-Rao
Product (MTTKRP) and is expensive to compute
(Ŵ� Û)T (Ŵ� Û) can be computed relatively cheaply as
Ŵ

T
Ŵ ∗ Û

T
Û, where ∗ is elementwise product

Ballard 10



Nonnegative (Linear) Least Squares

Our subproblem:

arg min
V≥0

∥∥∥X(2) − V(Ŵ� Û)T
∥∥∥

F

Most NNLS algorithms are bottlenecked by computing

X(2)(Ŵ� Û) and (Ŵ� Û)T (Ŵ� Û)

X(2)(Ŵ� Û) is called Matricized-Tensor Times Khatri-Rao
Product (MTTKRP) and is expensive to compute
(Ŵ� Û)T (Ŵ� Û) can be computed relatively cheaply as
Ŵ

T
Ŵ ∗ Û

T
Û, where ∗ is elementwise product

Ballard 10



Parallelizing MTTKRP

Our goal is to perform MTTKRP in parallel as fast as possible
How do we distribute the tensor across processors?
How do we distribute the matrices across processors?
How do we divide up the computation?
How much interprocessor communication will that require?

Ballard 11



Parallel Communication Lower Bound

Theorem ([BKR18])
Any parallel MTTKRP algorithm involving a tensor with
In = I1/N for all n and that evenly distributes one copy of the
input and output performs at least

Ω

((
NIR
P

) N
2N−1

+ NR
(

I
P

)1/N
)

sends and receives. (Second term will typically dominate.)

N is the number of modes

I is the number of tensor entries

In is the dimension of the nth mode

R is the rank of the CP model

P is the number of processors

Ballard 12



Communication-Optimal Parallel Algorithm (3D)

U

M
W

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U

3 All-Gathers all the rows
needed from W

4 Computes its contribution to
rows of M (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M evenly

6 Use M to solve NNLS
problem for V

Ballard 13



Communication-Optimal Parallel Algorithm (3D)

U

M
W

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U

3 All-Gathers all the rows
needed from W

4 Computes its contribution to
rows of M (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M evenly

6 Use M to solve NNLS
problem for V

Ballard 13



Communication-Optimal Parallel Algorithm (3D)

U

M
W

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U

3 All-Gathers all the rows
needed from W

4 Computes its contribution to
rows of M (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M evenly

6 Use M to solve NNLS
problem for V

Ballard 13



Communication-Optimal Parallel Algorithm (3D)

U

M
W

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U

3 All-Gathers all the rows
needed from W

4 Computes its contribution to
rows of M (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M evenly

6 Use M to solve NNLS
problem for V

Ballard 13



Communication-Optimal Parallel Algorithm (3D)

U

M
W

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U

3 All-Gathers all the rows
needed from W

4 Computes its contribution to
rows of M (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M evenly

6 Use M to solve NNLS
problem for V

Ballard 13



Communication-Optimal Parallel Algorithm (3D)

U

M
W

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U

3 All-Gathers all the rows
needed from W

4 Computes its contribution to
rows of M (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M evenly

6 Use M to solve NNLS
problem for V

Ballard 13



Communication-Optimal Parallel Algorithm (3D)

U

M
W

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U

3 All-Gathers all the rows
needed from W

4 Computes its contribution to
rows of M (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M evenly

6 Use M to solve NNLS
problem for V

Ballard 13



Rest of the Algorithm

With correct processor grid, MTTKRP algorithm achieves
communication lower bound

Also need to compute G = UT U ∗WT W
involves communication
generally lower order cost

Lots of overlap across MTTKRP computations
save communication: keep temporary copies around
save computation: use dimension tree optimization
O(N) savings, where N is the number of modes

Can choose algorithm to compute V from M and G
for some algorithms, this is all local computation
some algorithms require extra computation of global
information, can add significant cost

Ballard 14



Weak Scaling Results for 4D Synthetic Data

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

0.0

0.5

1.0

1.5

2.0

T
im

e
 p

e
r 

It
e
ra

ti
o
n
 (

S
e
cs

)

MU

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

HALS

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

BPP

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

NES

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

CP

gram

nnls

mttkrp

multittv

reducescatter

allgather

allreduce

Number of Processors

local tensor is fixed at 128× 128× 128× 128

Ballard 15



Strong Scaling Results for Mouse Brain Data

16 32 64 12
8

25
6

51
2

10
24

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e
 p

e
r 

It
e
ra

ti
o
n
 (

S
e
cs

)

MU

16 32 64 12
8

25
6

51
2

10
24

HALS

16 32 64 12
8

25
6

51
2

10
24

BPP

16 32 64 12
8

25
6

51
2

10
24

ADMM

16 32 64 12
8

25
6

51
2

10
24

NES

16 32 64 12
8

25
6

51
2

10
24

CP

ideal scaling

gram

nnls

mttkrp

multittv

reducescatter

allgather

allreduce

Number of Processors

Ballard 16



Software: PLANC

Parallel Low-rank Approximations with Non-negativity Constraints

https://github.com/ramkikannan/planc

Open source code for computing NMF and NNCP
MPI/BLAS/LAPACK/C++11
Designed for dense tensors and dense/sparse matrices
Can offload computation to GPUs if available

Ballard 17

https://github.com/ramkikannan/planc


Efficient Parallel Algorithm for Tucker
Decompositions of Dense Tensors

joint work with Woody Austin4, Alicia Klinvex5, Tammy
Kolda6, and Hemanth Kolla6

4 UT Austin
5 Bettis Atomic Power Laboratory

6 Sandia National Labs



Tucker Notation

X ≈ G×1 U×2 V×3 W X ∈ RI×J×K ,G ∈ RP×Q×R

is core tensor

X ≈ JG; U,V,WK , U ∈ RI×P ,V ∈ RJ×Q,W ∈ RK×R

are factor matrices

xijk ≈
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr uipvjqwkr , 1 ≤ i ≤ I,1 ≤ j ≤ J,1 ≤ k ≤ K

Ballard 18



Algorithm: ST-HOSVD [VVM12]

ST-HOSVD(X, ε)
1 Compute U with dimension I × P

(a) Compute Gram matrix X(1)X
T
(1)

(b) Use eigendecomposition to determine P and U
(c) TTM to shrink to size P × J × K : Y = X×1 UT

2 Compute V with dimension J ×Q
(a) Compute Gram matrix Y(2)Y

T
(2)

(b) Use eigendecomposition to determine Q and V
(c) TTM to shrink to size P ×Q × K : Z = Y×2 VT

3 Compute W with dimension K × R
(a) Compute Gram matrix Z(3)Z

T
(3)

(b) Use eigendecomposition to determine R and W
(c) TTM to shrink to size P ×Q × R: G = Z×3 WT

Ballard 19



Key kernels

Key kernels of ST-HOSVD are

Gram: short, fat matrix times its transpose (X(1)XT
(1))

Evecs: eigendecomposition of small symmetric matrix

TTM: tensor times matrix to shrink problem (UT X(1))

Our goal is to parallelize Gram and TTM efficiently

Ballard 20



Tensor data distribution across processors

For N-way tensor, we use N-way processor grid
with Cartesian block distribution (same as for CP)

← J →

←
I
→

←
K
→

Example: P1 × P2 × P3 = 3× 5× 2

Local tensor size:
I

P1
× J

P2
× K

P3

Ballard 21



Parallel matricization

Matricizing distributed tensor requires no data movement:
matricized tensor already in standard matrix distribution

Ballard 22



Parallel Gram Computation

JK
P2P3I

P1

X(1)

*

XT
(1)

JK
P

I *

each processor column redistributes its tensor data

each processor computes local outer product
sum across all processors via All-Reduce

Ballard 23



Parallel Gram Computation

*

= su
m

alo
ng

= I

I

X(1)XT
(1)

each processor column redistributes its tensor data
each processor computes local outer product
sum across all processors via All-Reduce

Ballard 23



Time Breakdown of Parallel ST-HOSVD

Parallel running time example

5-way tensor of size 4.4 TB

reduced to 10 GB (410X)

1100 processors (cores)

55 seconds total

Observations

load-balanced execution

cycle of Gram-Eig-TTM
shrinks over time

writing original tensor to
disk is slower by 10X

Ballard 24



Combustion Simulation (S3D) Data

Stat-Planar dataset
500× 500× 500× 11× 400
4.4 TB of total storage
use 250 nodes to process

Two compression scenarios
High: 1e-2 error, 20,000X comp.
Low: 1e-4 error, 400X comp.

Three processor grids
A: 1×1×40×1×100
B: 10×8×5×1×10
C: 40×10×1×1×10

Ballard 25



Gram Algorithm Comparison

O
ld

O
ld

O
ld

O
ld

O
ld

O
ld

N
ew

N
ew

N
ew

N
ew

N
ew

N
ew

0

50

100

150

mode 1 mode 4 mode 1 mode 4 mode 1 mode 4

A B C

...

Ti
m

e
(s

ec
on

ds
)

Other
Packing

Matrix Comm
Tensor Comm
Computation

Old algorithm from our previous work [ABK16]
Ballard 26



Weak Scaling on Synthetic Data

Problem Setup

local tensor fixed at
200× 200× 200× 200

local core fixed at
20× 20× 20× 20

Result

as problem size grows with
number of processors,
high efficiency maintained up
to 10K cores 1 16 81 256 625

5
10

15
20

.8

Number of Nodes

G
FL

O
P

S
pe

rC
or

e

ST-HOSVD

Ballard 27



Software: TuckerMPI

https://gitlab.com/tensors/TuckerMPI

Open source code for computing Tucker compression
MPI/BLAS/LAPACK/C++11
Designed for dense tensors

Ballard 28

https://gitlab.com/tensors/TuckerMPI


Communication-Efficient Parallel Algorithms for
Tensor Train Rounding

joint work with Hussam Al Daas7 and Peter Benner7

7 MPI Magdeburg



Tensor Train Notation

I1

R2

I2

R2
R3

I3

R3
R4

I4

R4
R5

I5

R5

X ≈ {TX ,k},X ∈ RI1×I2×I3×I4×I5 TX ,k ∈ RRk×Ik×Rk+1

are TT cores

xijklm ≈
R2∑
α=1

R3∑
β=1

R4∑
γ=1

R5∑
δ=1

TX ,1(i, α)TX ,2(α, j, β)TX ,3(β, k , γ)TX ,4(γ, l, δ)TX ,5(δ,m)

V(TX,k ) ∈ RRk Ik×Rk+1 and H(TX,k ) ∈ RRk×Ik Rk+1

are vertical and horizontal unfoldings of k th core
Ballard 29



Tensor Train Notation

I1

R2

I2

R2
R3

I3

R3
R4

I4

R4
R5

I5

R5

X ≈ {TX ,k},X ∈ RI1×I2×I3×I4×I5 TX ,k ∈ RRk×Ik×Rk+1

are TT cores

xijklm ≈
R2∑
α=1

R3∑
β=1

R4∑
γ=1

R5∑
δ=1

TX ,1(i, α)TX ,2(α, j, β)TX ,3(β, k , γ)TX ,4(γ, l, δ)TX ,5(δ,m)

V(TX,k ) ∈ RRk Ik×Rk+1 and H(TX,k ) ∈ RRk×Ik Rk+1

are vertical and horizontal unfoldings of k th core
Ballard 29



TT Rounding

Given a tensor in TT format, want to compress the ranks
algebraic operations on TT formats over-extend ranks
recompression subject to some error threshold

Rounding done in two phases: orthogonalization and truncation
orthogonalization done core-by-core in sequence
truncation is done core-by-core (opposite direction)

for n = N down to 2 do
L · H(Q) = H(TX,n) . LQ factorization of short-fat matrix
TX,n = Q

V(TX,n−1) = V(TX,n−1)L
for n = 1 to N − 1 do
V(Un) · Σn · V T

n = V(TX,n) . truncated SVD of tall-skinny matrix
TX,n = Un
H(TX,n+1) = ΣnV>n H(TX,n+1)

Ballard 30



TT Rounding

Given a tensor in TT format, want to compress the ranks
algebraic operations on TT formats over-extend ranks
recompression subject to some error threshold

Rounding done in two phases: orthogonalization and truncation
orthogonalization done core-by-core in sequence
truncation is done core-by-core (opposite direction)

for n = N down to 2 do
L · H(Q) = H(TX,n) . LQ factorization of short-fat matrix
TX,n = Q

V(TX,n−1) = V(TX,n−1)L
for n = 1 to N − 1 do
V(Un) · Σn · V T

n = V(TX,n) . truncated SVD of tall-skinny matrix
TX,n = Un
H(TX,n+1) = ΣnV>n H(TX,n+1)

Ballard 30



Parallel Distribution

I1

R2

I2

R2
R3

I3

R3
R4

I4

R4
R5

I5

R5

Each core distributed across all P processors
Local nth core dimensions are Rn × In

P × Rn+1

Vertical and horizontal unfoldings are 1D-distributed

Ballard 31



Parallel TT Rounding Algorithm

function {T(p)
Y,n} = PAR-TT-ROUNDING({T(p)

X,n})
for n = N down to 2 do

[{Y (`)
p }n,Rn] = TSQR(H(T

(p)
X,n)T ) . QR factorization

R(p) = BROADCAST(Rn, root) . Broadcast R to all procs
V(T

(p)
X,n−1) = MULT(V(T

(p)
X,n−1),R(p)) . Apply R to previous core

Y = X

for n = 1 to N − 1 do
[{Y (`)

p }n,Rn] = TSQR(V(T
(p)
Y,n)) . QR factorization

if p = root then
[ÛR , Σ̂, V̂ ] = TSVD(Rn) . Truncated SVD of R

V(T
(p)
Y,n) = TSQR-APPLY-Q({Y (`)

p }n, ÛR) . Form explicit Û
H(T

(p)
X,n+1)T = TSQR-APPLY-Q({Y (`)

p }n+1, V̂ ) . Apply V̂ to next core

Ballard 32



Tall-Skinny QR (TSQR) Algorithm [DGHL12]

Ballard 33

Key benefit of TSQR:
one parallel reduction

Orthogonal factor stored implicitly
as tree of Householder vectors

Application of implicit orthogonal factor
also computed via tree (backwards)



Cost Analysis of TT-Rounding

Assuming In = I and Rn = R, and R is reduced by factor of 2...
computational cost is

6
NIR3

P
+ O(NR3 log P) flops

communication cost is

O(NR2 log P) words and O(N log P) messages

costs are linear not exponential in N (property of TT)
communication cost is independent of I (good)
communication cost increases slightly with P (bad)

Ballard 34



Cost Analysis of TT-Rounding

Assuming In = I and Rn = R, and R is reduced by factor of 2...
computational cost is

6
NIR3

P
+ O(NR3 log P) flops

communication cost is

O(NR2 log P) words and O(N log P) messages

costs are linear not exponential in N (property of TT)
communication cost is independent of I (good)
communication cost increases slightly with P (bad)

Ballard 34



Strong Scaling Performance

320 640 1280 2560 5120
20

21

22

23

24

25

26

Number of Cores

Ti
m

e
(s

ec
on

ds
)

RLR
LRL

RLR (imp)
LRL (imp)

In = 512,000, Rn = 60→ 30, N = 50
strong scaling is (slightly) superlinear
implicit optimization yields up to 60% improvement

Ballard 35



Performance Breakdown

320 640 1280 2560 5120
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of Cores

Fr
ac

tio
n

of
Ti

m
e

Other
SVD (comp)

MultR (comm)
MultR (comp)
AppQ (comm)
AppQ (comp)
TSQR (comm)
TSQR (comp)

70-80% of time spent in local TSQR computations
communication cost doesn’t scale with processors

but still not a bottleneck at 128 nodes (5120 cores)

Ballard 36



Summary

Parallel CP bottlenecked by MTTKRP

our algorithm’s communication cost matches lower bound
we avoid redundant computation and communication
across modes

Parallel Tucker bottlenecked by SVD and TTM

need communication-efficient distributions and algorithms
we can tune the processor grid for efficiency

Parallel TT-Rounding bottlenecked by Tall-Skinny QR

use TSQR algorithm (tree-based reduction technique)
need to compute and apply implicit Q matrices
communication costs independent of tensor dimensions

Ballard 37



For more details:

PLANC: Parallel Low Rank Approximation with Non-negativity
Constraints

Srinivas Eswar, Koby Hayashi, Grey Ballard, Ramakrishnan Kannan,
Michael Matheson, and Haesun Park

https://arxiv.org/abs/1909.01149
[EHB+19]

TuckerMPI: Efficient Parallel Software for
Tucker Decompositions of Dense Tensors

Grey Ballard, Alicia Klinvex, and Tamara G. Kolda
arXiv 2019

https://arxiv.org/abs/1901.06043
[BKK19]

Communication-Efficient Parallel Algorithms for
Tensor Train Orthogonalization and Rounding

Hussam Al Daas, Grey Ballard, Peter Benner
Coming soon...

Ballard 38

https://arxiv.org/abs/1909.01149
https://arxiv.org/abs/1901.06043


Mouse Brain Data

Image from [KZL+16]

tensor is pixels × time × trial: 1.4M × 69× 25
about 20 GB when stored in double precision

Ballard 39



Convergence Results for Mouse Brain Data

0 2 4 6 8 10
Total Time(in Secs)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Re
la

tiv
e 

Er
ro

r

MU
HALS
BPP
ADMM
NES
CP

Ballard 40



Local tensor data layout in memory

Local matricizations (with no data movement)
lead to matrices in funny layouts

Example: 2× 2× 2× 2 tensor’s matricization layouts

X(1) X(2)

X(3) X(4)

Ballard 41



Tensor Times Matrix

Tensor-times-matrix (TTM) is matrix multiplication
with matricized tensor

Ballard 42



Parallel Tensor Times Matrix

Example: P1 × P2 × P3 = 3× 5× 2

Q

J/P2

V

•

IK/(P1P3)
J
P2

X(2)

Matrix V distributed conformally to 2nd mode of tensor X
Matrix V distributed redundantly on processor columns
Local computation is matrix multiplication
Communication pattern is reduce-scatter (MPI collective)

Ballard 43



More eyeball norm comparisons (JICF)

Ballard 44



More eyeball norm comparisons (HCCI)

Ballard 44



Compressibility depends on data (sing. value decay)

Ballard 45



Partial reconstruction

Ballard 46



Flame Surface Reconstruction

Flame surface at single time step.
Using temperature variable (iso-value is 2/3 of max).

Ballard 47



Processor Grid Comparison

HighHigh HighLowLow Low
0

20

40

60

80

A B C

Ti
m

e
(s

ec
on

ds
)

TTM
Evecs
Gram

Ballard 48



Tucker compression

X

≈
U

G
V

W

X︸︷︷︸
I×J×K

≈ G︸︷︷︸
P×Q×R

×1 U︸︷︷︸
I×P

×2 V︸︷︷︸
J×Q

×3 W︸︷︷︸
K×R

Compression ratio

C =
IJK

PQR + IP + JQ + KR
≈ IJK

PQR

Ballard 49



Tucker approximation error

X

≈
U

G
V

W

xijk ≈ x̃ijk =
∑
p,q,r

gpqr uipvjqwkr

Approximation error

∥∥∥X− X̃
∥∥∥

‖X‖
=

(∑
i,j,k

(
xijk −

∑
p,q,r gpqr uipvjqwkr

)2
)1/2

(
∑

i,j,k x2
ijk )1/2

Ballard 49



Strong scaling benchmark

Problem Setup

200× 200× 200× 200
data tensor (12 GB)

20× 20× 20× 20
core tensor

24 · 2k processors (cores)

Result

small problem, but running
time decreases with up to
6144 cores

Compute Platform

Edison (NERSC), Cray XC30

24-core nodes

2 8 32 128 512
2−

4
2−

3
2−

2
2−

1
20

Number of Nodes

Ti
m

e
(s

ec
on

ds
)

ST-HOSVD

Ballard 50



References I

Woody Austin, Grey Ballard, and Tamara G. Kolda.
Parallel tensor compression for large-scale scientific data.
In Proceedings of the 30th IEEE International Parallel and
Distributed Processing Symposium, pages 912–922, May 2016.

Grey Ballard, Alicia Klinvex, and Tamara G. Kolda.
TuckerMPI: Efficient parallel software for Tucker decompositions
of dense tensors.
Technical Report 1901.06043, arXiv, 2019.

Grey Ballard, Nicholas Knight, and Kathryn Rouse.
Communication lower bounds for matricized tensor times
Khatri-Rao product.
In Proceedings of the 32nd IEEE International Parallel and
Distributed Processing Symposium, pages 557–567, May 2018.

Ballard 51



References II

Andrzej Cichocki, Rafal Zdunek, Anh-Huy Phan, and Shun-ichi
Amari.
Nonnegative Matrix and Tensor Factorizations: Applications to
exploratory multi-way data analysis and blind source separation.
John Wiley & Sons, 2009.

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.
Communication-optimal parallel and sequential QR and LU
factorizations.
SIAM Journal on Scientific Computing, 34(1):A206–A239, 2012.

Srinivas Eswar, Koby Hayashi, Grey Ballard, Ramakrishnan
Kannan, Michael A. Matheson, and Haesun Park.
PLANC: Parallel low rank approximation with non-negativity
constraints.
Technical Report 1909.01149, arXiv, 2019.

Ballard 52



References III

Jingu Kim and Haesun Park.
Fast nonnegative matrix factorization: An active-set-like method
and comparisons.
SIAM Journal on Scientific Computing, 33(6):3261–3281, 2011.

Tony Hyun Kim, Yanping Zhang, Jérôme Lecoq, Juergen C.
Jung, Jane Li, Hongkui Zeng, Cristopher M. Niell, and Mark J.
Schnitzer.
Long-term optical access to an estimated one million neurons in
the live mouse cortex.
Cell Reports, 17(12):3385 – 3394, 2016.

A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and N. D.
Sidiropoulos.
Nesterov-based alternating optimization for nonnegative tensor
factorization: Algorithm and parallel implementation.
IEEE Transactions on Signal Processing, Nov 2017.

Ballard 53



References IV

Daniel D Lee and H Sebastian Seung.
Learning the parts of objects by non-negative matrix
factorization.
Nature, 401(6755):788, 1999.

A. P. Liavas and N. D. Sidiropoulos.
Parallel algorithms for constrained tensor factorization via
alternating direction method of multipliers.
IEEE Transactions on Signal Processing, 63(20):5450–5463, Oct
2015.

Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen.
A new truncation strategy for the higher-order singular value
decomposition.
SIAM Journal on Scientific Computing, 34(2):A1027–A1052,
2012.

Ballard 54


