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Motivation: multidimensional data analysis requires
scalable algorithms

Dynamic functional connectivity fMRI data

measures correlation between regions of
the brain over time

experiments can include cognitive task

study multiple subjects across groups

Time

200 regions × 200 regions × 225 time steps × 59 subjects
4 GB of data

Ballard 1



CP decomposition discovers patterns of
synchronization across brain networks
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Motivation: Numerical simulations producing more
data than we can handle

512× 512× 512 3D grid,
128 time steps, 64 variables:

8 terabytes of data
(double precision)

S3D MPI-based Combustion Code

direct numerical simulation of
engine combustion

run on supercomputers

single experiment produces
terabytes of data

storage resolution much less
than computed resolution

difficult to analyze or even
transfer data
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Tucker decomposition yields huge compression for
combustion simulation data

Natural five-way multiway structure
of scientific data
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Motivation: what if you have to solve many PDEs?

A single PDE simulation can already create a ton of data...
what if we have design/uncertain parameters?

Suppose you have 10 parameters, each with 10 possible values

now you have to run your simulation 1010 times...
and store all this data...

If the resulting data could be compressed, why not compute the
compressed representation from the start?
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Tensor Train (TT) can break “curse of dimensionality”

For N-way problems that exhibit this compressible structure,
the Tensor Train format can reduce the number of parameters
from exponential to linear in N

e.g., Tucker reduces IN data to O(RN) for some small R
e.g., TT reduces IN data to O(NIL2) for some other small L

For moderately large N, full format is typically infeasible
start in TT format, perform arithmetic in TT format
key is to maintain low ranks using rounding procedure
TT makes some very high dimensional problems tractable
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Parallel Computation of CP Decompositions
with Nonnegativity Constraints

joint work with Srinivas Eswar1, Koby Hayashi1,
Ramakrishnan Kannan2, and Haesun Park1

1 Georgia Tech
2 Oak Ridge National Lab



CP Notation

X ≈ u1 ◦ v1 ◦w1 + · · ·+ uR ◦ vR ◦wR, X ∈ RI×J×K

X ≈ JU,V,WK , U ∈ RI×R,V ∈ RJ×R,W ∈ RK×R

are factor matrices

xijk ≈
R∑

r=1

uir vjr wkr , 1 ≤ i ≤ I,1 ≤ j ≤ J,1 ≤ k ≤ K
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Alternating Optimization (AO)

Fixing all but one factor matrix, we have a linear nonnegative
least squares (NNLS) problem:

arg min
V≥0

∥∥∥∥∥X−
R∑

r=1

ûr ◦ vr ◦ ŵr

∥∥∥∥∥
or equivalently

arg min
V≥0

∥∥∥X(2) − V(Ŵ� Û)T
∥∥∥

F

� is the Khatri-Rao product, a column-wise Kronecker product

AO works by alternating over factor matrices, updating one at a
time by solving the corresponding linear NNLS problem
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Matricization/Unfolding: Viewing a tensor as a matrix
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Nonnegative (Linear) Least Squares

Our subproblem:

arg min
V≥0

∥∥∥X(2) − V(Ŵ� Û)T
∥∥∥

F

Many possible NNLS algorithms
Multiplicative Updates [LS99]
Hierarchical Alternating Least Squares [CZPA09]
Block Principal Pivoting [KP11]
Alternating Direction Method of Multipliers [LS15]
Nesterov-type Algorithm [LKL+17]

X(2)(Ŵ� Û) is called Matricized-Tensor Times Khatri-Rao
Product (MTTKRP) and is expensive to compute
(Ŵ� Û)T (Ŵ� Û) can be computed relatively cheaply as
Ŵ

T
Ŵ ∗ Û

T
Û, where ∗ is elementwise product
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Parallelizing MTTKRP

Our goal is to perform MTTKRP in parallel as fast as possible
How do we distribute the tensor across processors?
How do we distribute the matrices across processors?
How do we divide up the computation?
How much interprocessor communication will that require?
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Parallel Communication Lower Bound

Theorem ([BKR18])
Any parallel MTTKRP algorithm involving a tensor with
In = I1/N for all n and that evenly distributes one copy of the
input and output performs at least

Ω

((
NIR
P

) N
2N−1

+ NR
(

I
P

)1/N
)

sends and receives. (Second term will typically dominate.)

N is the number of modes

I is the number of tensor entries

In is the dimension of the nth mode

R is the rank of the CP model

P is the number of processors
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Communication-Optimal Parallel Algorithm (3D)

U

M
W

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U

3 All-Gathers all the rows
needed from W

4 Computes its contribution to
rows of M (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M evenly

6 Use M to solve NNLS
problem for V
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Rest of the Algorithm

With correct processor grid, MTTKRP algorithm achieves
communication lower bound

Also need to compute G = UT U ∗WT W
involves communication
generally lower order cost

Lots of overlap across MTTKRP computations
save communication: keep temporary copies around
save computation: use dimension tree optimization
O(N) savings, where N is the number of modes

Can choose algorithm to compute V from M and G
for some algorithms, this is all local computation
some algorithms require extra computation of global
information, can add significant cost
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Weak Scaling Results for 4D Synthetic Data
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Strong Scaling Results for Mouse Brain Data
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Software: PLANC

Parallel Low-rank Approximations with Non-negativity Constraints

https://github.com/ramkikannan/planc

Open source code for computing NMF and NNCP
MPI/BLAS/LAPACK/C++11
Designed for dense tensors and dense/sparse matrices
Can offload computation to GPUs if available

Ballard 17
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Efficient Parallel Algorithm for Tucker
Decompositions of Dense Tensors

joint work with Woody Austin4, Alicia Klinvex5, Tammy
Kolda6, and Hemanth Kolla6

4 UT Austin
5 Bettis Atomic Power Laboratory

6 Sandia National Labs



Tucker Notation

X ≈ G×1 U×2 V×3 W X ∈ RI×J×K ,G ∈ RP×Q×R

is core tensor

X ≈ JG; U,V,WK , U ∈ RI×P ,V ∈ RJ×Q,W ∈ RK×R

are factor matrices

xijk ≈
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr uipvjqwkr , 1 ≤ i ≤ I,1 ≤ j ≤ J,1 ≤ k ≤ K
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Algorithm: ST-HOSVD [VVM12]

ST-HOSVD(X, ε)
1 Compute U with dimension I × P

(a) Compute Gram matrix X(1)X
T
(1)

(b) Use eigendecomposition to determine P and U
(c) TTM to shrink to size P × J × K : Y = X×1 UT

2 Compute V with dimension J ×Q
(a) Compute Gram matrix Y(2)Y

T
(2)

(b) Use eigendecomposition to determine Q and V
(c) TTM to shrink to size P ×Q × K : Z = Y×2 VT

3 Compute W with dimension K × R
(a) Compute Gram matrix Z(3)Z

T
(3)

(b) Use eigendecomposition to determine R and W
(c) TTM to shrink to size P ×Q × R: G = Z×3 WT
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Key kernels

Key kernels of ST-HOSVD are

Gram: short, fat matrix times its transpose (X(1)XT
(1))

Evecs: eigendecomposition of small symmetric matrix

TTM: tensor times matrix to shrink problem (UT X(1))

Our goal is to parallelize Gram and TTM efficiently
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Tensor data distribution across processors

For N-way tensor, we use N-way processor grid
with Cartesian block distribution (same as for CP)

← J →

←
I
→

←
K
→

Example: P1 × P2 × P3 = 3× 5× 2

Local tensor size:
I

P1
× J

P2
× K

P3
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Parallel matricization

Matricizing distributed tensor requires no data movement:
matricized tensor already in standard matrix distribution
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Parallel Gram Computation

JK
P2P3I

P1

X(1)

*

XT
(1)

JK
P

I *

each processor column redistributes its tensor data

each processor computes local outer product
sum across all processors via All-Reduce
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Parallel Gram Computation

*

= su
m

alo
ng

= I

I

X(1)XT
(1)

each processor column redistributes its tensor data
each processor computes local outer product
sum across all processors via All-Reduce
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Time Breakdown of Parallel ST-HOSVD

Parallel running time example

5-way tensor of size 4.4 TB

reduced to 10 GB (410X)

1100 processors (cores)

55 seconds total

Observations

load-balanced execution

cycle of Gram-Eig-TTM
shrinks over time

writing original tensor to
disk is slower by 10X
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Combustion Simulation (S3D) Data

Stat-Planar dataset
500× 500× 500× 11× 400
4.4 TB of total storage
use 250 nodes to process

Two compression scenarios
High: 1e-2 error, 20,000X comp.
Low: 1e-4 error, 400X comp.

Three processor grids
A: 1×1×40×1×100
B: 10×8×5×1×10
C: 40×10×1×1×10
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Gram Algorithm Comparison
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Weak Scaling on Synthetic Data

Problem Setup

local tensor fixed at
200× 200× 200× 200

local core fixed at
20× 20× 20× 20

Result

as problem size grows with
number of processors,
high efficiency maintained up
to 10K cores 1 16 81 256 625
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Software: TuckerMPI

https://gitlab.com/tensors/TuckerMPI

Open source code for computing Tucker compression
MPI/BLAS/LAPACK/C++11
Designed for dense tensors
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Communication-Efficient Parallel Algorithms for
Tensor Train Rounding

joint work with Hussam Al Daas7 and Peter Benner7

7 MPI Magdeburg



Tensor Train Notation

I1

R2

I2

R2
R3

I3

R3
R4

I4

R4
R5

I5

R5

X ≈ {TX ,k},X ∈ RI1×I2×I3×I4×I5 TX ,k ∈ RRk×Ik×Rk+1

are TT cores

xijklm ≈
R2∑
α=1

R3∑
β=1

R4∑
γ=1

R5∑
δ=1

TX ,1(i, α)TX ,2(α, j, β)TX ,3(β, k , γ)TX ,4(γ, l, δ)TX ,5(δ,m)

V(TX,k ) ∈ RRk Ik×Rk+1 and H(TX,k ) ∈ RRk×Ik Rk+1

are vertical and horizontal unfoldings of k th core
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TT Rounding

Given a tensor in TT format, want to compress the ranks
algebraic operations on TT formats over-extend ranks
recompression subject to some error threshold

Rounding done in two phases: orthogonalization and truncation
orthogonalization done core-by-core in sequence
truncation is done core-by-core (opposite direction)

for n = N down to 2 do
L · H(Q) = H(TX,n) . LQ factorization of short-fat matrix
TX,n = Q

V(TX,n−1) = V(TX,n−1)L
for n = 1 to N − 1 do
V(Un) · Σn · V T

n = V(TX,n) . truncated SVD of tall-skinny matrix
TX,n = Un
H(TX,n+1) = ΣnV>n H(TX,n+1)
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Parallel Distribution

I1

R2

I2

R2
R3

I3

R3
R4

I4

R4
R5

I5

R5

Each core distributed across all P processors
Local nth core dimensions are Rn × In

P × Rn+1

Vertical and horizontal unfoldings are 1D-distributed
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Parallel TT Rounding Algorithm

function {T(p)
Y,n} = PAR-TT-ROUNDING({T(p)

X,n})
for n = N down to 2 do

[{Y (`)
p }n,Rn] = TSQR(H(T

(p)
X,n)T ) . QR factorization

R(p) = BROADCAST(Rn, root) . Broadcast R to all procs
V(T

(p)
X,n−1) = MULT(V(T

(p)
X,n−1),R(p)) . Apply R to previous core

Y = X

for n = 1 to N − 1 do
[{Y (`)

p }n,Rn] = TSQR(V(T
(p)
Y,n)) . QR factorization

if p = root then
[ÛR , Σ̂, V̂ ] = TSVD(Rn) . Truncated SVD of R

V(T
(p)
Y,n) = TSQR-APPLY-Q({Y (`)

p }n, ÛR) . Form explicit Û
H(T

(p)
X,n+1)T = TSQR-APPLY-Q({Y (`)

p }n+1, V̂ ) . Apply V̂ to next core
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Tall-Skinny QR (TSQR) Algorithm [DGHL12]
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Key benefit of TSQR:
one parallel reduction

Orthogonal factor stored implicitly
as tree of Householder vectors

Application of implicit orthogonal factor
also computed via tree (backwards)



Cost Analysis of TT-Rounding

Assuming In = I and Rn = R, and R is reduced by factor of 2...
computational cost is

6
NIR3

P
+ O(NR3 log P) flops

communication cost is

O(NR2 log P) words and O(N log P) messages

costs are linear not exponential in N (property of TT)
communication cost is independent of I (good)
communication cost increases slightly with P (bad)
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Strong Scaling Performance
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In = 512,000, Rn = 60→ 30, N = 50
strong scaling is (slightly) superlinear
implicit optimization yields up to 60% improvement
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Performance Breakdown
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70-80% of time spent in local TSQR computations
communication cost doesn’t scale with processors

but still not a bottleneck at 128 nodes (5120 cores)
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Summary

Parallel CP bottlenecked by MTTKRP

our algorithm’s communication cost matches lower bound
we avoid redundant computation and communication
across modes

Parallel Tucker bottlenecked by SVD and TTM

need communication-efficient distributions and algorithms
we can tune the processor grid for efficiency

Parallel TT-Rounding bottlenecked by Tall-Skinny QR

use TSQR algorithm (tree-based reduction technique)
need to compute and apply implicit Q matrices
communication costs independent of tensor dimensions
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For more details:

PLANC: Parallel Low Rank Approximation with Non-negativity
Constraints

Srinivas Eswar, Koby Hayashi, Grey Ballard, Ramakrishnan Kannan,
Michael Matheson, and Haesun Park

https://arxiv.org/abs/1909.01149
[EHB+19]

TuckerMPI: Efficient Parallel Software for
Tucker Decompositions of Dense Tensors

Grey Ballard, Alicia Klinvex, and Tamara G. Kolda
arXiv 2019

https://arxiv.org/abs/1901.06043
[BKK19]

Communication-Efficient Parallel Algorithms for
Tensor Train Orthogonalization and Rounding

Hussam Al Daas, Grey Ballard, Peter Benner
Coming soon...
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Mouse Brain Data

Image from [KZL+16]

tensor is pixels × time × trial: 1.4M × 69× 25
about 20 GB when stored in double precision
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Convergence Results for Mouse Brain Data
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Local tensor data layout in memory

Local matricizations (with no data movement)
lead to matrices in funny layouts

Example: 2× 2× 2× 2 tensor’s matricization layouts

X(1) X(2)

X(3) X(4)
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Tensor Times Matrix

Tensor-times-matrix (TTM) is matrix multiplication
with matricized tensor
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Parallel Tensor Times Matrix

Example: P1 × P2 × P3 = 3× 5× 2

Q

J/P2

V

•

IK/(P1P3)
J
P2

X(2)

Matrix V distributed conformally to 2nd mode of tensor X
Matrix V distributed redundantly on processor columns
Local computation is matrix multiplication
Communication pattern is reduce-scatter (MPI collective)
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More eyeball norm comparisons (JICF)
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More eyeball norm comparisons (HCCI)

Ballard 44



Compressibility depends on data (sing. value decay)
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Partial reconstruction
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Flame Surface Reconstruction

Flame surface at single time step.
Using temperature variable (iso-value is 2/3 of max).
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Processor Grid Comparison
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Tucker compression

X

≈
U

G
V

W

X︸︷︷︸
I×J×K

≈ G︸︷︷︸
P×Q×R

×1 U︸︷︷︸
I×P

×2 V︸︷︷︸
J×Q

×3 W︸︷︷︸
K×R

Compression ratio

C =
IJK

PQR + IP + JQ + KR
≈ IJK

PQR
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Tucker approximation error

X

≈
U

G
V

W

xijk ≈ x̃ijk =
∑
p,q,r

gpqr uipvjqwkr

Approximation error

∥∥∥X− X̃
∥∥∥

‖X‖
=

(∑
i,j,k

(
xijk −

∑
p,q,r gpqr uipvjqwkr

)2
)1/2

(
∑

i,j,k x2
ijk )1/2
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Strong scaling benchmark

Problem Setup

200× 200× 200× 200
data tensor (12 GB)

20× 20× 20× 20
core tensor

24 · 2k processors (cores)

Result

small problem, but running
time decreases with up to
6144 cores

Compute Platform

Edison (NERSC), Cray XC30

24-core nodes

2 8 32 128 512
2−

4
2−

3
2−

2
2−

1
20

Number of Nodes

Ti
m

e
(s

ec
on

ds
)

ST-HOSVD
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