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Motivation: multidimensional data analysis requires

scalable algorithms
Dynamic functional connectivity fMRI data

@ measures correlation between regions of
the brain over time

@ experiments can include cognitive task

@ study multiple subjects across groups

%\30\

200 regions x 200 regions x 225 time steps x 59 subjects
4 GB of data
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CP decomposition discovers patterns of
synchronization across brain networks
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Motivation: Numerical simulations producing more

data than we can handle

30293“3' S3D MPI-based Combustion Code
r
@ direct numerical simulation of

engine combustion

® @ run on supercomputers

| Variables | @ single experiment produces
terabytes of data

® @ storage resolution much less

than computed resolution

@ difficult to analyze or even
512 x 512 x 512 3D grid, transfer data
128 time steps, 64 variables:
8 terabytes of data
(double precision)
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"Tucker decomposition yields huge compression for

combustion simulation data
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of scientific data for 550GB simulation dataset
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Motivation: what if you have to solve many PDEs?

A single PDE simulation can already create a ton of data...
what if we have design/uncertain parameters?

Suppose you have 10 parameters, each with 10 possible values

@ now you have to run your simulation 10'° times...
@ and store all this data...

If the resulting data could be compressed, why not compute the
compressed representation from the start?
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Tensor Train (TT) can break “curse of dimensionality”

For N-way problems that exhibit this compressible structure,
the Tensor Train format can reduce the number of parameters

from exponential to linearin N
@ e.g., Tucker reduces /N data to O(R") for some small R
@ e.g., TT reduces /N data to O(NIL?) for some other small L

For moderately large N, full format is typically infeasible
@ startin TT format, perform arithmetic in TT format
@ key is to maintain low ranks using rounding procedure
@ TT makes some very high dimensional problems tractable
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Parallel Computation of CP Decompositions

with Nonnegativity Constraints

joint work with Srinivas Eswar', Koby Hayashi’,
Ramakrishnan Kannan2, and Haesun Park

! Georgia Tech
2 Oak Ridge National Lab



X ~UjoVioW;+---+UgoVRO0WR, X € RIxJxK
X~ [U,V,W], UecR*R VeRIR WeRKXA
are factor matrices
R
x,-jkzZu,-,w,Wk,, 1<i<1<j<J1<k<K
r=1

Notation convention: scalar dimension N, index nwith 1 < n< N



Alternating Optimization (AO)

Fixing all but one factor matrix, we have a linear nonnegative
least squares (NNLS) problem:

R
x—ZGrOVrOWr

r=1

arg min
V>0

or equivalently

arg min HX(g) ~V(Wo U)TH

V>0 F

@ is the Khatri-Rao product, a column-wise Kronecker product

AO works by alternating over factor matrices, updating one at a
time by solving the corresponding linear NNLS problem
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Matricization/Unfolding: Viewing a tensor as a matrix

mode-1 fibers mode-2 fibers mode-3 fibers

JK IK i
| 1

X ) X(2) X(3)
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Nonnegative (Linear) Least Squares

Ballard

Our subproblem:

argmin HX(Z) ~V(Wo lfl)TH

V>0 F

Many possible NNLS algorithms
@ Multiplicative Updates [LS99]
@ Hierarchical Alternating Least Squares [CZPAQ9]
@ Block Principal Pivoting [KP11]
@ Alternating Direction Method of Multipliers [LS15]
@ Nesterov-type Algorithm [LKLT17]



Nonnegative (Linear) Least Squares
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Our subproblem:

argmin || X») — V(W o O)T
gmin [z — V(W 0 0,
Most NNLS algorithms are bottlenecked by computing

X(2)(W © U) and (W © [])T(W ©) U)

® Xp ( U) is called Matricized-Tensor Times Khatri-Rao
P d t (MTTKRP) and is expensive to compute

o (Wo U)T(W e U) can be computed relatively cheaply as
W W « 070, where « is elementwise product



Parallelizing MTTKRP

Our goal is to perform MTTKRP in parallel as fast as possible
@ How do we distribute the tensor across processors?
@ How do we distribute the matrices across processors?
@ How do we divide up the computation?
@ How much interprocessor communication will that require?
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Parallel Communication Lower Bound

Theorem ([BKR18])

Any parallel MTTKRP algorithm involving a tensor with
I, = I''N for all n and that evenly distributes one copy of the
input and output performs at least

JCORRON

sends and receives. (Second term will typically dominate.)

@ N is the number of modes

@ /is the number of tensor entries

@ |, is the dimension of the nth mode
@ R is the rank of the CP model

@ P is the number of processors
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Communication-Optimal Parallel Algorithm (3D)

Each processor

@ Starts with one subtensor
and subset of rows of each
D input factor matrix
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Communication-Optimal Parallel Algorithm (3D)

Each processor

@ Starts with one subtensor
and subset of rows of each
input factor matrix

@ All-Gathers all the rows
needed from U

u © All-Gathers all the rows
needed from W

© Computes its contribution to
rows of M (local MTTKRP)

© Reduce-Scatters to compute
‘ ‘ I y and distribute M evenly
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Communication-Optimal Parallel Algorithm (3D)

Each processor

@ Starts with one subtensor
and subset of rows of each
input factor matrix

@ All-Gathers all the rows
needed from U

u © All-Gathers all the rows
needed from W

© Computes its contribution to
rows of M (local MTTKRP)

© Reduce-Scatters to compute
‘ ‘ I y and distribute M evenly

© Use M to solve NNLS
M problem for V
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Rest of the Algorithm

@ With correct processor grid, MTTKRP algorithm achieves
communication lower bound

@ Also need to compute G = U'U « WTW

e involves communication
o generally lower order cost

@ Lots of overlap across MTTKRP computations

@ save communication: keep temporary copies around
e save computation: use dimension tree optimization
o O(N) savings, where N is the number of modes

@ Can choose algorithm to compute V from M and G

o for some algorithms, this is all local computation
e some algorithms require extra computation of global
information, can add significant cost

Ballard 14



Weak Scaling Results for 4D Synthetic Data

= gram
= nnls
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Software: PLANC

Ballard

Parallel Low-rank Approximations with Non-negativity Constraints

Y

https://github.com/ramkikannan/planc

@ Open source code for computing NMF and NNCP

@ MPI/BLAS/LAPACK/C++11

@ Designed for dense tensors and dense/sparse matrices
@ Can offload computation to GPUs if available


https://github.com/ramkikannan/planc

Efficient Parallel Algorithm for Tucker

Decompositions of Dense Tensors

joint work with Woody Austin?, Alicia Klinvex®, Tammy
Kolda®, and Hemanth Kolla®

4 UT Austin
5 Bettis Atomic Power Laboratory
6 Sandia National Labs



Tucker Notation

V4

I)Cz9><1U><2V><3W :X:ERIXJXK,SERPXQXR
is core tensor
~[G;U,V,W], Uc R*P Ve R/*Q W e RKXR

are factor matrices
P Q

R
Xjk = ZZZ OpqrlpVigWir, 1<i<I1<j<J1<k<K
:q: :
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Algorithm: ST-HOSVD [VVM12]

ST-HOSVD(X, ¢)

@ Compute U with dimension / x P

(a) Compute Gram matrix X)X 5,

(b) Use eigendecomposition to determine P and U

(c) TTM to shrinkto size P x J x K: Y = X x4 u’
©Q Compute V with dimension J x Q

(a) Compute Gram matrix Y)Y 3

(b) Use eigendecomposition to determine Q and V

(c) TTMto shrinktosize Px Qx K: Z =Y x, V'
© Compute W with dimension K x R

(a) Compute Gram matrix Z(3Z(

(b) Use eigendecomposition to determine R and W

(c) TTMto shrinkto size Px Qx R: G =2 xg W'
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Key kernels

Ballard

Key kernels of ST-HOSVD are

@ Gram: short, fat matrix times its transpose (X(1)X(T1))
@ Evecs: eigendecomposition of small symmetric matrix

@ TTM: tensor times matrix to shrink problem (UTX(1))

Our goal is to parallelize Gram and TTM efficiently



Tensor data distribution across processors

For N-way tensor, we use N-way processor grid
with Cartesian block distribution (same as for CP)

— | —

— J =

Example: P{ x Po x P3 =3 x5x 2

Local tensor size: L X i X ﬁ
Py Py Py
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Parallel matricization

Matricizing distributed tensor requires no data movement:
matricized tensor already in standard matrix distribution

P1><P2><P3 P]XPQPg

Step 1: Change
Processor View

10

Step 2: Change
Local View

X
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Parallel Gram Computation

JK JK
| PaPs P

.
X1y

@ each processor column redistributes its tensor data
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Parallel Gram Computation

S /

@ each processor column redistributes its tensor data
@ each processor computes local outer product

@ sum across all processors via All-Reduce
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Time Breakdown of Parallel ST-HOSVD

Parallel running time example
@ 5-way tensor of size 4.4 TB
@ reduced to 10 GB (410X)
@ 1100 processors (cores)

@ 55 seconds total

Time (secs)

Observations

@ load-balanced execution

20 a0 &0 w0 100 @ cycle of Gram-Eig-TTM
Processor ID shrinks over time

@ writing original tensor to
disk is slower by 10X
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Combustion Simulation (S3D) Data

Ballard

3D Spatial
Grid

&

Variables

&

Time

Stat-Planar dataset
@ 500 x 500 x 500 x 11 x 400
@ 4.4 TB of total storage
@ use 250 nodes to process

Two compression scenarios
@ High: 1e-2 error, 20,000X comp.
@ Low: 1e-4 error, 400X comp.

Three processor grids
@ A:1x1x40x1x100
@ B:10x8x5%x1x10
@ C:40x10x1x1x10



Gram Algorithm Comparison

150 — B —

T T T T
[ | Other
[ | Packing
W Matrix Comm
M Tensor Comm
100 y

[ | Computation

Time (seconds)

mode 1 mode 4 mode 1 mode 4 mode 1 mode 4

A B C

@ Old algorithm from our previous work [ABK16]
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Weak Scaling on Synthetic Data

—o— ST-HOSVD

20.8

Problem Setup
@ local tensor fixed at
200 x 200 x 200 x 200

@ local core fixed at
20 x 20 x 20 x 20

Result

@ as problem size grows with
number of processors,
high efficiency maintained up ‘ ‘ L
to 10K cores 1 16 81 256 625

Number of Nodes

GFLOPS per Core
10
T
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Software: TuckerMPI

L7 [ TUCKERMP

https://gitlab.com/tensors/TuckerMPI

@ Open source code for computing Tucker compression
@ MPI/BLAS/LAPACK/C++11
@ Designed for dense tensors
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https://gitlab.com/tensors/TuckerMPI

Communication-Efficient Parallel Algorithms for

Tensor Train Rounding

joint work with Hussam Al Daas’ and Peter Benner’

7 MPI Magdeburg



Tensor Train Notation

Ballard

R, R R R, R R R R

X ~ {T)(;(},I)CG]RI‘><12></3XI4><I5 Ty x € RAIXRirs

are TT cores
Ry Ry Ry Rs

Xijkim = Z Z Z Z Tx1(6,0)Tx 2(c0, f, B)T x,3(8, K, V)T x,4(7: 1, 8)T x 5(8, m)

a=1p=1~y=14=1
V(j'x,k) € RAK*Rk+1 gnd H(Tx,k) € RAX Rkt
are vertical and horizontal unfoldings of kth core
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TT Rounding

Ballard

Given a tensor in TT format, want to compress the ranks
@ algebraic operations on TT formats over-extend ranks
@ recompression subject to some error threshold

Rounding done in two phases: orthogonalization and truncation
@ orthogonalization done core-by-core in sequence
@ truncation is done core-by-core (opposite direction)



TT Rounding
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Given a tensor in TT format, want to compress the ranks
@ algebraic operations on TT formats over-extend ranks
@ recompression subject to some error threshold

Rounding done in two phases: orthogonalization and truncation
@ orthogonalization done core-by-core in sequence
@ truncation is done core-by-core (opposite direction)

for n= N down to 2 do
L-H(Q)=H(Tx,n) > LQ factorization of short-fat matrix
Txn=9
V(Tx,n-1) = V(Tx,n—1)L

forn=1to N—1do
V(W) - Zp- V] =V(Tx.n) > truncated SVD of tall-skinny matrix
in)C,n = un
H(Tx,n+1) = TnVy) H(Txn41)



Parallel Distribution

Ballard

R, e

A3

Ry

Rs

Rs

Ry

I

Rs

Is

@ Each core distributed across all P processors
o Local nth core dimensions are R, x 5 x Ry 1
@ Vertical and horizontal unfoldings are 1D-distributed



Parallel TT Rounding Algorithm

function {7\ } = PAR-TT-ROUNDING({T) })
for n = N downto 2 do

(YS9 0, Ra) = TSQR(H(T(QQ,,)T) > QR factorization
R = BROADCAST(R,, root) > Broadcast R to all procs
VIR, ) =Mur(v(TE,_,),R?) > Apply R to previous core
Yy=Xx
forn—1toN—1do
[{Ys?}n, Rn] = TSQROV(TY),)) > QR factorization
if p = root then
[Um 3, V] = TSVD(R,) > Truncated SVD of R
V(Ty n) TSQR-APPLY-Q({ V3 }n, Ur) > Form explicit U

HITY,,1) = TSQR-APPLY-Q({ Y5} o1, V) > Apply V to next core
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Tall-Skinny QR (TSQR) Algorithm [DGHL12]

A R

% Key benefit of TSQR:
one parallel reduction

Orthogonal factor stored implicitly
as tree of Householder vectors

Application of implicit orthogonal factor
also computed via tree (backwards)
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Cost Analysis of TT-Rounding

Assuming I, = I'and R, = R, and R is reduced by factor of 2...
computational cost is

NIR3

°p

+ O(NR®log P) flops

communication cost is

O(NR? log P) words and O(N log P) messages
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Cost Analysis of TT-Rounding

Assuming I, =/ and R, = R, and R is reduced by factor of 2...
computational cost is

NIR3

°p

+ O(NR®log P) flops

communication cost is

O(NR? log P) words and O(N log P) messages

@ costs are linear not exponential in N (property of TT)
@ communication cost is independent of / (good)
@ communication cost increases slightly with P (bad)
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Strong Scaling Performance

T T T T T
26 |- —eo— RLR H
-« LRL
. 25 - —e—RLR (imp) |
2 . —— LRL (imp)
5 2
(&)
8 o3 :
£
2| i
= 2
21 L |
20 = B

| | | | |
320 640 1280 2560 5120
Number of Cores

@ I, =512,000, R, = 60 — 30, N = 50
@ strong scaling is (slightly) superlinear
@ implicit optimization yields up to 60% improvement
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Performance Breakdown

09 R

0.8+ : Other
g 07 . SVD (comp)
= 06| | MultR (comm)
© MultR (comp)
5 05¢ i AppQ (comm)
§ 0.4} b B AppQ (comp)
i 03[ : E/TSQR (comm)

02| . B TSQR (comp)

0.1 8

0

320 640 1280 2560 5120
Number of Cores

@ 70-80% of time spent in local TSQR computations
@ communication cost doesn’t scale with processors
@ but still not a bottleneck at 128 nodes (5120 cores)
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@ Parallel CP bottlenecked by MTTKRP

@ our algorithm’s communication cost matches lower bound
e we avoid redundant computation and communication
across modes

@ Parallel Tucker bottlenecked by SVD and TTM

e need communication-efficient distributions and algorithms
e we can tune the processor grid for efficiency

@ Parallel TT-Rounding bottlenecked by Tall-Skinny QR

o use TSQR algorithm (tree-based reduction technique)
@ need to compute and apply implicit Q matrices
e communication costs independent of tensor dimensions
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For more details:
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PLANC: Parallel Low Rank Approximation with Non-negativity
Constraints
Srinivas Eswar, Koby Hayashi, Grey Ballard, Ramakrishnan Kannan,
Michael Matheson, and Haesun Park
https://arxiv.org/abs/1909.01149
[EHBT19]

TuckerMPI: Efficient Parallel Software for
Tucker Decompositions of Dense Tensors
Grey Ballard, Alicia Klinvex, and Tamara G. Kolda
arXiv 2019
https://arxiv.org/abs/1901.06043
[BKK19]

Communication-Efficient Parallel Algorithms for
Tensor Train Orthogonalization and Rounding
Hussam Al Daas, Grey Ballard, Peter Benner
Coming soon...


https://arxiv.org/abs/1909.01149
https://arxiv.org/abs/1901.06043

Mouse Brain Data

Ballard

Replacement of the dorsal cranium
with a “Crystal Skull”

> ) >

Curved
coverglass [Fluorescence calcium-imaging

of neural activity ] i

Image from [KZL"16]

@ tensor is pixels x time x trial: 1.4M x 69 x 25
@ about 20 GB when stored in double precision



Convergence Results for Mouse Brain Data
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Relative Error

4 6 8 10
Total Time(in Secs)



Local tensor data layout in memory

Local matricizations (with no data movement)
lead to matrices in funny layouts

Example: 2 x 2 x 2 x 2 tensor’s matricization layouts

| | |
| | |
1 1 1
X(1) Xe2)
|
|
| |
1
X(3) X4
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Tensor Times Matrix
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K JK

J
X Xq)

Tensor-times-matrix (TTM) is matrix multiplication
with matricized tensor

I

JK JK




Parallel Tensor Times Matrix

Example: Py x Po x P =3 x5x 2

IK/(P1P3)
J
P
°

J/Pa

v X(2)

@ Matrix V distributed conformally to 2nd mode of tensor X
@ Matrix V distributed redundantly on processor columns

@ Local computation is matrix multiplication

@ Communication pattern is reduce-scatter (MPI collective)
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More eyeball norm comparisons (JICF)

- | -
Original
e=10"*

(110X)
X
- \ -
— €e=10"?
N ‘1@@ (40000X)
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More eyeball norm comparisons (HCCI)

Original 14X Compression 760X Compression

— -
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Compressibility depends on data (sing. value decay)

TJLR: 460 x 700 x 360 x 35 x 16 SP-50: 500 x 500 x 500 x 11 x 50

Fast drop off yields
greater compression

e/Vd

Mode-wise Norm. RMS Error

1071°107210"% 107106107510~ 103 10-2 10! 10°
Mode-wise Norm. RMS Error

107101072 108 10-7 106 1075 1074 103 10~2 10~ 10°

—e— Spatial 1 —e— Spatial 1
—=— Spatial 2 —=— Spatial 2
—e— Spatial 3 —e— Spatial 3

—— Species
—+—  Time

—— Species
—+—  Time

0 100 200 300 400 500 600 0 100 200 300 400 500
Rank Rank
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Partial reconstruction
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Reconstruction requires as much
space as the original data!

j: = 9 X1 .U-(1> X9 U(z) X3 U(3) Xy U(4) X5 U(5) [
Ny X NoxN3x Nyx Ny

But we can just reconstruct the portion ]
that we need at the moment: o

X =G x; UD x, U x;c®UB x, C(4)U(4; :5 cGy®d

NixNoxfexix1  [1/2 0 0 0 0
/2 0 0 . .
c®_|0 1/2 --- 0 cWw — 1 c® — 1
0 1/2 - 0 0 \ . \
: . H Pick single
Downsample 4 Pick _smgle time stgp
variable



Flame Surface Reconstruction

Original e=1le-4 €=1e-2

400X Compression 20000X Compression

Flame surface at single time step.
Using temperature variable (iso-value is 2/3 of max).
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Processor Grid Comparison

80| M TTM .
B Evecs

60

40

Time (seconds)

20

0 High Low High Low High Low
A B C
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Tucker compression

S

X ~ § xq1 U xo V xg W
=~ ~ ~— ~— ~—
IxdxK  PxQxR IxP IxQ KxR

Compression ratio

UK UK

C=PaRTIP1JQIKR ™ POR
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Tucker approximation error
Jw

S

Xije % Kije = D_ GparUipVigWhr
p,q,r

Approximation error

fo = 5CH (Zu,k (Xijk - Zp,q,,gpq,u,pvjqwkrf) 1/2
x| (1 G2
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Strong scaling benchmark

Problem Setup ‘

T-HOSVD
@ 200 x 200 x 200 x 200 2 E

data tensor (12 GB)

@ 20 x 20 x 20 x 20 BT i
core tensor 8
(0]
@ 24 . 2% processors (cores) L ‘L = =
[0
Result £
T E .
@ small problem, but running N
time decreases with up to -
6144 cores ol )

|
2 8 32 128
Number of Nodes

|
512
Compute Platform

@ Edison (NERSC), Cray XC30

@ 24-core nodes
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