
≈ + + · · ·+

≈

Tensor Decompositions
Data Sciencefor

Tamara G. Kolda
Grey Ballard

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Typeset on October 17, 2024.

Notice: This material will be published by Cambridge University Press as Tensor Decom-
positions for Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication
version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Citation: Grey Ballard and Tamara G. Kolda, Tensor Decompositions for Data Science,
preliminary draft copy, October 17, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Contents

Front Matter
Contents . i
Preface . ix

I Tensor Basics
1 Tensors and Their Subparts . 3
1.1 What is a Tensor? . 4
1.2 Slices and Hyperslices . 5
1.3 Tensor Fibers . 8
1.4 Tensor Mode-k Unfolding . 10
1.5 Example Tensors . 11
1.5.1 Miranda Scientific Simulation Data . 11
1.5.2 EEM Fluorescence Spectroscopy Data . 13
1.5.3 Monkey BMI Neuronal Spike Data . 15
1.5.4 Chicago Crime Count Data . 16

1.6 A First Look at Tensor Decompositions . 18
1.6.1 A First Look at Tucker Decomposition . 19
1.6.2 A First Look at CP Decomposition . 19

2 Indexing and Reshaping Tensors . 21
2.1 Linear Indexing . 21
2.1.1 Natural Order Linear Indexing . 22
2.1.2 Reverse Ordering Linear Indexing . 25
2.1.3 General Ordering . 29

2.2 Vectorization . 31
2.2.1 Vectorizing 3-way Tensors . 31
2.2.2 Vectorizing d-way Tensors . 32
2.2.3 Representing Tensors in Computer Memory . 33

2.3 Unfolding or Matricization of a Tensor . 33
2.3.1 Unfolding 3-way Tensors . 34
2.3.2 Unfolding d-way Tensors . 36
2.3.3 Structure of Mode-k Unfoldings . 40

2.4 Permuting a Tensor . 41
2.4.1 Permutations and Unfoldings . 43
2.4.2 Tensor Perfect Shuffle Matrix . 43
2.4.3 Linear Indexing and Permutations . 44

3 Tensor Operations . 47
3.1 Inner Products . 47
3.1.1 Inner Products for 3-way Tensors . 47
3.1.2 Inner Products for d-way Tensors . 48

3.2 Outer Products . 49
3.2.1 Outer Product of 3 Vectors . 49
3.2.2 Outer Product of d Vectors . 50
3.2.3 General Outer Products . 52
3.2.4 Tensor-Tensor Outer Products . 53

3.3 Tensor-Times-Matrix (TTM) Products . 54
3.3.1 TTM for 3-way Tensors . 55
3.3.2 TTM for d-way Tensors . 59

i

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

ii Contents

3.4 TTM in Multiple Modes (Multi-TTM) . 61
3.4.1 Multi-TTM for 3-way Tensors . 62
3.4.2 TTM with Multiple Matrices (Multi-TTM) for d-way Tensors . 63
3.4.3 Efficient Multi-TTM Computation . 64

3.5 Matricized Tensor Times Khatri-Rao Product (MTTKRP) 66
3.5.1 MTTKRP for 3-way Tensors . 66
3.5.2 MTTKRP for d-way Tensors . 69

3.6 Sequences of Multi-TTM and MTTKRP Operations . 72
3.6.1 Multi-TTM Sequence . 72
3.6.2 MTTKRP Sequence . 75

3.7 Sparse Tensors and Operation Efficiencies . 79
3.7.1 Coordinate Format for Sparse Tensors . 80
3.7.2 Norm of a Sparse Tensor . 82
3.7.3 MTTKRP for 3-way Sparse Tensors . 82
3.7.4 MTTKRP for d-way Sparse Tensors . 83
3.7.5 Other Data Structures for Sparse Tensors . 84

3.8 Tensor Contraction . 84
3.8.1 Tensor Contraction for 3-way Tensors . 84
3.8.2 Tensor Contraction for d-way Tensors . 85
3.8.3 Tensor Network Diagrams . 86
3.8.4 Batched Tensor Contractions . 87
3.8.5 Einstein Notation . 88

II Tucker Decomposition

4 Tucker Decomposition . 91
4.1 Formulation of Tucker Decomposition . 91
4.1.1 Tucker Decomposition for 3-way Tensors . 92
4.1.2 Tucker Decomposition for d-way Tensors . 94

4.2 Choosing the Tucker Decomposition Rank . 94
4.2.1 Specified Multirank . 95
4.2.2 Specified Accuracy . 95

4.3 Methods for Computing Tucker Decomposition . 95
4.3.1 Higher-Order SVD (HOSVD) . 96
4.3.2 Sequentially Truncated HOSVD (ST-HOSVD) . 97
4.3.3 Higher-order Orthogonal Iteration (HOOI) . 98
4.3.4 Choice of Method . 99

4.4 Reconstruction from Tucker Decomposition . 99
4.4.1 Full Reconstruction . 99
4.4.2 Partial Reconstruction . 100

4.5 Example: Tucker Compression of Miranda Scientific Simulation Tensor 101

5 Tucker Tensor Structure . 103
5.1 Tucker Tensor Format . 103
5.1.1 Tucker Format for 3-way Tensors . 103
5.1.2 Tucker Format for d-way Tensors . 104

5.2 Unfolding a Tucker Tensor . 105
5.2.1 Vectorizing or Unfolding 3-way Tucker Tensors . 105
5.2.2 Vectorizing or Unfolding d-way Tucker Tensors . 107

5.3 Non-uniqueness . 108
5.4 Imposing Orthonormal Factor Matrices . 108
5.5 Full Reconstruction . 109
5.5.1 Full Reconstruction for 3-way Tucker Tensors . 110
5.5.2 Full Reconstruction for d-way Tucker Tensors . 110

5.6 Partial Reconstruction . 111
5.6.1 Partial Reconstruction of 3-way Tucker Tensors . 111
5.6.2 Partial Reconstruction of d-way Tucker Tensors . 112

5.7 Operations on Tucker Tensors . 112
5.7.1 Inner Products and Norms of Tucker Tensors . 113
5.7.2 TTM for Tucker Tensors . 115
5.7.3 MTTKRP with Tucker Tensors . 115

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Contents iii

6 Tucker Algorithms . 117
6.1 Optimization Formulation . 117
6.1.1 Tucker Optimization Problem for 3-way Tensors . 117
6.1.2 Tucker Optimization Problem for d-way Tensors . 119
6.1.3 Mode-Wise Optimization . 120

6.2 Higher-Order SVD (HOSVD) . 122
6.2.1 HOSVD for 3-way Tensors . 122
6.2.2 HOSVD for d-way Tensors . 123

6.3 Sequentially Truncated HOSVD (ST-HOSVD) . 125
6.3.1 ST-HOSVD for 3-way Tensors . 125
6.3.2 ST-HOSVD for d-way Tensors . 127

6.4 Higher-order Orthogonal Iteration (HOOI) . 128
6.4.1 HOOI for 3-way Tensors . 128
6.4.2 HOOI for d-way Tensor . 130

6.5 Other Methods . 131

7 Tucker Approximation Error . 133
7.1 Decomposing the Approximation Error . 133
7.2 HOSVD Error . 134
7.2.1 HOSVD Error for 3-way Tensors . 135
7.2.2 HOSVD Error for d-way Tensors . 135

7.3 ST-HOSVD Error . 136
7.3.1 ST-HOSVD Error for 3-way Tensors . 136
7.3.2 ST-HOSVD Error for d-way Tensors . 136

7.4 Quasi-Optimality . 137

8 Tensor Train Decomposition . 141
8.1 Formulation of the TT Decomposition . 142
8.1.1 TT Decomposition of 3-way Tensors . 142
8.1.2 TT Decomposition of 4-way Tensors . 143
8.1.3 TT Decomposition of d-way Tensors . 144

8.2 Algorithm and Error Analysis . 145
8.2.1 TT-SVD Decomposition for 4-way Tensor . 146
8.2.2 TT-SVD for d-way Tensor . 149

8.3 Example: TT of Discretized Function Tensor . 154

III CP Decomposition

9 Canonical Polyadic (CP) Decomposition . 157
9.1 Formulation of CP Decomposition . 158
9.1.1 CP Decomposition for 3-way Tensors . 158
9.1.2 CP Decomposition for d-way Tensors . 160
9.1.3 Connection to Matrix Low-Rank Approximation . 160

9.2 Properties of CP Decompositions . 161
9.2.1 Inherent Ambiguities . 161
9.2.2 Fundamental Challenges . 161
9.2.3 Uniqueness . 162

9.3 Overview of Methods for Computing CP . 163
9.3.1 Alternating Least Squares (CP-ALS) . 163
9.3.2 All-at-once Optimization (CP-OPT and CP-NLS) . 164
9.3.3 Direct Computation via Simultaneous Diagonalization . 164

9.4 Practical Considerations . 165
9.4.1 Choosing the CP Rank . 165
9.4.2 Regularization . 166
9.4.3 Initialization and Multiple Runs . 166
9.4.4 Preprocessing . 167
9.4.5 Postprocessing . 167
9.4.6 Comparison of Methods . 168

9.5 Extensions of CP . 168
9.5.1 Nonnegativity and Other Constraints . 169
9.5.2 Methods for Incomplete Data (EM and CP-WOPT) . 169
9.5.3 Other Loss Functions with Generalized CP (GCP) . 170
9.5.4 Methods for Symmetric Tensors . 171

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

iv Contents

9.6 Example: CP on EEM Tensor . 171
9.6.1 Comparing to EEM Ground Truth . 172
9.6.2 Interpreting CP Factors for EEM Tensor . 173

9.7 Example: CP on Monkey BMI Tensor . 174
9.7.1 Nonnegative CP on Monkey BMI Tensor . 174
9.7.2 Clustering Monkey BMI Trials . 176

9.8 Example: GCP on Chicago 2019 Crime Tensor . 177
9.8.1 Choosing the Objective Function . 177
9.8.2 Choosing the Model Rank . 177
9.8.3 Interpretting the Decomposition . 177

9.9 Origins of the Name “CP” . 180

10 Kruskal Tensor Structure . 181
10.1 Rank-1 Tensors . 181
10.1.1 Rank-1 3-way Tensors . 181
10.1.2 Rank-1 d-way Tensors . 182

10.2 Kruskal Tensor Format . 182
10.2.1 Kruskal 3-way Tensor Format . 182
10.2.2 Kruskal d-way Tensor Format . 184
10.2.3 Kruskal 3-way Tensor Format with Component Weights . 184
10.2.4 Kruskal d-way Tensor Format with Component Weights . 185

10.3 Unfolding a Kruskal Tensor . 186
10.3.1 Vectorizing or Unfolding a 3-way Kruskal Tensor . 186
10.3.2 Vectorizing or Unfolding a d-way Kruskal Tensor . 188

10.4 Kruskal Tensor Ambiguities . 190
10.4.1 Permutation Ambiguity . 190
10.4.2 Scaling Ambiguity . 190

10.5 Kruskal Tensor Uniqueness . 191
10.6 Full Construction from Kruskal Tensors . 193
10.6.1 Full Construction from 3-way Kruskal Tensors . 193
10.6.2 Full Construction from d-way Kruskal Tensors . 194
10.6.3 Masked Full Construction from a Kruskal Tensor . 195

10.7 Operations with Kruskal Tensors . 196
10.7.1 Inner Products and Norms of Kruskal Tensors . 197
10.7.2 Approximation Error . 198
10.7.3 MTTKRP with Kruskal Tensors . 200
10.7.4 TTM with Kruskal Tensors . 201

10.8 Measuring Similarity of Kruskal Tensors . 202
10.8.1 Measuring Similarity of 3-way Kruskal Tensors . 202
10.8.2 Measuring Similarity of d-way Kruskal Tensors . 203

11 CP Alternating Least Squares (CP-ALS) Optimization 205
11.1 CP-ALS for 3-way Tensors . 205
11.1.1 Least Squares Subproblem for 3-way Tensors . 206
11.1.2 CP-ALS Algorithm for 3-way Tensors . 207

11.2 CP-ALS for d-way Tensors . 209
11.2.1 Least Squares Subproblem for d-way Tensors . 209
11.2.2 CP-ALS Algorithm for d-way Tensors . 210
11.2.3 Complexity Analysis for CP-ALS . 210
11.2.4 CP-ALS with Sparse and Structured Tensors . 212

11.3 Further Notes on CP-ALS . 213
11.4 CP-ALS on Data Tensors . 213

12 CP Gradient-Based Optimization (CP-OPT) . 219
12.1 CP Optimization Problem . 219
12.1.1 CP Optimization Formulation for 3-way CP . 220
12.1.2 CP Optimization Formulation for d-way CP . 221

12.2 Gradients for CP . 222
12.2.1 Preliminaries for Computing CP Gradients . 222
12.2.2 CP Gradient for 3-way Tensors . 223
12.2.3 CP Gradient for d-way Tensors . 226
12.2.4 Complexity Analysis for Computing CP Gradient . 227

12.3 CP-OPT Method . 228
12.4 CP-OPT on Data Tensors . 230

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Contents v

13 CP Nonlinear Least Squares (CP-NLS) Optimization 233
13.1 CP Nonlinear Least Squares Problem . 233
13.1.1 CP Jacobian for 3-way Tensors . 234
13.1.2 CP Jacobian for d-way Tensors . 234

13.2 Solving the Gauss-Newton Linear System . 235
13.2.1 Applying Approximate CP Hessian for 3-way Tensors . 236
13.2.2 Preconditioning in Approximate Gauss-Newton for 3-way Tensors 237
13.2.3 Applying Approximate CP Hessian for d-way Tensors . 239
13.2.4 Preconditioning in Approximate Gauss-Newton for d-way Tensors 242

13.3 CP-NLS on Data Tensors . 242

14 CP Algorithms for Incomplete or Scarce Data 245
14.1 Representing Incomplete or Scarce Data . 246
14.1.1 Known Value Indicator Set . 247
14.1.2 Known Value Selection Matrix . 247
14.1.3 Known Value Weight Tensor . 248

14.2 Missing Data CP Function and Gradient . 249
14.2.1 Missing Data CP Function and Gradient: 3-way . 249
14.2.2 Missing Data CP Function and Gradient: d-way . 250

14.3 Weighted All-at-once Optimization (CP-WOPT) . 251
14.3.1 CP-WOPT Method . 251
14.3.2 Special Handling of Scarce Tensors . 252

14.4 Weighted Alternating Optimization (CP-WALS) . 253
14.5 Example: CP-WOPT on EEM Tensor . 254
14.5.1 Computing CP on EEM with Missing Data . 254
14.5.2 EEM Tensor with Even More Missing Data . 256

15 Generalized CP (GCP) Decomposition . 257
15.1 Generalized Loss Functions . 257
15.2 Choices for Loss Functions . 258
15.2.1 Sum of Squared Errors (Normal-Distributed Data) . 259
15.2.2 Logistic Regression (Binary Data) . 259
15.2.3 KL Divergence (Count Data) . 261
15.2.4 Loss Functions for Nonnegative Data . 262
15.2.5 Robust Loss Functions . 264
15.2.6 Summary of Loss Functions . 265

15.3 Optimization Formulation . 266
15.3.1 GCP for 3-way Tensors . 266
15.3.2 GCP for d-way Tensors . 266
15.3.3 Properties and Extensions of GCP Decompositions . 266

15.4 GCP Gradient and First-order Optimization . 266
15.4.1 GCP Gradient for 3-way Tensors . 266
15.4.2 GCP Gradient for d-way Tensors . 267

15.5 GCP-OPT Method . 268
15.6 Example: GCP-OPT on Monkey BMI Tensor . 269
15.7 Example: GCP-OPT on Chicago Crime Tensor . 271

16 CP Tensor Rank and Special Topics . 273
16.1 Tensor Rank . 273
16.2 Tensor Rank is NP-Hard . 274
16.3 Maximum Rank . 274
16.4 Typical Rank . 275
16.5 Border Rank . 276
16.6 Connections to Arithmetic Complexity . 277
16.6.1 Multiplying Complex Numbers . 278
16.6.2 Strassen’s 2 × 2 Matrix Multiplication . 280
16.6.3 3 × 3 Matrix Multiplication . 282
16.6.4 General Matrix Multiplication . 282
16.6.5 Arbitrary Precision Approximating Algorithms . 284

16.7 CP Uniqueness . 285
16.8 Direct Computation of Rank for Certain Tensors . 287
16.8.1 Rank-1 Tensors . 287
16.8.2 Rank of 2 × 2 × 2 Tensors . 289

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

vi Contents

16.8.3 Rank of n × n × 2 Tensors . 293
16.8.4 Direct Computation of CP for Certain m × n × p Tensors . 294

16.9 Greedy Computation . 296

IV Closing Observations

17 Closing Observations . 301
17.1 Comparing Matrix and Tensor Decompositions . 301
17.1.1 Decomposition Overview . 301
17.1.2 Decomposition Size . 303
17.1.3 Computability and Quasi-Optimality . 303
17.1.4 Factor Orthogonality . 304
17.1.5 Uniqueness . 304
17.1.6 Interpreting CP as Tucker . 304
17.1.7 Interpreting Tucker as CP . 305
17.1.8 CP and Tucker Equivalence for Orthogonally Decomposable Tensors 305
17.1.9 Comparing Matrix and Tensor Decomposition . 305

17.2 CANDELINC: Tucker Preprocessing for CP . 306
17.3 Symmetric Tensors . 308
17.3.1 Symmetric Tucker Decomposition . 310
17.3.2 Symmetric CP Decomposition . 310
17.3.3 Tensor Eigenproblems . 311

17.4 Other Tensor Decompositions . 312
17.4.1 Tensor SVD (t-SVD) . 312
17.4.2 Hierarchical Tensor Decomposition . 312
17.4.3 Tensor Ring Decomposition . 313
17.4.4 CP-Tucker Hybrid Block Decomposition . 314
17.4.5 Infinite Dimensional Decompositions . 314

V Review Materials
A Numerical Linear Algebra . 319
A.1 Complexity and Big-O Notation . 319
A.2 Finite Precision and Numerical Stability . 320
A.3 Vectors and Matrices . 321
A.3.1 Definitions . 321
A.3.2 Vector Inner Product and Norms . 322
A.3.3 Matrix Inner Product and Norms . 323
A.3.4 Vector Outer Product . 324
A.3.5 Matrix-Vector Product . 324
A.3.6 Matrix-Matrix Product . 324
A.3.7 Matrix Inverse . 325
A.3.8 Positive Definiteness . 326
A.3.9 Vector Span and Subspace Dimension . 326
A.3.10 Matrix Range and Rank . 327
A.3.11 Orthonormal and Orthogonal Matrices . 328
A.3.12 Permutation Matrices . 329

A.4 Other Matrix Products . 330
A.4.1 Gram Matrix . 330
A.4.2 Matrix Hadamard Product . 330
A.4.3 Matrix Kronecker Product . 331
A.4.4 Matrix Khatri-Rao Product . 334

A.5 Matrix Decompositions . 336
A.5.1 LU and Cholesky Decompositions . 337
A.5.2 QR Decomposition . 338
A.5.3 Singular Value Decomposition (SVD) . 338
A.5.4 Symmetric Eigenvalue Decomposition . 340
A.5.5 Detailed Costs of Computing the SVD . 341

A.6 Solving Linear Equations . 342
A.6.1 Solving Diagonal Linear Equations . 343
A.6.2 Solving Orthogonal Linear Equations . 343
A.6.3 Solving Triangular Linear Equations . 343
A.6.4 Solving Symmetric Positive Definite Linear Equations . 343
A.6.5 Solving Nonsymmetric Linear Equations . 344

A.7 Linear Least Squares Problems . 345
A.7.1 Solving Least Squares via Normal Equations . 345

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Contents vii

A.7.2 Solving Least Squares via QR . 346
A.7.3 Solving Least Squares via SVD . 347
A.7.4 Choice of Least Squares Solver . 347
A.7.5 Multiple Right-Hand-Sides Version of Least Squares . 348

A.8 Low-Rank Matrix Approximation . 348
A.8.1 Specified Rank . 349
A.8.2 Specified Error . 350
A.8.3 Extensions of Low-Rank Matrix Approximation . 351

A.9 Software Libraries for Linear Algebra . 351
A.9.1 Representing Matrices in Memory . 351
A.9.2 BLAS Hierarchy . 352

B Optimization Principles and Methods . 355
B.1 Multivariable Calculus . 355
B.1.1 First Derivatives . 355
B.1.2 Second Derivatives . 358
B.1.3 Matrix Calculus . 359

B.2 Principles of Unconstrained Optimization . 361
B.2.1 Gradients and Stationary Points . 363
B.2.2 Hessians and Optimality Conditions . 365
B.2.3 Convex Functions . 366

B.3 Unconstrained Optimization Methods . 367
B.3.1 Using Optimization Methods . 367
B.3.2 Gradient Descent . 368
B.3.3 Newton’s Method . 369
B.3.4 BFGS Optimization Method . 370
B.3.5 L-BFGS Optimization Method . 371
B.3.6 Damped Gauss-Newton for Least Squares Problems . 371
B.3.7 Block Coordinate Descent . 373

B.4 Example: 2-Dimensional Optimization . 373
B.5 Constrained Optimization . 376

C Some Statistics and Probability . 379
C.1 Random Variables . 379
C.1.1 Discrete Random Variables . 379
C.1.2 Continuous Random Variables . 380

C.2 Maximum Likelihood Estimator (MLE) . 380
C.3 Useful Distributions . 381
C.3.1 Gaussian Distribution and Sum of Squared Errors . 381
C.3.2 Bernoulli Distribution and Logistic Regression for Binary Data 381
C.3.3 Poisson Distribution and KL Divergence for Count Data . 382
C.3.4 Gamma Distribution for Continuous Nonnegative Data . 382

C.4 Principal Component Analysis (PCA) . 383
C.4.1 Computing PCA . 384
C.4.2 Example of PCA . 385

Back Matter
Bibliography . 389
Index . 401

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Preface

Tensors are essential in modern-day computational and data sciences. In this book, we
explore the foundations of tensor decomposition, which is the art of disassembling multi-
dimensional arrays into smaller parts. Applications of tensor decomposition are ubiquitous
in machine learning, signal processing, chemometrics, neuroscience, quantum computing,
financial analysis, social science, business market analysis, image processing, and much
more. Our goal is to provide a self-contained mathematical, algorithmic, and computa-
tional treatment of tensor decomposition, with an emphasis on examples using real datasets
to ground the abstract concepts.

Organization
To ensure the book is accessible to a broad audience coming from different technical back-
grounds, review material on linear algebra, optimization, and statistics is included in the
appendices. These review chapters can be used to fill in any gaps in the reader’s back-
ground.

The main part of the book is organized into four parts.

• Part I is focused on the basics of tensors. We consider how tensors are organized
and give several examples that will be revisited in later parts of the book. We for-
malize reshaping tensors into vectors and matrices and explain how this relates to
their representation in computer memory. We consider key tensor operations, their
computational complexity, and their mathematical properties, and we discuss how to
implement the tensor operations efficiently using high-performance matrix compu-
tation subroutines. The treatment of tensor operations up front enables the rest of the
book to remain at a higher conceptual level.

• Part II is focused on the Tucker decomposition, which produces a smaller core tensor
together with linear transformations to convert the original tensor to the core tensor.
The Tucker decomposition has utility for compressing massive tensor datasets, as
well as the ability to reconstruct portions of the full dataset using only the time and
memory needed for the portion being reconstructed. We demonstrate the utility of
Tucker decomposition for compressing data from a scientific simulation of the mix-
ing of fluids of different densities, including the speed advantage of reconstructing
only portions of the dataset. More generally, we describe how to work with tensors in
Tucker-compressed form, discuss both direct and iterative algorithms for computing
the Tucker decomposition, and develop the theory to explain the quasi-optimality of
Tucker decomposition. We also have one chapter (Chapter 8) devoted to the Tensor
Train (TT) decomposition.

• Part III is focused on the canonical polyadic (CP) tensor decomposition, also known
as CANDECOMP/PARAFAC, which reduces a tensor to a summation of rank-one
tensors (i.e., vector outer products). In unsupervised learning, the CP decomposition

ix

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

x Preface

is used for interpretation and for downstream tasks such as clustering. In compar-
ison with low-rank matrix approximations such as Principal Component Analysis
(PCA) or Nonnegative Matrix Factorization (NMF), the CP decomposition is gen-
erally unique and does not have constraints such as orthogonality, which makes the
interpretations more meaningful. CP has proven to be an essential tool in multiway
data analysis, spawning numerous variants. It can be applied to datasets with missing
data, uncovering meaningful patterns even when a large majority of the tensor entries
are unknown. Generalized CP (GCP) is a variant that can use distribution-specialized
loss functions, which is important for count and network-science data. We consider
the manipulation of tensors in CP-decomposed format, the formulation of the CP op-
timization problem and its variants, and a variety of algorithms. We demonstrate the
utility of the CP tensor decompositions on data from computation chemistry (fluores-
cence emission-excitation data from multiple samples), neuroscience (neural activity
from a brain-machine interface device), and criminal activities (crime reports from
the city of Chicago). We also cover special topics such as the known results for
tensor rank (the minimal number of summands required to exactly reproduce a given
tensor), the connections to efficient computations such as fast matrix-matrix multipli-
cation (e.g., Strassen’s algorithm), and direct computation of the CP decomposition
for certain 3-way tensors.

• In Part IV, we provide closing observations the tensor decompositions we have dis-
cussed. We compare Tucker, TT, CP tensors decompositions to one another in the
hopes of guiding users on which decomposition is most appropriate in which circum-
stance. We also explain how these compare to matrix decompositions such as PCA
and NMF. We explain how to combine CP and Tucker, using Tucker decomposition
to compress tensors before applying CP. We briefly discuss symmetric tensors, their
decompositions, and the tensor eigenproblem. This book is devoted to the Tucker
and CP decompositions, since they are arguably the two most useful decompositions
for real-world applications. But there are many more decompositions of interest for
specific applications, so we conclude with a survey other decompositions: tensor
SVD (t-SVD), hierarchical tensor decomposition, tensor ring decomposition, block
CP decompositions, and infinite dimensional tensor decompositions.

Target Audience
This book is targeted for a graduate-level or advanced undergraduate-level course in a data
science or related curriculum in mathematics, statistics, computer science, engineering,
neuroscience, biostatistics, etc. The background material is primarily at an undergraduate
level, but requires breadth across a number of topics. Since most readers will not have all
the background required, we include extensive review material in linear algebra, optimiza-
tion, and statistics to fill in any gaps.

To keep the notation and concepts both accessible and general, we provide every defi-
nition and result for both 3-way tensors (the simplest notation) and d-way tensors (the
general case, but complex in notation). This book will provide a starting point for begin-
ning researchers in tensor decompositions as well as an essential reference for advanced
researchers.

A distinguishing feature of this book that makes it appropriate for instruction is its empha-
sis on practical applications of tensor decompositions. Examples are based on real-world
datasets curated especially for this book. The introduction of each tensor decomposition is

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Preface xi

general, including visualization and interpretation of results. We separate advanced topics,
such as the details of algorithms, into their own independent chapters to allow flexibility in
course design.

At its heart, this is a book about algorithms for tensor decompositions, helping readers to
understand the most studied and used methods and trade-offs among them. Understanding
algorithms requires understanding the theoretical nature of tensor decompositions. Certain
tensor problems are known to be computationally difficult, but there are strategies for ad-
dressing many of the challenges. In the case of Tucker decomposition, for example, we
show that some of the methods are quasi-optimal.

For those focused on tensor computations, there is a chapter that breaks down the compu-
tational kernels needed for tensor methods and explains how to achieve high performance.
Further, the book covers the role of structure in computations, such as for sparse and spe-
cially structured tensors, which can improve efficiency.

Course Options
A course based on this book can be offered in data science, computer science, applied math-
ematics, engineering, statistics, biostatistics, or neuroscience. It can easily fill a semester-
long topics course at the graduate level and is designed to be adapted for other scenarios.

This book is organized into four main parts. Part I (Tensor Basics) is introductory. The
discussion of Tucker and CP (Parts II and III) are independent, so a course can focus on
solely one or the other. Part IV (Closing Observations) is primarily for perspective and
entirely optional.

A mini-course can be based on the three chapters designed to stand apart and be usable
independently of the rest of the book, as follows:

• Chapter 1: Tensors and Their Subparts,
• Chapter 4: Tucker Decomposition, and/or
• Chapter 9: Canonical Polyadic (CP) Decomposition.

A comprehensive introductory course can be formed from the following twelve chapters,
requiring only background in numerical linear algebra.

• Appendix A: Numerical Linear Algebra,
• Chapter 1: Tensors and Their Subparts,
• Chapter 2: Indexing and Reshaping Tensors,
• Chapter 3: Tensor Operations,
• Chapter 4: Tucker Decomposition,
• Chapter 5: Tucker Tensor Structure,
• Chapter 6: Tucker Algorithms,
• Chapter 8: Tensor Train Decomposition,
• Chapter 9: Canonical Polyadic (CP) Decomposition,
• Chapter 10: Kruskal Tensor Structure,
• Chapter 11: CP Alternating Least Squares (CP-ALS) Optimization, and
• Chapter 17: Closing Observations.

For a course with emphasis on algorithms, we recommend including the optimization-based
methods for CP, requiring background in optimization:

• Appendix B: Optimization Principles and Methods,

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

xii Preface

• Chapter 12: CP Gradient-Based Optimization (CP-OPT),
• Chapter 13: CP Nonlinear Least Squares (CP-NLS) Optimization , and
• Chapter 14: CP Algorithms for Incomplete or Scarce Data.

For more emphasis on statistical modeling of data, adding GCP is useful.

• Appendix C: Some Statistics and Probability and
• Chapter 15: Generalized CP (GCP) Decomposition.

More theoretically-inclined classes will want to also cover

• Chapter 7: Tucker Approximation Error and
• Chapter 16: CP Tensor Rank and Special Topics.

Topics Not Covered
It is impossible to do justice to the entire field of tensor decompositions in a one-semester
course. We ultimately hope to provide more material in future editions, perhaps requiring
two semesters for complete coverage.

We provide only superficial coverage of symmetric tensor factorization and tensor eigen-
problems. We only briefly survey other decompositions, such as tensor singular value
decomposition (t-SVD) and hierarchical tensor (HT) decomposition.

We do not cover randomized algorithms for tensor decomposition, though this is a fast
growing area of importance. For instance, some of the most useful methods for TT decom-
position are randomized. We do not consider high-performance computing (HPC) imple-
mentations of all key computational kernels for tensors since this requires significant ad-
ditional background knowledge. For Tucker decomposition, we do not cover nonnegative
decompositions, tensor completion, or decompositions for sparse and incomplete tensors.

Additional Resources
We have curated several datasets for use with this textbook:

• Miranda Scientific Simulation Data (2048× 256× 256):
https://gitlab.com/tensors/tensor_data_miranda_sim,

• Excitation-Emission Matrix (EEM) Fluorescence Data (18× 251× 21):
https://gitlab.com/tensors/tensor_data_eem,

• Monkey Brain-Machine Interface (BMI) Neuronal Spike Data (52× 200× 88):
https://gitlab.com/tensors/tensor_data_monkey_bmi,

• Chicago Crime Count Data (365× 24× 77× 12):
https://gitlab.com/tensors/tensor_data_chicago_crime.

We do not prescribe a specific computational platform, but everything described here can be
computed using the Tensor Toolbox for MATLAB at https://www.tensortoolbox.
org. Much of the same functionality is available in its Python clone, the Python Tensor
Toolbox (PyTTB) at https://github.com/sandialabs/pyttb.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://gitlab.com/tensors/tensor_data_miranda_sim
https://gitlab.com/tensors/tensor_data_eem
https://gitlab.com/tensors/tensor_data_monkey_bmi
https://gitlab.com/tensors/tensor_data_chicago_crime
https://www.tensortoolbox.org
https://www.tensortoolbox.org
https://github.com/sandialabs/pyttb

Preface xiii

Acknowledgments
This book is the culmination of our 35+ collective years of research in tensor decomposi-
tions. We have had the good fortune to work with and be inspired by the best and brightest
minds in the field. We are indebted to these luminaries. We especially want to acknowledge
Brett Bader, TK’s coauthor on the SIAM Review article on tensor decompositions that is a
clear precursor to this book. We want to further acknowledge so many amazing colleagues
who have inspired us throughout the years, especially the following: Evrim Acar, Hussam
Al Daas, Woody Austin, Casey Battaglino, Stephen Becker, Austin Benson, Rasmus Bro,
Gabriel Brown, Eric Chi, Andrzej Cichocki, Jeremy Cohen, Pierre Comon, Jim Demmel,
Karen Devine, Hans De Sterck, Jack Dongarra, Petros Drineas, Lars Elden, Rob Erhardt,
Christos Faloutsos, David Gleich, Gene Golub, Alex Gorodetsky, Laura Grigori, Sammy
Hansen, Koby Hayashi, David Hong, Lior Horesh, Daniel Hsu, Ruhui Jin, Nick Johnson,
Ramakrishnan Kannan, Joe Kileel, Misha Kilmer, Alicia Klinvex, Hemanth Kolla, Suraj
Kumar, Daniel Kressner, J. M. Landsberg, Brett Larsen, Lieven De Lathauwer, Jiajia Li,
Lek-Heng Lim, Michael Mahoney, Osman Malik, Carla D. Martin, Jackson Mayo, Rachel
Minster, Martin Mohlenkamp, Cleve Moler, Morten Mørup, Jim Nagy, Elizabeth New-
man, Jiawang Nie, Jorge Nocedal, Luke Oeding, Dianne O’Leary, Ivan Oseledets, Vage-
lis Papalexakis, Haesun Park, João Pereira, Anh Huy Phan, Eric Phipps, Todd Plantenga,
Bob Plemmons, Prashant Rai, Jill Reese, Kathryn Rouse, Arvind Saibaba, Berkant Savas,
Martin Schatz, Oded Schwartz, Anna Seigal, Teresa Selee, Samantha Sherman, Nikos
Sidiropoulos, Amit Singer, Shaden Smith, Edgar Solomonik, Gil Strang, Bernd Sturmfels,
Jimeng Sun, Jos ten Berge, Christine Tobler, Joel Tropp, Shashanka Ubaru, Bora Uçar,
Madeleine Udell, Robert van de Geijn, Charlie Van Loan, Nick Vannieuwenhoven, Alex
Vasilescu, Steve Vavasis, Nico Vervliet, Rich Vuduc, Rachel Ward, Alex Williams, Kina
Winoto, Barry Wise, Steve Wright.

Much of this work has been inspired by tutorial and course presentations. Thus, we are
grateful to have had the opportunity to present in various tutorials (TK with Jimeng Sun
and Christos Faloutsos at SDM07, ICML07, KDD07; TK with Danny Dunlavy and Kina
Winoto at SDM18; GB at AN21; GB and TK with Danny Dunlavy at MDS22), short
courses (TK at 2017 Trier Autumn School and TK at 2019 Gene Golub SIAM Summer
School), a mini-course (TK at Northwestern, Spring 2022), and a full-semester course (GB
at Wake Forest, Fall 2021 and Fall 2023). Huge thanks to our audiences.

Special thanks to many persons who read and provided feedback to our questions and
on drafts of this book, in particular John Billos, Gabriel Brown, Jeremy Cohen, Claude
Greengard, Zitong Li, Joe Kileel, Joah Macosko, Art Owen, J Pinheiro, Todd Plantenga,
Nico Vervliet, and Qingjia Xu.

We thank the many brave souls who did not already know all the answers and asked ques-
tions. Hearing the same questions over and over again convinced us for the need for a
textbook like this one.

Finally, we thank our families, mostly for believing that we could do this!

Grey Ballard Tamara G. Kolda
Winston-Salem, NC Dublin, CA

August 2024

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Tensor Basic
s

Part I

1

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

1
Tensors and Their
Subparts

Tensors are multi-way arrays and serve as useful tools for data representation and analy-
sis. Tensor decompositions are similar in spirit to matrix decompositions such as principal
component analysis (PCA), singular value decomposition (SVD), and nonnegative matrix
factorization (NMF). If we consider that a matrix might generically represent objects (rows)
and attributes (columns), the addition of multiple measurements at different times or in dif-
ferent scenarios can produce a multi-way array that we refer to as a tensor. In 1952, Cattell
(1952) proposed that data might be organized as

object feature scenario× × .

The tensor in this case might look like what we see in Fig. 1.1.

o
b

je
c

ts

features sc
enario

s

Figure 1.1: Prototypical format of tensor in data analysis

The different scenarios might consist of measurements at different times or under different
conditions. Furthermore, there is no reason to be constrained to organizing data into 3-way
arrays.

The focus of this chapter is on understanding and manipulating tensor objects. A tensor
is a multi-dimensional array, but it is oftentimes useful for considerations of storage or
computation to view it in other ways, rearranging its entries as a vector or a matrix. We
can potentially exploit structure such as sparsity or symmetry. Moreover, we can consider
particular subparts of the tensor, called fibers, slices, and hyperslices. We describe several
example tensors that we will revisit throughout the book. We close this chapter with a
preview of the two main tensor decompositions discussed in this book: Tucker and CP.

3

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

4 Chapter 1. Tensors and Their Subparts

x

n

(a) Vector x ∈ Rn is a
tensor of order 1

Xm

n

(b) Matrix X ∈ Rm×n is a
tensor of order 2

Xm

n

p

(c) Tensor X ∈ Rm×n×p is
of order 3

Figure 1.2: Tensors of order one, two, and three

1.1 What is a Tensor?
A tensor is a d-way array, and d is referred to as the order of the tensor. Let’s talk about
how tensors relate to the known realm of vectors and matrices. First, a bit of notation. We
denote the set of real values as R. We represent scalars throughout as lowercase letters.
We generally use the letters i, j, k, ℓ as indices into arrays and the letters m,n, p, q, r, s to
represent sizes. We assume that indices start from 1 (rather than 0). Additionally, we use
the shorthand [n] ≡ { 1, . . . , n }, and we write [m]⊗ [n] = { (i, j) | i ∈ [m], j ∈ [n] }.
Definition 1.1 (Tensor) A tensor is a d-way array, and d is the order of a tensor.

A vector is a 1-dimensional array of numbers that represents a collection of measurements.
In machine learning, a feature vector is the set of measurements that is used to characterize
an object. We represent vectors throughout by lowercase boldface roman letters. If x is a
real-valued vector of size n, then we write x ∈ Rn. Entry i ∈ [n] of x is denoted as x(i)
or compactly as xi. A vector is a tensor of order 1.

A matrix is a 2-dimensional array of numbers, e.g., a collection of feature vectors. We
represent matrices throughout by uppercase boldface roman letters. If X is a real-valued
matrix of size m × n, then we write X ∈ Rm×n. For instance, given a set of m objects,
each of which as n features, the matrix entry X(i, j) would represent the jth feature of
object i. More generally, entry (i, j) ∈ [m] ⊗ [n] of X is denoted as X(i, j) or compactly
as xij . A matrix is a tensor of order 2.

Definition 1.2 (Higher Order) A d-way tensor is called higher order if d ≥ 3.

If we have a 3-dimensional array of numbers, then we have a higher-order tensor. Tensors
of order three or greater are denoted throughout by uppercase bold Euler roman letters, i.e.,
X. Figure 1.2 shows a vector, a matrix, and an order-3 tensor. If X is a real-valued tensor of
size m× n× p, then we write X ∈ Rm×n×p. For instance, given a set of m objects, each
of which as n features, measured under p different scenarios, the tensor entry X(i, j, k)
would represent the jth feature of object i measured in scenario k. More generally, entry
(i, j, k) ∈ [m] ⊗ [n] ⊗ [p] of X is denoted as X(i, j, k) or compactly as xijk. We refer to
each dimension as a mode. We say that mode 1 is of size m, mode 2 of size n, and mode
3 of size p. If all modes have the same size, we call the tensor cubical.

○ A tensor is a d-way array. We refer to d as the order of the tensor and
the different ways as modes. We say a tensor is higher-order if d ≥ 3.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

1.2. Slices and Hyperslices 5

Table 1.1: Notation for scalars, vectors, matrices, and higher-order tensors

Description Size Order Notation Entry

Scalar 1 0 x x
Vector n 1 x x(i) or xi

Matrix m× n 2 X X(i, j) or xij

3-way Tensor m× n× p 3 X X(i, j, k) or xijk

4-way Tensor n1 × n2 × n3 × n4 4 X X(i1, i2, i3, i4) or xi1i2i3i4

d-way Tensor n1 × n2 × · · · × nd d X X(i1, i2, . . . , id) or xi1i2···id

Example 1.1 (Tensor Entries) As an example, consider the 2× 2× 2 tensor X such that

1 5

6 3

9 9

8 2
X = .

It has 8 entries, and these are:

x111 = 8, x211 = 9, x121 = 2, x221 = 9,

x112 = 6, x212 = 1, x122 = 3, x222 = 5.

Exercise 1.1 How many entries are in a tensor of size 100× 80× 60?

Tensors can go beyond third order. If we have a fourth-order tensor, we begin to run out
of letters. So, for a fourth-order tensor, we would likely resort to subscripts on the sizes
and indices. If X ∈ Rn1×n2×n3×n4 , then X is a fourth-order tensor. This is difficult to
visualize, but we can think of it as an array of third-order tensors or a matrix of matrices.
Its entries are indexed as (i1, i2, i3, i4) or xi1i2i3i4 . For a d-way tensor X, its size can be
specified as n1 × n2 × · · · × nd, and its entries would be indexed by d-tuples of the form
(i1, i2, . . . , id) ∈ [n1] ⊗ [n2] ⊗ · · · ⊗ [nd]. In this case, mode 1 is size n1, mode 2 is size
n2, and so on. More generally, the size of mode k ∈ [d] is nk.

Exercise 1.2 (a) Consider a 3-way tensor of size 512×512×512. If each entry is a double
precision value that requires 8 bytes of memory, how many gigabytes of memory are need
for a tensor (note that a gigabyte is 230 bytes). (b) What about a four-way tensor of size
512× 512× 512× 512?

We summarize the notation for tensors in Table 1.1. Because of the awkwardness of tensor
notation using many levels of subscripts, this book will generally describe things first in
terms of 3-way tensors of size m× n× p to establish the concepts, and then generalize to
d-way tensors of size n1 × n2 × · · · × nd.

1.2 Slices and Hyperslices
A slice of a tensor is a 2-way subtensor, which is a matrix. For a third-order tensor, we can
give names to all the different 2-way slices.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

6 Chapter 1. Tensors and Their Subparts

Definition 1.3 (Slices of 3-way Tensor) Let X be a 3-way tensor of size m × n × p. The
ith horizontal slice is a matrix of size n × p given by X(i, :, :). The jth lateral slice is a
matrix of size m × p given by X(:, j, :). The kth frontal slice is a matrix of size m × n
given by X(:, :, k).

The three types of slices for 3-way tensors are shown in Fig. 1.3. For a tensor of size
m × n × p, the horizontal slices are X(i, :, :) for all i ∈ [m] and of size n × p. Likewise,
the lateral slices are X(:, j, :) for all j ∈ [n] and of size m × p. Finally, the frontal slices
are X(:, :, k) for k ∈ [p] and of size m×n. The frontal slices can be denoted as Xk if there
is no ambiguity. Tensors are often displayed in terms of their frontal slices.

(a) Horizontal slices, X(i, :, :) (b) Lateral slices, X(:, j, :) (c) Frontal slices, X(:, :, k)

Figure 1.3: Two-way slices of 10× 8× 6 tensor. Dark colors correspond to higher indices.

Example 1.2 (3-way Tensor Slices) Consider the tensor X of size 3× 3× 2 given by

1 4 1

5 6 4

6 9 5

4 3 9

8 2 1

3 9 1

X = .

Since its third mode is size 2, it has two frontal slices, each of size 3 × 3, i.e., the size of
the first two dimensions. So, we can specify X by listing its frontal slices, e.g.,

X(:, :, 1) =

3 9 1
8 2 1
4 3 9

 and X(:, :, 2) =

6 9 5
5 6 4
1 4 1

 .

The middle horizontal and last lateral slices are

X(2, :, :) =

8 5
2 6
1 4

 and X(:, 3, :) =

1 5
1 4
9 1

 .

Exercise 1.3 For the tensor in Example 1.2: (a) What is X(1, :, :)? (b) What is X(3, :, :)?
(c) What is X(:, 1, :)? (d) What is X(:, 2, :)?

Exercise 1.4 For the tensor in Example 1.1: list all the (a) horizontal, (b) lateral, and
(c) frontal slices.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

1.2. Slices and Hyperslices 7

We can generalize the concept of frontal slices to a tensor of order d for d > 3 as follows:
A frontal slice of a tensor holds every index fixed except the first two. This is convenient
for display because the frontal slices are matrices.

Definition 1.4 (Frontal Slices of d-way Tensor) The frontal slices of a d-way tensor X

of size n1 × n2 × · · · × nd are given by X(:, :, i3, i4, . . . , id) for all (i3, i4, . . . , id) in
[n3]× [n4]× · · · × [nd].

Example 1.3 (Frontal Slices) Consider the four-way 3× 4× 3× 2 tensor Y given by

Y(:, :, :, 1) =
5 5 4 8

2 7 5 4

9 7 2 5

3 5 6 5

1 2 1 3

4 9 9 9

4 5 3 8

8 9 1 7

1 7 5 5
, Y(:, :, :, 2) =

1 3 8 2

7 6 9 8

9 3 9 5

4 5 1 7

7 6 1 5

2 4 4 7

6 4 5 9

3 5 4 4

7 3 6 7
.

Then the tensor Y has six frontal slices as follows:

Y(:, :, 1, 1) =

1 7 5 5
8 9 1 7
4 5 3 8

 , Y(:, :, 1, 2) =

7 3 6 7
3 5 4 4
6 4 5 9

 ,

Y(:, :, 2, 1) =

4 9 9 9
1 2 1 3
3 5 6 5

 , Y(:, :, 2, 2) =

2 4 4 7
7 6 1 5
4 5 1 7

 ,

Y(:, :, 3, 1) =

9 7 2 5
2 7 5 4
5 5 4 8

 , Y(:, :, 3, 2) =

9 3 9 5
7 6 9 8
1 3 8 2

 .

Exercise 1.5 Only frontal slices are defined for any order. (a) How many frontal slices does
a tensor of size m× n× p× q have? (b) How about a tensor of size n1 × n2 × · · · × nd?

More generally, fixing a single index in an arbitrary-order tensor yields a hyperslice. In
other words, we define a hyperslice to be the subtensor defined by fixing a single index,
and we call this a mode-k hyperslice. For example, is X is a four-way tensor of size
m× n× p× q, then the mode-2 hyperslices are X(:, j, :, :) for all j ∈ [n]. For third-order
tensors, mode-1 hyperslices are called horizontal, mode-2 hyperslices are called lateral,
and mode-3 hyperslices are called frontal. However, we name the mode-k hyperslices only
in the 3-way case.

Definition 1.5 (Mode-k Hyperslice) The mode-k hyperslice of a d-way tensor X of size
n1 × n2 × · · · × nd is a (d − 1)-way tensor of size n1 × · · · × nk−1 × nk+1 × · · · × nd.
The jth mode-k hyperslice is given by X(:, ..., :, j, :, ..., :).

Exercise 1.6 Let Y be the four-way 3 × 4 × 3 × 2 tensor in Example 1.3.(a) What is the
size of Y(1, :, :, :)? (b) Write out Y(1, :, :, ℓ) for each ℓ ∈ { 1, 2 }. (c) What is the size
of Y(:, 4, :, :)? (d) Write out Y(:, 4, :, ℓ) for each ℓ ∈ { 1, 2 }. (e) What is the size of
Y(:, :, 2, :)? (f) Write out Y(:, :, 2, ℓ) for each ℓ ∈ { 1, 2 }.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

8 Chapter 1. Tensors and Their Subparts

1.3 Tensor Fibers

○ Tensor fibers are the generalization of matrix rows and columns.
Tensor fibers are always oriented to be column vectors.

Tensor fibers are the analogues of matrix rows and columns. The main difference between
matrix rows and columns and tensor fibers is that tensor fibers are always oriented as col-
umn vectors when used in calculations. For a 3-way tensor of size m× n× p, we have the
following.

1. The mode-1 fibers of length m, also known as column fibers, range over all indices
in the first mode, holding the second and third indices fixed. In other words, there
are np column fibers of the form x:jk ∈ Rm.

2. The mode-2 fibers of length n, also known as row fibers, range over all values in
the second mode, holding the first and third indices fixed. In other words, there are
mp row fibers of the form xi:k ∈ Rn.

3. The mode-3 fibers of length p, also known as tube fibers, range over all values in
the third mode, holding the first and second indices fixed. In other words, there are
mn tube fibers of the form xij: ∈ Rp.

(a) Column fibers, x:jk (b) Row fibers, xi:k (c) Tube fibers, xij:

Figure 1.4: Fibers of a third-order tensor of size 6× 5× 4

Definition 1.6 (Fibers of 3-way Tensor) Let X be a 3-way tensor of size m × n × p. The
column fibers are vectors of length m given by X(:, j, k). The row fibers are vectors of
length n given by X(i, :, k). The tube fibers are vectors of length p given by X(i, j, :).

The fibers for a third-order tensor are illustrated in Fig. 1.4. More generally, the mode-1
fibers of a third-order tensor X of size m× n× p are given by

x:jk =

x1jk
x2jk

...
xmjk

 ∈ Rm, xi:k =

xi1k
xi2k

...
xink

 ∈ Rn, xij: =

xij1
xij2

...
xijp

 ∈ Rp.

Exercise 1.7 For an m × n × p tensor, (a) How many column fibers are there? (b) How
many row fibers? (c) How many tube fibers?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

1.3. Tensor Fibers 9

Example 1.4 (3-way Tensor Fibers) Consider the 3-way tensor X defined in Example 1.2.
Example mode-1, mode-2, and mode-3 fibers are, respectively,

X(:, 2, 2) = x:22 =

9
6
4

, X(1, :, 1) = x1:1 =

3
9
1

, and X(3, 2, :) = x32: =

[
3
4

]
.

Exercise 1.8 For the 3 × 4 × 2 tensor X given below, specify the following fibers:
(a) X(2, :, 2), (b) X(1, 4, :), (c) X(2, 3, :), (d) X(3, :, 1), and (e) X(:, 2, 1).

7 4 8 5

1 9 7 3

5 2 7 1

8 9 5 4

7 3 3 8

5 1 5 2

X = .

For a d-way tensor, a tensor fiber is a vector extracted from a d-way tensor by holding d−1
indices fixed. This is analogous to matrix rows and columns. Recall that each column in
a matrix ranges over all values in the first dimension, holding the second dimension fixed,
while each row in a matrix ranges over all values in the second dimension, holding the first
dimension fixed. In general, we say a fiber is a mode-k fiber if all indices are fixed except
the kth. For a general d-way tensor X of size n1 × n2 × · · · × nd, its mode-k fibers are
vectors of length nk.

Definition 1.7 (Mode-k Fiber) A mode-k fiber of a tensor is a vector produced by holding
all indices but the kth fixed.

The concept is straightforward even though the notation is intricate:

X(i1, . . . , ik−1, :, ik+1, . . . , id) =

X(i1, . . . , ik−1, 1 , ik+1, . . . , id)
X(i1, . . . , ik−1, 2 , ik+1, . . . , id)

...
X(i1, . . . , ik−1, nk, ik+1, . . . , id)

 ∈ Rnk .

Example 1.5 (4-way Tensor Fibers) Some example fibers from the 4-way tensor in Ex-
ample 1.3 are as follows.

Mode 1: Y(:, 2, 1, 1) =

7
9
5

 , Mode 2: Y(3, :, 3, 1) =

5
5
4
8

 ,

Mode 3: Y(2, 3, :, 1) =

1
1
5

 , Mode 4: Y(1, 2, 3, :) =

[
7
3

]
.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10 Chapter 1. Tensors and Their Subparts

Exercise 1.9 Let Y be the 4-way tensor in Example 1.3. Specify the following fibers:
(a) Y(:, 1, 3, 2), (b) Y(1, :, 2, 1), (c) Y(3, 3, :, 1), and (d) Y(1, 2, 2, :).

Exercise 1.10 For anm×n×p×q tensor, (a) How many mode-1 fibers are there? (b) How
many mode-2 fibers? (c) How many mode-3 fibers? (d) How many mode-4 fibers?

Exercise 1.11 For an tensor of size n1×n2×· · ·×nd, how many mode-k fibers are there?

1.4 Tensor Mode-k Unfolding
The elements of a tensor can be rearranged to form various matrices in a procedure referred
to as unfolding, also known as matricization. A particular unfolding of interest is the
mode-k unfolding defined as follows.

Definition 1.8 (Informal Definition of Mode-k Unfolding) The mode-k unfolding of a
tensor is a matrix whose columns are the mode-k fibers of that tensor, denoted as X(k).

We defer the precise definitions (which explain how the columns are ordered) until Sec-
tion 2.3. We illustrate the mode-k unfoldings of a 3-way tensor in Fig. 1.5.

(a) Mode-1 fibers (b) Mode-1 unfolding

(c) Mode-2 fibers (d) Mode-2 unfolding

(e) Mode-3 fibers (f) Mode-3 unfolding

Figure 1.5: Illustration of mode-k unfoldings of 3-way tensor.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

1.5. Example Tensors 11

Example 1.6 (Tensor Unfolding) Consider the tensor X of size 3 × 3 × 2 from Exam-
ple 1.2, i.e.,

1 4 1

5 6 4

6 9 5

4 3 9

8 2 1

3 9 1

X = .

Its mode-1 and mode-2 unfoldings are

X(1) =

3 9 1 6 9 5
8 2 1 5 6 4
4 3 9 1 4 1

 and X(2) =

3 8 4 6 5 1
9 2 3 9 6 4
1 1 9 5 4 1

 .

Finally, its mode-3 unfolding is

X(3) =

[
3 8 4 9 2 3 1 1 9
6 5 1 9 6 4 5 4 1

]
.

Exercise 1.12 Let X be a tensor of size 10× 8× 6. What is the size of X(2)?

1.5 Example Tensors
We describe several tensors from real-world datasets to help us understand the prevalence
of tensor-formatted data. These examples will be used throughout the book. As much as
possible, we visualize the data in tensor format so that we can see the connection between
the data and its representation as a tensor.

1.5.1 Miranda Scientific Simulation Data
Computational fluid dynamics uses numerical simulations to understand the flow of liquids
or gases, with ubiquitous applications ranging from combustion engines to aerodynamics
of aircraft wings to weather prediction. Mathematically, the problem can be solved using
discretized partial differential equations. Direct numerical simulation is a technique that
solves fluid flow problems on a uniform Cartesian grid, stepping through time. The datasets
are massive since an n×n×n Cartesian grid generates n3 data for each timestep, resulting
in terabytes of data from even modest size simulations.

Remark 1.9 (Tensor versus Cartesian indexing)
Tensors are indexed starting in the front upper left corner,
with the first index corresponding to the downward vertical
direction, the second index corresponding to the horizontal
direction, and the third index corresponding to the backward
lateral direction. In contrast, Cartesian coordinates start in
the back lower left corner, with the first index corresponding
to the lateral direction, the second index corresponding to
the horizontal direction, and the third index corresponding
to the vertical direction.

z

y

x

i

j

k

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

12 Chapter 1. Tensors and Their Subparts

Our data comes originally from Cabot and Cook (2006) via the Scientific Data Reduction
Benchmark (SDRBench) of Zhao, Di, et al. (2020). The simulation is a Rayleigh-Taylor
instability direct numerical simulation of the mixing of two fluids of different densities. The
calculation produces density measurements over time on a 3D uniform Cartesian spatial
grid of size 3072 × 3072 × 3072. In single precision, the density measurements from a
single timestep requires more than 13 GB of storage.

20
48

z-
g

rid
p

o
in

ts

256 y-grid
points

25
6 x-g

rid

points

(a) (b) (c) (d)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Figure 1.6: Miranda tensor of size 2048× 256× 256, capturing the mixing of two fluids of
different densities. Color indicates density. (a) Outermost slices, i.e., the horizontal slice at
i = 1, the lateral slice at j = 256, and the frontal slice at k = 1. (b) Horizontal slices at
i = { 256, 512, . . . , 1792 }. (c) Lateral slice at j = 128. (d) Frontal slice at k = 128.

Our specific data set is from a single time point and, in order to keep the memory require-
ments manageable, uses only a subset of the full spatial grid. Additionally, we remap the
Cartesian coordinates to tensor coordinates per Remark 1.9. The resulting tensor is of size

2048 z-grid points × 256 y-grid points × 256 x-grid points.

This tensor requires 1 GB of storage in double precision. The data is available for download

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

1.5. Example Tensors 13

(approximately 300 MB of lossless compressed storage) at https://gitlab.com/
tensors/tensor_data_miranda_sim (Ballard, Kolda, and Lindstrom, 2022).

○ Simulation data on a regular grid can be represented as a tensor.

We visualize the Miranda tensor in Fig. 1.6. The top lateral slice is purely the high-density
fluid (density=3) and the bottom lateral slice is purely the low-density fluid (density=2),
and the mixing happens in between. We show middle slices in each mode.

Exercise 1.13 Using slice notation, what are the 2D matrices being visualized in Fig. 1.6?

1.5.2 EEM Fluorescence Spectroscopy Data
In fluorescence spectroscopy, a chemical sample is excited, and the light that is emitted
is measured at several different wavelengths, resulting in an excitation-emission matrix
(EEM) of fluorescence intensities. When EEM data is gathered for a number of samples,
we obtain a 3-way tensor. This data can be used in analytical chemistry for estimating
chemical compound concentrations and spectra from multiple mixtures. It has applications,
for example, in environmental modeling. See Smilde et al. (2004, Chapter 10.2) for further
details.

Our specific EEM example data has been curated from a series of fluorescence spectroscopy
experiments as reported by Acar, Papalexakis, Gürdeniz, Rasmussen, Lawaetz, Nilsson,
and Bro (2014). The data is has been preprocessed to fill in missing data and replace nega-
tive entries as explained in the README file of the data repository. (We revisit the raw data
in our discussion of handling missing data in Chapter 14.) All the entries are nonnegative.
The data is available for download at https://gitlab.com/tensors/tensor_
data_eem (Kolda, 2021a).

The data comprises EEM measurements on 18 samples, each of which is a mixture of three
chemical compounds:

• Valine-Tyrosine-Valine (Val-Tyr-Val), a peptide
• Tryptophan-Glycine (Trp-Gly), a peptide, and
• Phenylalanine (Phe), an amino acid.

The intensities are measured at 251 emission wavelengths (250, 251, . . . , 500 nm) and 21
excitation wavelengths (210, 215, . . . , 310 nm). The 18 EEM profiles are shown in Fig. 1.8
as surface plots. The first three samples contain only a single compound, and each com-
pound creates a peak (a bright spot) centered at a different point. (These samples can be
removed to make the analysis more interesting.) Samples 4–18 are mixtures of the com-
pounds, so their profiles are, in a sense, weighted combinations of the first three. For
instance, the last mixture is a mixture of 3.75 parts Val-Tyr-Val and 5.00 parts Phe, so it
can be viewed as a weighted combination of the first and third profiles.

Stacking the emission-excitation intensity profile matrices yields the 3-way EEM tensor of
size

18 samples × 251 emissions × 21 excitations.

It is illustrated in Fig. 1.7.

○ Each sample produces an emission-excitation matrix, and the EEM
data from multiple samples are combined to form the EEM tensor.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://gitlab.com/tensors/tensor_data_miranda_sim
https://gitlab.com/tensors/tensor_data_miranda_sim
https://gitlab.com/tensors/tensor_data_eem
https://gitlab.com/tensors/tensor_data_eem

14 Chapter 1. Tensors and Their Subparts

18
sa

m
p

le
s

251 emissions
21

exc
ita

tio
ns

Figure 1.7: EEM tensor of size 18× 251× 21 highlighting a selection of lateral slices

5.00 / 0.00 / 0.00
230
280

0.00 / 5.00 / 0.00
230
280

0.00 / 0.00 / 5.00
230
280

1.25 / 5.00 / 3.75
230
280

3.75 / 1.25 / 5.00
230
280

5.00 / 3.75 / 2.50
230
280

3.75 / 3.75 / 5.00
230
280

6.25 / 1.25 / 1.25
230
280

1.25 / 5.00 / 2.50
230
280

2.50 / 6.25 / 2.50
230
280

5.00 / 1.25 / 3.75
230
280

1.25 / 3.75 / 2.50
230
280

2.50 / 3.75 / 1.25
230
280

3.75 / 0.00 / 2.50
230
280

2.50 / 0.00 / 3.75
230
280

5.00 / 0.00 / 1.25
230
280

3.75 / 0.00 / 3.75
230
280

3.75 / 0.00 / 5.00
230
280

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

e
xc

ita
tio

n
w

a
ve

le
n

g
th

(n
m

)

emission wavelength (nm)

0

1

2

3

4

5

6

×105

Figure 1.8: Emission-excitation intensity profiles of EEM tensor. The profiles correspond
to horizontal slices of the EEM tensor, ordered from top (X(1, :, :)) to bottom (X(18, :, :)).
Each profile is labeled at right with concentrations of three chemical compounds (Val-Tyr-
Val / Trp-Gly / Phe). Each profile covers 21 excitation wavelengths (210, 215, . . . , 310 nm)
by 251 emission wavelengths (250, 251, . . . , 500 nm).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

1.5. Example Tensors 15

1.5.3 Monkey BMI Neuronal Spike Data
We consider a dataset of monkey (Rhesus macaque) behavior using a brain-machine in-
terface (BMI) in a series of trials. The monkey BMI tensor data has been curated from
a series of experiments as reported in Vyas, Even-Chen, et al. (2018), Vyas, O’Shea, et
al. (2020), and Williams, Kim, et al. (2018) and is available for download at https:
//gitlab.com/tensors/tensor_data_monkey_bmi (Kolda, 2022a). In each
of 88 experiments, a monkey moves a cursor to one of four targets (at 0, 90, 180, and 270
degrees) and holds it there for 500 ms using a BMI; see Fig. 1.9.

Figure 1.9: BMI task is to move cursor from center to one of four target

During this task, neuron spike data is collected. The time per trial varies, but we have
standardized every trial to 200 time steps. Specifically, the data has been time-aligned so
that t = 0 is the start, t = 100 is time of target acquisition, and t = 200 is the end after
500 ms of holding the cursor at the target. The data has been additionally preprocessed to
smooth the spikes, remove trials for which target acquisition took more than 600 ms, and
remove neurons with little to no activity. The neurons are sorted by level of activity, from
greatest to least. The resulting tensor is

43 neurons × 200 time steps × 88 trials.

The tensor is shown in Fig. 1.10.

43
n

e
ur

o
n

s

200 time steps

88
tri

als

0.00

0.03

0.06

0.09

0.12

0.15

0.18

Figure 1.10: Monkey BMI tensor of size 43× 200× 88

The 88 trials are split among the four targets as shown in Table 1.2.

The activities of several neurons across the trials are shown in Fig. 1.11. Each subimage
corresponds to a horizontal slice of the tensor, i.e., X(i, :, :) shows the activities of neuron
i. Within each figure, the individual lines correspond to tensor row fibers, i.e., X(i, :, k) is

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://gitlab.com/tensors/tensor_data_monkey_bmi
https://gitlab.com/tensors/tensor_data_monkey_bmi

16 Chapter 1. Tensors and Their Subparts

Table 1.2: Number of trials for each angle in Monkey BMI tensor

Angle 0 90 180 270
Count 20 28 21 19

0 50 100 150 200
0.00

0.05

0.10

0.15

Neuron 1

0 50 100 150 200
0.00

0.05

0.10

0.15

Neuron 2

0 50 100 150 200
0.00

0.05

0.10

0.15

Neuron 3

Angle 0
Angle 90
Angle 180
Angle 270

0 50 100 150 200
0.00

0.05

0.10

0.15

Neuron 4

0 50 100 150 200
0.00

0.05

0.10

0.15

Neuron 5

0 50 100 150 200
0.00

0.05

0.10

0.15

Neuron 6

0 50 100 150 200
0.00

0.05

0.10

0.15

Neuron 11

0 50 100 150 200
0.00

0.05

0.10

0.15

Neuron 16

0 50 100 150 200
0.00

0.05

0.10

0.15

Neuron 17

Figure 1.11: Activities of example neurons. For each neuron, thin lines correspond to
activity in each of 88 trials, color-coded by the target angle. Thick lines are averages.
Times 1-100 are target acquisition, and times 101-200 are holding cursor at target.

the activity of neuron i in trial k. The lines are color-coded according to the target. For
each target, the average for all trials is shown as a thick line.

○
The recording from a single neuron in a single trial is a vector of observations
over time; the recordings of all neurons from a single trial forms a matrix; and

the collection of all (time-normalized) trials forms the monkey BMI tensor.

Exercise 1.14 Which type of fiber (row, column, or tube) corresponds to the reading of an
individual neuron from a single trial?

1.5.4 Chicago Crime Count Data
The Chicago crime data is statistics from public safety criminal activity reports in the city of
Chicago. The data is available at www.cityofchicago.org, and we are using a 4-way tensor
version corresponding to a single year of data and available at https://gitlab.com/
tensors/tensor_data_chicago_crime in file chicago_crime_2019.mat
(Kolda, 2022b).

The tensor modes correspond to 365 days (Jan. 1 through Dec. 31, 2019), 24 hours, 77

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://www.cityofchicago.org
https://gitlab.com/tensors/tensor_data_chicago_crime
https://gitlab.com/tensors/tensor_data_chicago_crime

1.5. Example Tensors 17

24
h

o
ur

s

77 communities 12
crim

e

ty
pes

X(i, :, :, :)

1 2 3 4 5

24
h

o
u

rs

77 communities 12
crim

e

ty
pes

X(1, :, :, :)

X(2, :, :, :)

X(364, :, :, :)

X(365, :, :, :)

...

36
5

d
a

ys

(a) Four-way tensor as an array
of 3-way tensors

(b) Mode-1 hyperslices

(c) Sparsity pattern of X(1, :, :, :).

Figure 1.12: Chicago crime tensor of size 365× 24× 77× 12

communities, and 11 crime types. Entry X(i, j, k, ℓ) is the number of times that crime ℓ
happened in neighborhood k during hour j on day i. Hence, the tensor is formatted as

365 days × 24 hours × 77 communities × 12 crime-types.

We have treated time as 2-dimensional, splitting hours and days into two modes in order
to expose daily patterns in addition to longer-term trends. We can visualize the four-way
tensor as an array of 3-way tensors as in Fig. 1.12a, and each 3-way subtensor is formatted
as in Fig. 1.12b.

○ Time can be multidimensional. For example, hourly
data can be divided further into days, weeks, etc.

The tensor is sparse because it has only 230,591 nonzeros out of 8,094,240 entries; that
is, only 2.85% of its entries are nonzero. Storing X as a sparse tensor (i.e., storing each
nonzero and 4-tuple index) requires less than 15% of the storage of the dense tensor. To vi-
sualize the sparsity, consider the first mode-1 hyperslice, X(1, :, :, :), pictured in Fig. 1.12c.
It has only 861 nonzeros out of 22,176 entries.

We compute some statistics on the Chicago crime tensor. The number of crime reports per
day are shown in Fig. 1.13a. Crime reports are highest overall in the summer months with a
peak Aug. 1 – 4, which so happens to correspond to the Lollapalooza 2019 festival in Grant
Park. The day with the most reports overall is Jan. 1, 2019, keeping in mind that various
factors affect the date of a crime report and the first of the year is presumably a popular day
to choose when the exact date is uncertain.

Figure 1.13b shows the cummulative crimes per hour, with hour 0 corresponding to mid-
night to 12:59am, and hour 23 corresponding to 11:00-11:59pm. Crime reports are lowest
in the hours from 1:00-7:00am and peak at noon.

Totals crime reports per type are listed in Fig. 1.13c. The preprocessing of the data removed
any crimes that occurred fewer than 5,000 times in the time period of the data. The crimes

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

18 Chapter 1. Tensors and Their Subparts

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

3

6

9

·100

(a) Crime reports per day

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

5

10

15

·1,000

(b) Crime reports per hour

th
ef

t

ba
tte

ry

cr
im

in
al

da
m

ag
e

as
sa

ul
t

de
ce

pt
iv

e p
ra

ct
ic

e

ot
he

r o
ffe

ns
e

na
rc

ot
ic

s

bu
rg

la
ry

m
ot

or
ve

hi
cl

e t
he

ft

ro
bb

er
y

cr
im

in
al

tre
sp

as
s

w
ea

po
ns

vi
ol

at
io

n0

2

4

6

·104

(c) Crime reports by type

0

2

4

6

8

10

12

·1,000

(d) Crime reports by neighborhood

Figure 1.13: Chicago crime report counts from Jan. 1,2019 to Dec. 31, 2019

are in order of overall prevalence, with theft corresponding to index 1, battery to index 2,
and so on down to weapons violation corresponding to index 12.

A heatmap of the total crime frequency (over all crime types) per community is shown in
Fig. 1.13d. This is not normalized by population. The majority of reports come from the
community area known as Austin in the West Side region of Chicago.

Exercise 1.15 Load the tensor data and recreate Figs. 1.13a and 1.13b.

1.6 A First Look at Tensor Decompositions
The goal of this book is to learn how to decompose tensors into representations that might
be smaller, more expressive, or some combination of these ideals. Like matrix decom-
positions, we seek a set of matrices/tensors that can be multiplied together appropriately
to reconstruct the input. Unlike matrix decompositions, tensor decompositions are rarely
exact representations and instead only approximations of the input. Most tensor decompo-
sitions can be viewed as generalizations of low-rank matrix approximations to higher-order
data. We focus on two types of decompositions, Tucker and CP; and we more briefly
discuss other decompositions in Chapters 8 and 17.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

1.6. A First Look at Tensor Decompositions 19

1.6.1 A First Look at Tucker Decomposition
A Tucker decomposition compresses a tensor by decomposing into a smaller core tensor
multiplied by a matrix in each mode.

≈
X

G

U

V

W

Figure 1.14: Tucker decomposition

We visualize the 3-way case as in Fig. 1.14. Here X is the original 3-way tensor, G is the
core 3-way tensor, and the matrices U, V, W are the matrices that are multiplied with G

to approximate X. The tensor G can be interpreted as a compressed version of X, and the
matrices U,V,W are bases for the subspaces onto which X is projected for compression.

In Tucker, it is possible to choose the size of the compressed tensor to ensure that the
approximation error is below a user-specified error threshold. The challenge in the Tucker
decomposition is identifying the optimal subspaces for compression.

1.6.2 A First Look at CP Decomposition
A CP decomposition expresses a tensor as a sum of vector outer products. The summands
are called components. The vectors in the components are used for interpretation.

≈ λ1 b1 + λ2 b2 + · · ·+ λr br.

X

a1

c1

a2

c2

ar

cr

Figure 1.15: CP decomposition

We visualize the 3-way CP decomposition in Fig. 1.15. Each component is the outer prod-
uct of three vectors. The vectors constituting the components are usually explanatory as to
the nature of the component.

In comparison to Tucker, CP decomposition is often viewed as more useful for interpreta-
tion. The challenges in CP decomposition are choosing an appropriate number of compo-
nents and computing the optimal solution.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2
Indexing and
Reshaping Tensors

Analyzing and computing with tensors involves repeatedly rearranging and reshaping the
elements. To accomplish these tasks, we first need to understand how to map a tuple index
of the form (i, j, k) ∈ [m]⊗ [n]⊗ [p] to an equivalent linear index of the form ℓ ∈ [mnp].
To do this, we show how to define a one-to-one and onto operator

L : [m]⊗ [n]⊗ [p]→ [mnp]

that converts from a tuple to a linear index, along with its inverse

T : [mnp]→ [m]⊗ [n]⊗ [p]

that maps a linear index back to a tuple. We explain the choices for these mappings and
how they may be used in Section 2.1. With these operators for converting between tuple
and linear indices, we are equipped to rearrange the elements of a tensor into useful vectors
(Section 2.2) and matrices (Section 2.3). As certain matrix unfolding operations require
a rearrangement of terms within the tensor, we further show how to permute a tensor and
connect this with its vectorization via a tensor perfect shuffle operation in Section 2.4. In-
dexing and reshaping tensors are fundamental tools in tensor computations, and this chapter
provides a detailed treatment of this topic.

2.1 Linear Indexing
A 3-way tensor X ∈ Rm×n×p indexes its elements via a 3-tuple of the form (i, j, k) ∈
[m] ⊗ [n] ⊗ [p]. An alternative is linear indexing whereby each element has an index
ℓ ∈ [mnp].

For concreteness, consider a 2 × 2 × 2 tensor which has 8 entries. The idea of linear
indexing is to map every entry uniquely to a number in the range { 1, 2, . . . , 8 }. There are
8! = 40,320 possible mappings in the 2× 2× 2 case. However, not all these mappings are
equally useful.

One desirable feature of a linear index is for certain fibers and slices to remain contiguous
in the ordering. We can pick one mode’s fibers to be contiguous, then the next, and so on.
The result is that one set of slices will be contiguous in either either column- or row-major
order. For contiguous orders, the linearization function is based on mode strides, which
means that the mapping from (i, j, k) to a linear index ℓ is of the form

ℓ = 1 + s1(i− 1) + s2(j − 1) + s3(k − 1),

where s1, s2, s3 are the strides. Then the problem reduces to choosing the modes for con-
tiguous fibers and slices. For the 2 × 2 × 2 case, there are 3! = 6 assignments of linear
indices to the elements, as shown in Fig. 2.1. We refer to choice (a) as the natural order-

21

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

22 Chapter 2. Indexing and Reshaping Tensors

6 8

5 7

2 4

1 3

(a)

4 8

3 7

2 6

1 5

(b)

7 8

5 6

3 4

1 2

(c)

4 8

2 6

3 7

1 5

(d)

7 8

3 4

5 6

1 2

(e)

6 8

2 4

5 7

1 3

(f)

, , , , , .

natural
ordering

reverse
orderinggeneral orderings

Figure 2.1: Six possible orderings of elements of 2× 2× 2 tensor

ing which corresponds to the strides s1 = 1, s2 = 2, s3 = 4, and by default use the natural
ordering for linear indexing. Given an ordering, we can then refer to indices by their linear
index ℓ ∈ [8] rather than a 3-tuple (i, j, k) ∈ [2]⊗ [2]⊗ [2]. This extends to d-way tensors
as well.

○
The tuple (i, j, k) ∈ [m] ⊗ [n] ⊗ [p] is equivalent to

its corresponding linear index ℓ = L(i, j, k) ∈ [mnp].

The natural ordering shown in Fig. 1.1a corresponds to having the shortest stride in mode
1, the next shortest in mode 2, and so on, and is discussed in Section 2.1.1. A few special
situations require other orderings. The reverse ordering, shown in Fig. 1.1f, corresponds
to having the longest stride in mode 1, the next longest in mode 2, and so on, and is dis-
cussed in Section 2.1.2. Both the natural and reverse orderings are special cases of general
orderings shown in Figs. 1.1a to 1.1f and discussed in Section 2.1.3. Every ordering keeps
different fibers and slices in order. For instance, Fig. 1.1b shows an ordering where the
lateral slices are stored in column-major order, and Fig. 1.1c shows the frontal slices in
row-major order.

Exercise 2.1 List the strides s1, s2, s3 for each of the six orderings in Fig. 2.1.

Although we focus here on stride-based linear indexing, there are many other options such
as blocked orderings. Any one-to-one and onto mapping L from tuple to linear index that
can be efficiently described with O(d) parameters is potentially reasonable.

2.1.1 Natural Order Linear Indexing
Natural Ordering for 3-way Tensors

Consider a tensor of size m × n × p. We define the natural ordering to give the shortest
strides to mode-1 fibers, the next shortest stride to mode-2 fibers, and the longest stride to
mode-3 fibers. Specifically, the strides for each mode are

s1 = 1, s2 = m, and s3 = mn.

The linear index ℓ corresponding to (i, j, k) can then be computed as

L(i, j, k) = 1 + s1(i− 1) + s2(j − 1) + s3(k − 1) = i+m(j − 1) +mn(k − 1). (2.1)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2.1. Linear Indexing 23

This mapping is one-to-one and onto, which means that it can be inverted. The tuple index
(i, j, k) can be computed from ℓ ∈ [mnp] as (i, j, k) = T(ℓ) where

i = T1(ℓ) = 1 + ⌊((ℓ− 1) mod ms1)/s1⌋ = 1 + (ℓ− 1) mod m, (2.2a)
j = T2(ℓ) = 1 + ⌊((ℓ− 1) mod ns2)/s2⌋ = 1 + ⌊((ℓ− 1) mod nm)/m⌋, (2.2b)
k = T3(ℓ) = 1 + ⌊((ℓ− 1) mod ps3)/s3⌋ = 1 + ⌊(ℓ− 1)/mn⌋. (2.2c)

In the above equations, ⌊x⌋ is the floor operation, which means round x down to the nearest
integer, and x mod y means take the remainder of dividing x by y. The mod disappears in
the equation for k because ℓ− 1 ≤ ps3 = mnp.

○ The natural ordering corresponds to having the shortest
stride in mode 1, the next shortest in mode 2, and so on.

Example 2.1 (Linear Indices with Natural Ordering) For a tensor of size 4× 3× 3, the
stride of the linear indices in the mode-1 direction (top-to-bottom) is s1 = 1, the stride in
the mode-2 direction (left-to-right) is s2 = m = 4, and the stride in the mode-2 direction
(front-to-back) is s3 = mn = 12.

28 32 36

27 31 35

26 30 34

25 29 33

16 20 24

15 19 23

14 18 22

13 17 21

4 8 12

3 7 11

2 6 10

1 5 9
stride s1 = 1

stride s2 = m

stride s3 = mn

Using the strides, we can convert between tuples
and linear indices.

For instance, given the tuple (i, j, k) = (2, 1, 2),
we can compute that L(2, 1, 2) = 2 + 0(4) +
1(12) = 14.

Conversely, given linear index ℓ = 32, we can
compute (i, j, k) = T(ℓ) via i = 1 + (31 mod
4) = 4, j = 1 + ⌊(31 mod 12)/4⌋ = 2, and
k = 1 + ⌊31/12⌋ = 3.

Exercise 2.2 For a tensor of size 4 × 3 × 3, list the linear indices of the following tuple
indices: (a) (3, 2, 3), (b) (4, 3, 1), (c) (2, 2, 2). List the tuple indices for the following linear
indices: (d) 16, (e) 7, and (f) 34.

Exercise 2.3 For a tensor of size 100 × 80 × 60, list the linear indices of the following
tuple indices: (a) (70, 26, 58), (b) (4, 36, 23), (c) (77, 64, 12). List the tuple indices for the
following linear indices: (d) 235087, (e) 213882, and (f) 310231.

It is possible to compose the linearization operation, as we show in the following propo-
sition. In this proposition, we write L(i, j, k;m,n, p) to make the ambient sizes explicit.
Further, the linear and tuple mappings can be defined for 2-tuples (the same formulas work
with p = 1).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

24 Chapter 2. Indexing and Reshaping Tensors

Proposition 2.1 (Composition of Linearization for 3-way) Consider the conversion op-
erators L and T defined in Eqs. (2.1) and (2.2), respectively. If ℓ̂ = L(i, j;m,n) and
ℓ = L(ℓ̂, k;mn, p), then ℓ = L(i, j, k;m,n, p) and (i, j, k) = T(ℓ;m,n, p).

Proof. Assume ℓ̂ = L(i, j;m,n) and ℓ = L(ℓ̂, k; n̂, p) for n̂ = mn. Then, the linearization
equivalence follows from

ℓ = ℓ̂+mn(k − 1) = i+m(j − 1) +mn(k − 1) = L(i, j, k;m,n, p).

Conversely, converting from the linear indices ℓ̂ and ℓ to the tuples (i, j) and (ℓ̂, k), respec-
tively, yields

from ℓ̂ : i = 1 + (ℓ̂− 1) mod m, j = 1 + ⌊(ℓ̂− 1)/m⌋, and

from ℓ : ℓ̂ = 1 + (ℓ− 1) mod n̂, k = 1 + ⌊(ℓ− 1)/n̂⌋.

We can combine these to see

i = 1 + ((ℓ− 1) mod mn) mod m = 1 + (ℓ− 1) mod m,

j = 1 + (⌊(ℓ− 1) mod mn⌋/m), and
k = 1 + ⌊(ℓ− 1)/mn⌋.

The simplification with respect to i comes from properties of modular arithmetic. Hence
(i, j, k) = T(ℓ;m,n, p).

Exercise 2.4 Prove if ℓ = L(i,L(j, k;n, p);m,np), then ℓ = L(i, j, k;m,n, p).

Natural Ordering for d-way Tensors

For a general d-way tensor, the conversion between linear and tuple indices using the nat-
ural ordering is given as follows.

Definition 2.2: Linear/Tuple Index Conversion for Natural Ordering

The strides for the natural ordering are

s1 = 1 and sk+1 =

k∏

α=1

nα = sknk for k ∈ [d− 1]. (2.3a)

The linear index of the tuple (i1, i2, . . . , id) ∈ [n1]⊗ [n2]⊗ · · · ⊗ [nd] is

α = L(i1, i2, . . . , id) = 1 +

d∑

k=1

sk(ik − 1) (2.3b)

The tuple index of α ∈ [N] with N =
∏d

k=1 nk is (i1, i2, . . . , id) = T(α) where

ik = Tk(i) = 1 +
⌊(
(α− 1) mod (nksk)

)
/sk

⌋
. (2.3c)

The mappings L and T depend on the mode sizes, which we assume are generally clear by
context. If not, the ambient dimensions can be made explicit as

L(i1, . . . , id;n1, . . . , nd) and T(α;n1, . . . , nd).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2.1. Linear Indexing 25

Exercise 2.5 For a tensor of size 5× 4× 3× 4, what are the strides (s1, s2, s3, s4) for the
natural ordering?

Exercise 2.6 Write general d-way functions lin2tup and tup2lin to convert between
linear and tuple indices and vice versa.

The composition property (Proposition 2.1) can be generalized to the d-way case as follows.

Proposition 2.3 (Composition of Linearization) If we have two linear indices represent-
ing tuples from different domains as

α = L(i1, . . . , id′ ;m1, . . . ,md′) and β = L(j1, . . . , jd;n1, . . . , nd),

then their linearization is equivalent to linearizing the original indices, i.e.,

L(α, β;M,N) = L(i1, . . . , id′ , j1, . . . , jd;m1, . . . ,md′ , n1, . . . , nd)

where M =
∏d′

k=1mk and N =
∏d

k=1 nk.

Exercise 2.7 Prove Proposition 2.3. Hint: Use induction.

2.1.2 Reverse Ordering Linear Indexing
Reverse Ordering for 3-way Tensors

Consider a tensor of size m × n × p. We define the reverse ordering to be the opposite of
the natural ordering giving the shortest strides to mode-3 fibers, the next shortest stride to
mode-2 fibers, and the longest stride to mode-1 fibers. For the 2× 2× 2 tensor, the reverse
ordering corresponds to the ordering shown in Fig. 1.1f. Specifically, the strides for each
mode are

s∗1 = np, s∗2 = p, and s∗3 = 1.

The linear index ℓ = L∗(i, j, k) corresponding to (i, j, k) in the reverse ordering can then
be computed as

L∗(i, j, k) = 1 + s∗1(i− 1) + s∗2(j − 1) + s∗3(k − 1) = np(i− 1) + p(j − 1) + k. (2.4)

Here the asterisk denotes the reverse strides. This mapping is also one-to-one and onto,
which means that it can be inverted. The tuple (i, j, k) can be computed from ℓ ∈ [mnp]
as (i, j, k) = T∗(ℓ) where

i = T∗
1(ℓ) = 1 + ⌊((ℓ− 1) mod ms∗1)/s

∗
1⌋ = 1 + ⌊(ℓ− 1)/np⌋,

j = T∗
2(ℓ) = 1 + ⌊((ℓ− 1) mod ns∗2)/s

∗
2⌋ = 1 + ⌊((ℓ− 1) mod np)/p⌋,

k = T∗
3(ℓ) = 1 + ⌊((ℓ− 1) mod ps∗3)/s

∗
3⌋ = 1 + (ℓ− 1) mod p.

○ The reverse ordering corresponds to having the longest
stride in mode 1, the next longest in mode 2, and so on.

Exercise 2.8 Let ℓ = L∗(i, j, k;m,n, p). Show ℓ = L(k, j, i; p, n,m).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

26 Chapter 2. Indexing and Reshaping Tensors

Example 2.2 (Linear Indices with Reverse Ordering) For a tensor of size 4× 3× 3, the
linear indices from the reverse ordering are as follows:

30 33 36

21 24 27

12 15 18

3 6 9

29 32 35

20 23 26

11 14 17

2 5 8

28 31 34

19 22 25

10 13 16

1 4 7
stride s∗1 = np

stride s∗2 = p

stride s∗3 = 1
The strides are s∗1 = 9, s∗2 = 3, and s∗3 = 1.

For instance, given the tuple (i, j, k) = (2, 1, 2),
we can compute that L∗(2, 1, 2) = 1(9) + 0(3) +
2 = 11.

Conversely, given linear index ℓ = 32, we can
compute (i, j, k) = T∗(ℓ) via i = 1+⌊31/9⌋ = 4,
j = 1 + ⌊(31 mod 9)/3⌋ = 2, and k = 1 +
(31 mod 3) = 2.

Example 2.3 (Comparison of Natural and Reverse Linear Indices) Consider the do-
main 4× 3× 2. The linear indices corresponding to the natural and reverse orderings are
as follows.

Tuple L L∗ Tuple L L∗ Tuple L L∗ Tuple L L∗
(1,1,1) 1 1 (2,1,1) 2 7 (3,1,1) 3 13 (4,1,1) 4 19
(1,2,1) 5 3 (2,2,1) 6 9 (3,2,1) 7 15 (4,2,1) 8 21
(1,3,1) 9 5 (2,3,1) 10 11 (3,3,1) 11 17 (4,3,1) 12 23
(1,1,2) 13 2 (2,1,2) 14 8 (3,1,2) 15 14 (4,1,2) 16 20
(1,2,2) 17 4 (2,2,2) 18 10 (3,2,2) 19 16 (4,2,2) 20 22
(1,3,2) 21 6 (2,3,2) 22 12 (3,3,2) 23 18 (4,3,2) 24 24

Reverse indexing is useful for Kronecker products. Recall the definition of the Kronecker
product of two vectors from Definition A.20: for vectors a ∈ Rm,b ∈ Rn, the reverse
linear index is exactly the index into the Kronecker product, i.e.,

v = a⊗ b ∈ Rmn ⇔ vℓ = aibj where ℓ = L∗(i, j) = n(i− 1) + j.

We generalize this to 3-way vector Kronecker products in the following proposition.

Proposition 2.4 (Vector Kronecker Products and Reverse Linear Indexing) Let a ∈
Rm, b ∈ Rn, and c ∈ Rp, and define v = a ⊗ b ⊗ c ∈ Rmnp. Then vℓ = aibjck where
ℓ = L∗(i, j, k) or (i, j, k) = T∗(ℓ).

Proof. Define u = a⊗ b. By definition, uℓ̂ = aibj where ℓ̂ = L∗(i, j) = n(i− 1) + j for
all ℓ̂ ∈ [mn]. Since the Kronecker product is associative, we have v = a⊗b⊗ c = u⊗ c.
By definition, vℓ = uℓ̂ck where ℓ = L∗(ℓ̂, k) = p(ℓ̂− 1)+ k. Expanding uℓ̂ and ℓ̂, we have
vℓ = aibjck where ℓ = p

(
n(i− 1)+ j − 1

)
+ k = pn(i− 1)+ p(j − 1)+ k = L∗(i, j, k).

Hence, the claim.

This idea extends directly to the 3-way Khatri-Rao product (see Definition A.21), as shown
in the following proposition.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2.1. Linear Indexing 27

Proposition 2.5 (Khatri-Rao Products and Reverse Linear Indexing) Let A ∈ Rm×r,
B ∈ Rn×r, and C ∈ Rp×r. Consider their Khatri-Rao product, denoted by

V = A⊙B⊙C.

Then for all (i, j, k, ℓ) ∈ [m]⊗ [n]⊗ [p]⊗ [r], we have

vαℓ = aiℓbjℓckℓ where α = L∗(i, j, k).

Exercise 2.9 Prove Proposition 2.5.

We can also consider the more general matrix Kronecker product (Definition A.17) which
takes the products of all elements in two matrices, not necessarily of the same size.

Proposition 2.6 (Kronecker Products and Reverse Linear Indexing) Let A ∈ Rm×q ,
B ∈ Rn×r, C ∈ Rp×s. Then their Kronecker product

X = A⊗B⊗C

is of size mnp× qrs. Further,

xαβ = ai1j1bi2j2ci3j3 where α = L∗(i1, i2, i3;m,n, p), β = L∗(j1, j2, j3; q, r, s),

for all (i1, i2, i3, j1, j2, j3) ∈ [m]⊗ [n]⊗ [p]⊗ [q]⊗ [r]⊗ [s].

Exercise 2.10 Prove Proposition 2.6.

○ We often express Kronecker products in reverse, i.e., v = c ⊗ b ⊗ a,
so that the indices are computed using the natural linear index.

The Kronecker product seems to have been defined backwards! For this reason, we often
work with the reverse Kronecker product so that the indexing uses L rather than L∗, as we
explore in Exercises 2.11 to 2.13.

Exercise 2.11 (Reverse Vector Kronecker Product) Let a ∈ Rm, b ∈ Rn, and c ∈ Rp,
and define v = c⊗ b⊗ a ∈ Rmnp. Show vℓ = aibjck where ℓ = L(i, j, k) or (i, j, k) =
T(ℓ).

Exercise 2.12 (Reverse Khatri-Rao Product) Let A ∈ Rm×q,B ∈ Rn×r,C ∈ Rp×s,
and define their reverse Khatri-Rao product

V = C⊙B⊙A.

Prove vαℓ = aiℓbjℓckℓ for α = L(i, j, k).

Exercise 2.13 (Reverse Kronecker Product) Let A ∈ Rm×r,B ∈ Rn×r,C ∈ Rp×r, and
define their reverse Kronecker product

V = C⊗B⊗A.

(a) What is the size of V?
(b) What is the mapping such that vαβ = ai1j1bi2j2ci3j3?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

28 Chapter 2. Indexing and Reshaping Tensors

Reverse Ordering for d-way Tensors

For a general d-way tensor, the conversion between linear and tuple indices using the re-
verse ordering is the same as the definition for the natural ordering with the exception of
the strides.

Definition 2.7 (Linear/Tuple Index Conversion for Reverse Ordering) The strides for
the reverse ordering are

s∗d = 1 and s∗k−1 =

d∏

ℓ=k

nℓ = s∗knk for k = d, . . . , 2. (2.5a)

The (reverse) linear index of (i1, i2, . . . , id) ∈ [n1]⊗ [n2]⊗ · · · ⊗ [nd] is

α = L∗(i1, i2, . . . , id) = 1 +

d∑

k=1

s∗k(ik − 1). (2.5b)

The (reverse) tuple index of α ∈ [N] with N =
∏d

k=1 nk is (i1, i2, . . . , id) = T∗(α)
where

ik = T∗
k(α) = 1 + ⌊((α− 1) mod (nks

∗
k))/s

∗
k⌋. (2.5c)

Exercise 2.14 Extend the functions lin2tup and tup2lin from Exercise 2.6 with an
option to support reverse ordering.

Proposition 2.8 (Reverse/Natural Indexing Conversion) We can convert from reverse
indexing to natural indexing by reversing the indices and sizes, i.e.,

α = L∗(i1, i2, . . . , id;n1, n2, . . . , nd) = L(id, id−1, . . . , i1;nd, nd−1, . . . , n1).

Likewise,
ik = T∗

k(α;n1, n2, . . . , nd) = Tk(α;nd, nd−1, . . . , n1).

The Kronecker product of d vectors can use reverse linear indexing for vectors in natural
order or natural linear indexing for vectors in reverse order.

Proposition 2.9 (Vector Kronecker Products and Linear Indexing) Let ak ∈ Rnk for all
k ∈ [d], and define N =

∏d
k=1 nk.

(a) If u = a1⊗a2⊗· · ·⊗ad ∈ RN , then ui =
∏d

k=1 ak(ik) where α = L∗(i1, i2, . . . , id)
or (i1, i2, . . . , id) = T∗(α).

(b) If v = ad ⊗ ad−1 ⊗ · · · ⊗ a1 ∈ RN , then vi =
∏d

k=1 ak(ik) where α =
L(i1, i2, . . . , id) or (i1, i2, . . . , id) = T(α).

We can develop similar results for matrices; here we give the versions for the reverse
Khatri-Rao and reverse Kronecker products.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2.1. Linear Indexing 29

Proposition 2.10 (Khatri-Rao Products and Linear Indexing) Let Ak ∈ Rnk×r for k ∈
[d]. Define N =

∏d
k=1 nk. Then

B = Ad ⊙Ad−1 ⊙ · · · ⊙A1 ∈ RN×r

is such that its elements satisfy

B(α, j) =

d∏

k=1

Ak(ik, j)

where α = L(i1, i2, . . . , id;n1, n2, . . . , nd) and j ∈ [r].

Proposition 2.11 (Kronecker Products and Linear Indexing) Let Ak ∈ Rmk×nk for
k ∈ [d]. Define M =

∏d
k=1mk and N =

∏d
k=1 nk. Then

B = Ad ⊗Ad−1 ⊗ · · · ⊗A1 ∈ RM×N

is such that its elements satisfy

B(α, β) =

d∏

k=1

Ak(ik, jk)

where α = L(i1, i2, . . . , id;m1,m2, . . . ,md) and β = L(j1, j2, . . . , jd;n1, n2, . . . , nd).

Exercise 2.15 Prove Proposition 2.11. Recommend using proof by induction and compo-
sition of linear indices.

2.1.3 General Ordering
General Ordering for 3-way Tensors

The natural ordering of the modes is (1,2,3), and the reverse ordering is (3,2,1). What if
the ordering is something else, say (2,1,3) or (3,1,2)? For the 2× 2× 2 tensor in Fig. 2.1,
the natural ordering corresponds to the ordering shown in Fig. 1.1a, the reverse ordering
corresponds to the ordering shown in Fig. 1.1f, and the general ordering captures all possi-
bilities.

For a tensor of size m × n × p, we can define the linear index using any mode ordering
π = (π1, π2, π3) by using the strides

s̄π1
= 1, s̄π2

=

m if π1 = 1

n if π1 = 2

p if π1 = 3

, s̄π3
=

mn if (π1, π2) = (1, 2) or (2, 1)
mp if (π1, π2) = (1, 3) or (3, 1)
np if (π1, π2) = (2, 3) or (3, 2)

.

Using these general strides, the linear index ℓ corresponding to (i, j, k) can then be com-
puted as

L(π)(i, j, k) = 1 + s̄1(i− 1) + s̄2(j − 1) + s̄3(k − 1)

Here the π denotes the specific permutation of the indices. The tuple (i, j, k) can be com-

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

30 Chapter 2. Indexing and Reshaping Tensors

puted from ℓ ∈ [mnp] using the inverse function (i, j, k) = T(π)(ℓ) where

i = T(π)
1 (ℓ) = 1 + ⌊((ℓ− 1) mod ms̄1)/s̄1⌋,

j = T(π)
2 (ℓ) = 1 + ⌊((ℓ− 1) mod ns̄2)/s̄2⌋,

k = T(π)
3 (ℓ) = 1 + ⌊((ℓ− 1) mod ps̄3)/s̄3⌋.

Exercise 2.16 What is π for the natural ordering? For the reverse ordering?

Exercise 2.17 Consider the domain [m]⊗[n]⊗[p] and the permuted ordering π = (2, 1, 3).
What is the formula for the linear index ℓ of (i, j, k)? Given the linear index ℓ, what is
(i, j, k)?

General Ordering for d-way Tensors

We can then consider the general d-way case as follows.

Definition 2.12 (Linear/Tuple Index Conversion for General Ordering) The strides for
the general ordering specified by π = (π1, π2, . . . , πd) are

s̄π1
= 1 and s̄πk+1

=

k∏

ℓ=1

nπℓ
= s̄πk

nπk
for k ∈ [d− 1].

The (general) linear index of (i1, i2, . . . , id) ∈ [n1]⊗ [n2]⊗ · · · ⊗ [nd] is

α = L(π)(i1, i2, . . . , id) = 1 +

d∑

k=1

s̄k(ik − 1). (2.6a)

The (general) tuple index of α ∈ [N] with N =
∏d

k=1 nk is (i1, i2, . . . , id) = T(π)(α)
where

ik = T(π)
k (α) = 1 + ⌊((α− 1) mod (nks̄k))/s̄k⌋. (2.6b)

Exercise 2.18 How different mode orderings are possible for a d-tuple?

We can always convert from an index using a general mode ordering to one using the
natural ordering as follows.

Proposition 2.13 (From General to Natural Linear Ordering) Let i1, . . . , id ∈ [n1] ⊗
· · · ⊗ [nd], then

L(π)(i1, . . . , id;n1, . . . , nd) = L(iπ1
, . . . , iπd

, nπ1
, . . . , nπd

). (2.7)

Conversely, for α ∈
[∏d

k=1 nk
]
, we have

ik = T(π)
k (α;n1, . . . , nd) = Tk(α;nπ1

, . . . , nπd
). (2.8)

Exercise 2.19 Extend the functions lin2tup and tup2lin from Exercise 2.6 with an
option to support general ordering. Validate the 2× 2× 2 case using Fig. 2.1. Numerically
validate the equivalency in Proposition 2.13.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2.2. Vectorization 31

Exercise 2.20 Let ak ∈ Rnk for k ∈ [d] and define v = aπ(1)⊗aπ(2)⊗· · ·⊗aπ(d). Given
(i1, i2, . . . , id), for what value of α is it the case that v(α) =

∏d
k=1 ak(ik)? Conversely,

given α, for what values of (i1, i2, . . . , id) does the statement hold?

2.2 Vectorization
The operation of vectorization converts a tensor to a vector. The elements are the same but
simply arranged as a 1-dimensional array. It is closely related to how the tensor is stored in
computer memory, as we discuss further below. The ordering of the elements is controlled
by the linear indexing discussed in the prior section. As a warm-up, we consider how linear
indexing relates to vectorizing a matrix.

Example 2.4 (Vectorizing a Matrix) We briefly recall vectorization for matrices. Let X
be a matrix of size m×n. The operation vec(X) stacks the columns of X to form a vector
of length p = mn. Now we can ask: How the entries in y = vec(X) are related to the
entries of X? Given (i, j) ∈ [m]⊗ [n], we can use the linear index so that

yℓ = xij where ℓ = L(i, j) = i+m(j − 1).

Given ℓ ∈ [mn], we have (i, j) = T(ℓ) so

xij = yℓ where
i = T1(ℓ) =

(
(ℓ− 1) mod m

)
+ 1,

j = T2(ℓ) =
⌊
(ℓ− 1)/m

⌋
+ 1.

2.2.1 Vectorizing 3-way Tensors
Consider a 3-way tensor X of size m × n × p; then vec(X) is a column vector of size
q = mnp. The entries of the tensor are ordered by their linear indices per Eq. (2.3) as

vec(X)

x111
x211

...
xmnp

x1
x2
...
xq

= =

tuple indices linear indices

q = mnp (2.9)

Specifically, if x = vec(X), then x(ℓ) = X(i, j, k) where ℓ = L(i, j, k) = i + m(j −
1) +mn(k − 1) or (i, j, k) = T(ℓ). This ordering is the tensor analogue of column major
ordering for matrices. See Fig. 2.2 for a visual illustration.

Exercise 2.21 Show that Eq. (2.9) is identical to matrix vectorization for an m × n × p
tensor with p = 1.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

32 Chapter 2. Indexing and Reshaping Tensors

()
vec =

Figure 2.2: Vectorization of 2× 2× 2 tensor

Example 2.5 (Vectorizing 3-way Tensor) Let X be defined in Example 1.2.Its vectoriza-
tion is

vec(X) = [3 8 4 9 2 3 1 1 9 6 5 1 9 6 4 5 4 1]⊺ ∈ R18.

Pictorially, this is illustrated as walking through the slices in order, traversing the columns
in order within each slice.

3 9 1
8 2 1
4 3 9

6 9 5
5 6 4
1 4 1

X(:, :, 1) X(:, :, 2)

Each frontal slice is vectorized, and these are stacked to form the vectorization.

Exercise 2.22 Let the 2× 2× 2 tensor X be given by

X(:, :, 1) =

[
8 7
−3 9

]
and X(:, :, 2) =

[
−1 4
0 5

]
.

What is vec(X)?

2.2.2 Vectorizing d-way Tensors
Now we consider vectorization for a general d-way array.

Definition 2.14: Vectorization of d-way Tensor

Let X be a tensor of size n1×n2×· · ·×nd. Its vectorization, vec(X), is a column vector
of length N =

∏d
k=1 nk such that entry α ∈ [N] is defined as α = L(i1, i2, . . . , id) and,

conversely, (i1, i2, . . . , id) = T(α) (see Definition 2.2) so that

vec(X)

x11···1
x21···1

...
xn1n2···nd

x1
x2
...
xN

= =

tuple indices linear indices

N =

d∏

k=1

nk (2.10)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2.3. Unfolding or Matricization of a Tensor 33

Example 2.6 (Vectorizing d-way Tensor) Let Y ∈ R3×4×3×2 be as defined in Exam-
ple 1.3, i.e.,

Y(:, :, :, 1) =
5 5 4 8

2 7 5 4

9 7 2 5

3 5 6 5

1 2 1 3

4 9 9 9

4 5 3 8

8 9 1 7

1 7 5 5
, Y(:, :, :, 2) =

1 3 8 2

7 6 9 8

9 3 9 5

4 5 1 7

7 6 1 5

2 4 4 7

6 4 5 9

3 5 4 4

7 3 6 7
.

Then vecY ∈ R72 with vec(Y) =

[1 8 4 7 9 5 5 1 3 5 7 8 4 1 3 9 2 5 9 1 6 9 3 5 9 2 5 7 7 5 2 5 4 5 4 8 . . .

7 3 6 3 5 4 6 4 5 7 4 9 2 7 4 4 6 5 4 1 1 7 5 7 9 7 1 3 6 3 9 9 8 5 8 2]⊺.

2.2.3 Representing Tensors in Computer Memory

○ In a computer, a tensor X is stored internally as a vector.

A programming language may allow for multidimensional arrays to be stored as arrays of
arrays of arrays or lists of lists of lists, but this is generally inefficient. Such a storage
format means that locating element (i1, i2, . . . , id) requires navigating through a sequence
of d memory references.

Instead, the most efficient way to store a tensor in computer memory is as a contiguous
1-dimensional array, e.g., as vec(X). This is efficient because computer memory is lin-
ear; hence, if we know the location of X(1, 1, . . . , 1), we can find the location of element
(i1, i2, . . . , id) by just looking

(
L(i1, i2, . . . , id)− 1

)
spots ahead in memory. Addition-

ally, storing the tensor as vec(X) allows for strided data access for tensor fibers. By keeping
the entire multidimensional array in a contiguous block of memory, we improve spatial lo-
cality in various levels of the memory hierarchy.

The natural ordering for tensors is analogous to the column-major ordering of matrices,
which is the default in MATLAB. In Python, the “F” (Fortran) ordering is recommended
for NumPy multidimensional arrays to correspond with the descriptions here; the default
“C” ordering corresponds to the reverse linear index.

The command reshape does not move any entries around but merely declares a new shape
for an object. As an example, for X ∈ Rm×n×p and x ∈ Rmnp, we have

X = reshape(x,m× n× p) if and only if x = vec(X).

This operation requires no memory movement or computation.

2.3 Unfolding or Matricization of a Tensor
Unfolding or matricization of a tensor rearranges its elements as a two-way matrix. The
total number of elements is unchanged. In other words, if a tensor X of size n1×n2×· · ·×
nd is unfolded to a matrix of size M ×N , then it must be the case that MN =

∏d
k=1 nk .

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

34 Chapter 2. Indexing and Reshaping Tensors

2.3.1 Unfolding 3-way Tensors
Consider a 3-way tensor X of size m× n× p which we can arrange as an m× np matrix,
an n×mp matrix, or a p×mn matrix. Figure 2.3 provides an example illustration of the
three different unfoldings alongside the vectorization.

X =

X(1) = X(2) =

X(3) =

(
vec(X)

)⊺
=

Figure 2.3: Unfoldings and vectorization of 4× 3× 2 tensor X, using colors for each entry

The mode-1 unfolding aligns the column fibers as the columns of the matrix.

Definition 2.15 (Mode-1 Unfolding of 3-way Tensor) For a tensor X ∈ Rm×n×p, the
mode-1 unfolding is denoted as X(1) and is a matrix of size m× np such that

X(1) =

x111 x121 · · · x1np
x211 x221 · · · x2np

...
...

. . .
...

xm11 xm21 · · · xmnp

m

np

X(1)(i, ℓ) = X(i, j, k)

where
ℓ = (k − 1)n+ j.

(2.11)

The mapping for the column index can also be expressed using the definitions of L and T
from Eq. (2.3), i.e., the ℓ from Eq. (2.11) can be expressed as

ℓ = L(j, k) or, precisely, ℓ = L(j, k;n, p).

The ordering from the mode-1 unfolding has the benefit of preserving the same linear
representations for X and for X(1). This means that the computer representations in a
column-major programming language such as MATLAB are equivalent, so it is only the
interpretation that changes. The pseudocode is a single line as follows:

Mode-1 Unfolding of 3-way Tensor
X(1) ← reshape(X,m× np)

Exercise 2.23 Prove X(1) = reshape(X,m× np).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2.3. Unfolding or Matricization of a Tensor 35

The mode-2 unfolding arranges the row fibers as the columns of the matrix. This cannot be
achieved by a reshape, but it does have special structure discussed in Section 2.3.3.

Definition 2.16 (Mode-2 Unfolding of 3-way Tensor) For a tensor X ∈ Rm×n×p, the
mode-2 unfolding denoted X(2), is of size n×mp such that

X(2) =

x111 x211 · · · xm1p

x121 x221 · · · xm2p

...
...

. . .
...

x1n1 x2n1 · · · xmnp

n

mp

X(2)(j, ℓ) = X(i, j, k)

where
ℓ = (k − 1)m+ i = L(i, k).

(2.12)

The mode-3 unfolding arranges the tube fibers as the columns of the matrix. This cannot
be achieved by a reshape either, but its transpose can; see Proposition 2.21.

Definition 2.17 (Mode-3 Unfolding of 3-way Tensor) For a tensor X ∈ Rm×n×p, the
mode-3 unfolding denoted X(3), is of size p×mn such that

X(3) =

x111 x211 · · · xmn1

x112 x212 · · · xmn2

...
...

. . .
...

x11p x21p · · · xmnp

p

mn

X(3)(k, ℓ) = X(i, j, k)

where
ℓ = (j − 1)m+ i = L(i, j).

(2.13)

Example 2.7 (3-way Tensor Unfoldings) Let the tensor X ∈ R3×3×2 be as defined in
Example 1.2, i.e.,

1 4 1

5 6 4

6 9 5

4 3 9

8 2 1

3 9 1

X = .

Then its three mode-k unfoldings are

X(1) =

3 9 1 6 9 5
8 2 1 5 6 4
4 3 9 1 4 1

 ∈ R3×6, X(2) =

3 8 4 6 5 1
9 2 3 9 6 4
1 1 9 5 4 1

 ∈ R3×6,

and X(3) =

[
3 8 4 9 2 3 1 1 9
6 5 1 9 6 4 5 4 1

]
∈ R2×9.

Exercise 2.24 Let the 2× 2× 2 tensor X be given by

X(:, :, 1) =

[
8 7
−3 9

]
and X(:, :, 2) =

[
−1 4
0 5

]
.

What is X(1),X(2),X(3)?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

36 Chapter 2. Indexing and Reshaping Tensors

Exercise 2.25 (Alternate Column Order in Unfolding) The natural ordering preserves the
frontal slices and is generally the default. However, we could certainly change the ordering
for the column indices. Consider,

X̂(1)(i, ℓ) = X(i, j, k) where ℓ = L∗(j, k) and (j, k) = T∗(ℓ).

What is X̂(1) for the tensor X in Example 1.2?

We consider here only the case of mapping a single tensor tuple index to each row and a
pair of tensor tuple indices to each column. There are other possibilities, which we explore
further in the general d-way case in the next subsection.

2.3.2 Unfolding d-way Tensors
We consider two types of unfolding. First, the mode-k unfolding of a d-way tensor (anal-
ogous to the 3-way case) maps one mode to the rows and the remainder to the columns in
the natural ordering for the linearization. Second, the general unfolding can map any set of
indices to the rows and the remainder to the columns, allowing for arbitrary permutations
in the linearizations. We discuss each in turn.

Mode-k Unfolding of a d-way Tensor

○ The columns of the mode-k unfolding are the mode-k tensor fibers.

The mode-k unfolding organizes the mode-k fibers as the columns of the resulting matrix
in natural order as follows.

Definition 2.18: Mode-k Unfolding

The mode-k unfolding of a tensor X of size n1 × n2 × · · · × nd is the matrix

X(k) ∈ Rnk×Nk where Nk =
d∏

ℓ=1
ℓ ̸=k

nℓ and (2.14a)

X(k)(ik, βk) = X(i1, . . . , id) with βk = L(i1, . . . , ik−1, ik+1, . . . , id). (2.14b)

We have a special usage of L from Definition 2.2 because we are skipping mode k:

L(i1, . . . , ik−1, ik+1, . . . , id) = 1 +

d∑

ℓ=1
ℓ ̸=k

sℓ(iℓ − 1) where sℓ =

ℓ−1∏

α=1
α ̸=k

nα.

We use the convention that the first stride is one (since there is nothing to multiply); con-
cretely, if k > 1, then the first stride is s1=1; otherwise, we have k = 1 and the first stride
is s2 = 1.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2.3. Unfolding or Matricization of a Tensor 37

Example 2.8 (4-way Tensor Unfoldings) Consider the tensor X of size 2×2×2×2 given
by

X(:, :, :, 1) = , X(:, :, :, 2) = .5 1

9 5

8 7

1 4
1 9

4 3

5 8

3 7

Its four mode-k unfoldings are

X(1) =

[
1 4 9 5 3 7 4 3
8 7 5 1 5 8 1 9

]
, X(2) =

[
1 8 9 5 3 5 4 1
4 7 5 1 7 8 3 9

]
,

X(3) =

[
1 8 4 7 3 5 7 8
9 5 5 1 4 1 3 9

]
, X(4) =

[
1 8 4 7 9 5 5 1
3 5 7 8 4 1 3 9

]
.

Exercise 2.26 Prove that the mode-1 unfolding has the same linearization as the tensor,
i.e., vec

(
X
)
= vec

(
X(1)

)
. Hint: Use the composition of linearization.

Example 2.9 (4-way Tensor Unfolding) Let Y ∈ R3×4×3×2 be as defined in Example 1.3,
i.e.,

Y(:, :, :, 1) =
5 5 4 8

2 7 5 4

9 7 2 5

3 5 6 5

1 2 1 3

4 9 9 9

4 5 3 8

8 9 1 7

1 7 5 5
, Y(:, :, :, 2) =

1 3 8 2

7 6 9 8

9 3 9 5

4 5 1 7

7 6 1 5

2 4 4 7

6 4 5 9

3 5 4 4

7 3 6 7
.

Then its mode-2 unfolding is

Y(2) =

1 8 4 4 1 3 9 2 5 7 3 6 2 7 4 9 7 1
7 9 5 9 2 5 7 7 5 3 5 4 4 6 5 3 6 3
5 1 3 9 1 6 2 5 4 6 4 5 4 1 1 9 9 8
5 7 8 9 3 5 5 4 8 7 4 9 7 5 7 5 8 2

.

Exercise 2.27 For the tensor Y in Example 2.9, what is (a) Y(1), (b) Y(3), (c) Y(4)?

General Unfolding of a d-way Tensor

We can define more general matricizations where multiple modes map to the row and col-
umn modes of the matrix as follows. We use natural ordering for both row sets and columns
sets of indices.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

38 Chapter 2. Indexing and Reshaping Tensors

Definition 2.19: General Unfolding

Let the modes { 1, . . . , d } be partitioned into two ordered sets:

R = (r1, r2, . . . , rδ) and C = (c1, c2, . . . , cd−δ). (2.15a)

The unfolding of a tensor X of size n1 × n2 × · · · × nd with respect to row set R and
column set C is the matrix

X(R×C) ∈ RM×N where M =
∏

k∈R
nk and N =

∏

k∈C
nk (2.15b)

and defined by X(R×C)(α, β) = X(i1, i2, . . . , id) where

α = L(ir1 , . . . , irδ) ∈ [M] and β = L(ic1 , . . . , icd−δ
) ∈ [N]. (2.15c)

Exercise 2.28 For a 3-way tensor X of size m × n × p, prove the following: (a) The
mode-2 unfolding is equivalent to general matricization with R = (2) and C = (1, 3).
(b) The generalization matricization withR = (1, 2) and C = (3) is equal to X⊺

(3).

Exercise 2.29 Prove the following: (a) The mode-k unfolding is a special case of general
matricization with R = (k) and C = (1, . . . , k − 1, k + 1, . . . , d). (b) Vectorization is a
special case of general matricization withR = (1, . . . , d) and C = ∅.

Example 2.10 (General Unfolding) Consider Y ∈ R3×4×3×2 from Example 1.3, i.e.,

Y(:, :, :, 1) =
5 5 4 8

2 7 5 4

9 7 2 5

3 5 6 5

1 2 1 3

4 9 9 9

4 5 3 8

8 9 1 7

1 7 5 5
, Y(:, :, :, 2) =

1 3 8 2

7 6 9 8

9 3 9 5

4 5 1 7

7 6 1 5

2 4 4 7

6 4 5 9

3 5 4 4

7 3 6 7
.

Then its unfolding withR = (1, 3) and C = (2, 4) is

Y((1,3)×(2,4)) =

1 7 5 5 7 3 6 7
8 9 1 7 3 5 4 4
4 5 3 8 6 4 5 9
4 9 9 9 2 4 4 7
1 2 1 3 7 6 1 5
3 5 6 5 4 5 1 7
9 7 2 5 9 3 9 5
2 7 5 4 7 6 9 8
5 5 4 8 1 3 8 2

∈ R9×8.

Exercise 2.30 For the tensor in Example 2.10, what is its unfolding for R = (2, 4) and
C = (1, 3)?

Rearranging the elements of a tensor into an unfolded matrix in column-major order gener-
ally requires moving data around. However, no memory movement cost is incurred if the
linearization of the tensor and its unfolding are identical.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2.3. Unfolding or Matricization of a Tensor 39

We can characterize such unfolding as follows.

Proposition 2.20 (No Memory Movement Unfolding) For any k ∈ [d], ifR = (1, . . . , k)
and C = (k + 1, . . . , d), then for any d-way tensor, we have

vec(X) = vec
(
X(R×C)

)
.

Exercise 2.31 Prove Proposition 2.20.

Example 2.11 (General Unfolding with No Memory Movement, 3-way) Let the tensor
X ∈ R3×3×2 be as defined in Example 1.2 and consider the unfolding using R = (1, 2)
and C = (3), i.e.,

1 4 1

5 6 4

6 9 5

4 3 9

8 2 1

3 9 1

X = . unfolds to X((1,2)×3) =

3 6
8 5
4 1
9 9
2 6
3 4
1 5
1 4
9 1

∈ R9×2,

which the same vectorization as X. In fact, X((1,2)×3) = X⊺
(3).

Example 2.12 (General Unfolding with No Memory Movement, d-way) Let Y ∈
R3×4×3×2 be as defined in Example 1.3, i.e.,

Y(:, :, :, 1) =
5 5 4 8

2 7 5 4

9 7 2 5

3 5 6 5

1 2 1 3

4 9 9 9

4 5 3 8

8 9 1 7

1 7 5 5
, Y(:, :, :, 2) =

1 3 8 2

7 6 9 8

9 3 9 5

4 5 1 7

7 6 1 5

2 4 4 7

6 4 5 9

3 5 4 4

7 3 6 7
.

IfR = (1, 2) and C = (3, 4), then

Y((1,2)×(3,4)) =

1 4 9 7 2 9
8 1 2 3 7 7
4 3 5 6 4 1
7 9 7 3 4 3
9 2 7 5 6 6
5 5 5 4 5 3
5 9 2 6 4 9
1 1 5 4 1 9
3 6 4 5 1 8
5 9 5 7 7 5
7 3 4 4 5 8
8 5 8 9 7 2

.

We have again that vec(Y) = vec(Y((1,2)×(3,4))).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

40 Chapter 2. Indexing and Reshaping Tensors

Y(1) =

Y(2) =

Y(3) =

Y(4) =

Y(:, :, :, 1) = , Y(:, :, :, 2) =

Figure 2.4: Block structure of mode-k unfoldings for 4-way tensor of size 3× 4× 3× 2 in
terms of mode-1 fibers. Thick lines outline the blocks.

Exercise 2.32 Let X ∈ Rn1×n2×···×nd . Show

X⊺
(d) =

[
vec
(
X(:, . . . , :, 1)

)
vec
(
X(:, . . . , :, 2)

)
· · · vec

(
X(:, . . . , :, nk)

)]
.

Exercise 2.33 Let X ∈ Rn1×n2×···×nd . Set Y = X(:, · · · , :, id) ∈ Rn1×n2×···×nd−1 for
some id ∈ [nd]. For k < d, show that the unfolding ranks are related as rank

(
Y(k)

)
= 1

if rank
(
X(k)

)
= 1.

2.3.3 Structure of Mode-k Unfoldings
We have seen in the previous subsection that the mode-1 unfolding has the same vec-
torization as X, which means that there is no memory movement cost to perform matrix
operations with the mode-1 unfolding. The other mode-k unfoldings are not in column-
major order, so performing matrix operations with them requires reordering the elements
in memory, which can be slow. However, the mode-k unfoldings do have structure that can
be exploited when performing matrix operations without performing any explicit reorder-
ing (Austin et al., 2016; Ballard, Klinvex, et al., 2020; Li, Battaglino, et al., 2015).

Considering the mode-k unfolding defined in Eq. (2.14), define

Mk =

k−1∏

ℓ=1

nℓ and Pk =

d∏

ℓ=k+1

nℓ.

The mode-k unfolding has Pk column blocks, and each block is a row-major matrix of size
nk ×Mk. This is illustrated in Fig. 2.4

For ease of discussion, consider a tensor Y of size 3 × 4 × 3 × 2 such that vec(Y) =[
1 2 3 · · · 72

]⊺
. In other words, each entry is the linear index of that entry.

For mode 1, there are P1 = 24 blocks, each of which is of size n1 ×M1 = 3× 1:

Y(1) =

1 4 · · · 70
2 5 · · · 71
3 6 · · · 72

 .

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2.4. Permuting a Tensor 41

In this unfolding, as discussed in the prior subsection, Y(1) naturally aligns with the natural
ordering of Y so that vec

(
Y(1)

)
= vec(Y). This means that Y(1) is stored in column-major

order in memory.

For mode 2, there are P2 = 6 row-major blocks, each of which is of size n2×M2 = 4×3:

Y(2) =

1 2 3 13 14 15 · · · 61 62 63
4 5 6 16 17 18 · · · 64 65 66
7 8 9 19 20 21 · · · 67 68 69
10 11 12 22 23 24 · · · 70 71 72

 .

For mode 3, there are P3 = 2 row-major blocks, each of which is of size n3×M3 = 3×12:

Y(3) =

1 2 · · · 12 37 38 · · · 48
13 14 · · · 24 49 50 · · · 60
25 26 · · · 36 61 62 · · · 72

 .

For mode 4, there is P4 = 1 row-major block, which is of size n4 ×M4 = 2× 36:

Y(4) =

[
1 2 · · · 36
37 38 · · · 72

]
.

Like mode-1, this aligns with the natural ordering of the tensor, except it is in terms of
the transpose of the unfolding. In other words, vec

(
Y⊺

(4)

)
= vec(Y), so Y(4) is stored in

row-major order in memory. This can be generalized as follows.

Proposition 2.21 For a d-way tensor X, it holds that

vec
(
X(1)

)
= vec

(
X⊺

(d)

)
= vec(X).

Example 2.13 (Gram Computation with Unfolded Tensor) Consider a tensor X of size
4× 3× 2× 2. Suppose we want to compute X(2)X

⊺
(2). Its mode-2 unfolding X is of size

3× 16. We can write X(2) as

X(2) =
[
B⊺

1 B⊺
2 B⊺

3 B⊺
4

]

where Bi corresponds to the ith chunk of 12 entries of vec(X) rearranged into a 4 × 3
matrix. Then we have

X(2)X
⊺
(2) =

4∑

i=1

B⊺
i Bi.

No rearrangement of data is required to form the Bi matrices.

2.4 Permuting a Tensor
Tensor permutations are the higher-order analogue of matrix transposition. In fact, they
are sometimes referred to as tensor transpositions; e.g., see Springer et al. (2017). If Z is
the transpose of an m× n matrix X, denoted as Z = X⊺, then we recall that

Z(j, i) = X(i, j) for all (i, j) ∈ [m]⊗ [n].

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

42 Chapter 2. Indexing and Reshaping Tensors

The size of Z is n ×m. There is only one nontrivial permutation on the two modes in a
matrix. This means that X⊺ is sufficient to indicate permutation of the two modes.

For an m× n× p tensor X, there are 3! = 6 permutations (one is the identity), so it needs
more substantial notation. We write

Z = P(X, π),

where π = (π1, π2, π3) is a permutation of (1, 2, 3). For example, every frontal slice of the
three way tensor X is transposed if

Z = P
(
X; (2, 1, 3)

)
⇔ Z(j, i, k) = X(i, j, k) for all (i, j, k) ∈ [m]⊗ [n]⊗ [p].

The resulting tensor Z is of size n×m× p.

Remark 2.22 (Avoiding tensor permutation) Tensor permutations are critical for under-
standing tensors but should be avoided in implementations due to the high costs of data
movement in memory.

Example 2.14 (Tensor Permutation) Consider the 3 × 3 × 2 tensor X in Example 1.2.
Then Z = P(X, (3, 2, 1)) is a tensor of size 2× 3× 3 with

1 4 1

4 3 9

5 6 4

8 2 1

6 9 5

3 9 1
Z = .

Its frontal slices are

Z1 =

[
3 9 1
6 9 5

]
, Z2 =

[
8 2 1
5 6 4

]
, Z3 =

[
4 3 9
1 4 1

]
.

Exercise 2.34 Let X be the 2 × 2 × 2 tensor in Example 1.1. (a) What is P(X, [2, 1, 3])?
(b) What is P(X, [3, 1, 2])?

For an n1 × n2 × · · · × nd tensor, there are d! permutations.

Definition 2.23 (Tensor Permutation) Let X ∈ n1 × n2 × · · · × nd and let π =
(π1, π2, . . . , πd) be a permutation of (1, . . . , d). Then we define

Z = P(X, π) if Z(iπ1
, iπ2

, . . . , iπd
) = X(i1, i2, . . . , id).

The permuted tensor Z is of size nπ1 × nπ2 × · · · × nπd
.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2.4. Permuting a Tensor 43

Exercise 2.35 Let X be the four-way tensor of size 3× 2× 3× 2 such that

X(:, :, :, 1) = 8 9

5 4

9 2

9 9

5 2

3 9

2 1

9 6

8 9

, X(:, :, :, 2) = 3 8

1 1

7 1

7 2

7 6

7 4

6 9

9 8

8 1

.

(a) What is P(X, [3, 2, 1, 4])?
(b) What is P(X, [4, 3, 1, 2])?

A permuted ordering can be specified as vecπ(X) ≡ vec(P(X, π)) for the permutation
π = (π1, π2, . . . , πd).

Exercise 2.36 For the X for Example 2.5, what is vec(2,1,3)(X)? What is vec(3,2,1)(X)?

2.4.1 Permutations and Unfoldings
If we want to form an explicit tensor unfolding, the general computational approach is a
permutation followed by a reshape. Per Remark 2.22, we generally want to avoid such
an explicit computation! Nevertheless, we consider these algorithms from a mathematical
point of view.

The mode-2 unfolding of a 3-way tensor. for instance, is accomplished via the following
pseudocode:

Mode-2 Unfolding of 3-way Tensor

Y = P
(
X, (2, 1, 3)

)

X(2) = reshape(Y, n×mp)

Exercise 2.37 For a 3-way tensor X, prove X(2) = Y(1) where Y = P(X, (2, 1, 3)).

Exercise 2.38 What is the pseudocode for the mode-3 unfolding?

In the d-way case, a general unfolding can be implemented as follows below. Recall that
R and C are the sets of indices mapped to the rows and columns, respectively, per Defini-
tion 2.19.

General Unfolding of d-way Tensor

function UNFOLD(X ∈ Rn1×n2×···×nd ,R, C)
M ←∏

k∈R nk, N ←∏
k∈C nk

Y← P
(
X, [R, C]

)

X(R×C) = reshape(Y,M ×N)
end function

Exercise 2.39 For a d-way tensor X, prove X(R×C) = reshape(Y,M × N) where Y =
P(X, [R, C]).

2.4.2 Tensor Perfect Shuffle Matrix
We can define a tensor perfect shuffle matrix that is analogous to the matrix perfect shuffle
matrix (Definition A.10). As there are d! possible permutations/transpositions for tensors,
the tensor perfect shuffles require more substantial notation.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

44 Chapter 2. Indexing and Reshaping Tensors

Definition 2.24 (Tensor Perfect Shuffle) The perfect shuffle for a mode permutation π is
the permutation matrix Pπ such that

Pπ vec(X) = vec
(
P(X, π)

)

for any tensor X of size n1×n2×· · ·×nd. The size of P is N ×N where N =
∏d

k=1 nk.
When π = (k, 1, . . . , k − 1, k + 1, . . . , d), corresponding to a mode-k unfolding, we use
the notation Pk such that

Pk vec(X) = vec
(
X(k)

)
.

The exact formula for Pπ is given in the following proposition in terms of the permutation
τ on [N], i.e., Pπ(j, :) is the τ(j)-th row of the identity matrix.

Proposition 2.25 (Tensor Perfect Shuffle Permutation) Let X be a tensor of size n1 ×
n2 × · · · × nd and x = vec(X). Let π = (π1, π2, . . . , πd) and Y = P(X, π). Define
τ : [N]→ [N] by

τ(α) ≡ 1 +

d∑

k=1

⌊(
(α− 1) mod nks̄k

)
/s̄k

⌋
sk with (2.16)

s1 = s̄π1 = 1 and sk+1 = sknk, s̄πk+1
= s̄πk

nπk
for k ∈ [d− 1]. (2.17)

Then if y = vec(Y), we have

y(α) = x
(
τ(α)

)
for all α ∈ [N].

Proof. Let y = vec(Y). Then

y(β) = X(i1, i2, . . . , id) where (i1, i2, . . . , id) = T(π)(β),

= x(α) where α = τ(β) = L
(
T(π)(β)

)
.

Exercise 2.40 Write a function tps that uses the tensor perfect shuffle permutation in
Eq. (2.16) to convert directly from x = vec(X) to y = vec(Y) where Y = P(X, π).

2.4.3 Linear Indexing and Permutations
There are connections between the different methods of tuple and linear indices, permuta-
tions, and the general index conversions, as we elucidate here and illustrate in Fig. 2.5.

For X ∈ Rn1×n2×···×nd , we can map between its tuple and linear indices using the basic
mappings

α = L(i1, i2, . . . , id;n1, n2, . . . , nd) and (i1, i2, . . . , id) = T(α;n1, n2, . . . , nd).

In the above, we precisely specify the ambient dimensions so that there is no confusion.

If Y = P(X, π), then Y is a permuted version of X. Thus, we have

Y ∈ Rm1×m2×···×md where mk = nπk
for all k ∈ [d],

and the elements are related as

Y(j1, j2, . . . , jd) = X(i1, i2, . . . , id) where jk = iπk
for all k ∈ [d].

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

2.4. Permuting a Tensor 45

Tuple indices on X:
(i1, . . . , id) ∈

[n1]⊗ · · · ⊗ [nd]

Linear indices on
vec(X): α ∈ [N]

Tuple indices on
Y = P(X, π):
(j1, . . . , jd) ∈

[m1]⊗ · · · ⊗ [md]

Linear indices on
vec(Y): β ∈ [N]

α
=

L
(i1

,...,id
)

(i
1
,.
..
,i

d
)
=

T(
α
)

(i1 , . . . , i
d)
=
T (π

)
(β)

β
=
L (π

)
(i1 , . . . , i

d)

α = τ(β) = L
(
T(π)(β)

)

jk = iπk ,mk = nπk

β
=

L
(j

1
,...,j

d
)

(j
1
,.
..
,j

d
)
=

T(
β
)

Figure 2.5: Key relationships for general tuple/linear index conversion and permuted ten-
sors. Here X is a d-way tensor, π is a permutation of { 1, 2, . . . , d }, Y is the permuted
version of X, and τ is the tensor perfect shuffle operator introduced in Proposition 2.25.

We can map between the tuple and linear indices of Y using

β = L(j1, j2, . . . , jd;m1,m2, . . . ,md) and (j1, j2, . . . , jd) = T(β;m1,m2, . . . ,md).

Now, a key idea is that we can map directly from a tuple index of X to a linear index of Y
using the general linear index, i.e.,

β = L(π)(i1, i2, . . . , id;n1, n2, . . . , nd).

Conversely, we can map from a linear index of Y to a tuple index of X via

(i1, i2, . . . , id) = T(π)(β;n1, n2, . . . , nd).

○
The general order linear index with π is equivalent
to the natural order linear index on X̂ = P

(
X;π

)
.

Finally, we can consider mapping directly to the linear indices of X from those of Y using
the tensor perfect shuffle, i.e.,

α = τ(β) = L
(
T(π)(β;n1, n2, . . . , nd);n1, n2, . . . , nd

)
.

This means we can compute y = vec(Y) directly from x = vec(X) without ever explicitly
computing the tuple indices, i.e.,

y(β) = x
(
τ(β)

)
for all β ∈ [N].

○
We can map directly between the vectorized representations of a tensor

X and a permutation Y = P(X, π) using the tensor perfect shuffle.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3 Tensor Operations

Before we proceed to tensor decompositions, we discuss key kernels for tensors including
tensor times matrix (TTM), used extensively in Tucker decompositions, and the matricized
tensor times Khatri-Rao product (MTTKRP), which is crucial for for CP decomposition.
We provide mathematical definitions and properties as well as considerations for efficient
implementations.

Most tensor operations are expressed in terms of unfoldings and matrix operations. Thus,
we make heavy use of the concepts discussed in Chapter 2. While we may express tensor
operations mathematically in terms of matrix operations, you will learn in this chapter
that efficient implementations are generally not direct instantiations of these mathematical
expressions. Indeed, it would be limiting to consider tensor operations as merely matrix
operations in the same way it would be limiting to consider matrix operations as merely
vector operations.

Efficient implementations minimize computations or floating pointing operations (flops)
as well as data movement operations such as tensor permutations. We assume through-
out this chapter that the tensors are stored in memory using the natural ordering. This is
important for the nuances of data layout and keeping the tensor data “in place” for compu-
tations. When possible, we want to cast our subroutines in terms of BLAS operations (see
Appendix A.9.2) such as matrix-matrix multiplication. Details of the memory layout are
crucial because BLAS requires that matrices be in row- or column-major order (contiguous
in memory).

In concert with discussion of implementations, we establish mathematical properties of the
various tensor operations. In subsequent chapters, we can use these tensor operations, their
properties, and their implementations in our discussions of tensor decompositions.

3.1 Inner Products
The tensor inner product is the higher-order analogue of the dot product.

3.1.1 Inner Products for 3-way Tensors
Analogously to vectors and matrices, the inner product of two three-way tensors is the
sum of the products of the corresponding entries. The tensors must be the same size, and
the result is a scalar.

47

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

48 Chapter 3. Tensor Operations

Definition 3.1: Inner Product (3-way)

The inner product of tensors X and Y, both of size m× n× p, is

⟨X,Y⟩ =
m∑

i=1

n∑

j=1

p∑

k=1

xijkyijk. (3.1)

The norm of a tensor is analogous to the matrix Frobenius or vector Euclidean norms, the
square root of the inner product with itself.

Definition 3.2: Tensor Norm (3-way)

The norm of tensor X of size m× n× p is

∥X∥ =
√〈

X,X
〉
=

√√√√
m∑

i=1

n∑

j=1

p∑

k=1

x2ijk. (3.2)

Exercise 3.1 Let X be a tensors of size m× n× p. Prove ∥X∥ = ∥ vec(X)∥2.

In the three-way case, the computational complexity of computing the inner product of two
tensors of sizem×n×p isO(mnp); likewise, the computational complexity of computing
the norm of a tensor of size m× n× p is O(mnp).

3.1.2 Inner Products for d-way Tensors
The definitions of inner product and norm for d-way tensors are straightforward extensions
of those for 3-way tensors. For the inner product, the tensors must be the same size, and
the result is a scalar.

Definition 3.3: Inner Product (d-way)

The inner product of tensors X and Y, both of size n1 × n2 × · · · × nd is

⟨X,Y⟩ =
n1∑

i1=1

n2∑

i2=1

· · ·
nd∑

id=1

xi1i2···id yi1i2···id . (3.3)

Definition 3.4: Tensor Norm (d-way)

The norm of tensor X of size n1 × n2 × · · · × nd is

∥X∥ =
√〈

X,X
〉
=

√√√√
n1∑

i1=1

n2∑

i2=1

· · ·
nd∑

id=1

x2i1i2···id . (3.4)

In the d-way case, the computational complexity of computing the inner product of two
tensors of size n1 × n2 × · · · × nd is O(N) where N =

∏d
k=1 nk; likewise, the computa-

tional complexity of computing the norm of a tensor of size n1 × n2 × · · · × nd is O(N).

Exercise 3.2 Let X and Y be two tensors of size n1×n2× · · ·×nd. Prove ⟨X,Y⟩ = x⊺y
where x = vec(X) and y = vec(Y).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.2. Outer Products 49

3.2 Outer Products
In this section, we consider the outer product. The outer product of two vectors is a matrix
(see Appendix A.3.4). In this section, we consider the outer products of three or more
vectors, which produce higher-order tensors. We conclude with a brief discussion of how
the notion of outer product applies to tensors of arbitrary order.

3.2.1 Outer Product of 3 Vectors
The outer product of three vectors produces a three-way tensor, as follows.

Definition 3.5: Outer Product of 3 Vectors
The outer product of vectors a ∈ Rm, b ∈ Rn, c ∈ Rp is denoted a,b,c and produces
an m× n× p tensor such that element (i, j, k) equals aibjck, i.e.,

=
Xm

n

p

a

b
c

m

n

p

The cost to compute the outer product of vectors of length m, n, and p is the product of the
sizes, i.e., O(mnp).

Definition 3.6 (Rank-one 3-way Tensor) A 3-way tensor X is rank 1 if it can be expressed
as a vector outer product, i.e., there exist vectors a,b, c such that X = a , b , c.

Example 3.1 (Outer Product of 3 Vectors) An example three-way outer product is as
follows. The darker numbers are the front slice and the lighter numbers are the back slice.

2

1

4

 ,

5

3

1

2

,

1
2

 =

40 24 8 16

10 6 2 4

20 12 4 8

20 12 4 8

5 3 1 2

10 6 2 4

Exercise 3.3 Let a ∈ Rm, b ∈ Rn, c ∈ Rp. Define X = a , b , c and y = vec(X).
Prove yℓ = aibjck where ℓ = L(i, j, k) for all (i, j, k) ∈ [m]⊗ [n]⊗ [p].

Exercise 3.4 Prove ∥a , b , c∥2 = ∥a∥22∥b∥22∥c∥22.

The outer product and reverse Kronecker product (Definition A.20) of vectors are identical
except for the shape of the output. The Kronecker product produces a vector with reverse
linearization (see Proposition 2.4 and Exercise 2.11), so this is why we need the reverse
Kronecker product.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

50 Chapter 3. Tensor Operations

○ The vector outer product and reverse vector Kronecker product are
identical except for the shape of the output.

The following proposition spells out this relationship.

Proposition 3.7: Vector Kronecker and Outer Product Connections (3-way)

Let a ∈ Rm, b ∈ Rn, c ∈ Rp. Then the following statements are equivalent.

X = a , b , c, (3.5a)
vec(X) = c⊗ b⊗ a, (3.5b)

X(1) = a(c⊗ b)⊺, (3.5c)
X(2) = b(c⊗ a)⊺, (3.5d)
X(3) = c(b⊗ a)⊺. (3.5e)

Proof. We prove equivalence of Eqs. (3.5a) and (3.5b) and leave the the remainder as an
exercise. Define u = vec(X) and v = c ⊗ b ⊗ a. Using the definition of vectorization
from Eq. (2.9) and Exercise 2.11, we have

uℓ = vℓ ⇔ xijk = aibjck where (i, j, k) = T(ℓ;m,n, p)

for any ℓ ∈ [mnp] or (i, j, k) ∈ [m]⊗ [n]⊗ [p].

Exercise 3.5 Prove Eqs. (3.5c) to (3.5e) are each equivalent to Eq. (3.5a) in Proposition 3.7.

Example 3.2 (Vectorizing and Unfolding an Outer Product) Let a = [26], b = [34], and
c = [15]. Then X = a , b , c is

X(:, :, 1) =

[
6 8
18 24

]
, X(:, :, 2) =

[
30 40
90 120

]
.

Observe the following equivalencies:

c⊗ b⊗ a =
[
6 18 8 24 30 90 40 120

]⊺
= vec(X),

a(c⊗ b)⊺ =

[
2
6

] [
3 4 15 20

]
=

[
6 8 30 40
18 24 90 120

]
= X(1),

b(c⊗ a)⊺ =

[
3
4

] [
2 6 10 30

]
=

[
6 18 30 90
8 24 40 120

]
= X(2),

c(b⊗ a)⊺ =

[
1
5

] [
6 18 8 24

]
=

[
6 18 8 24
30 90 40 120

]
= X(3).

Exercise 3.6 Let a ∈ Rm, b ∈ Rn, and c ∈ Rp. If X = c , b , a, what is the size of X?
What is vec(X) in terms of a,b, c?

3.2.2 Outer Product of d Vectors
We can extend the definition of outer product in a straightforward way to the d-way case.
The outer product of d vectors is a d-way tensor.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.2. Outer Products 51

Definition 3.8: Outer Product of d Vectors

The outer product of d vectors ak ∈ Rnk for all k ∈ [d] is a d-way tensor denoted
a1 , a2 , · · ·, ad of size n1×n2× · · · ×nd such that element (i1, i2, . . . , id) is given by∏d

k=1 ak(ik).

The cost to compute the outer product of d vectors is O(N) arithmetic operations where
N =

∏d
k=1 nk. We discuss implementation in Section 3.2.3.

Definition 3.9 (Rank-one d-way Tensor) A d-way tensor X is rank 1 if it can be written
as an outer product of d vectors. In other words, there exists vectors {ak }dk=1 such that
X = a1 , a2 , · · ·, ad.

Exercise 3.7 Let { ak }dk=1 be a set of d vectors such that ak ∈ Rnk . Further, define X =

a1,a2, · · ·,ad and y = vec(X). Prove yα =
∏d

k=1 ak(ik) where α = L(i1, i2, . . . , id).

As in the 3-way case (Proposition 3.7), the Kronecker product and outer product of d vec-
tors are intimately related. The following proposition is the d-way analogue of Proposi-
tion 3.7, with the addition of Eq. (3.6d) which relates general unfoldings of the vector outer
product to an outer product of Kronecker products.

Proposition 3.10: Vector Kronecker and Outer Product Connections (d-way)

Let ak ∈ Rnk for all k ∈ [d]. Then the following statements are equivalent.

X = a1 , a2 , · · ·, ad, (3.6a)
vec(X) = ad ⊗ ad−1 ⊗ · · · ⊗ a1, (3.6b)
X(k) = ak(ad ⊗ · · · ⊗ ak+1 ⊗ ak−1 ⊗ · · · ⊗ a1)

⊺, (3.6c)
X(R×C) = (arδ ⊗ · · · ⊗ ar1)(acd−δ

⊗ · · · ⊗ ac1)
⊺, (3.6d)

whereR = (r1, . . . , rδ) and C = (c1, . . . , cd−δ) is an ordered partitioning of [d].

Exercise 3.8 Prove Proposition 3.10.

○
The vectorization of a vector outer product is the same as the Kronecker product of
those vectors in reverse order, i.e., vec(a1 , a2 , · · · , ad) = ad ⊗ ad−1 ⊗ · · · ⊗ a1.

The following shorthand notation is common for Kronecker products of multiple vectors:

1⊗

k=d

ak ≡ ad ⊗ ad−1 ⊗ · · · ⊗ a1 or
1⊗

ℓ=d
ℓ ̸=k

aℓ ≡ ad ⊗ · · · ⊗ ak+1 ⊗ ak−1 ⊗ · · · ⊗ a1.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

52 Chapter 3. Tensor Operations

Example 3.3 (Unfolding Outer Product of 4 Vectors) Suppose that we have four vectors:

a =

[
4
2

]
, b =

[
3
1

]
, c =

[
5
3

]
, and d =

[
3
5

]
.

Then the frontal slices of X = a , b , c , d are

X(:, :, 1, 1) =

[
180 60
90 30

]
, X(:, :, 1, 2) =

[
300 100
150 50

]
,

X(:, :, 2, 1) =

[
108 36
54 18

]
, X(:, :, 2, 2) =

[
180 60
90 30

]
.

LetR = (3, 1) and C = (2, 4). Then

(a⊗ c)(d⊗ b)⊺ =

20
12
10
6

[
9 3 15 5

]
=

180 60 300 100
108 36 180 60
90 30 150 50
54 18 90 30

 = X(R×C).

3.2.3 General Outer Products
Outer products are not constrained to vectors, but the computation always reduces to com-
puting outer products of vectors or, equivalently, Kronecker products of vectors.

Example 3.4 (Matrix and Vector Outer Product) The outer product of a vector a ∈ Rm

and a matrix B ∈ Rn×p is a tensor of size m × n × p. If X = a , B, then xijk = aibjk
for all (i, j, k) ∈ [m]⊗ [n]⊗ [p].

X

=

B

a

This can be computed as a , B = reshape(a , vec(B),m× n× p).

We have already used this notion implicitly because the outer product is associative (i.e., the
grouping of operations does not matter), and we generally compute a 3-way outer product
by first computing a two-way outer product and then an outer product of that matrix result
and the remaining vector. This enables us to use efficient vector-vector operations and
reduces the computational complexity from 2mnp operations to mnp + min {mn, np }
compared to evaluating the definition directly.

Exercise 3.9 Using the definition of the outer product of two vectors (see Appendix A.3.4),
prove (a , b) , c = a , (b , c) = a , b , c.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.2. Outer Products 53

The tensor product between two three-way tensors X and Y of sizem×n×p and q×r×s,
respectively, reduces to

X , Y = reshape(vec(X) , vec(Y),m× n× p× q × r × s).

The result is a 6-way tensor.

Most generally, the tensor product between two arbitrary tensors X and Y of size m1 ×
m2 × · · · ×md1

and n1 × n2 × · · · × nd2
, respectively, reduces to an outer product of two

vectors followed by a reshape. In other words,

X , Y = reshape(vec(X) , vec(Y),m1 × · · · ×md1
× n1 × · · · × nd2

).

The result is a (d1 + d2)-way tensor.

3.2.4 Tensor-Tensor Outer Products
We can now generalize from outer products of vectors to arbitrary tensors. As in the vector
case, the outer product of two tensors computes all pairwise products between elements of
the two objects.

Definition 3.11 (Tensor Outer Product) The tensor outer product of two tensors

X ∈ Rm1×m2×···×md and Y ∈ Rn1×n2×···×nd′

is the tensor
Z = X , Y ∈ Rm1×m2×···×md×n1×n2×···×nd′ .

of order (d+ d′), whose elements are given by

Z(i1, . . . , id, j1, . . . , jd′) = X(i1, . . . , id)Y(j1, . . . , jd′)

for all (i1, . . . , id, j1, . . . , jd′) ∈ [m1]⊗ · · · ⊗ [md]⊗ [n1]⊗ · · · ⊗ [nd′].

The cost of the tensor-tensor outer product in Definition 3.11 isMN whereM =
∏d

k=1mk

and N =
∏d

k=1 nk.

Thanks to the relationship between tensor and vector outer products, we can compute the
tensor outer product using vector outer products or, equivalently, Kronecker products per
the following theorem.

Proposition 3.12 (Tensor Outer Product Unfoldings) For tensors X, Y, the following
statements are equivalent:

Z = X , Y, (3.7)
vec(Z) = vec(X) , vec(Y), and (3.8)
vec(Z) = vec(Y)⊗ vec(X). (3.9)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

54 Chapter 3. Tensor Operations

Example 3.5 (Tensor Outer Product as Kronecker Product) Let X ∈ Rm×n×p and
Y ∈ Rq×r×s. Their outer product Z = X,Y is of sizem×n×p×q×r×s. Its elements
be computed as

z = vec(Y)⊗ vec(X),

and then rearranged into tensor, i.e.,

Z = reshape(z,m× n× p× q × r × s).

The tensor outer product is an associative operation:

Proposition 3.13 (Outer Product Associativity) Given any tensors X, Y, Z, we have
(X , Y) , Z = X , (Y , Z).

Given the tensor outer product and Proposition 3.13, we see that we can compute the vector
outer product of d vectors (Definition 3.8) as a sequence of (d − 1) binary tensor outer
products in any order. This reduces the leading order arithmetic cost from (d − 1)N to N
operations.

Exercise 3.10 Prove Proposition 3.13.

Exercise 3.11 For matrices A ∈ Rm×n and B ∈ Rp×q , what is the connection between
A , B, B⊗A, and A⊗B?

3.3 Tensor-Times-Matrix (TTM) Products
The tensor-times-matrix (TTM) product is a mode-wise multiplication denoted as

X×k U

where X is a tensor, k is the mode for the TTM, and U is the matrix. It is a key operation for
Tucker decomposition algorithms. We define it formally in terms of the mode-k unfolding.

Definition 3.14: Tensor-times-matrix (TTM) Product

The mode-k tensor-times-matrix (TTM) product of a tensor X with a matrix U is de-
noted as Y = X×k U and defined in terms of the matricized expression:

Y(k) = UX(k).

As the columns of a mode-k unfolding are the fibers of mode k, we can also interpret
Definition 3.14 in terms of the matrix acting on the fibers.

○ The TTM X ×k U multiplies each mode-k fiber of X by U.

If two successive TTMs are in the same mode, then we can combine the multiplicands as
follows. The order of the TTMs matters.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.3. Tensor-Times-Matrix (TTM) Products 55

U ∈ Rq×m

X ∈ Rm×n×p

=

Y ∈ Rq×n×p

(a) Tensor form: first row of U and first mode-1 fiber of X emphasized with arrows

Y(1) ∈ Rq×np

=

U ∈ Rq×m X(1) ∈ Rm×np

(b) Matrix form

Figure 3.1: Mode-1 TTM (along column fibers)

Proposition 3.15 (TTM Grouping) Let X be a tensor such that mode k is of size n. Then
for any U ∈ Rr×n and V ∈ Rq×r, we have

X×k U×k V = X×k (VU).

Proof. Let Y = X×k U. By Definition 3.14, Y(k) = UX(k). Let Z = X×k U×k V =
Y×k V. Then

Z(k) = VY(k) = V(UX(k)) = (VU)X(k).

Hence, Z = X×k (VU).

Exercise 3.12 (TTM and Permutation) Prove

Y = X×k U if and only if P(Y, π) = P(X, π)×πk
U.

3.3.1 TTM for 3-way Tensors
We give specialized definitions for the three-way case, in an attempt to give some intuition
for the concept, as well as efficient algorithms for computing a TTM in each mode.

Mode-1 TTM for 3-way Tensor

Definition 3.16 (TTM in Mode 1) The TTM operation in mode 1 of X ∈ Rm×n×p with a
matrix U ∈ Rq×m is denoted as

Y = X×1 U
and produces a q × n × p tensor where the column (mode-1) fibers of Y are equal to the
corresponding column fibers of X multiplied by U. Specifically, Y(1) = UX(1), or

yαjk =

m∑

i=1

xijkuαi for all (α, j, k) ∈ [q]⊗ [n]⊗ [p].

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

56 Chapter 3. Tensor Operations

We can write the mode-1 TTM in terms of the column fibers as

y:jk = Ux:jk for all (j, k) ∈ [n]⊗ [p].

We visualize this in Fig. 3.1a where, for mode-1 multiplication, it is common to put the
matrix to the left of the tensor so that the rows of U are perpendicular to the column fibers
of X. We draw arrows to show the first row of U and the first column fiber of X. This
example has q < m, so each column fiber gets shorter in the result. For the matrix form
Y(1) = UX(1), see Fig. 3.1b.

We recall that X and X(1) are stored identically in memory (see Exercise 2.26), which
implies that X(1) is in column-major layout. Hence, the mode-1 TTM computation can be
computed in an efficient and straightforward way using a single matrix-matrix multiplica-
tion that follows the definition:

Mode-1 TTM for 3-way Tensor (Efficient)
1: X← reshape(X,m× np) ▷X = X(1)

2: Y ← UX ▷ Matrix-matrix multiply
3: Y← reshape(Y, q × n× p) ▷Y = Y(1)

The computational cost of the TTM in mode 1 is O(mnpq).

Mode-2 TTM for 3-way Tensor

Definition 3.17 (TTM in Mode 2) The TTM operation in mode 2 of X ∈ Rm×n×p with a
matrix V ∈ Rr×n is denoted as

Y = X×2 V
and produces an m × r × p tensor where the row (mode-2) fibers of Y are equal to the
corresponding row fibers of X multiplied by V. Specifically, Y(2) = VX(2), or

yiβk =

n∑

j=1

xijkvβj for all (i, β, k) ∈ [m]⊗ [r]⊗ [p].

Equivalently, we can write this in terms of the row fibers as

yi:k = Vxi:k for all (i, k) ∈ [m]⊗ [p].

The mode-2 TTM transforms the row fibers, and we picture mode-2 TTM with the matrix
on the right of the tensor and shown in a transposed orientation as in Fig. 3.2. This orien-
tation of V makes its rows perpendicular to the row fibers of X. Here we have shown an
example with r > n, so the second mode in the result tensor is enlarged in the result.

Efficient computation of mode-2 TTM is more complicated than mode-1 TTM because in
order to perform a single high-performance matrix-matrix multiplication, the elements of
X would have to be rearranged for the unfolding and likewise the result would have to be
rearranged after reshaping. That is, we could compute Y = X×2 V as follows:

Mode-2 TTM for 3-way Tensor (Naive)

1: X̄← P
(
X, (2, 1, 3)

)
▷ Swap modes 1 & 2 to get n×m× p tensor

2: X← reshape(X̄, n×mp) ▷X = X̄(1) = X(2)

3: Y ← VX ▷ Matrix-matrix multiply
4: Ȳ← reshape(Y, r ×m× p) ▷Y = Ȳ(1) = Y(2)

5: Y← P
(
Ȳ, (2, 1, 3)

)
▷ Swap modes 1 & 2 back to get m× r × p tensor

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.3. Tensor-Times-Matrix (TTM) Products 57

Y ∈ Rm×r×p

=
V⊺ ∈ Rn×r

X ∈ Rm×n×p

(a) Tensor form: first row of V and first mode-2 fiber of X emphasized with arrows

=

reshape(Y,m× rp)

reshape(X,m× np) V⊺ ∈ Rn×r

Y1 = X1V
⊺

m× r
Y2 = X2V

⊺

m× r
Y3 = X3V

⊺

m× r
Y4 = X4V

⊺

m× r

X1

m× n
X2

m× n
X3

m× n
X4

m× n

p copies

p copies

(b) Special unfolding emphasizing block structure. Each block in matrix version of X is multiplied
by V⊺ to produce corresponding block in matrix version of Y.

Figure 3.2: Mode-2 TTM (along row fibers)

However, the above is a naive implementation because the permutations move elements
around in memory, which is much slower than performing flops. Even though there are
fewer moves in the permutation than flops in the matrix multiplication, the permutations
often become efficiency bottlenecks.

Instead, we can compute TTM without performing any explicit permutations of the input
or output tensors by considering the mode-2 unfolding memory layout. Recall from Sec-
tion 2.3.3 that the internal ordering of the mode-2 unfolding has structure: if X is stored
according to the natural ordering, then X(2) has p contiguous blocks, i.e.,

X(2) =
[
B⊺

1 B⊺
2 · · · B⊺

p

]
where Bk = X(:, :, k) for k ∈ [p].

Here, each Bk corresponds to the m × n frontal slice X(:, :, k) (see Exercise 3.14) and is
stored contiguously in memory in column-major order. The result tensor Y has an analo-
gous structure, i.e.,

Y(2) =
[
C⊺

1 C⊺
2 · · · C⊺

p

]
,

where each Ck corresponds to the contiguous-in-memory, column-major m × r frontal
slice Y(:, :, k). See Fig. 3.2b. Hence, computing Y = VX(2) is equivalent to computing
C⊺

k = VB⊺
k for each k ∈ [p]. By transposing both sides of the equation, we can compute

Ck = BkV
⊺ for each k ∈ [p] using a batch of matrix-matrix multiplications. Thus, the

mode-2 TTM can be performed without explicit permutation as follows:

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

58 Chapter 3. Tensor Operations

Mode-2 TTM for 3-way Tensor (Efficient)
1: for k = 1 to p do
2: Y(:, :, k)← X(:, :, k)V⊺ ▷ Matrix-matrix multiply
3: end for

This can be cast a batched BLAS operation, e.g., using the pagemtimes function in
MATLAB.

Exercise 3.13 What is the arithmetic cost of X×2 V with X ∈ Rm×n×p and V ∈ r × n?

Exercise 3.14 Let X ∈ Rm×n×p. Using the definition of the mode-2 unfolding (Defini-
tion 2.16) and linear indexing, prove that

X(2) =
[
B⊺

1 B⊺
2 · · · B⊺

p

]
,

where each Bk corresponds to the m× n frontal slice X(:, :, k).

Mode-3 TTM for 3-way Tensor

Definition 3.18 (TTM in Mode 3) The TTM operation in mode 3 with a matrix W ∈ Rs×p

is denoted as
Y = X×3 W

and produces a m × n × s tensor where the tube (mode-3) fibers of Y are equal to the
corresponding tube fibers of X multiplied by W. Specifically, Y(3) = WX(3), or

yijγ =

p∑

k=1

xijkwγk for all (i, j, γ) ∈ [m]⊗ [n]⊗ [s].

Equivalently, we can write this in terms of the tube fibers as

yij: = Wxij: for all (i, j) ∈ [m]⊗ [n].

The mode-3 TTM transforms the tube fibers, and we usually picture mode-3 TTM with the
matrix above the tensor as shown in Fig. 3.3a. The matrix is oriented so that its first row is
at the bottom (since the numbering in mode-3 goes into the page) and perpendicular to the
tube fibers.

Recall from Proposition 2.21 that for 3-way tensors, the mode-3 unfolding is stored row-
wise in memory when the tensor is in natural ordering. We can instead use

Y⊺
(3) = X⊺

(3)W
⊺,

to perform the multiplication as shown in Fig. 3.3b, aligning the tube fibers to be the rows
of the unfolded column-major matrices. This allows for a single matrix multiplication as
follows:

Mode-3 TTM for 3-way Tensor (Efficient)
1: X← reshape(X,mn× p) ▷X = X⊺

(3)

2: Y ← XW⊺ ▷ Matrix-matrix multiply
3: Y← reshape(Y,m× n× q) ▷Y = Y⊺

(3)

Exercise 3.15 What is the computational cost of X ×3 W with X ∈ Rm×n×p and W ∈
Rq×p?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.3. Tensor-Times-Matrix (TTM) Products 59

Y ∈ Rm×n×q

=

W ∈ Rq×p

X ∈ Rm×n×p

(a) Tensor form: first row of W and first mode-3 fiber of X emphasized with arrows

Y⊺
(3) ∈ Rmn×q

=

X⊺
(3) ∈ Rmn×p W⊺ ∈ Rp×q

(b) Matrix form

Figure 3.3: Mode-3 TTM (along tube fibers)

3.3.2 TTM for d-way Tensors
From Definition 3.14, for a general d-way tensor X of size n1×n2×· · ·×nd, the mode-k
TTM with a matrix U ∈ Rm×nk is denoted as

Y = X×k U

and satisfies
Y(k) = UX(k),

where Y is a tensor of size n1×· · ·×nk−1×m×nk+1×· · ·×nd. Expressed elementwise,
we have

Y(i1, . . . , ik−1, j, ik+1, . . . , id) =

nk∑

ik=1

X(i1, i2, . . . , id)U(j, ik) for all j ∈ [m].

The cost of a TTM for inputs with these dimensions is O(Nm) where N =
∏d

k=1 nk.

Mathematically, we can express a TTM computation as a single matrix multiplication:
Y(k) = UX(k). However, in order to compute TTM using an efficient matrix multiplica-
tion subroutine, both input matrices must be stored in either row- or column-major order.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

60 Chapter 3. Tensor Operations

As shown in Section 2.3.3, for a d-way tensor X stored in natural order in memory, X(k) is
not in row- or column-major order unless k = 1 or k = d.

As in the three-way case, one approach is to explicitly permute the entries of the input
tensor unfolding, call the matrix multiplication subroutine, and perform the inverse permu-
tation on the output to obtain the result tensor. The pseudocode for computing the TTM
Y = X×k U with X ∈ Rn1×n2×···×nd and U ∈ Rrk×nk using explicit permutations is as
follows:

Mode-k TTM for d-way Tensor (Naive)

1: X̄← P
(
X, (k, 1, . . . , k − 1, k + 1, . . . , d)

)
▷ Permute mode k to front

2: X← reshape(X̄, nk ×Nk) with Nk =
∏d

ℓ=1
ℓ ̸=k

nℓ ▷X = X̄(1) = X(k)

3: Y ← UX ▷ Matrix-matrix multiply
4: Ȳ← reshape(Y, rk × n1 × · · · × nk−1 × nk+1 × · · · × nd) ▷Y = Ȳ(1) = Y(k)

5: Y← P
(
Ȳ, (2, . . . , k, 1, k + 1, . . . , d)

)
▷ Permute mode k back to original order

As in the three-way case, this is not efficient because of the cost of rearranging the tensor
entries. We can use the same approach as we did in the three-way case. In fact, we can
consider the d-way tensor as a three-way tensor for the purpose of the mode-k multiplica-
tion. If we define Mk =

∏k−1
j=1 nj and Pk =

∏d
j=k+1 nj as in Section 2.3.3, we observe

that the internal ordering of the d-way unfolding X(k) is the same as the internal ordering
of the mode-2 unfolding of a 3-way tensor X̄ ∈ RMk×nk×Pk . Thus, we can reshape the d-
way tensor into a 3-way tensor (no actual memory movement is performed), and the d-way
pseudocode resembles the 3-way case using batched matrix multiplication:

Mode-k TTM for d-way Tensor (Efficient, except for k = 1)

1: X̄← reshape(X,Mk × nk × Pk) with Mk =
∏k−1

j=1 nj and Pk =
∏d

j=k+1 nj
2: for ℓ = 1 to Pk do
3: Ȳ(:, :, ℓ)← X̄(:, :, ℓ)U⊺ ▷ Batched matrix-matrix multiplies
4: end for
5: Y← reshape(Ȳ, n1 × · · · × nk−1 × r × nk+1 × · · · × nd)

While this algorithm works for all modes, it is inefficient for k = 1. In that case, Mk =
M1 = 1, so the ℓth slice of X̄ is a single row vector, which implies that the TTM is com-
puted via P1 matrix-vector multiplications, which is generally less efficient than matrix-
matrix operations. Because X(1) is already in column major order, we handle the 1st mode
separately, computing Y(1) = UX(1) directly with a single matrix-matrix multiplication.
In the case k = d, we have Pk = Pd = 1. There is only one loop iteration, which is
efficient because it is again a single matrix-matrix multiplication operation. Algorithm 3.1
presents this approach with special handling of mode 1.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.4. TTM in Multiple Modes (Multi-TTM) 61

Algorithm 3.1 Mode-k TTM for d-way Tensor

Require: tensor X ∈ Rn1×n2×···×nd , matrix U ∈ Rr×nk , mode k ∈ [d]
Ensure: Y = X×k U ∈ Rn1×···×nk−1×r×nk+1×···×nd

1: function TTM(X,U, k)
2: if k = 1 then
3: Y ← UX(1)

4: Y← reshape(Y, r × n2 × · · · × nd)
5: else
6: Mk ←

∏k−1
j=1 nj

7: Pk ←
∏d

j=k+1 nj
8: X̄← reshape(X,Mk × nk × Pk)
9: for ℓ = 1 to Pk do

10: Ȳ(:, :, ℓ)← X̄(:, :, ℓ)U⊺ ▷ Batched matrix-matrix multiplications
11: end for
12: Y← reshape(Ȳ, n1 × · · · × nk−1 × r × nk+1 × · · · × nd)
13: end if
14: return Y

15: end function

Exercise 3.16 Write two tensor-times-matrix functions ttm_permute and ttm for any
mode of a d-way tensor. The ttm_permute function should perform an explicit permu-
tation of the input tensor in order to perform the TTM with a single matrix multiplication
(followed by an explicit permutation of the result). The ttm function should avoid ex-
plicit permutations and perform a sequence of matrix multiplications based on the internal
structure of the input and output tensors as in Algorithm 3.1.

(a) Compare timing results for TTMs in each mode of a tensor with dimension 500 ×
500× 500 and a matrix of dimension 50× 500.

(b) Perform the same comparisons for a tensor with dimension 100× 100× 100× 100
and matrix of dimension 10× 100.

(c) Analyze your results and explain the performance you observe.

3.4 TTM in Multiple Modes (Multi-TTM)
We often want to compute TTMs in multiple or all modes. For efficiency, we exploit the
fact that the order of the multiplications does not matter, as captured in Proposition 3.19.

Proposition 3.19 (TTM Order) Let X be a tensor such that mode k is of size m and mode ℓ
is of size n. Then for any U ∈ Rq×m and V ∈ Rr×n with k ̸= ℓ, we have

(
X×k U

)
×ℓ V =

(
X×ℓ V

)
×k U.

Exercise 3.17 Prove Proposition 3.19. As a hint, you can argue via Exercise 3.12 on
permutations of the modes and TTMs, that it suffices to show Y×1U×2V = Y×2V×1U,
where Y ∈ Rm×n×p with p being the product of the remaining indices.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

62 Chapter 3. Tensor Operations

3.4.1 Multi-TTM for 3-way Tensors
For 3-way tensors, we consider TTMs in 2 or 3 modes. For example, for X ∈ Rm×n×p,
the expression

Y = X×1 U×2 V ×3 W (3.10)

multiplies X by U ∈ Rq×m in mode 1, by V ∈ Rr×n in mode 2, and by W ∈ Rs×p in
mode 3. The size of Y is q × r × s. Applying the elementwise expressions from Defini-
tions 3.16 to 3.18, we see that

yαβγ =

m∑

i=1

n∑

j=1

p∑

k=1

xijkuαivβjwγk for all (α, β, γ) ∈ [q]⊗ [r]⊗ [s]. (3.11)

The vectorization and unfoldings can be expressed using Kronecker products, as follows.

Proposition 3.20 (Multi-TTM Vectorization and Mode-k Unfolding, 3-way) Let X ∈
Rm×n×p, U ∈ Rq×m, V ∈ Rr×n, and W ∈ Rs×p so that Y ∈ Rq×r×s. The follow-
ing are equivalent:

Y = X×1 U×2 V ×3 W, (3.12)
vec(Y) = (W ⊗V ⊗U) vec(X), (3.13)
Y(1) = UX(1)(W ⊗V)⊺, (3.14)
Y(2) = VX(2)(W ⊗U)⊺, (3.15)
Y(3) = WX(3)(V ⊗U)⊺. (3.16)

Proof. We prove equivalence of Eqs. (3.13) and (3.15) and leave the the remainder as an
exercise. Define M = W ⊗U. From the definition of matrix multiplication, Eq. (3.15) is
equivalent to

Y(2)(β, ℓ̂) =

n∑

j=1

mp∑

ℓ=1

V(β, j)X(2)(j, ℓ)M(ℓ̂, ℓ) for all (β, ℓ̂) ∈ [r]⊗ [qs]. (3.17)

Let (i, k) = T(ℓ;m, p) and (α, γ) = T(ℓ̂; q, s). Then from Definition 2.16,

X(2)(j, ℓ) = X(i, j, k) and Y(2)(β, ℓ̂) = Y(α, β, γ).

From the definition of Kronecker product (see Definition A.17 and Proposition 2.11), we
also have that M(ℓ̂, ℓ) = U(α, i)W(γ, k). Thus, Eq. (3.17) is equivalent to

Y(α, β, γ) =

m∑

i=1

n∑

j=1

p∑

k=1

X(i, j, k)U(α, i)V(β, j)W(γ, k),

matching Eq. (3.11) and therefore equivalent to Eq. (3.13).

These properties apply to TTMs in 2 modes as well. For example, if we have Y = X ×1
U ×3 W, then this can be written equivalently as Y = X ×1 U ×2 In ×3 W. Applying

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.4. TTM in Multiple Modes (Multi-TTM) 63

Proposition 3.20 to this expression, we find that Y = X×1 U×3 W is equivalent to

vec(Y) = (W ⊗ In ⊗U) vec(X),

Y(1) = UX(1)(W ⊗ In)
⊺,

Y(2) = X(2)(W ⊗U)⊺,

Y(3) = WX(3)(In ⊗U)⊺.

Equivalent expressions for multi-TTMs with other subsets of modes can be derived simi-
larly.

Exercise 3.18 Complete the proof of Proposition 3.20 using the definitions, Proposi-
tion 2.6, and the properties of linearization and unfolding.

Exercise 3.19 Express the matrix SVD X = UΣV⊺ using TTM notation.

As the following exercises explore, the cheapest method for computing multi-TTM is to
perform a sequence of TTMs. The ordering of these operations can impact the cost, as
explored further in Section 3.4.3.

Exercise 3.20 Suppose X ∈ Rn×n×n and U,V,W ∈ Rn×r. (a) What is the cost
to compute vec(Y) = (W ⊗ (V ⊗ U)) vec(X)? (b) What is the cost to compute
Y(1) = (UX(1))(W⊗V)⊺? (c) What is the cost to compute Y(1) = U

(
X(1)(W⊗V)⊺

)
?

(d) What is the cost to compute Y =
(
(X×1U)×2V

)
×3W? (e) Which is the best approach

if r < n? (f) Which is the best approach if r > n?

Exercise 3.21 Suppose X ∈ Rm×n×p, U ∈ Rq×m, V ∈ Rr×n, W ∈ Rs×p. We can
compute Y = X×1 U×2 V×3 W using any of six possible orders on the TTMs. (a) What
are the different costs? (b) If s < r < q < p < n < m, which is optimal?

3.4.2 TTM with Multiple Matrices (Multi-TTM) for d-way Tensors
As in the 3-way case, it is often useful to compute the TTM in all modes, i.e., for a tensor
X ∈ Rn1×n2×···×nd and matrices Uk ∈ Rmk×nk for all k ∈ [d], we compute

Y = X×1 U1 ×2 U2 · · · ×d Ud. (3.18)

Remark 3.21 (Covariant and contravariant notation) The multi-TTM operation is
sometimes denoted using covariant or contravariant multiplication as, respectively,

Y = (U1,U2, . . . ,Ud)X or Y = X (U⊺
1 ,U

⊺
2 , . . . ,U

⊺
d),

The analogue of Proposition 3.20 on vectorization and unfolding is the following proposi-
tion for d-way tensors.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

64 Chapter 3. Tensor Operations

Proposition 3.22 (Multi-TTM Vectorization and Mode-k Unfolding) The following are
equivalent for X ∈ Rn1×n2×···×nd :

Y = X×1 U1 ×2 U2 · · · ×d Ud, (3.19)
vec(Y) = (Ud ⊗Ud−1 ⊗ · · · ⊗U1) vec(X), (3.20)
Y(k) = UkX(k)(Ud ⊗ · · · ⊗Uk+1 ⊗Uk−1 ⊗ · · · ⊗U1)

⊺, (3.21)

where Eq. (3.21) holds for each k ∈ [d].

We have a more general result for arbitrary unfoldings as well.

Proposition 3.23 (Multi-TTM Unfolding) Let X ∈ Rn1×n2×···×nd , Uk ∈ Rmk×nk for all
k ∈ [d], and let the modes { 1, . . . , d } be partitioned into two ordered sets:

R = (r1, r2, . . . , rδ) and C = (c1, c2, . . . , cd−δ).

Then
Y = X×1 U1 ×2 U2 · · · ×d Ud ∈ Rm1×m2×···×md

if and only if

Y(R×C) =
(
Urδ ⊗Urδ−1

⊗ · · · ⊗Ur1

)
X(R×C)

(
Ucd−δ

⊗Ucd−δ−1
⊗ · · · ⊗Uc1

)⊺
.

Exercise 3.22 Prove Proposition 3.23.

In some cases, a multi-TTM may only involve a subset of the tensor modes. Proposi-
tions 3.22 and 3.23 apply in these cases by inserting identity matrices of appropriate dimen-
sions to any modes that are not involved. In particular, if we wish to perform multi-TTM
in all modes except mode k, then Proposition 3.22 implies the following are equivalent:

Y = X×1 U1 · · · ×k−1 Uk−1 ×k+1 Uk+1 · · · ×d Ud,

vec(Y) = (Ud ⊗ · · · ⊗Uk+1 ⊗ Ink
⊗Uk−1 ⊗ · · · ⊗U1) vec(X),

Y(k) = X(k)(Ud ⊗ · · · ⊗Uk+1 ⊗Uk−1 ⊗ · · · ⊗U1)
⊺.

3.4.3 Efficient Multi-TTM Computation
Although we can compute a multi-TTM via an unfolding of the matrix and Kronecker
products of the matrices to be multiplied, it is more efficient to perform a sequence of
TTMs in individual modes; see Exercise 3.20.

The question is around the best order of the modes for the sequence of TTMs. First, we
consider the case of two TTMs in the next proposition.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.4. TTM in Multiple Modes (Multi-TTM) 65

Proposition 3.24 (TTM Mode Ordering) Let X ∈ Rn1×n2×···×nd , Uk ∈ Rmk×nk and
Uℓ ∈ Rmℓ×nℓ for i, j ∈ [d], and consider X×k Uk ×ℓ Uℓ. If

1

nk
− 1

mk
<

1

nℓ
− 1

mℓ

then computing (i) (X ×k Uk) ×ℓ Uℓ requires fewer computational operations than com-
puting (ii) (X×ℓ Uℓ)×k Uk.

Proof. Let N =
∏d

j=1 nj . The cost to compute (i) is Nmk + Nmkmℓ

nk
. Conversely, the

cost to compute (ii) is Nmℓ +
Nmkmℓ

nℓ
. We have

1

nk
− 1

mk
<

1

nj
− 1

mj

1

mj
+

1

nk
<

1

mk
+

1

nj

Nmk +
Nmkmj

nk
< Nmj +

Nmkmj

nj
,

where the last step multiplies by Nmkmj . Hence, the claim.

This idea extends to a sequence of TTMs, where the cost depends on the order in which
they are computed. Suppose we want to compute a multi-TTM with p ≤ d matrices. A
naive approach is to consider all p! possible orderings, consider the computation cost, and
then pick the best. Instead, we can order the modes according the following proposition.

Proposition 3.25 (Multi-TTM Ordering, Fackler, 2019) Given a tensor X ∈ Rn1×n2×···×nd

and matrices Uk ∈ Rmk×nk for a set of p ≤ d distinct modes, the multi-TTM ordering that
minimizes computation cost is

((X×π1
Uπ1

)×π2
Uπ2

) · · · ×πp
Uπp

.

where
βπ1
≤ βπ2

≤ · · · ≤ βπp
with βk =

1

nk
− 1

mk
. (3.22)

Proof. Suppose the optimal order π is not in increasing order according to β. Then there
exist two consecutive TTMs in modes πi and πi+1 for some i ∈ [δ] such that the mode-πi
TTM is performed right before the mode-πi+1 TTM but βπi > βπi+1 . We will argue that
swapping these two TTMs will decrease the computational cost of the multi-TTM to arrive
at a contradiction. That is, we consider an alternative order π′ that is equal to π except that
π′
i = πi+1 and π′

i+1 = πi.

Because π and π′ perform the same first i − 1 TTMs, we ignore those matching costs.
Likewise, the intermediate tensor that remains after the first i+1 TTMs is the same in both
orderings, and they perform the same last p− (i+ 1) TTMs, so we ignore those matching
costs. Let

Y = ((X×π1 Uπ1)×π2 Uπ2) · · · ×πi−1 Uπi−1 .

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

66 Chapter 3. Tensor Operations

By Proposition 3.24, because βπi > βπi+1 , (Y ×πi+1 Uπi+1) ×πi Uπi is cheaper than
(Y×πi

Uπi
)×πi+1

Uπi+1
. Therefore π′ is a cheaper order than π, a contradiction.

Efficient implementation of multi-TTM can be done via mode ordering according to Propo-
sition 3.25 and then using the TTM algorithms for individual modes.

3.5 Matricized Tensor Times Khatri-Rao Product
The matricized-tensor times Khatri-Rao product (MTTKRP) is the key computational
kernel of most algorithms for computing the CP decomposition. Its name is a mouthful but
comes directly from its structure as we describe below.

3.5.1 MTTKRP for 3-way Tensors
Suppose X ∈ Rm×n×p. Let B ∈ Rn×r and C ∈ Rp×r, which have row dimensions that
each match a tensor dimension and column dimensions that match each other. Given these
inputs, the MTTKRP is given by

U = X(1)(C⊙B) ∈ Rm×r,

which is a matricized tensor times a Khatri-Rao product, i.e., an MTTKRP.

If the Khatri-Rao product is formed explicitly, then the MTTKRP is matrix-matrix multipli-
cation which is typically a short-and-wide matrix times a tall-and-skinny matrix as shown
in Fig. 3.4. We will see later that we do not always want to form the Khatri-Rao product
explicitly.

U = X(1)

C⊙B

m m

r rnp

np

Figure 3.4: MTTKRP V = X(1)(C⊙B)

We can define the MTTKRP for each mode as follows.

Definition 3.26 (TTM in Mode-3) Let X ∈ Rm×n×p, A ∈ Rm×r, B ∈ Rn×r and C ∈
Rp×r. The three-way MTTKRPs are defined as follows:

Mode-1 MTTKRP: U = X(1)(C⊙B) ∈ Rm×r,

Mode-2 MTTKRP: V = X(2)(C⊙A) ∈ Rn×r,

Mode-3 MTTKRP: W = X(3)(B⊙A) ∈ Rp×r.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.5. Matricized Tensor Times Khatri-Rao Product (MTTKRP) 67

Elementwise, we have

uiℓ =

n∑

j=1

p∑

k=1

xijkbjℓckℓ for all (i, ℓ) ∈ [m]⊗ [r], (3.23)

vjℓ =

m∑

i=1

p∑

k=1

xijkaiℓckℓ for all (j, ℓ) ∈ [n]⊗ [r], (3.24)

wkℓ =

m∑

i=1

n∑

j=1

xijkaiℓbjℓ for all (k, ℓ) ∈ [p]⊗ [r]. (3.25)

Implementing an MTTKRP by matricizing the tensor, forming the Khatri-Rao product ex-
plicitly, and then performing matrix-matrix multiplication benefits from high performance
of the final operation, which dominates the operation count. However, to use the matrix-
matrix multiplication, the matricized tensor must be in row- or column-major order. For
k ∈ { 2, . . . , d− 1 }, this means that matricizing the tensor requires explicitly permuting
the entries of the tensor, which can be very slow because it runs at the speed of memory ac-
cess. We focus on avoiding this computation while still casting the bulk of the computation
of MTTKRP as matrix-matrix multiplication.

The cost to compute a 3-way MTTKRP is O(mnpr), regardless of mode.

Mode-1 MTTKRP for 3-way Tensor

Consider the computation of the mode-1 MTTKRP: U = X(1)(C⊙B). In the first mode,
we compute C⊙B explicitly, and then, because vec(X(1)) = vec(X), we can multiply by
X(1) without any memory movement in X, performing

U = X(1)(C⊙B)

with a single matrix-matrix multiply:

Mode-1 MTTKRP for 3-way Tensor (Efficient)
K← C⊙B ▷ Khatri-Rao product
X← reshape(X,m× np) ▷X = X(1)

U← XK ▷ Matrix-matrix multiply

The cost to compute the mode-1 MTTKRP this way is npr + 2mnpr = O(mnpr).

Mode-2 MTTKRP for 3-way Tensor

Consider the computation of the mode-2 MTTKRP: V = X(2)(C⊙A). Unlike in mode 1,
the matricized tensor in mode 2 is not stored column major in memory. Thus, performing a
single matrix multiplication requires forming the explicit Khatri-Rao product and explicitly
permuting tensor elements to obtain X(2) in column major order. That is, we could compute
V = X(2)(C⊙A) as follows:

Mode-2 MTTKRP for 3-way Tensor (Naive)
1: K← C⊙A ▷ Khatri-Rao product
2: X̄← P

(
X, (2, 1, 3)

)
▷ Swap modes 1 & 2 to get n×m× p tensor

3: X← reshape(X̄, n×mp) ▷X = X̄(1) = X(2)

4: U← XK ▷ Matrix-matrix multiply

The above implementation is naive because the permutation requires memory movement,
which is slower than performing flops. Instead, we can compute the mode-2 MTTKRP in

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

68 Chapter 3. Tensor Operations

two steps without forming the explicit Khatri-Rao product. From Eq. (3.24), we can write
the expression elementwise as

vjℓ =

m∑

i=1

p∑

k=1

xijkaiℓckℓ =

m∑

i=1

aiℓ

(
p∑

k=1

xijkckℓ

︸ ︷︷ ︸
yijℓ

)
.

This shows that there is a different temporary quantity we can compute instead of the
explicit Khatri-Rao product of C and A. In fact, we can express this temporary in tensor
notation as a TTM (see Section 3.3): Y = X ×3 C⊺. After Y is computed, the final result
is computed as

vjℓ =

m∑

i=1

yijℓaiℓ, (3.26)

which is an instance of a batched tensor contraction (see Section 3.8.4). This computation
can be performed as a sequence of independent matrix-vector products, e.g.,

V(:, ℓ) = Y(:, :, ℓ)⊺A(:, ℓ) for all ℓ ∈ [r],

where Y(:, :, ℓ) denotes the ℓth frontal slice of the tensor Y, and these frontal slices have
dimension m × n and are stored contiguously and column major in memory as discussed
for the TTM in Section 3.3.1. Thus, the batched matrix-vector multiplies can be cast as a
Batched BLAS operation, e.g., using the pagemtimes function in MATLAB.

Mode-2 MTTKRP for 3-way Tensor (Efficient)
Y← X×3 C⊺ ▷ Mode-3 TTM; see Section 3.3.1
for ℓ = 1 . . . , r do

V(:, ℓ)← Y(:, :, ℓ)⊺A(:, ℓ) ▷ Batched matrix-vector multiplies
end for

The procedure is illustrated in Fig. 3.5.

=

⊺

V Y = X×3 C⊺ A

Figure 3.5: Mode-2 MTTKRP for 3-way tensor: V = X(2)(C ⊙A). Tensor Y = X ×3
C⊺ ∈ Rm×n×r. Column ℓ of V is ℓth frontal slice of Y transposed times column ℓ of A.

The cost to compute the mode-2 MTTKRP this way is 2mnpr + 2mnr = O(mnpr), the
same leading order cost as in mode 1.

Mode-3 MTTKRP for 3-way Tensor

Consider the computation of the mode-3 MTTKRP: W = X(3)(B ⊙A). We recall that
vec
(
(X(3))

⊺) = vec(X), so we can work with the transpose of the mode-3 unfolding

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.5. Matricized Tensor Times Khatri-Rao Product (MTTKRP) 69

without data movement. So we can compute

W =
(
X⊺

(3)

)⊺
(B⊙A)

with a single matrix-matrix multiply. Therefore, we first compute the Khatri-Rao product
and then perform matrix multiplication as follows.

Mode-3 MTTKRP for 3-way Tensor (Efficient)
K← B⊙A ▷ Khatri-Rao product
X← reshape(X,mn, p) ▷X = X⊺

(3)

U← X⊺K ▷ Matrix-matrix multiply

The cost to compute the mode-3 MTTKRP this way is mnr + 2mnpr = O(mnpr), the
same leading order cost as in modes 1 and 2.

3.5.2 MTTKRP for d-way Tensors

Definition 3.27: MTTKRP

Let X ∈ Rn1×n2×···×nd and Ak ∈ Rnk×r for all k ∈ [d]. Their mode-k matricized tensor
times Khatri-Rao product (MTTKRP) is

B = X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1) ∈ Rnk×r. (3.27)

Elementwise, the MTTKRP in mode k is given as

B(ik, j) =

n1∑

i1=1

· · ·
nk−1∑

ik−1=1

nk+1∑

ik+1=1

· · ·
nd∑

id=1

X(i1, i2, . . . , id)

d∏

ℓ=1
ℓ ̸=k

Aℓ(iℓ, j), (3.28)

for all ik ∈ [nk] and j ∈ [r]. Pictorially, the MTTKRP is a short-and-wide matrix times a
tall-and-skinny matrix, as depicted in Fig. 3.6. The straightforward approach to computing
MTTKRP is to explicitly permute the entries of the input tensor unfolding, compute the
Khatri-Rao product explicitly, and then call the efficient matrix multiplication subroutine,
as follows:

Mode-k MTTKRP for d-way Tensor (Naive)

1: X̄← P
(
X, (k, 1, . . . , k − 1, k + 1, . . . , d)

)
▷ Permute mode k to front

2: X← reshape(X̄, nk ×Nk) with Nk =
∏d

ℓ=1
ℓ ̸=k

nℓ ▷X = X̄(1) = X(k)

3: K← Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1 ▷ Khatri-Rao product
4: B← XK ▷ Matrix-matrix multiply

As in the three-way case, we do not always want to form the Khatri-Rao product explicitly
and instead prioritize avoiding explicit tensor permutation.

For modes 1 and d, we can compute the MTTKRP in a straightforward way, relying on
the fact that vec(X) = vec(X(1)) = vec(X⊺

(d)) so that there is no memory movement in
forming X(k). We then multiply that by the Khatri-Rao product for the result.

For k ∈ { 2, . . . , d− 1 }, the key idea is to simplify from the d-way case to the 3-way case
by collapsing the lower modes (those smaller than k) and upper modes (those larger than
k), and then using the method for the mode-2 MTTKRP of a 3-way tensor. We reshape
the tensor from d-way to 3-way by linearizing the lower and upper modes and then form

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

70 Chapter 3. Tensor Operations

B = X(k)

Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1

nk nk

r r
Nk =

∏d
ℓ=1
ℓ ̸=k

nℓ

Nk

Figure 3.6: MTTKRP B = X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)

the Khatri-Rao products of the lower and the upper modes (see Exercise 3.24). Then the
algorithm follows the strategy described for the mode-2 MTTKRP of a 3-way tensor as
discussed in Section 3.5.1:

Mode-k MTTKRP for d-way Tensor for 1 < k < d (Efficient)

X̄← reshape(X,Mk × nk × Pk) with Mk =
∏k−1

j=1 nj and Pk =
∏d

j=k+1 nj
KL ← Ak−1 ⊙ · · · ⊙A1 ▷ Mk × r Khatri-Rao product of “lower” modes
KU ← Ad ⊙ · · · ⊙Ak+1 ▷ Pk × r Khatri-Rao product of “upper” modes
Y← X̄×3 K⊺

U ▷ Tensor times matrix (matrix-matrix multiply)
for ℓ = 1 . . . , r do

B(:, ℓ)← Y(:, :, ℓ)⊺KL(:, ℓ) ▷ Batched matrix-vector multiplies
end for

The costs of this approach are dominated by Mkr + Pkr to compute the Khatri-Rao prod-
ucts, 2Nr for the tensor times matrix, where N =

∏d
ℓ=1 nℓ, and 2Mknkr for the batched

matrix-vector multiplications, so the overall cost of MTTKRP is O(Nr) for every mode
k. Nearly all of the MTTKRP computation is cast as matrix multiplication. We present the
method for d-way mode-k MTTKRP in Algorithm 3.2.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.5. Matricized Tensor Times Khatri-Rao Product (MTTKRP) 71

Algorithm 3.2 Mode-k MTTKRP for d-way Tensor

Require: X ∈ Rn1×n2×···×nd , {Aℓ} with Aℓ ∈ Rnℓ×r, ℓ ∈ [d]
Ensure: B = X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)

1: function MTTKRP(X, {Aℓ}, k)
2: if k > 1 then
3: Mk ←

∏k−1
ℓ=1 nℓ

4: KL ← Ak−1 ⊙ · · · ⊙A1 ▷ KRP of “lower” modes
5: end if
6: if k < d then
7: Pk ←

∏d
ℓ=k+1 nℓ

8: KU ← Ad ⊙ · · · ⊙Ak+1 ▷ KRP of “upper” modes
9: end if

10: if k = 1 then
11: X̄← reshape(X, n1 × Pd) ▷ Mode-1 unfolding
12: B← X̄KU ▷ Matrix multiplication
13: else if k = d then
14: X̄← reshape(X,Md × nd) ▷ Transpose of mode-d unfolding
15: B← X̄

⊺
KL ▷ Matrix multiplication

16: else
17: X̄← reshape(X,Mk × nk × Pk) ▷ Reshape to 3-way tensor
18: Y← X̄×3 K⊺

U ▷ TTM (Algorithm 3.1)
19: for ℓ = 1 . . . , r do
20: B(:, ℓ)← Y(:, :, ℓ)⊺KL(:, ℓ) ▷ Batched matrix-vector multiplies
21: end for
22: end if
23: return B
24: end function

Exercise 3.23 In this exercise we will compare performance of two methods for MT-
TKRP. (a) Implement a function mttkrp for MTTKRP for d-way tensors based on Al-
gorithm 3.2. (b) Implement a function mttkrp_onemult that uses the explicit tensor
unfolding, computes the (d − 1)-way Khatri-Rao product, and performs a single matrix
multiplication. (c) Generate two random tensors of dimensions 1000 × 1000 × 1000 and
180×180×180×180, and generate random factor matrices with ranks 10 and 100, corre-
sponding to four different input combinations. Compare the overall times for mttkrp and
mttkrp_onemult in each mode. Explain your observations and how they correspond
with your expectations. (d) Determine where most of the time is spent in your function for
each mode, and compare that with the theoretical analysis of the arithmetic cost of each
step.

Exercise 3.24 Consider the mode-k MTTKRP for k ∈ { 2, . . . , d− 1 }. Define Mk =∏k−1
ℓ=1 nℓ and Pk =

∏d
ℓ=k+1 nℓ. Then let X̄ = reshape(X,Mk × nk × Pk), and define

KL = Ak−1 ⊙ · · · ⊙A1, and KU = Ad ⊙ · · · ⊙Ak+1.

Show
X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1) = X̄(2)(KU ⊙KL).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

72 Chapter 3. Tensor Operations

3.6 Sequences of Multi-TTM and MTTKRP Operations
The multi-TTM computation is fundamental to Tucker decomposition, and the MTTKRP
computation is fundamental to CP decomposition. In most of the algorithms we consider,
there is a sequence of these computations involving repeated inputs and intermediate out-
puts. In this case, we can use memoization across modes, which means we store and
reuse the intermediate values rather than recompute them. In the operations we consider
here, memoization can reduce the overall computation by a factor of approximately d/2 for
d-way tensors (Eswar et al., 2021; Kaya and Robert, 2019; Phan, Tichavsky, et al., 2013).

3.6.1 Multi-TTM Sequence
A sequence of multi-TTM products in all modes but one is a computational kernel for
some algorithms for Tucker decomposition such as Higher-Order Orthogonal Iteration
(Section 6.4). The sequence of multi-TTMs refers to computing:

Yk = X×1 U1 · · · ×k−1 Uk−1 ×k+1 Uk+1 · · · ×d Ud for all k ∈ [d].

Each multi-TTM can be computed independently, but independent evaluation results in
unnecessary recomputation since the sequence shares input data and intermediate compu-
tations.

Multi-TTM Sequence for 3-way Tensors

Consider a tensor X ∈ Rm×n×p and matrices U ∈ Rq×m, V ∈ Rr×n and W ∈ Rs×p,
with q < m, r < n and s < p. Now suppose we want to compute

Y1 = X×2 V ×3 W,

Y2 = X×1 U×3 W, and
Y3 = X×1 U×2 V.

If we assume β1 ≤ β2 ≤ β3 according to the quantity given in Eq. (3.22), the most efficient
TTM ordering for computing Y1,Y2,Y3 using independent multi-TTMs is (X×3 W) ×2
V, (X×3 W)×1 U, and (X×2 V)×1 U, respectively. The leading-order costs of these 6
TTMs is given by

2(mnps+mnrs+mnps+mnqs+mnpr +mpqr).

The term mnps appears twice because (X×3 W) is computed twice.

Instead, we can first compute a memoization term Y12 = X ×3 W and then use that to
compute both Y1 and Y2 from Y12, as follows:

Multi-TTM for 3-way Tensor
Y12 ← X×3 W
Y1 ← Y12 ×2 V
Y2 ← Y12 ×1 U
Y3 ← X×2 V ×1 U

By storing and reusing the temporary tensor Y12 = X ×3 W, we avoid the double cost of
computing Y12 and reduce the overall cost to

2(mnps+mnrs+mnqs+mnpr +mpqr).

If m = n = p and q = r = s, then the cost of independent computation is approximately
6n3r + 6n2r2 versus the cost using memoization of 4n3r + 6n2r2. This provides an
improvement of a factor of 1.5 in the leading-order term.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.6. Sequences of Multi-TTM and MTTKRP Operations 73

Multi-TTM Sequence for d-way Tensors

The benefits of memoization grow with the number of tensor modes d. Given a tensor
X ∈ Rn1×n2×···×nd and matrices Uk ∈ Rrk×nk with rk < nk for k ∈ [d], we wish to
compute

Yk = X×1 U1 · · · ×k−1 Uk−1 ×k+1 Uk+1 · · · ×d Ud for all k ∈ [d].

We introduce a dimension tree to organize the memoization. The dimension tree has a
root given by the original tensor X, leaves given by the outputs {Yk }, and internal nodes
{Yα:β } corresponding to temporary quantities defined as

Yα:β = X×1 U1 · · · ×α−1 Uα−1 ×β+1 Uβ+1 · · · ×d Ud.

In other words, Yα:β is the result of TTMs in all modes except for α through β.

Y12345 ≡ X

Y12 Y345

Y45Y1 Y2 Y3

Y4 Y5

U3,U4,U5 U1 ,U2

U4,
U5 U

3U2 U
1

U5 U
4

Figure 3.7: Dimension tree for computing Yk = X×1U1 · · ·×k−1Uk−1×k+1Uk+1 · · ·×d
Ud for all k ∈ [d] for order-5 tensor. Inputs and outputs are red squares, and temporaries are
blue circles. Each edge corresponds to one or more TTMs. Subscripts denote uncontracted
modes.

An example dimension tree for a 5-way tensor is given in Fig. 3.7. The root node is the
original tensor X, which we can think of equivalently as Y12345. In the first level, we split
the modes into [1 : 2] and [3:5]. The left branch then computes the node

Y12 = X×3 U3 ×4 U4 ×5 U5.

These modes are split into 1 and 2, resulting in leaf nodes Y1 = Y12 ×2 U2 and Y2 =
Y12 ×1 U1. After all its children are computed, Y12 can be discarded. The right branch
from the root node computes

Y345 = X×1 U1 ×2 U2.

These modes are split into 3 and [4:5]. On its left branch, we compute leaf node Y3 =
Y345 ×4 U4 ×5 U5. On its right branch, we compute node

Y45 = Y345 ×3 U3.

These modes are split into 4 and 5, resulting in leaf nodes Y4 = Y45 ×5 U5 and Y5 =
Y45 ×4 U4. The intermediates Y45 and Y345 can be discarded once their children have
been computed.

The key observation is that only two TTMs involve the original tensor, and all other opera-
tions involve TTMs with temporary tensors, which require less computation when rk < nk
for each k ∈ [d]. So, rather than performing d TTMs with X, we do only 2. If the costs are

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

74 Chapter 3. Tensor Operations

dominated by TTMs involving the original tensor, the overall reduction in leading-order
computational cost by using memoization is by a factor of d/2. In the 5-way case, this
equates to an improvement factor of approximately 2.5.

Algorithm 3.3 shows the pseudocode for recursively evaluating the dimension tree. The
initial call is MULTI-TTM-SEQ(X, {Uk } , 1, d). Every node in the tree involves a tensor
with a contiguous set of modes [α : β] = {α, α+ 1, . . . , β }. This range is partitioned
into [α : ℓ] and [ℓ+1 : β], performing a sequence of TTMs to compute the temporary
tensor associated with each part, and recursing on each temporary tensor. The partition
mode is selected heuristically in Line 3. Determining an optimal choice is an NP-complete
problem, but dynamic programming algorithms can obtain reasonable running time for
small d (Kaya and Robert, 2019). Line 4 performs the multi-TTM for the left split, and
Line 5 recurses on the left branch. Once that branch is finished, the leaf nodes are returned
and the temporary Yα:β can be discarded. Similarly, Lines 6 and 7 handle the right branch.
The base case occurs when α = β and all but one mode has been contracted (Line 2).

Algorithm 3.3 Multi-TTM Sequence (Recursive)

Require: X ∈ Rn1×n2×···×nd , Uk∈Rrk×nk for all k ∈ [d], α = 1, β = d (initial call)
Ensure: Yk = X×1U1 · · ·×k−1Uk−1×k+1Uk+1 · · ·×dUd for all k ∈ [d] (final return)

1: function MULTI-TTM-SEQ(X, {Uk}, α, β)
2: if α = β then return {X} ▷ Return result in base case
3: choose ℓ ∈ [α : β] such that

∏ℓ
k=α rk ≈

∏β
k=ℓ+1 rk ▷ Partition modes (heuristic)

4: Yα:ℓ ← X×ℓ+1 Uℓ+1 · · · ×β Uβ ▷ Multi-TTM
5: {Yα, · · · ,Yℓ} ← MULTI-TTM-SEQ(Yα:ℓ, {Uk}, α, ℓ)
6: Yℓ+1:β ← X×α Uα · · · ×ℓ Uℓ ▷ Multi-TTM
7: {Yℓ+1, . . . ,Yβ } ← MULTI-TTM-SEQ(Yℓ+1:β , {Uk}, ℓ+1, β)
8: return {Yα, . . . ,Yβ }
9: end function

Exercise 3.25 Draw the dimension tree that Algorithm 3.3 would produce for an 7-way
tensor of size 70× 60× 50× 40× 30× 20× 10.

We have thus far assumed the inputs {Uk} are fixed throughout the computation. In the
context of the Higher-Order Orthogonal Iteration algorithm (see Section 6.4), the matrix
Uk is updated immediately after the tensor Yk is computed and used in the subsequent
computations. In this case, Algorithm 3.3 can be modified to return the updated matrices
{Uk} and to perform the update of each Uk in the base case (when α = β = k). Figure 3.8
shows an example computation sequence with numbers indicating the order of computation
and differentiating the updated factors in green.

Y12345 ≡ X

Y12 Y345

Y45Y1 → U1 Y2 → U2 Y3 → U3

Y4 → U4 Y5 → U5

U3,U4,U5 U1 ,U2

U4,U
5 U

3U2 U
1

U5 U
4

1

2 3

4

5
6

7 8

Figure 3.8: Repeat of Fig. 3.7 indicating example order of computation for updated factor
Uk being created from Yk. Updated factors indicated in green.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.6. Sequences of Multi-TTM and MTTKRP Operations 75

3.6.2 MTTKRP Sequence
Just like with TTM, most of the algorithms we consider for computing the CP decomposi-
tion require us to compute a sequence of MTTKRPs of the form

Uk = X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1) for all k ∈ [d].

In such cases, we can compute the sequence more cheaply if we memoize intermediate
computations.

MTTKRP Sequence for 3-way Tensor

Consider a tensor X ∈ Rm×n×p, matrices A ∈ Rm×r, B ∈ Rn×r and C ∈ Rp×r, and the
MTTKRPs:

U = X(1)(C⊙B),

V = X(2)(C⊙A), and
W = X(3)(B⊙A).

As described in Section 3.5, V can be computed by first computing an intermediate quantity
Y12 = X×3C⊺ and then computing V as a batch of matrix-vector products between slices
of Y12 and columns of A. The computation of U can borrow Y12 = X ×3 C⊺, also in a
batch of matrix-vector products between slices of Y and columns of B, as follows:

MTTKRP Sequence for 3-way Tensor
Y12 ← X×3 C⊺ ▷ Algorithm 3.1
for ℓ = 1, . . . , r do

U(:, ℓ)← Y12(:, :, ℓ)B(:, ℓ) ▷ Batched matrix-vector multiplies
end for
for ℓ = 1, . . . , r do

V(:, ℓ)← Y12(:, :, ℓ)
⊺A(:, ℓ) ▷ Batched matrix-vector multiplies

end for
W← X(3)(B⊙A)

The third output matrix W is computed as an independent MTTKRP and does not use
any other computations. A visualization of the temporaries and dependencies in this pseu-
docode is given in Fig. 3.9.

X

Y12 W

U V

C
A,B

B A

Figure 3.9: MTTKRP sequence using memoization for 3-way tensors. Temporaries de-
picted as blue circles, and inputs/outputs shown as red squares.

Comparing the computational costs to those of performing three independent MTTKRPs,
we see that we have avoided one of the three most expensive computations that involve
the original tensor X. If we store and reuse the tensor Y12, we have that the dominant
cost of computing Y12 is 2mnpr, and the dominant cost of computing W separately is also

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

76 Chapter 3. Tensor Operations

2mnpr. The dominant cost of computing the MTTKRPs independently is 6mnpr, so using
memoization provides a computational cost improvement of a factor of approximately 1.5
for 3-way tensors.

MTTKRP Sequence for d-way Tensors The benefits of memoization for an MTTKRP
sequence grow with the number of tensor modes d. Given a tensor X ∈ Rn1×n2×···×nd

and matrices Ak ∈ Rnk×r for k ∈ [d], we wish to compute

Bk = X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1) for all k ∈ [d].

Recall that

Bk(ik, j) =

n1∑

i1=1

· · ·
nk−1∑

ik−1=1

nk+1∑

ik+1=1

· · ·
nd∑

id=1

X(i1, i2, . . . , id)

d∏

ℓ=1
ℓ ̸=k

Ak(ik, j)

for all (ik, j) ∈ [nk]⊗ [r]. (3.29)

Similar to the case of a multi-TTM sequence, we evaluate a dimension tree with a root given
by the original tensor X, leaves given by the MTTKRP results {Bk }, and internal nodes
corresponding to intermediate computations that are a partial computation of Eq. (3.29)
stored as a tensor Yα:β of order β − α+ 2 and size nα × nα+1 × · · · × nβ × r such that

Yα:β(iα, . . . , iβ , j) =

n1∑

i1=1

· · ·
nα−1∑

iα−1=1

nβ+1∑

iβ+1=1

· · ·
nd∑

id=1

X(i1, . . . , id)

d∏

k=1
k ̸∈[α:β]

Ak(ik, j).

This intermediate tensor has incorporated all the factor matrices except those in modes α
through β and so can be reused in the computations for Yα = Bα through Yβ = Bβ .

X

Y12 Y3456

B1 B2 Y34 Y56

B3 B4 B5 B6

A3,A
4,A

5,A
6 A

1 ,A
2

A2
A
1 A5,

A6 A
3 ,A

4

A4
A
3 A6

A
5

Figure 3.10: MTTKRP sequence using memoization for 6-way tensor. Temporaries de-
picted as blue circles, and inputs/outputs are red squares. Subscripts indicate uncontracted
modes.

An example dimension tree for a 6-way tensor is given in Fig. 3.10. Starting from the
root node at X, we split the modes into [1 : 2] and [3 : 6]. The left branch computes
Y12 ∈ Rn1×n2×r using matrix-matrix multiplication with a reshaped version of X and a
Khatri-Rao product of the factor matrices from the other subset of modes:

[Y12]{ 1,2 }×3 = X({ 1,2 }×{ 3,4,5,6 })(A6 ⊙A5 ⊙A4 ⊙A3).

The reshaped version of X has the same layout in memory (Proposition 2.20), so no mem-
ory movement is required. This intermediate quantity can be used to compute the leaf

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.6. Sequences of Multi-TTM and MTTKRP Operations 77

nodes B1 and B2 with batched matrix-vector multiplies via

B1(:, j) = Y12(:, :, j)A2(:, j) ∈ Rn1×r,

B2(:, j) = Y12(:, :, j)
⊺A1(:, j) ∈ Rn2×r

for all j ∈ [r].

After its children have been evaluated, Y12 can be discarded.

The right branch from the root node computes Y3456 ∈ Rn1×n2×n3×n4×r (shaped as a
matrix) using matrix-matrix multiplication with a reshaped and transposed version of X
and a Khatri-Rao product of factor matrices from the other subset of modes:

[Y3456]{ 1,2,3,4 }×5 = X⊺
({ 1,2 }×{ 3,4,5,6 })(A2 ⊙A1).

We branch by splitting the remaining modes into [3 : 4] and [5 : 6].

Along the left branch, the node Y34 ∈ Rn3×n4×r is created via a Khatri-Rao product and
batched matrix-vector multiplications along with some reshapes:

Example Left Branch of MTTKRP Sequence
Z← reshape(Y3456, n3n4 × n5n6 × r)
KU ← A6 ⊙A5

for j = 1, . . . , r do
V(:, j)← Z(:, :, j)KU (:, j)

end for
Y34 ← reshape(V, n3 × n4 × r)

From Y34, we can compute leaf nodes B3 and B4 via

B3(:, j) = Y34(:, :, j)A4(:, j),

B4(:, j) = Y34(:, :, j)
⊺A3(:, j),

for all j ∈ [r].

The intermediate quantity Y34 can be discarded after its children have all been computed.

Going back to Y3456 and following along the right branch, the node Y56 ∈ Rn5×n6×r is
created analogously to Y34 except that the frontal slices of Z are transposed:

Example Right Branch of MTTKRP Sequence
Z← reshape(Y3456, n3n4 × n5n6 × r)
KU ← A4 ⊙A3

for j = 1, . . . , r do
V(:, j)← Z(:, :, j)⊺KU (:, j)

end for
Y56 ← reshape(V, n5 × n6 × r)

From Y56, we can compute the final leaf nodes B5 and B6 via

B5(:, j) = Y56(:, :, j)A6(:, j),

B6(:, j) = Y56(:, :, j)
⊺A5(:, j),

for all j ∈ [r].

The key observation is that the entire tree can be evaluated with only two operations involv-
ing the original tensor, both of which are cast as matrix-matrix multiplication, and all other
operations involve batched matrix-vector products with smaller intermediate tensors that
require much less computation. The cost of each matrix-matrix multiplication is the same

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

78 Chapter 3. Tensor Operations

as the cost of a single MTTKRP (with no memoization), so the overall reduction factor in
computation by using memoization for an MTTKRP sequence is approximately d/2.

Pseudocode for an MTTKRP sequence for the d-way case is provided in Algorithm 3.4.
As with multi-TTM sequence, we use recursion to implement the computations within the
dimension tree. The division at the root node of the dimension tree is special, creating
the quantities Y1:ℓ or Yℓ+1:d. These are computed via matrix-matrix multiplication with
an appropriately reshaped tensor and Khatri-Rao product of the involved factor matrices.
While the choice of ℓ does not affect the cost of the two MTTKRPs, we recommend choos-
ing ℓ such that n1 · · ·nℓ ≈ nℓ+1 · · ·nd in order to minimize the memory footprint and the
computational cost of subsequent operations.

The rest of the tree is split recursively via the subfunction MTTKRP-SPLIT in Algo-
rithm 3.4. At each node, we partition the remaining modes into two contiguous parts that
balance the products of the dimensions. Given Yα:β , we can create, e.g., Yℓ:β for some
ℓ ∈ [α : β] so that

Yℓ:β(iℓ, . . . , iβ , j) =

nα∑

iα=1

· · ·
nℓ−1∑

iℓ−1=1

Yα:β(iα, . . . , iβ , j)

ℓ−1∏

k=α

Ak(ik, j).

This can be computed by taking the Khatri-Rao product of the involved factor matrices,
reshaping Yα:β into an appropriate 3-way tensor, and then doing batched matrix-vector
multiplies. A similar logic allows transformation from Yα:β to Yα:ℓ. The quantity Yα is a
2-way tensor that is exactly Bα.

In the dimension tree visualization in Fig. 3.10, we can interpret each node in the tree
as a function call: the root node corresponds to the single call to MTTKRP-SEQ, the
internal nodes correspond to calls to the helper function MTTKRP-SPLIT, and the leaf
nodes correspond to base cases of MTTKRP-SPLIT.

Exercise 3.26 Draw the dimension tree that Algorithm 3.4 would produce for a 6-way
tensor of size 40× 40× 30× 30× 20× 20.

As an example of the computational cost reduction, consider an input tensor of dimension
n × n × n × n and factor matrices each of dimension n × r. If we perform each of the
four MTTKRPs using Algorithm 3.2, the total cost is approximately 8n4r+ 4n3r+ 4n2r.
Using memoization (Algorithm 3.4), the cost is reduced to 4n4r+10n2r, an improvement
by approximately a factor of 2.

Algorithm 3.4 assumes the inputs {Ak} are fixed throughout the computation. If Ak

changes after computation of Bk as in the Alternating Least Squares algorithm (see Chap-
ter 11), Algorithm 3.4 can be modified to return the updated matrices {Ak} instead of the
leaf matrices {Bk} and to perform the update of each Ak in the base case of MTTKRP-
SPLIT (when α = β = k).

Exercise 3.27 Update the dimension tree in Fig. 3.10 in the case where Ak is recomputed
from Yk and should be used for all subsequent computations. Indicate the updated factor
matrices and order of computation in a way analogous to the multi-TTM sequence given in
Fig. 3.8.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.7. Sparse Tensors and Operation Efficiencies 79

Algorithm 3.4 MTTKRP Sequence

Require: X ∈ Rn1×n2×···×nd , Ak ∈ Rnk×r for all k ∈ [d]
Ensure: Bk = X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1) for all k ∈ [d]

1: function {B1,B2, . . . ,Bd } = MTTKRP-SEQ(X, {Ak })
2: choose split ℓ ∈ [d] such that Mℓ =

∏ℓ
k=1 nk ≈ Pℓ =

∏d
k=ℓ+1 nk

3: X̄← reshape(X,Mℓ × Pℓ)
4: KU ← Ad ⊙ · · · ⊙Aℓ+1 ▷ KRP of upper modes, Pk × r
5: Y1:ℓ ← reshape(X̄KU , n1 × · · · × nℓ × r) ▷ Matrix-matrix multiply
6: {B1, . . . ,Bℓ } ← MTTKRP-SPLIT(Y1:ℓ, {Ak } , 1, ℓ) ▷ Left branch
7: KL ← Aℓ ⊙ · · · ⊙A1 ▷ KRP of lower modes, Mk × r
8: Yℓ+1:d = reshape(X̄

⊺
KL, nℓ+1 × · · · × nd × r) ▷ Matrix-matrix multiply

9: {Bℓ+1, . . . ,Bd } ← MTTKRP-SPLIT(Yℓ+1:d, {Ak } , ℓ+1, d) ▷ Right branch
10: return {B1,B2, . . . ,Bd }
11: end function

12: function {Bα, . . . ,Bβ } = MTTKRP-SPLIT(Yα:β , {Ak } , α, β) ▷ subfunction
13: if α = β then return Bα = Yα ▷ Return result in base case
14: choose split ℓ ∈ [α : β] such that Mℓ =

∏ℓ
k=a nk ≈ Pℓ =

∏b
k=ℓ+1 nk

15: Z← reshape(Yα:β ,Mℓ × Pℓ × r)
16: KU ← Aβ ⊙ · · · ⊙Aℓ+1 ▷ KRP of upper modes
17: for j = 1 . . . , r do
18: V(:, j)← Z(:, :, j)KU (:, j) ▷ Batched matrix-vector multiplies
19: end for
20: Yα:ℓ ← reshape(V, nα × · · · × nℓ × r)
21: {Bα, . . . ,Bℓ } ← MTTKRP-SPLIT(Yα:ℓ, {Ak } , α, ℓ) ▷ Left branch
22: KL ← Aℓ ⊙ · · · ⊙Aα ▷ KRP of lower modes
23: for j = 1 . . . , r do
24: W(:, j)← Z(:, :, j)⊺KL(:, j) ▷ Batched matrix-vector multiplies
25: end for
26: Yℓ+1:β ← reshape(W, nℓ+1 × · · · × nβ × r)
27: {Bℓ+1, . . . ,Bβ } ← MTTKRP-SPLIT(Yℓ+1:β , {Ak } , ℓ+1, β) ▷ Right branch
28: return {Bα, . . . ,Bβ }
29: end function

3.7 Sparse Tensors and Operation Efficiencies
We say that a tensor is sparse if the vast majority of its elements are zero. In such cases,
storing only the nonzeros and their indices requires less memory than storing every element.
The key property of sparse tensors is that they can be stored using less memory than dense
tensors and operations with zeroes can be avoided to save computation. The number of
nonzeros in the tensor is denoted as nnz(X). In this section, we show how to store and
operate with sparse tensors efficiently.

We focus primarily on coordinate format (sometimes abbreviated as COO format), intro-
duced in Section 3.7.1. This format stores nonzero values and corresponding indices in
such a way that we can iterate through them, and it does not assume any particular ordering
to the indices. The storage required is proportion to the number of nonzeros. We discuss
other sparse formats in Section 3.7.5.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

80 Chapter 3. Tensor Operations

3.7.1 Coordinate Format for Sparse Tensors
The COO format was formalized by Bader and Kolda (2007), and is used by the Ten-
sor Toolbox for MATLAB (Bader, Kolda, et al., 2023), Python Tensor Toolbox (Dunlavy,
Johnson, et al., 2022), TensorLab for MATLAB (Vervliet, Debals, et al., 2017), and Ten-
sorFlow (TensorFlow Team, 2022).

Coordinate Format for 3-way Sparse Tensors

Let X be a three-way tensor of sizem×n×p. Storing X as a dense tensor requiresO(mnp)
storage. We say X is sparse if q ≡ nnz(X)≪ mnp. The key property of sparse tensors is
that they can be stored using many fewer values than the dense tensor, and operations with
zeroes can be avoided to save computation.

Definition 3.28 (Coordinate Format for 3-way Tensor) Let X in m × n × p be a sparse
tensor with q ≡ nnz(X) nonzeros. Its coordinate format representation stores X as JΩ,vK
where

• Ω ∈ Nq×3 stores the (i, j, k) tuples of the nonzeros, one tuple per row, and
• v ∈ Rq stores the corresponding nonzero values.

The ℓth nonzero has value given by entry ℓ in v and coordinates given by row ℓ of Ω; in
other words,

vℓ = X(ω1ℓ, ω2ℓ, ω3ℓ).

Remark 3.29 (How much storage does a sparse tensor require?) The total storage for
a 3-way sparse tensor X stored in coordinate format is 3 natural number indices and 1 real
value per nonzero. We can potentially be more efficient in the storage of the tuple indices.
For instance, each (i, j, k) can be packed into ⌈log2m⌉+⌈log2 n⌉+⌈log2 p⌉ bits or (with a
bit more computation) converted to a linear index requiring ⌈log2(mnp)⌉ bits. How much
these details matter depends on the dimensions and number of nonzeros in the problem.
We generally say simply that the storage is proportional to the number of nonzeros.

Example 3.6 (Coordinate Format) Consider the tensor X ∈ R5×5×3 and its sparse
representation JΩ,vK. It needs to store 3q = 12 indices and q = 4 values versus
N =

∏d
k=1 nk = 75 values for the full tensor:

0

0

43

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

35

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

91

68

0

0

0

0

0

0

0

0

0

X = , Ω =

1 4 1
3 1 3
4 2 2
5 3 1

 ∈ Nq×d and v =

68
43
35
91

 ∈ Rq.

Exercise 3.28 Consider the tensor X of size 3× 3× 3 whose frontal slices are

X1 =

0 0 0
0 0 0
9 0 0

, X2 =

0 0 0
0 0 0
0 0 9

 and X3 =

0 2 0
0 0 4
8 0 0

.

(a) What is nnz(X)? (b) What are Ω and v?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.7. Sparse Tensors and Operation Efficiencies 81

Exercise 3.29 (Permutation of Sparse Tensor) Let X be a sparse tensor of size m× n×
p represented by Ω ∈ Rq×3 and v ∈ Rq . If Y = P(X, [3, 1, 2]), what is Y’s sparse
representation?

Remark 3.30 (Arbitrary nonzero order in coordinate format) Coordinate format storage
does not prescribe a particular order on the nonzeros.

Coordinate Format for d-way Sparse Tensors

The idea of coordinate format is easily extended to d-way tensors as follows.

Definition 3.31 (Coordinate Format for d-way Tensor) Let X in n1 × n2 × · · · × nd be
a sparse tensor with q ≡ nnz(X) nonzeros. Its coordinate format representation stores X
as JΩ,vK where

• Ω ∈ Nq×d stores the (i1, i2, . . . , id) tuples of the nonzeros, one per row, and
• v ∈ Rq stores the corresponding nonzero values.

The ℓth nonzero has coordinates given by row ℓ of Ω and value given by entry ℓ in v; in
other words,

vℓ = X(ω1ℓ, ω2ℓ, · · · , ωdℓ).

Exercise 3.30 Make the simple assumption that each mode index and nonzero value re-
quires the same amount of storage. (a) What is the storage requirement for a d-way dense
tensor X of size n1 × n2 × · · · × nd? (b) What is the storage requirement if X is instead
a sparse tensor with q nonzeros? (c) Define ρ to be the proportion of nonzeros in X, i.e.,
ρ = nnz(X)/N for N =

∏d
k=1 nk. For what range of ρ values is sparse storage more

efficient than dense storage?

Assembling a Sparse Tensor in Coordinate Format

To assemble a sparse tensor, we need paired lists of subscripts and values. The only poten-
tial issue is resolving duplicates in the subscripts, in which case we would sum the values
associated with any repeated subscript, as shown in Example 3.7.

Example 3.7 (Assembling a Sparse Tensor) We have to sum up values corresponding to
any duplicate coordinate tuples, i.e.,

Ω =

1 1 1
2 1 1
2 2 2

duplicate indices 1 1 1
1 2 2

,v =

1
1
1
1
1

⇒ Ω =

1 1 1
2 1 1
2 2 2
1 2 2

 ,v =

2
1
1
1

 .

Finding duplicate entries generally involves sorting the tuples, for a cost of O(q log q)
where q = nnz(X). This could potentially be completed in O(q) time using a hash table.

Exercise 3.31 Let X and Y be sparse tensors of size m × n × p, and let Z = X + Y.
Prove nnz(Z) ≤ nnz(X) + nnz(Y). Under what conditions on X and Y do we have
nnz(Z) = nnz(X) + nnz(Y)?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

82 Chapter 3. Tensor Operations

3.7.2 Norm of a Sparse Tensor
The norm of a 3-way sparse tensor X = JΩ,vK can be computed by considering only
the nonzero entries of the tensor. Recall from Definition 3.31 that Ω ∈ Nq×3 contains the
indices of the nonzeros, and v ∈ Rq contains the corresponding values, where q = nnz(X).
Then, we can omit zero entries from the sum, yielding

∥X∥ = ∥v∥2 =

√√√√
q∑

α=1

v2α.

The cost to compute the norm of a sparse tensor is O(nnz(X)).

Exercise 3.32 (a) What is the formula to compute the norm of a sparse d-way tensor?
(b) What is the computational cost? (c) What is the difference compared to the norm of a
sparse 3-way tensor?

3.7.3 MTTKRP for 3-way Sparse Tensors
Let X be a sparse tensor of size m × n × p, B ∈ Rn×r, and C ∈ Rp×r. Consider the
problem of computing

U = X(1)(C⊙B),

which is written elementwise (see Eq. (3.23)) as

uiℓ =

n∑

j=1

p∑

k=1

xijkbjℓckℓ for all (i, ℓ) ∈ [m]⊗ [r].

The dense calculation costs O(mnpr) operations.

Using the sparse structure of X = JΩ,vK, we can be more efficient, as only nonzero tensor
values contribute to the output. Each nonzero contributes to only a single row of U; in
other words, nonzero α multiplied with row ωα2 of B and row ωα3 of C, contributes to
row ωα1 of U. Thus, we can rewrite the above equation as

uiℓ =

q∑

α=1
ωα1=i

vα B
(
ωα2, ℓ

)
C
(
ωα3, ℓ

)
for all (i, ℓ) ∈ [m]⊗ [r]. (3.30)

In practice, we typically iterate contiguously through the nonzeros of X, as follows.

Sparse Mode-1 MTTKRP for 3-way Tensor
U← 0
for α ∈ [q] do ▷ q = nnz(X)

for ℓ ∈ [r] do
U
(
ωα1, ℓ

)
← U

(
ωα1, ℓ

)
+ vα B

(
ωα2, ℓ

)
C
(
ωα3, ℓ

)

end for
end for

If we iterate contiguously through the nonzeros, then the access pattern into the rows of
matrices U, B, and C is generally irregular. We do have flexibility in the structure of
the loops over the nonzeros and the columns of the matrices, which is important for high-
performance implementations.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.7. Sparse Tensors and Operation Efficiencies 83

The total computational work is O(qr) where q = nnz(X). If q ≪ mnp, then the work is
greatly reduced compared to the usual calculation with a dense X.

Exercise 3.33 Write a the algorithm to compute W = X(3)(B ⊙ A) for sparse X =
JΩ,vK.

3.7.4 MTTKRP for d-way Sparse Tensors
In the d-way case, consider the mode-k MTTKRP:

B = X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1).

If the tensor is sparse with X = JΩ,vK, we can do summations over the nonzeros:

B(ik, j) =

n1∑

i1=1

· · ·
nk−1∑

ik−1=1

nk+1∑

ik+1=1

· · ·
nd∑

id=1

(
X(i1, i2, . . . , id)

d∏

ℓ=1
ℓ̸=k

Aℓ(iℓ, j)

)

=

q∑

α=1
ωαk=ik

(
vα

d∏

ℓ=1
ℓ ̸=k

Aℓ

(
ωαℓ, j

))
.

As shown in Algorithm 3.5, we can implement the operation by iterating contiguously
through the nonzeros and accessing the rows of the factor matrices that correspond to the
coordinates of the nonzero. If we iterate contiguously through the nonzeros, then the access
pattern into the matrices is random. The temporary variable z can be an array to enable
flexibility in structuring the loops over the nonzeros (indexed by α) and the columns of
the matrices (indexed by j). However, we want to stress that the variable z should never
be instantiated as a q × r since that much memory is prohibitive. The instantiation should
depend on how the loops are structured. For instance, it is common to process an entire row
in parallel, in which case the z variable should be a vector of length r. The computational
cost to compute the MTTKRP with a sparse tensor with q nonzeros is O(qrd).

Algorithm 3.5 Mode-k MTTKRP for Sparse d-way Tensor

Require: X = JΩ,vK ∈ Rn1×···×nd , Ω ∈ Nq×d, v ∈ Rq , {Aℓ ∈ Rnℓ×r }ℓ∈[d]
ℓ ̸=k

, k ∈ [d]

Ensure: B = X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)
1: function MTTKRP(Ω,v, {Aℓ}, k)
2: B← 0 ▷ zero matrix of size nk × r
3: for α ∈ [q] do ▷ X(ωα1, . . . , ωαd) = vα, q = nnz(X)
4: for j ∈ [r] do
5: z ← vα ▷ temporary variable depending on (α, j)
6: for ℓ ∈ { 1, . . . , k − 1, k + 1, . . . , d } do
7: z ← z Aℓ(ωαℓ, j)
8: end for
9: B(ωαk, j)← B(ωαk, j) + z

10: end for
11: end for
12: return B
13: end function

Since MTTKRP is a key computational kernel, many papers have studied the efficiency of
this operation for sparse tensors, including Bader and Kolda (2007), Helal et al. (2021),

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

84 Chapter 3. Tensor Operations

Kaya and Uçar (2015), Kolda, Bader, and Kenny (2005), Li, Choi, et al. (2017), Li, Sun,
et al. (2018), Phipps and Kolda (2019), and Smith and Karypis (2015).

3.7.5 Other Data Structures for Sparse Tensors
The data structure for a sparse tensor impacts both storage and computational efficiency.
Generally, the preference is to access data in contiguous blocks and reuse these blocks
as much as possible before moving on. Sparse computations, however, necessitate some
amount of jumping around in memory. The optimal choice of data structure depends on the
specific computational architecture and nature of the data tensor.

A hierarchical variation of COO called HiCOO (Li, Sun, et al., 2018) stores the tensor as a
sparse tensor of small dense blocks, potentially reducing the storage and increasing locality.
Similar ideas have been proposed for hypersparse matrices (Buluç and Gilbert, 2008).

There are several storage formats that are mode specific. For example, compressed sparse
fiber (Smith and Karypis, 2015) represents the tensor using a tree structure terminating
in compressed mode fibers. This is akin to compressed sparse row or column format for
matrices, and the representation is specific to a mode ordering. Typically, multiple copies
of the tensor are stored with different compression orders for MTTKRP efficiency in each
mode.

Even for coordinate format, many variations can be considered. For instance, Phipps and
Kolda (2019) extended the COO format to include permutations that sort the nonzeros
according to the indices in mode k to improve data locality, adding some extra storage to
the COO format. Helal et al. (2021) use a linearized version of COO format to gain more
compression and optimize the conversions between linear and tuple indices.

3.8 Tensor Contraction
A tensor contraction combines two tensors by summing, or contracting, across a subset
of matched modes that have the same size, and the result is a tensor whose size is the union
of the sizes of the non-contracted modes, potentially in some specified order. The inner
product is a tensor contraction that contracts along all modes. A mode-k TTM is a tensor
contraction: it contracts mode-k of the tensor with mode-2 of the matrix and arranges the
order of the output modes in a particular way.

3.8.1 Tensor Contraction for 3-way Tensors
Consider two tensors

X ∈ Rm×n×p and Y ∈ Rp×q×r.

The last mode of X and the first mode of Y have the same size, so we can contract along
these modes. The result is a tensor Z of size m× n× q × r and defined by

Z(i1, i2, j1, j2) =

p∑

k=1

X(i1, i2, k)Y(k, j1, j2), (3.31)

for all (i1, i2, j1, j2) ∈ [m] ⊗ [n] ⊗ [q] ⊗ [r]. In this elementwise expression, we specify
an ordering on the modes that are not contracted. While a mode ordering is required of an
implementation, we can express tensor contractions without specifying orders using tensor
network diagrams (see Section 3.8.3).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.8. Tensor Contraction 85

The tensor contraction in Eq. (3.31) can be computed very efficiently using matrix-matrix
multiplication as follows. The result is a matrix of size mn × qr and is computed as
Z = X⊺

(3)Y(1). Recalling that X⊺
(3) and Y(1) require no reorganization of entries, this

translates to the following algorithm:

Example Tensor Contraction as Matrix Multiplication
X← reshape(X,mn× p)
Y ← reshape(Y, p× qr)
Z← XY
Z← reshape(Z,m× n× q × r)

Contracting the last mode of the first tensor with the first mode of the second tensor is one of
the easiest scenarios to convert to matrix-matrix multiplication. More generally, matching
end modes can be done without data movement. Matching general pairs of modes requires
more care to achieve efficient computations. However, tensor contraction can always be
implemented as matrix-matrix multiplication.

Exercise 3.34 Consider two tensors, X ∈ Rm×n×p and Y ∈ Rm×q×r. Consider the tensor
contraction:

Z(i1, i2, j1, j2) =

p∑

k=1

X(k, i1, i2)Y(k, j1, j2), (3.32)

for all (i1, i2, j1, j2) ∈ [n]⊗ [p]⊗ [q]⊗ [r]. Write an algorithm to compute this using only
reshape and matrix-matrix multiplication.

3.8.2 Tensor Contraction for d-way Tensors
Tensor contraction can be challenging to understand because the simplicity of the idea is
quickly overwhelmed by notation. Einstein notation (discussed in Section 3.8.5) is one of
many mathematical formulations for expressing tensor contractions.

To make things a little easier to digest, our first definition assumes that modes of the input
and output tensors have been permuted to a convenient order.

Definition 3.32: Tensor Contraction with Ordered Modes

Let X be a tensor of order (α + µ) and size m1 ×m2 × · · · ×mα × p1 × p2 × · · · × pµ,
and let Y be a tensor of order (β + µ) and size n1 × n2 × · · · × nβ × p1 × p2 × · · · × pµ.
The tensor contraction along the last µ modes yields a tensor Z of order (α + β) and of
size m1 ×m2 × · · · ×mα × n1 × n2 × · · · × nβ where entries of Z are given by

Z(i1, i2, . . . , iα, j1, j2, . . . , jβ) =
p1∑

k1=1

p2∑

k2=1

· · ·
pµ∑

kµ=1

X(i1, i2, . . . , iα, k1, k2, . . . , kµ)Y(j1, j2, . . . , jβ , k1, k2, . . . , kµ),

for all (i1, i2, . . . , iα, j1, j2, . . . , jβ) ∈ [m1]⊗ [m2]⊗· · ·⊗ [mα]× [n1]⊗ [n2]⊗· · ·⊗ [nβ].

The cost of the tensor contraction in Definition 3.32 is O(MNP) where M =
∏α

k=1mk,
N =

∏β
k=1 nk, and P =

∏µ
k=1 pk.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

86 Chapter 3. Tensor Operations

Tensor contractions can be computed using matrix-matrix multiplication as elucidated in
the following proposition.

Proposition 3.33 (Tensor Contraction as Matrix-Matrix Multiplication) Let X be a tensor
of order (α+ µ) and size m1 × · · · ×mα × p1 × · · · × pµ, and let Y be a tensor of order
(β + µ) and size n1 × · · · × nβ × p1 × · · · × pµ. Let A = (α + 1, . . . , α + µ) and
B = (β + 1, . . . , β + µ) specify the last µ modes that are to be contracted. Then the
contraction Z in Definition 3.32 is equivalent to

Z(R×C) = X(Ac×A)Y(B×Bc)

whereR = (1, . . . , α), C = (α+ 1, . . . , α+ β), Ac = (1, . . . , α), and Bc = (1, . . . , β).

The tensors are not always arranged with the modes ordered so that the last µ modes are
matching. This is a matter of indexing and can easily be remedied with a permutation that
has no impact on the mathematical formula.

3.8.3 Tensor Network Diagrams
Sometimes it is useful to visualize tensor contraction using tensor network diagrams as
shown in Fig. 3.11. In a tensor network diagram, each tensor is represented by a node,
and each mode is represented by an edge. Contraction along a mode is indicated when
edges from two different nodes connect. (This is only possible if both modes are the same
dimension.) The contraction binds the two tensors together, and the output is a single tensor
with the union of the non-connected edges. We often indicate the size of the dimension by
labeling the edges. Tensor network diagrams do not indicate the order of the modes, so this
removes some of the notational complication. However, any implementation of the tensor
contraction needs to take the mode order into account.

X Y Z⇒

m
1

m
1

m
2

m
2

m3 m3

m
α

m
α

n 1 n 1

n2 n2

n3 n3

n
β

n
β

p1

p2

p3

pµ

Figure 3.11: Tensor network of tensor-tensor product of X of size m1 ×m2 × · · · ×mα ×
p1 × p2 × · · · × pµ and Y of size n1 × n2 × · · · × nβ × p1 × p2 × · · · × pµ, contracting
along last µ modes, to form Z of size m1 ×m2 × · · · ×mα × n1 × n2 × · · · × nβ

We can express, for example, matrix-vector products using tensor network diagrams, as we
show in the following example.

Example 3.8 (Tensor Network Diagram for Matrix-Vector Product)

A xm n
Let A ∈ Rm×n and x ∈ Rn. The tensor network diagram
to the left shows how Ax can be shown as a tensor net-
work.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

3.8. Tensor Contraction 87

The TTM product can be illustrated as a tensor network. The tensor network view does not
distinguish the mode index on the tensor or the matrix.

Example 3.9 (Tensor Network Diagram for TTM)

X Un

m

p

r Let X ∈ Rm×n×p and U ∈ Rn×r. The tensor network
diagram on the left expresses X×2 U.

One utility of tensor networks is the ability to draw a collection of tensor contractions. In
the next example, we show two TTMs.

Example 3.10 (Tensor Network Diagram for two TTMs)

X VU m n

pq r Let X ∈ Rm×n×p, U ∈ Rm×r, and V ∈ Rn×r.
The tensor network diagram on the left expresses
X×1 U×2 V.

Exercise 3.35 Draw the tensor network diagram for X ×1 U ×2 V ×3 W where X is a
three-way tensor and U,V,W are appropriately sized matrices.

The tensor contraction in Eq. (3.31) is illustrated in the next example.

Example 3.11 (Tensor Network Diagram for Tensor Contraction of 3-way Tensors)

X Y
p

m

n

q

r

For tensors, X ∈ Rm×n×p and Y ∈ Rp×q×r, consider the
tensor contraction defined by

Z(i1, i2, j1, j2) =

p∑

k=1

X(i1, i2, k)Y(k, j1, j2).

Its tensor network diagram is shown to the left.

Exercise 3.36 Let X ∈ Rm×n×p,Y ∈ Rq×m×r. Define the tensor Z ∈ Rn×p×q×r as

Z(i1, i2, j1, j2) =

m∑

k=1

X(k, i1, i2)Y(j1, k, j2).

Draw the tensor network diagram of the tensor contraction.

3.8.4 Batched Tensor Contractions
Tensor contractions may also include batched modes. In this case, the batched modes
are neither inner (contracted) or outer (uncontracted) modes; instead, they correspond to
common modes across the input and output tensors. We can view batched contractions
as a set of independent contractions performed on corresponding subtensors, one for each
configuration of batched mode indices.

The simplest batched operation is the Hadamard (elementwise) product of vectors z =

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

88 Chapter 3. Tensor Operations

x ∗ y, with elements specified by zi = xiyi. Another batched operation is scaling the
columns of a matrix each by a different value, i.e., if X ∈ Rm×n and y ∈ Rn, we have
zij = xijyj for all (i, j) ∈ [m]⊗ [n].

A Khatri-Rao product of two matrices (see Appendix A.4.4) is a batched contraction of two
matrices with no inner mode, and with the output reshaped into a matrix. If K = A ⊙B,
then Kℓr = AirBjr with ℓ = L(i, j).

In Sections 3.5 and 3.6.2, we use batched matrix-vector multiplications during efficient
computation of (sequences of) MTTKRPs. In this case, we have a 3-way tensor and a ma-
trix as inputs, and slices of the tensor are multiplied with columns of the matrix. Expressed
elementwise, the batched contraction is given by (see Eq. (3.26)): vjℓ =

∑m
i=1 yijℓaiℓ for

all (j, ℓ) ∈ [n] ⊗ [r]. In this case, there is one inner mode indexed by i, one outer mode
indexed by j, and one batched mode indexed by ℓ.

General batched tensor contractions need specification of the inner modes of each input
tensor as well as specification of the batched modes of each input tensor. Pairs of inner
modes and pairs of batched modes must have matching dimensions. Some batched tensor
contractions can be implemented using the interface for Batched BLAS (Abdelfattah et al.,
2021), which has the potential to deliver higher performance than using a sequence of calls
to BLAS.

3.8.5 Einstein Notation
As noted in Section 3.8.2, notation for tensor contractions can be unwieldy. In Einstein
notation, tensor contractions are expressed elementwise and summation symbols are omit-
ted. Contracted modes are indicated by indices that appear in both inputs and not in the
output. Some versions separate the indices into subscripts and superscripts, indicating co-
variant (e.g., row vector) and contravariant (e.g., column vector) orientations, respectively.
Einstein notation can express tensor contractions as defined in Definition 3.32 as well as
the more general batched tensor contractions discussed in Section 3.8.4.

Some examples of Einstein notation are as follows.

• Vector outer product X = a , b , c: xijk = aibjck,

• Tensor inner product u = ⟨X,Y⟩: u = xijkyijk,

• Matrix-vector multiplication y = Ax: yi = aijxj ,

• Tensor contraction Z(j, k, ℓ, h) =
∑

i X(i, j, k)Y(ℓ, i, h): zjkℓh = xijkyℓih,

• Hadamard product z = x∗ y: zi = xiyi,

• Batched matrix-vector products V(j, ℓ) =
∑

i Y(i, j, ℓ)A(i, ℓ): vjℓ = yijℓaiℓ.

We can differentiate among inner, outer, and batched modes when a batched tensor con-
traction is specified in Einstein notation: inner modes correspond to indices that appear in
both inputs but not the output, outer modes correspond to indices that appear in one input
and the output, and batched modes correspond to indices that appear in both inputs and the
output.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Tucker

Decompositio
n

Part II

89

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

4 Tucker Decomposition

The Tucker decomposition (Hitchcock, 1927; Tucker, 1966) deconstructs a tensor into a
core tensor and factor matrices. It is most often useful in the context of compression, in
which case there is some trade-off between the accuracy of the approximation and the level
of compression. The Tucker decomposition chooses the factor matrices such that the range
of factor matrix k captures most of the span of the mode-k fibers of the tensor. These factor
matrices are used to compress the original tensor to a smaller core tensor; see Fig. 4.1.

≈
full tensor

core

fa
c

to
r1

factor 2

fa
cto

r 3

Figure 4.1: Tucker decomposition

Tucker decompositions can yield significant compression with minimal loss in accuracy.
For scientific combustion simulation datasets, Ballard, Klinvex, et al. (2020) showed com-
pression ratios of 100 to 200,000 times, which equates to 99–99.999% compression. The
size of the core tensor determines the degree of compression.

This chapter provides a high-level overview of the Tucker decomposition. Section 4.1 de-
scribes the Tucker decomposition and the compression ratio. We discuss how to choose the
core size in Section 4.2 and algorithms in Section 4.3. Reconstruction from a compressed
Tucker representation is discussed in Section 4.4; in particular, partial reconstruction does
not require an intermediate full reconstruction. Finally, Section 4.5 demonstrates the effec-
tiveness of Tucker compression on the 2048×256×256 Miranda scientific simulation data
tensor. We see that we can generate a Tucker approximation that is 148× smaller than the
original tensor and has less than 1% error.

4.1 Formulation of Tucker Decomposition
Before we delve into the decomposition, we first define the multilinear rank or multirank
of a tensor. This captures the ranks of all mode-k unfoldings.

91

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

92 Chapter 4. Tucker Decomposition

Definition 4.1 (Multirank) The multilinear rank or multirank of a 3-way tensor X is

multirank(X) = (q, r, s) where
q = rank(X(1)), r = rank(X(2)), and s = rank(X(3)).

More generally, for a d-way tensor X, it is

multirank(X) = (r1, r2, . . . , rd) where rk = rank
(
X(k)

)
for all k ∈ [d].

4.1.1 Tucker Decomposition for 3-way Tensors
In the 3-way case, given a tensor X ∈ Rm×n×p and target core size q×r×s, we want to find
a core tensor G ∈ Rq×r×s and factor matrices U ∈ Rm×q , V ∈ Rn×r, and W ∈ Rp×s

such that

xijk ≈
q∑

α=1

r∑

β=1

s∑

γ=1

gαβγuiαvjβwkγ for all (i, j, k) ∈ [m]⊗ [n]⊗ [p]. (4.1)

The shorthand expression is
X ≈ JG;U,V,WK.

Another way to express this using tensor-times-matrix (TTM) notation (Section 3.3) is

X ≈ G×1 U×2 V ×3 W. (4.2)

We generally assume that the multilinear rank of G is equal to its size and so refer to a
Tucker decomposition with a core of size q × r × s as a rank-(q, r, s) Tucker decompo-
sition

Exercise 4.1 If T = JG;U,V,WK, G is smaller than T in all modes, and U, V, and
W have full column rank, show multirank(T) = multirank(G). (Hint: Use Proposi-
tion A.6 (c).)

Visually, this is pictured as in Fig. 4.2. This figure shows the orientation of each tensor and
matrix with directional arrows. For instance, the (1, 1) element of W is in the lower left
corner since numbering for mode-3 goes into the page. We orient each factor so that it is
perpendicular to the mode it multiplies.

Xm

n

p

≈ q

r

s

G

U

V

W

m

q

r

n

s

p

Figure 4.2: Tucker decomposition X ≈ JG;U,V,WK

We say the decomposition is exact if X = JG;U,V,WK. An example of an exact de-
composition is shown in Example 4.1. The Tucker decomposition is not unique, and we

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

4.1. Formulation of Tucker Decomposition 93

show an alternative exact decomposition of the tensor from Example 4.1 in Example 4.4.
A detailed discussion of non-uniqueness can be found in Section 5.3.

Example 4.1 (Tucker Decomposition) Consider the 3× 3× 3 tensor X defined by

X1 =

1 1 0
1 −1 −1
0 2 1

 , X2 =

2 2 0
1 −3 −2
1 5 2

 , and X3 =

1 1 0
0 −2 −1
1 3 1

 .

It has an exact rank-(2, 2, 2) Tucker decomposition given by JG;U,V,WK with

G1 =

[
1 0
1 1

]
, G2 =

[
1 0
0 1

]
, U =

1 0
0 −1
1 1

 , V =

1 −1
1 1
0 1

 , and W =

0 1
1 1
1 0

 .

Visually, we can depict this as:

1 3 1

0 -2 -1

1 1 0

1 5 2

1 -3 -2

2 2 0

0 2 1

1 -1 -1

1 1 0
=

0 1

1 0

1 1

1 0

1

0

1

0

-1

1

1 1 0

-1 1 1

0
1

1

1
1

0

The orientations of the V and W matrices are shown to conform the the orientation of the
core tensor so that the first row of V is vertical, and the first row of W is closest to the
core tensor.

Exercise 4.2 For the tensor in Example 4.1, verify X = JG;U,V,WK using Eq. (4.1) for
elements (a) x111, (b) x322, and (c) x213.

When the Tucker decomposition is approximate, we measure the approximation error as
the relative error:

approximation
error

=

∥∥X− JG;U,V,WK
∥∥

∥∥X
∥∥ .

The compression ratio is the size of the original tensor versus the total size of the Tucker
tensor (the size of the core plus the size of the factor matrices), yielding

compression
ratio

=
mnp

qrs+mq + nr + ps
≈ mnp

qrs
. (4.3)

Example 4.2 (Compression Ratio, 3-way) If X is of size 100 × 100 × 100 and G is of
size 25× 25× 25, then

compression
ratio

=
1003

253 + 3(100)(25)
= 43.24 ≈ 1003

253
= 64.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

94 Chapter 4. Tucker Decomposition

4.1.2 Tucker Decomposition for d-way Tensors
In the d-way case, given X ∈ Rn1×n2×···×nd and target core size r1 × r2 × · · · × rd, we
want to find a core tensor G ∈ Rr1×r2×···×rd and factor matrices Uk ∈ Rrk×nk such that

X(i1, i2, . . . , id) ≈
r1∑

j1=1

r2∑

j2=1

· · ·
rd∑

jd=1

G(j1, j2, . . . , jd)U1(i1, j1)U2(i2, j2) · · ·Ud(id, jd)

for all (i1, i2, . . . , id) ∈ [n1]⊗ [n2]⊗ · · · ⊗ [nd]. The shorthand expression is

X ≈ JG;U1,U2, . . . ,UdK.
Another way of expressing this using TTM notation is

X ≈ G×1 U1 ×2 U2 · · · ×d Ud. (4.4)

We refer to a Tucker decomposition with a core of size r1 × r2 × · · · × rd as a rank-
(r1, r2, . . . , rd) Tucker decomposition.

The approximation error is the relative error:

approximation
error

=

∥∥X− JG;U1,U2, . . . ,UdK
∥∥

∥∥X
∥∥ .

The compression ratio is the size of the original tensor versus the total size of the Tucker
tensor (the size of the core plus the size of the factor matrices), yielding

compression
ratio

=

∏d
k=1 rk +

∑d
k=1 rknk∏d

k=1 nk

≈
∏d

k=1 rk∏d
k=1 nk

.

Example 4.3 (Compression Ratio, 4-way) If X is of size 100× 100× 100× 100 and G

is of size 25× 25× 25× 25, then

compression
ratio

=
1004

254 + 4(100)(25)
= 249.6 ≈ 1004

254
= 256.

Exercise 4.3 If a tensor of size 384 × 384 × 256 × 7 has an approximate Tucker decom-
position with a core of size 83× 81× 23× 6, what is the compression ratio?

4.2 Choosing the Tucker Decomposition Rank
The rank of a Tucker decomposition, given by the size of G, directly impacts the amount
of compression, so the choice of rank is consequential.

There are two formulations for the approximate Tucker decomposition optimization prob-
lem. We can pick whether to prioritize compression (i.e., by using a fixed compression
ratio) or accuracy (i.e., by specifying an error bound).

Compression
Accuracy

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

4.3. Methods for Computing Tucker Decomposition 95

4.2.1 Specified Multirank
The first option in finding a Tucker decomposition is to fix the Tucker core size, which fixes
the compression ratio. Then the goal is to find the Tucker approximation with the lowest
error for that given core size.

Consider the 3-way case with X ∈ Rm×n×p. We specify that the core will be of size
q × r × s, so the goal is to find a rank-(q, r, s) Tucker decomposition that minimizes the
error:

min
G,U,V,W

∥∥X− JG;U,V,WK
∥∥

subject to G ∈ Rq×r×s,U ∈ Rm×q,V ∈ Rn×r,W ∈ Rp×s.
(4.5)

In the rank-specified formulation, we know what the compression ratio will be but cannot
say in advance what the error will be.

Finding a minimizer of Eq. (4.5) that yields an optimal Tucker decomposition is a nonlinear
nonconvex optimization problem without a closed form solution, but we can find approxi-
mations that are within

√
d of optimal for a d-way tensor using the HOSVD or ST-HOSVD

algorithms described below.

4.2.2 Specified Accuracy
The second option in finding a Tucker decomposition is to specify the accuracy in terms of
a maximum relative error, ε. Consider a 3-way tensor X ∈ Rm×n×p. We seek sizes q, r,
and s such that a rank-(q, r, s) Tucker decomposition maximizes the compression ratio in
Eq. (4.3) while satisfying

∥∥X− JG;U,V,WK
∥∥ ≤ ε

∥∥X
∥∥,

Achieving the error bound is always possible, as we can obtain zero error by taking G = X

and identity matrices for each factor.

Consider the case of zero error (ε = 0), which we refer to as an exact Tucker decomposi-
tion. If we choose (q, r, s) to be the multilinear rank of X, then we can find a rank-(q, r, s)
Tucker decomposition with zero error. We defer further details of why this works and how
to choose the ranks for other values of ε until Chapter 7.

In the error-specified formulation, we cannot guarantee in advance what the Tucker ranks
and resulting compression ratio will be.

○ For Tucker decomposition, we can specify core rank or error tolerance.

4.3 Methods for Computing Tucker Decomposition
Direct or iterative methods can be used for computing Tucker decompositions. Compu-
tational algorithms are covered in depth in Chapter 6, but we provide brief overviews of
the main methods here. All the methods that we discuss depend on two key functions, as
follows.

• Leading left singular vectors: LLSV(X, r) takes as input an m × n matrix X and
rank r ≤ min {m,n } and returns an orthonormal left factor matrix (U) in the solu-
tion of the low-rank matrix factorization problem

min
U,Z
∥X−UZ∥2F subject to U ∈ Om×r, Z ∈ Rr×n.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

96 Chapter 4. Tucker Decomposition

An optimal solution is given by a matrix U whose columns are the r leading left
singular vectors of X and Z = U⊺X (see Appendix A.8). This can also work with a
specified error tolerance on the matrix approximation problem rather than a specified
rank. If m ≤ n, the cost is O(m2n).

• Tensor compression: The TTM operation denoted X×k U⊺ compresses the tensor
X in mode k using orthonormal U. If X is of size n1×n2×· · ·×nd and U is of size
nk × r, the cost to apply this operation is

∏d
k=1 nkr, and the size of the compressed

result is n1 × · · · × nk−1 × r × nk+1 × · · · × nd. Compression can be applied in
different modes in any order without changing the result.

4.3.1 Higher-Order SVD (HOSVD)
The higher-order SVD (HOSVD) algorithm is probably the best-known method for com-
puting a Tucker decomposition. It was first proposed by Tucker (1966) as the Tucker1
method and later popularized as HOSVD by De Lathauwer, De Moor, et al. (2000a). It is
sometimes also referred to as the multilinear SVD (MLSVD).

The HOSVD can work with a specified rank or use a specified accuracy to determine an
appropriate rank. (The HOSVD inherits from the SVD the ability to work with either a
fixed error or fixed rank; see Appendix A.8.) The HOSVD solves the problem for each
mode independently, using LLSV of each mode-wise unfolding. For a 3-way tensor X,
the pseudocode to compute a rank-(q, r, s) Tucker decomposition T = JG;U,V,WK is as
follows.

HOSVD
1: U← LLSV(X(1), q)
2: V← LLSV(X(2), r)
3: W← LLSV(X(3), s)
4: G← X×1 U⊺ ×2 V⊺ ×3 W⊺ ▷ Compress to size q × r × s

If we specify the accuracy ε of the Tucker decomposition, we would solve each LLSV to
an accuracy of ε/

√
3. We defer the detailed explanation of this algorithm to Chapter 6 and

touch here on just a few salient points. The HOSVD is a direct algorithm, not iterative.
The HOSVD computes only an approximate solution to the Tucker minimization problem
in Eq. (4.5). However, that solution is within

√
3 of optimal, meaning that

∥∥X− T
∥∥ ≤
√
3
∥∥X− T∗∥∥,

where where T is the solution computed by the HOSVD and T∗ is the optimal rank-(q, r, s)
Tucker approximation. For this reason, we say that the HOSVD is quasi-optimality; see
Chapter 7 for further discussion.

If (q, r, s) = multirank(X), then the HOSVD produces an exact decomposition such that
JG;U,V,WK = T.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

4.3. Methods for Computing Tucker Decomposition 97

Example 4.4 (Exact HOSVD) Consider the 3× 3× 3 tensor used in Example 4.1. Com-
puting the rank-(2, 2, 2) Tucker decomposition of that tensor using the HOSVD yields the
following decomposition:

U =

0.3017 0.7587
−0.5062 0.6406
0.8079 0.1181

 , V =

0.1529 0.9000
0.9124 0.0302
0.3797 −0.4349

 , W =

0.3429 −0.7410
0.8132 −0.0735
0.4703 0.6675

 ,

G(:, :, 1) =

[
8.3325 −0.0960
0.1117 3.0290

]
, and G(:, :, 2) =

[
0.2405 0.8765
−0.4054 −0.6190

]
.

This decomposition is different than that in Example 4.1 even though both are exact.

Exercise 4.4 What is the computational complexity of the HOSVD to compute a rank-
(r, r, r) Tucker decomposition for an n× n× n tensor?

The situation in the d-way case is similar. Suppose X is a d-way tensor of size n1 × n2 ×
· · · × nd and we want to compute a rank-(r1, r2, . . . , rd) Tucker decomposition. Then, for
each mode k ∈ [d], HOSVD computes a factor matrix that best approximates the span the
mode-k fibers of X in the sense of minimizing the error of the mode-k fibers projected
onto this basis. Each factor matrix is computed via the SVD of the mode-k unfolding (the
matrix whose columns are the mode-k fibers of X). If we specify the accuracy ε of the
Tucker decomposition instead of the ranks, we would solve each LLSV to an accuracy of
ε/
√
d. In the d-way case, the quasi-optimality result is

∥X− T∥ ≤
√
d∥X− T∗∥,

where T is the solution computed by the HOSVD and T∗ is the optimal approximation for
the given rank.

We delay a detailed complexity discussion until Section 6.2 and discuss a basic scenario
here. For a d-way tensor of size n × · · · × n and a rank-(r, . . . , r) approximation with
r ≤ n, the computational cost of HOSVD is

O(dnd+1).

4.3.2 Sequentially Truncated HOSVD (ST-HOSVD)

○ ST-HOSVD has the same quasi-optimality as HOSVD,
but the computational complexity is lower.

Vannieuwenhoven et al. (2012) and Hackbusch (2019) introduced a variant of HOSVD
called sequentially truncated HOSVD (ST-HOSVD) that is more computationally effi-
cient than HOSVD and generally preferred. It also uses the SVD of the mode-k unfolding
but differs from HOSVD in that it compresses mode k as soon as it computes the mode-k
factor matrix, before computing the mode-(k+1) factor matrix. ST-HOSVD can also work
with a fixed error or fixed rank.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

98 Chapter 4. Tucker Decomposition

ST-HOSVD
1: U← LLSV(X(1), q)
2: G← X×1 U⊺ ▷ Compress to size q × n× p
3: V← LLSV(G(2), r)
4: G← G×2 V⊺ ▷ Compress to size q × r × p
5: W← LLSV(G(3), s)
6: G← G×3 W⊺ ▷ Compress to size q × r × s

Like HOSVD, the ST-HOSVD method is not iterative and has fixed computational cost
given the dimensions and rank.

Exercise 4.5 What is the computational complexity of the ST-HOSVD to compute a rank-
(r, r, r) Tucker decomposition for an n× n× n tensor?

The quasi-optimality guarantees are the same for HOSVD and ST-HOSVD. In practice,
ST-HOSVD often yields lower error than HOSVD, but there is no guarantee.

We delay a detailed complexity discussion until Section 6.3, but for a d-way tensor of size
n × · · · × n and a rank-(r, . . . , r) approximation with r ≤ n, the computational cost of
ST-HOSVD is

O(nd+1).

Compared to the cost of HOSVD, ST-HOSVD is about O(d) times cheaper, ignoring the
lower order terms of the computational cost.

4.3.3 Higher-order Orthogonal Iteration (HOOI)
The higher-order orthogonal iteration (HOOI) algorithm is an iterative method for solv-
ing the rank-specified formulation. The 3-way method was originally known as Tucker
ALS or TUCKALS3, as proposed by Kroonenberg and De Leeuw (1980), and the d-way
extension is from Kapteyn et al. (1986). The HOOI name was popularized by De Lath-
auwer, De Moor, et al. (2000b).

The HOOI algorithm starts with initial guesses for the factor matrices, uses those to par-
tially compress the tensor in all modes but one, and uses that compressed version to the
solve for the remaining factor matrix. This algorithm is iterative, so initial guesses for the
factor matrices are needed by the algorithm. Its solution will always be at least as good as
its initial guess, but it has no guarantees of quasi-optimality on its own.

HOOI
1: while not converged do
2: Y← X×2 V⊺ ×3 W⊺ ▷ Compress to size m× r × s
3: U← LLSV(Y(1), q)
4: Y← X×1 U⊺ ×3 W⊺ ▷ Compress to size q × n× s
5: V← LLSV(Y(2), r)
6: Y← X×1 U⊺ ×2 V⊺ ▷ Compress to size q × r × p
7: W← LLSV(Y(3), s)
8: end while
9: G← Y×3 W⊺ ▷ Compress to size q × r × s

HOOI can be initialized with the solutions produced by HOSVD or ST-HOSVD, but there
is not much room for improvement because these are quasi-optimal already. HOOI is highly
effective with a random initialization and quickly converges in practice.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

4.4. Reconstruction from Tucker Decomposition 99

For a d-way tensor of size n×· · ·×n and a rank-(r, . . . , r) approximation with r ≤ n, the
computational cost of a single iteration of HOOI is

O(ndr).

A single iteration of HOOI is less than the total cost of ST-HOSVD by a factor of O(n/r);
on the other hand, HOOI requires multiple iterations. If HOOI needs fewer then O(n/r)
iterations, it might be faster. We provide a detailed algorithm and general complexity
discussion in Section 6.4.

4.3.4 Choice of Method
Given the same target rank, there is empirically little difference in the relative errors ob-
tained by HOSVD, ST-HOSVD, and HOOI, as all three methods provide close to optimal
solutions for the specified rank. In fact, HOSVD and ST-HOSVD are quasi-optimal meth-
ods; specifically, the Tucker decomposition produced by either method has error within a
factor of

√
d of optimal for a d-way tensor; see Chapter 7.

○ For a fixed multilinear rank, both HOSVD and ST-HOSVD produce approximation
Tucker decompositions that are within

√
d of optimal for a d-way tensor.

In the case of specified rank, then, the choice of method depends on speed. By compar-
ing the computational costs of the direct methods, we can conclude that ST-HOSVD is
faster than HOSVD and generally preferable. Each iteration of HOOI is cheaper than ST-
HOSVD, but which method is faster depends on how much cheaper each HOOI iteration
is and how many iterations HOOI requires. The relative cost of each iteration depends on
the target ranks: greater compression ratios favor HOOI and smaller compression ratios
favor ST-HOSVD. While HOOI does not have the same quasi-optimality guarantees as ST-
HOSVD, it can achieve comparable approximation error to ST-HOSVD in as few as two
iterations when initialized randomly.

In the case of specified approximation error, both HOSVD and ST-HOSVD can adaptively
select the ranks to satisfy the error tolerance. Because ST-HOSVD is cheaper than HOSVD,
it is preferred in this case. The HOOI algorithm depends on a specification of the ranks, so
it cannot adapt ranks subject to the error tolerance without further modification.

For truly massive tensors, a main challenge is storing the original tensor before compres-
sion. This has motivated the development of parallel (Ballard, Klinvex, et al., 2020) and
streaming algorithms (Sun et al., 2020).

4.4 Reconstruction from Tucker Decomposition
Tucker decomposition compresses the input tensor. In many cases, we eventually want
to reconstruct the compressed tensor. A particular advantage of Tucker decomposition
is that we can do partial reconstruction efficiently, in time and space proportional to the
reconstructed part. We give a high-level overview of reconstruction here. A more complete
discussion is provided in Sections 5.5 and 5.6.

4.4.1 Full Reconstruction
It order to completely decompress a Tucker approximation, we reconstruct the full tensor
from the Tucker format by evaluating Eq. (4.2) or Eq. (4.4). This means multiplying the

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

100 Chapter 4. Tucker Decomposition

core tensor with the factor matrices in their respective modes. (This operation is known as
multi-TTM, as described in Sections 3.4.1 and 3.4.2.)

For a 3-way tensor of size m×n× p and a rank-(q, r, s) approximation, the computational
cost of full reconstruction is

O(mqrs+mnrs+mnps),

assuming the TTMs are performed in the order { 1, 2, 3 }.

For a d-way tensor of size n1 × n2 × · · · × nd and a rank-(r1, r2, . . . , rd) approximation,
the cost is

O
(

d∑

k=1

(k∏

i=1

ni

)(d∏

j=k

rj

))
,

assuming we reconstruct the modes in the order { 1, 2, . . . , d }. The cost of full reconstruc-
tion is less than the cost of methods for computing the Tucker decomposition.

These costs are detailed in Section 5.5.

4.4.2 Partial Reconstruction

○
Given a Tucker-format tensor, we can partially reconstruct

a subtensor of the full-format tensor without first forming the
full tensor, saving both computation and memory footprint.

If we want to reconstruct only a part of the Tucker approximation, we could perform a
full reconstruction and then extract the desired subtensor. A particular advantage of using
Tucker compression is that we can perform partial reconstruction more cheaply by exploit-
ing the structure of Tucker decomposition. If we want to reconstruct only a subset of the
indices of a particular mode, we can first extract the corresponding rows of the factor ma-
trix in that mode before performing combining it with everything else. This makes the
computational cost of reconstruction much cheaper and reduces the memory footprint to
only the size of the subtensor we are reconstructing.

If the subtensor corresponds to subsets of indices in all modes, we extract the rows of
each factor matrix first, reducing the dimensions in every mode before performing the
computation. For example, the cost to reconstruct a subtensor of size m̄ × n̄ × p̄ from a
rank-(q, r, s) approximation of a tensor with full dimensions m× n× p reduces to

O(m̄qrs+ m̄n̄rs+ m̄n̄p̄s),

assuming the natural TTM order, which is significantly cheaper than the cost of full recon-
struction.

We can perform other mode-wise computations besides selection as well. For example, we
can down-sample a particular mode by taking averages of consecutive indices. Because
this operation is a linear operation applied to the fibers of that mode, the operation can be
applied to the factor matrix rather than the fully reconstructed tensor.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

4.5. Example: Tucker Compression of Miranda Scientific Simulation Tensor 101

4.5 Example: Tucker Compression of Miranda
Scientific Simulation Tensor
The Miranda scientific simulation tensor (Ballard, Kolda, and Lindstrom, 2022) is of size
2048 × 256 × 256 and represents density at a snapshot in time from a 3D fluid flow sim-
ulation of mixing fluids of different densities. The dataset is described in detail in Sec-
tion 1.5.1.

Exercise 4.6 Load the Miranda scientific simulation tensor. (a) How many entries does the
Miranda tensor have? (b) What is the range of values?

We can compress the Miranda scientific simulation tensor using low-rank Tucker decom-
positions. In Table 4.1, we summarize the results of compression with four different error
tolerances. For instance, using an error tolerance of ε = 10−2 yields a Tucker decompo-
sition of rank 232 × 43 × 41 with relative error 0.00983. This is 148× smaller than the
original data set.

Table 4.1: Tucker compression of 2048× 256× 256 Miranda scientific simulation tensor

Tolerance (ε) Relative Error Core Size Compression
Ratio

% of Original
Size

10−1 8.73 · 10−2 13× 3× 2 4,775 0.02
10−2 9.83 · 10−3 232× 43× 41 148 0.67
10−3 9.88 · 10−4 583× 102× 99 19 5.31
10−4 9.85 · 10−5 934× 161× 158 5 19.19

Exercise 4.7 Load the Miranda dataset. (a) Compress the Miranda scientific simulation
tensor using ε = 10−3. (b) What is the relative error? (c) What is the range of values in the
reconstruction? (d) What is the largest entrywise error?

To get a sense of the errors introduced, we inspect a subset of the data at different com-
pression levels in Fig. 4.3. We visualize a set of partial lateral slices for different j values.
In these images, gravity is pulling the denser fluid downwards. There is no discernible
visual difference up to a compression level of 19× (5% of the original data size). At 148×
compression (< 1% of the original data size), we see slight ghosting artifacts. At 4,775×
compression (< 0.05% of the original data), the picture becomes entirely blurry, giving
only a very approximate sense of the densities of the mixing fluids.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

102 Chapter 4. Tucker Decomposition

Original

X
(
5
0
0
:9
0
0
,
6
4
,
1
:2
5
6
)

Tol: ε = 10−3

Comp: 19×
Tol: ε = 10−2

Comp: 148×
Tol: ε = 10−1

Comp: 4775×

Original

X
(
5
0
0
:9
0
0
,
1
2
8
,
1
:2
5
6
)

Tol: ε = 10−3

Comp: 19×
Tol: ε = 10−2

Comp: 148×
Tol: ε = 10−1

Comp: 4775×

Original

X
(
5
0
0
:9
0
0
,
1
9
2
,
1
:2
5
6
)

Tol: ε = 10−3

Comp: 19×
Tol: ε = 10−2

Comp: 148×
Tol: ε = 10−1

Comp: 4775×

j
=
64

j
=
12
8

j
=
19
2

Figure 4.3: Original versus compressed Miranda scientific simulation dataset. On the left is
the Miranda tensor of size 2048× 256× 256, with orange boxes around the regions shown
on right. On the right are example regions X(500:900, j, 1:256) for j ∈ { 64, 128, 192 }
for the original tensor and three reconstructions.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

5 Tucker Tensor Structure

Before we talk about algorithms for computing the Tucker decomposition in Chapter 6, we
delve into the special properties of a Tucker tensor. A Tucker tensor is a tensor that is
stored as the product of a core tensor with a set of factor matrices (decomposed format)
rather that the full version (a dense tensor). In this chapter, we explain its structure, its lack
of uniqueness, how that enables us to impose orthonormality on the factors, and how to
express its vectorization and unfoldings in terms of its constituent parts. This knowledge is
useful in the algorithm discussions that follow. Computationally, its structure makes many
computations (e.g., computing the norm) less expensive than with the full tensor.

5.1 Tucker Tensor Format
A Tucker tensor is a tensor that is expressed as the TTM product (see Section 3.3) of a
core tensor and factor matrices.

5.1.1 Tucker Format for 3-way Tensors
For a 3-way tensor, the Tucker format is as follows.

Definition 5.1: Tucker Tensor (3-way)

A 3-way Tucker tensor T = JG;U,V,WK is defined to be the multi-TTM product of a
core tensor G ∈ Rq×r×s with factor matrices U ∈ Rm×q , V ∈ Rn×r, W ∈ Rp×s. In
other words,

T = JG;U,V,WK ≡ G×1 U×2 V ×3 W ∈ Rm×n×p. (5.1)

We often say the Tucker tensor is rank-(q, r, s) because that is the size of the core.

Using the properties of TTM, the (i, j, k) element of T from Eq. (5.1) can be expressed as

tijk =

q∑

α=1

r∑

β=1

s∑

γ=1

gαβγ uiαvjβwkγ . (5.2)

Exercise 5.1 Using the definition of TTM (Section 3.3.1), prove the elementwise expres-
sion Eq. (5.2) for T = G×1 U×2 V ×3 W.

A 3-way Tucker tensor is depicted in Fig. 5.1. We show factor matrices in orientations that
“match up” so that the row dimension is in line with the corresponding mode of T and the
column dimension is perpendicular to the corresponding mode of G. This means that V

103

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

104 Chapter 5. Tucker Tensor Structure

T

m× n× p

G

U

V

W

q × r × s

m× q

n× r

p× s

=

m

n
p

m

n

p

q

rsq

r

s

Figure 5.1: 3-way Tucker tensor

looks transposed and W looks flipped. The rows in U,V,W and matching dimensions of
T are shown with light colors, The columns in the matrices and matching dimension of G
are shown with corresponding dark colors. The arrows show the directions of each mode.

A major motivation for the Tucker tensor format is its storage efficiency. Consider the
simplified case of a tensor of size n × n × n stored as a Tucker tensor with a core of size
r×r×r. The storage for the Tucker core and 3 factor matrices is r3+3nr; in comparison,
the storage for the full tensor is n3. If n = 100 and r = 10, the Tucker tensor is 250×
smaller than the equivalent full tensor.

Exercise 5.2 (3-way Tucker Tensor Storage) What is the storage for a 3-way Tucker ten-
sor of size m× n× p with a core of size q × r × s?

Exercise 5.3 Let X = JG1;U1,V1,W1K and let Y = JG2;U2,V2,W2K be Tucker ten-
sors of sizem×n×p. Further, assume G1 is of size q1×r1×s1 and G2 is of size q2×r2×s2.
Express Z = X+Y as a Tucker tensor with a core of size (q1+q2)× (p1+p2)× (q1+q2).

5.1.2 Tucker Format for d-way Tensors

Definition 5.2: Tucker tensor (d-way)

A d-way Tucker tensor T = JG;U1,U2, . . . ,UdK is defined to be the multi-TTM product
of a core tensor G ∈ Rr1×r2×···×rd with factor matrices Uk ∈ Rnk×rk for all k ∈ [d]. In
other words,

T = JG;U1,U2, . . . ,UdK = G×1 U1 ×2 U2 · · · ×d Ud ∈ Rn1×n2×···×nd . (5.3)

We say the Tucker tensor is rank-(r1, r2, . . . , rd).

The (i1, i2, . . . , id) element of T from Eq. (5.3) can be expressed as

T(i1, i2, . . . , id) =

r1∑

j1=1

r2∑

j2=1

· · ·
rd∑

jd=1

G(j1, j2, . . . , jd)

d∏

k=1

Uk(ik, jk). (5.4)

The storage differentials become more extreme for higher-order tensors. The cost to store
the Tucker tensor is

∏d
k=1 rk+

∑d
k=1 rknk versus

∏d
k=1 nk. The size of the Tucker tensor

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

5.2. Unfolding a Tucker Tensor 105

is still exponential in d, but the savings can be substantial. If rk = 1
2nk for all k ∈ [d], then

the storage reduction is 2d.

○
A d-way tensor of size n × n × · · · × n requires nd storage. If it can be
represented as a rank-(r, r, . . . , r) Tucker tensor, the storage reduces to

rd + dnr. The difference is approximately (n/r)d, an exponential reduction!

If n = n1 = · · · = nd, then the storage is drn+ rd in factored form versus nd for the full
tensor. An example of the difference this can make is shown in Fig. 5.2.

64 128 256 512 1,024

1 MB

10 MB

100 MB

1 GB

10 GB

100 GB

1 TB

10 TB

Dimension n

St
or

ag
e

4-way dense tensor
3-way dense tensor
4-way Tucker tensor
3-way Tucker tensor

Figure 5.2: Tucker tensor storage for 3-way n×n×n or 4-way n×n×n×n tensor with
cores of size 50× 50× 50 and 50× 50× 50× 50, respectively, versus the storage for the
full tensor

Remark 5.3 (Tucker tensor with huge core) For the operations we discuss in this chapter,
there is not necessarily a requirement that G be smaller than T. To the contrary, it could be
the case that G is a large sparse tensor such that nnz(G)≪∏d

k=1 rk and then the total size
of the Tucker tensor is

nnz(G) +

d∑

k=1

rknk,

which may still be much smaller than the equivalent full tensor, which has size
∏d

k=1 nk,
even when rk > nk.

5.2 Unfolding a Tucker Tensor
5.2.1 Vectorizing or Unfolding 3-way Tucker Tensors
Consider a 3-way tensor of the form

T = JG;U,V,WK with G ∈ Rq×r×s,U ∈ Rm×q,V ∈ Rn×r,W ∈ Rp×s.

Recall that the vectorization of a tensor rearranges its elements into a vector (see Defini-
tion 2.14). The vectorization of a Tucker tensor has the following form.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

106 Chapter 5. Tucker Tensor Structure

Proposition 5.4 (Tucker Tensor Vectorization, 3-way) The vectorization of the Tucker
tensor T = JG;U,V,WK is

vec(T) = (W ⊗V ⊗U) vec(G).

Exercise 5.4 Prove Proposition 5.4 using Proposition 3.20.

The illustration for a 3 × 3 × 3 Tucker tensor T with a core G of size 2 × 2 × 2 can be
visualized as in Fig. 5.3. The scaling here is accurate, providing a sense of the sizes of the
objects. The Kronecker product is very large if multiplied out, and we would generally not
do this in practice.

=

scale-accurate
vectorization

=

T = JG;U,V,WK

vec(T) = (W ⊗V ⊗U) vec(G)

Figure 5.3: Vectorization of a rank-(2, 2, 2) Tucker tensor of size 3× 3× 3

Recall that the mode-k unfolding of an m × n × p tensor rearranges its mode-k fibers as
columns; see Definitions 2.15 to 2.17. The unfoldings of a Tucker tensor has the following
forms.

Proposition 5.5 (Tucker Tensor Mode-k Unfolding, 3-way) The mode-k unfoldings of the
Tucker tensor T = JG;U,V,WK are

T(1) = UG(1)(W ⊗V)⊺,

T(2) = VG(2)(W ⊗U)⊺, and

T(3) = WG(3)(V ⊗U)⊺.

Exercise 5.5 Prove Proposition 5.5 using Proposition 3.20.

We can visualize the mode-2 unfolding in Fig. 5.4 for a tensor T of size 3 × 3 × 3 with a
Tucker core of size 2×2×2. The intermediate matrices are smaller than in the vectorization
case.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

5.2. Unfolding a Tucker Tensor 107

=

T = JG;U,V,WK

scale-
accurate

mode-2
unfolding

=

T(2) = VG(2)(W ⊗U)

Figure 5.4: Mode-1 unfolding of rank-(2, 2, 2) Tucker tensor of size 3× 3× 3

5.2.2 Vectorizing or Unfolding d-way Tucker Tensors
Suppose T is a d-way Tucker tensor of the form:

T = JG;U1,U2, . . . ,UdK ∈ Rn1×n2×···×nd with G ∈ Rr1×r2×···×rd

and U ∈ Rnk×rk for all k ∈ [d].

The following propositions specify the vectorization and mode-wise unfoldings of T.

Proposition 5.6 (Tucker Tensor Vectorization, d-way) The vectorization of the Tucker
tensor T = JG;U1,U2, . . . ,UdK is

vec(T) = (Ud ⊗Ud−1 ⊗ · · · ⊗U1) vec(G).

Proof. Let B = Ud⊗Ud−1⊗ · · · ⊗U1, g = vec(G), N =
∏d

k=1 nk, and R =
∏d

k=1 rk.
Consider an arbitrary index i ∈ [N]. By Proposition 2.11 and Definition 2.14, the ith entry
of Bg is given by

R∑

j=1

B(i, j) g(j) =

r1∑

j1=1

· · ·
rd∑

jd=1

U1(i1, j1) · · ·Ud(id, jd) G(j1, . . . , jd),

for i = L(i1, . . . , id) and j = L(j1, . . . , jd). By Eq. (5.4) and Definition 2.14, this is
exactly the ith element of vec(T).

Proposition 5.7 (Tucker Tensor Mode-k Unfolding, d-way) The mode-k unfolding of the
Tucker tensor T = JG;U1,U2, . . . ,UdK is

T(k) = UkG(k)(Ud ⊗ · · · ⊗Uk+1 ⊗Uk−1 ⊗ · · · ⊗U1)
⊺.

Proof. Let B = Ud⊗· · ·⊗Uk+1⊗Uk−1⊗· · ·⊗U1,Nk =
∏d

ℓ=1
ℓ ̸=k

nℓ, andRk =
∏d

ℓ=1
ℓ ̸=k

rℓ.

Consider an arbitrary index (ik, jk) ∈ [nk]×[Nk]. By Proposition 2.11 and Definition 2.18,
entry (ik, jk) of UkG(k)B

⊺ is given by

rk∑

αk=1

Rk∑

βk=1

Uk(ik, αk)G(k)(αk, βk)B(jk, βk) =

r1∑

α1=1

r2∑

α2=1

· · ·
rd∑

αd=1

Uk(ik, αk)G(α1, . . . , αd)

d∏

ℓ=1
ℓ ̸=k

Uℓ(iℓ, αℓ),

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

108 Chapter 5. Tucker Tensor Structure

for jk = L(i1, . . . , ik−1, ik+1, . . . , id) and βk = L(α1, . . . , αk−1, αk+1, . . . , αd). By
Eq. (5.4) and Definition 2.18, this is exactly entry (ik, j) of T(k).

5.3 Non-uniqueness

○ The Tucker tensor representation is not unique.

The Tucker representation of a tensor is not unique. Consider a 3-way Tucker tensor given
by Eq. (5.1). Given a nonsingular matrix A ∈ Rq×q , we have

G×1 U×2 V ×3 W = (G×1 A−1)×1 (UA)×2 V ×3 W,

by the TTM grouping property (see Proposition 3.15). This is illustrated in Fig. 5.5.

=
G

U

V

W

G×1A
−1

UA

V

W

Figure 5.5: Tucker tensor is nonunique because core and factor can be multiplied by a
nonsingular matrix and its inverse

Further, we can transform all modes. Given nonsingular matrices A ∈ Rq×q , B ∈ Rr×r,
and C ∈ Rs×s, we have

JG;U,V,WK =
q
(G×1 A−1 ×2 B−1 ×3 C−1);UA,VB,WC

y
.

More generally, consider the d-way case as in Eq. (5.3) where each factor matrix is Uk ∈
Rnk×rk . If we choose Vk to be an rk × rk invertible matrix for each k ∈ [d], then

JG;U1,U2, . . . ,UdK =
q(
G×1 V−1

1 ×2 V−1
2 · · · ×d V−1

d

)
;U1V1,U2V2, . . . ,UdVd

y
.

The non-uniqueness of the Tucker format means that a particular Tucker representation is
not interpretable. In contrast to the CP decomposition (see Chapter 9), we cannot assign
meaning to the values in a particular vector of a factor matrix. Instead, we columns of
the factor matrix form a basis of the subspace that captures the fibers of that mode. While
the subspace is unique, the basis vectors that span it are not, and we can think of the
post-multiplication by a nonsingular matrix as a change of basis that does not change the
underlying subspace.

5.4 Imposing Orthonormal Factor Matrices

○ Assuming the core is smaller than the full tensor, we can always
transform a Tucker tensor to have orthonormal factor matrices.

While the non-uniqueness of Tucker prevents us from interpreting a particular representa-
tion, we can use it to our advantage both mathematically and computationally. Given any

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

5.5. Full Reconstruction 109

Tucker tensor where the core is smaller than the full tensor, we can impose orthonormality
on its factor matrices. Consider the 3-way Tucker tensor representation,

JḠ;U,V,W̄K ∈ Rm×n×p

where Ḡ is of size q × r × s with s < p. Suppose W̄ ∈ Rp×s is not orthonormal. We can
decompose W̄ into a product of two matrices where the first is orthonormal, i.e.,

W̄ = WZ where W ∈ Rp×s orthonormal, Z ∈ Rs×s.

We can use, for instance, the (economy) QR factorization with W̄ = QR, setting W = Q
and Z = R; alternatively, we can use the (economy) SVD, with W̄ = UΣV⊺, setting
W = U and Z = ΣV⊺. Now, using Propositions 3.15 and 3.19, we can write

JḠ;U,V,W̄K = Ḡ×1 U×2 V ×3 (WZ)

= (Ḡ×3 Z)×1 U×2 V ×3 W
= JG;U,V,WK with G ≡ Ḡ×3 Z.

At this point, W is orthonormal and G may be smaller if the economy SVD is used and
rank(W̄) < p. If needed, we can use a similar procedure to make the other factor matrices
orthonormal. Thus without loss of generality, we generally assume that a Tucker tensor’s
factor matrices are all orthonormal.

Formally, we can state the following results.

Proposition 5.8 (Orthonormal Tucker for 3-way) Let U ∈ Rm×q , V ∈ Rn×r, W ∈
Rp×s, and G ∈ Rq×r×z . If q ≤ m, r ≤ n, and s ≤ p, then there exists orthonormal factor
matrices Ū ∈ Om×q , V̄ ∈ On×r, W̄ ∈ Op×s, and modified core Ḡ ∈ Rq×r×z such that
JG;U,V,WK = JḠ; Ū, V̄,W̄K.

Proposition 5.9 (Orthonormal Tucker for d-way) Let Uk ∈ Rnk×rk for all k ∈ [d] and
G ∈ Rr. If rk ≤ nk for all k ∈ [d], then there exists a set of orthonormal factor matri-
ces

{
Ūk ∈ Onk×rk

}d
k=1

and modified core Ḡ ∈ Rr such that JG;U1,U2, . . . ,UdK =

JḠ; Ū1, Ū2, . . . , ŪdK.

As we will see in Section 5.7 and Chapter 6, many computations involving Tucker tensors
and algorithms for computing Tucker decompositions become simpler and cheaper when
the factor matrices are orthonormal.

Exercise 5.6 Let T = G×1U×2V×3W with U,V,W orthonormal. Prove ∥T∥ = ∥G∥.

Exercise 5.7 Derive the cost to convert a Tucker tensor to a Tucker tensor with orthonormal
factor matrices using a QR factorization for each mode.

5.5 Full Reconstruction
We generally work with a Tucker tensor in factored from. However, we may eventually
need to reconstruct it. We discuss here the methodology for reconstructing the entire tensor.
See also the discussion of efficient partial reconstruction in Section 5.6.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

110 Chapter 5. Tucker Tensor Structure

5.5.1 Full Reconstruction for 3-way Tucker Tensors
Suppose we want to reconstruct an m × n × p full tensor X from a 3-way Tucker tensor
JG;U,V,WK of rank (q, r, s). We must compute

X = G×1 U×2 V ×3 W.

We can compute it in multiple steps by performing a TTM with each factor matrix and
the core in turn: first U, then V, and then W to produce the full reconstruction: X =
((G×1 U)×2 V)×3 W. This process is illustrated in Fig. 5.6.

Tucker Tensor Reconstruction
Step 1

Reconstruction
Step 2

Reconstruction
Step 3

Figure 5.6: Reconstruction from 3-way Tucker tensor

The total cost of full reconstruction performed in this mode order is

O(mqrs+mnrs+mnps).

Multiplying with the factor matrices in a different order, e.g.,

(((G×2 V)×3 W)×1 U),

can change and potentially reduce the total number of operations.

Exercise 5.8 Illustrate the steps of full reconstruction as in Fig. 5.6 starting with mode 2,
then mode 3, and then mode 1, i.e., (((G×2 V)×3 W)×1 U). What is the computational
cost?

5.5.2 Full Reconstruction for d-way Tucker Tensors
Suppose we want to reconstruct a n1×n2×· · ·×nd full tensor from a d-way Tucker tensor
of rank (r1, r2, . . . , rd). We must compute

X = G×1 U1 ×2 U2 · · · ×d Ud.

If we multiply the factor matrices in the order shown, i.e., (· · · ((G×1U1)×2U2) · · ·×3Ud),
then the total cost of reconstruction is

O
(

d∑

k=1

(k∏

i=1

ni

)(d∏

j=k

rj

))
.

Example 5.1 (Tucker Reconstruction Cost, d-way) For a d-way Tucker tensor of size
n × n × · · · × n and rank r × r × · · · × r with r < n, the cost of full reconstruction is
O(nrd + n2rd−1 + · · ·+ ndr) = O(ndr).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

5.6. Partial Reconstruction 111

5.6 Partial Reconstruction
Section 5.5 describes how to reconstruct the full tensor from its Tucker format. In many
situations, we do not need to reconstruct the entire tensor. A major advantage of Tucker
decomposition for compression is that it supports efficient partial reconstruction.

5.6.1 Partial Reconstruction of 3-way Tucker Tensors
Suppose we only need a subset of the reconstruction, e.g., only horizontal slices 5 to 9. We
can express this via a selection matrix S that picks out indices 5 to 9:

S =

0 0 0 0 1 0 0 0 0 0 . . . 0
0 0 0 0 0 1 0 0 0 0 . . . 0
0 0 0 0 0 0 1 0 0 0 . . . 0
0 0 0 0 0 0 0 1 0 0 . . . 0
0 0 0 0 0 0 0 0 1 0 . . . 0

.

Then the partially reconstructed tensor can be expressed mathematically as X̄ = X̂ ×1 S.
However, we can avoid explicitly constructing X̂ at all by observing that

X̂×1 S = G×1 (SU)×2 V ×3 W.

By first computing Ū = SU, we can more efficiently construct X̄ using a sequence of
smaller TTMs as illustrated in Fig. 5.7.

Selector times
Tucker Tensor

Updated
Tucker Tensor

Recon-
struction
Step 1

Recon-
struction
Step 2

Recon-
struction
Step 3

Figure 5.7: Partial reconstruction from 3-way Tucker tensor. Blue matrix represents se-
lector matrix that pulls out a subset of rows of the first factor matrix. Green-colored parts
represent realized savings from the partial reconstruction.

If S is m̄×m, the memory cost reduces to m̄np and the computational cost reduces to

O(m̄qrs+ m̄nrs+ m̄nps).

No computation is required to form Ū = SU, as it is simply a subset of the rows of U. We
need not form S explicitly in this case.

Exercise 5.9 Suppose we only need to reconstruct a single frontal slice of a rank-(q, r, s)
Tucker tensor of total size m× n× p.

(a) Which mode does the selector matrix impact? What is the size of selector matrix?
(b) Write down the sequence of operations.
(c) Illustrate the sequence of operation as in Fig. 5.7.

Down-sampling

In some cases, the resolution of the fully reconstructed data is higher than we need for
downstream analysis. In these cases, we can downsample by using matrices that average

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

112 Chapter 5. Tucker Tensor Structure

elements. For instance, we can create a matrix of size m/2 ×m that averages every con-
secutive pair of horizontal slices.

S =

1/2 1/2 0 0 0 · · · 0 0
0 0 1/2 1/2 0 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 1/2 1/2

 .

This would reduce the overall size of the reconstruction by a factor of 2. If we made similar
downsampling matrices for each of the 3 modes, the overall size of the reconstruction would
be smaller by a factor of 8. Each element in the result would be the average of a 2× 2× 2
block of 8 entries.

5.6.2 Partial Reconstruction of d-way Tucker Tensors
As in the 3-way case, we can realize substantial computational savings with partial or
down-sampled computations. Suppose each mode k is sub- or down-sampled to size mk ≤
nk. We can express this by multiplying mode k by a subsampling matrix Sk ∈ Rmn×nk ,
so the partial reconstruction is computed as

G×1 S1U1 ×2 S2U2 · · · ×d SdUd.

Then the total reconstruction cost is reduced to at most

O
(

d∑

k=1

(k∏

i=1

mi

)(d∏

j=k

rj

)
+mknkrk

)
.

Example 5.2 (Partial Reconstruction of d-way Tucker Tensor) Consider a d-way Tucker
tensor of size n × n × · · · × n and rank r × r × · · · × r. To create a down-sampled
reconstruction of sizem×m×· · ·×m, the cost isO(mrd+m2rd−1+· · ·+mdr+dmnr).
In most cases, the term O(mdr) dominates.

Exercise 5.10 Implement a function for efficient partial reconstruction for d-way
Tucker tensors. Your function should take as input a Tucker tensor of the form
JG;A1,A2, . . . ,AdK and d sets of indices Id ⊆ [nd], and it should return an explicit
subtensor corresponding to the Cartesian product of those indices. Your function should
avoid the full reconstruction of the Tucker tensor and use a more efficient method. (You
may use an existing TTM function.) (a) Implement a partial reconstruction function that
processes the modes in order (1 to d). (b) Implement a helper function that determines the
best ordering for the multi-TTM using Proposition 3.25. (c) Use the helper function to
further optimize your partial reconstruction function by processing modes in the optimal
order.

5.7 Operations on Tucker Tensors
Tensors in Tucker format can require less space than their full format representations, and
operations on Tucker tensors can require much less computation as well.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

5.7. Operations on Tucker Tensors 113

5.7.1 Inner Products and Norms of Tucker Tensors
Inner Product for 3-way Tucker Tensors

Consider the problem of computing an inner product of two Tucker tensors of the forms:

X = JG;U1,U2,U3K, G ∈ Rr×r×r, U1,U2,U3 ∈ Rn×r,

Y = JH;V1,V2,V3K, H ∈ Rq×q×q, V1,V2,V3 ∈ Rn×q.

To compute the inner product of full tensors would costO(n3), and forming the full tensors
from their Tucker representations would costO(rn3+qn3). If we assume r < q < n, then
we can find some computational advantages working with the tensors implicitly as

⟨X,Y⟩ = ⟨G×1 U1 ×2 U2 ×3 U3,Y⟩
= ⟨G,Y×1 U⊺

1 ×2 U⊺
2 ×3 U⊺

3⟩
= ⟨G,H×1 U⊺

1V1 ×2 U⊺
2V2 ×3 U⊺

3V3⟩.

Computing W1 ≡ U⊺
1V1 costs O(rqn), and likewise for W2 ≡ U⊺

2V2 and W3 =
U⊺

3V3. Computing F ≡ H ×1 W1 ×2 W2 ×3 W3 costs O(rq3). Finally, computing
⟨G,F⟩ costs O(r3). The dominant costs are O(rqn + rq3). So, we have reduced the cost
from

O(qn3) to O(qrn+ rq3).

We can generalize efficient computation of inner products to non-cubical Tucker tensors
(with non-cubical cores), see Exercise 5.11.

Exercise 5.11 Give an efficient algorithm for computing the inner product of two Tucker
tensors ⟨X1,X2⟩ and derive the computational cost. Assume that the tensors have common
full dimensionsm×n×p, X1 has core dimensions q1×r1×s1 and X2 has core dimensions
q2 × r2 × s2.

Inner Product for d-way Tucker Tensors

Consider the d-way case with

X = JG;U1,U2, . . . ,UdK, G ∈ Rr×r×···×r, U1,U2, . . . ,Ud ∈ Rn×r,

Y = JH;V1,V2, . . . ,VdK, H ∈ Rq×q×···×q, V1,V2, . . . ,Vd ∈ Rn×q.

To compute the inner product of full tensors would costO(nd), and forming the full tensors
from Tucker format would cost O(rnd + qnd). If we assume r < q < n, then we can find
some computational advantages working with the tensors implicitly as

⟨X,Y⟩ = ⟨G×1 U1 ×2 U2 · · · ×d Ud,Y⟩
= ⟨G,Y×1 U⊺

1 ×2 U⊺
2 · · · ×d U⊺

d⟩
= ⟨G,H×1 U⊺

1V1 ×2 U⊺
2V2 · · · ×d U⊺

dVd⟩.

Computing Wk ≡ VkU
⊺
k for all k ∈ [d] costs O(drqn). Computing F ≡ H ×1 W1 ×2

W2 · · · ×d Wd costs O(rqd). Finally, computing ⟨G,F⟩ costs O(rd). The dominant cost
is O(rqn). So, we have reduced the cost from

O(qnd) to O(drqn+ rqd).

If r < q < n, these cost savings can be substantial. We can generalize this efficient
computation of inner products to non-cubical tensors, see Exercise 5.12.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

114 Chapter 5. Tucker Tensor Structure

Exercise 5.12 What is the computational complexity of computing ⟨X,Y⟩ for

X = JG;U1,U2, . . . ,UdK, G ∈ Rr1×r2×···×rd , Uk ∈ Rnk×rk for all k ∈ [d],

Y = JH;V1,V2, . . . ,VdK, H ∈ Rq1×q2×···×qd , Vk ∈ Rnk×qk for all k ∈ [d].

Norm of 3-way Tucker Tensor

In order to compute the norm of a Tucker tensor T = JG,U,V,WK, we can reduce the
problem to tensors of the size of the core G. Applying the same argument as in the inner
product, we have

∥T∥2 = ⟨T,T⟩ = ⟨G×1 (U⊺U)×2 (V⊺V)×3 (W⊺W),G⟩. (5.5)

Pictorially, we can visualize this as show in Fig. 5.8.

〈
,

〉
=
〈

,
〉

=
〈

,
〉

Figure 5.8: Tucker tensor norm calculation without forming full tensor

Computing the norm of a full m×n× p tensor requiresO(mnp) operations, which is pro-
portional to the product of the full tensor dimensions. When a tensor is in Tucker format,
the computation increases with the sum of the full tensor dimensions and is typically domi-
nated by a cost proportional to the product of the reduced dimensions: O(qrs). Evaluating
the reduced expression requires computing the Gram matrix of each factor matrix using
O(mq2 + nr2 + ps2) operations, performing the multi-TTM operation with the core with
O(q2rs+ qr2s+ qrs2) operations, and finally the standard tensor inner product requiring
O(qrs) operations.

Computing the norm of a Tucker tensor whose factor matrices are orthonormal is even
easier. Because the Gram matrix of each factor matrix is an identity, Eq. (5.5) simplifies to

⟨T,T⟩ = ⟨G,G⟩. (5.6)

In fact, an efficient alternative algorithm to compute the norm of a Tucker tensor is to first
orthogonalize the factor matrices and then compute the norm of the transformed core, see
Exercise 5.7.

Norm of d-way Tucker Tensor

The norm for the general d-way tensor T = JG;U1,U2, . . . ,UdK is

∥T∥2 = ⟨T,T⟩ = ⟨G×1 U⊺
1U1 ×2 U⊺

2U2 · · · ×d U⊺
dUd,G⟩.

Analogous to the 3-way case, the cost to form the full tensor and compute its norm directly
versus computing the norm by exploiting the Tucker format is

O
(
rd

d∏

k=1

nk

)
versus O

(
d∑

k=1

nkr
2
k + rd

d∏

k=1

rk

)
.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

5.7. Operations on Tucker Tensors 115

Here we have assumed that the TTMs are performed in the natural order. If the full tensor
and core are both cubical, then the difference is

O(rnd) versus O(nr2 + rd+1).

As in the 3-way case, orthonormal factor matrices mean that U⊺
kUk = I for all k ∈ [d], so

the computation simplifies as stated in the proposition below.

Proposition 5.10: Norm Equivalence for Tucker Tensor and its Core

If T = JG;U1, . . . ,UdK with Uk orthonormal for all k ∈ [d], then ∥T∥ = ∥G∥.

5.7.2 TTM for Tucker Tensors
The Tucker tensor involves TTMs, but we may also compute a TTM with a Tucker tensor.
As shown in Section 5.6, this can be done without affecting the core. The key is that we
maintain Tucker structure of the output tensor. The computation involves only the factor
matrix in the mode of the TTM; the core and other factor matrices are not even accessed.

TTM for 3-way Tucker Tensors

Proposition 5.11 (TTM for 3-way Tucker Tensor) Consider the Tucker tensor

X = JG;U,V,WK with G ∈ Rq×r×s,U ∈ Rm×q,V ∈ Rn×r,W ∈ Rp×s.

Let Ū ∈ Rq̄×m, V̄ ∈ Rr̄×n, and W̄ ∈ Rs̄×p. Then,

X×1 Ū = JG; ŪU,V,WK,
X×2 V̄ = JG;U, V̄V,WK, and

X×3 W̄ = JG;U,V,W̄WK.

Exercise 5.13 Prove Proposition 5.11.

The cost of a TTM for a Tucker tensor is only that of the multiplication between the input
matrix and the factor matrix in the mode of the TTM. In the notation of Proposition 5.11,
the costs are O(mqq̄), O(nrr̄), and O(pss̄) for each respective mode.

Given matrices Ū, V̄, and W̄ as in Proposition 5.11, we can also consider a multi-TTM
computation:

X×1 Ū×2 V̄ ×3 W̄ = JG; ŪU, V̄V,W̄WK.
This cost of this computation isO(mqq̄+nrr̄+pss̄). The multi-TTM with a Tucker tensor
is illustrated in Fig. 5.9.

TTM for d-way Tucker Tensors

A TTM for a d-way Tucker tensor has the same properties for the 3-way case, as a TTM in
mode k is computed independently of the other d− 1 modes. Given X = JG;U1, . . . ,UdK
and a matrix Ūk ∈ Rr̄k×nk , for example, we have

X×k Ūk = JG;U1, . . . , ŪkUk, . . . ,UdK.

5.7.3 MTTKRP with Tucker Tensors
We consider MTTKRP of a Tucker tensor, utilizing its factored form.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

116 Chapter 5. Tucker Tensor Structure

×1 ×2 ×3 =

JG;U,V,WK
Ū V̄ W̄ JG; ŪU, V̄V,W̄WK

Figure 5.9: Multi-TTM with a Tucker tensor

MTTKRP with 3-way Tucker Tensors

Finally, consider the MTTKRP of a 3-way Tucker tensor.

Proposition 5.12 (MTTKRP for 3-way Tucker Tensors) Let X = JG;U,V,WK ∈ Rm×n×p

be a Tucker tensor and let A ∈ Rm×r, B ∈ Rn×r and C ∈ Rp×r. Then

X(1)(C⊙B) = UG(1)

(
(W⊺C)⊙ (V⊺B)

)
,

X(2)(C⊙A) = VG(2)

(
(W⊺C)⊙ (U⊺A)

)
,

X(3)(B⊙A) = WG(3)

(
(V⊺C)⊙ (U⊺A)

)
.

Exercise 5.14 Prove Proposition 5.12.

Thus, we can convert the MTTKRP of the Tucker tensor to an MTTKRP with the core. If
we assume that X is of size n× n× n, G is of size q × q × q, and C,B are of size n× r,
then the work reduces from O(rn3) to O(rnq + rq3).

Exercise 5.15 For a 3-way Tucker tensor, derive the expressions and costs for the MT-
TKRP with respect to modes 2 and 3.

MTTKRP with d-way Tucker Tensors

A similar result holds in the d-way case.

Proposition 5.13 (MTTKRP for d-way Tucker Tensors) Let X = JG;A1,A2, . . . ,AdK ∈
Rn1×n2×···×nd and let Ak ∈ Rnk×r for all k ∈ [d]. Then

X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)

= UkG(k)(Bd ⊙ · · · ⊙Bk+1 ⊙Bk−1 ⊙ · · · ⊙B1)

where Bk ≡ U⊺
kAk for all k ∈ [d].

Exercise 5.16 Prove Proposition 5.13.

Exercise 5.17 Compare the computational costs of evaluating the MTTKRP as in Proposi-
tion 5.13 with those of forming the full tensor and performing a MTTKRP with an explicit
X.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

6 Tucker Algorithms

Computing a Tucker decomposition (Tucker, 1966) involves finding factor matrices that
define the bases for compression. The low-rank matrix decomposition problem has a well-
defined solution given by the SVD. The difficulty for Tucker decomposition is that we
cannot easily solve for all the factor matrices simultaneously. Instead, we solve for one at
a time. In this chapter, we present three different algorithms that use this tact in slightly
different ways: higher-order singular value decomposition (HOSVD), sequentially trun-
cated HOSVD (ST-HOSVD), and higher-order orthogonal iteration (HOOI). We focus on
the algorithms and defer discussion of the error bounds to Chapter 7.

6.1 Optimization Formulation
6.1.1 Tucker Optimization Problem for 3-way Tensors
For X ∈ Rm×n×p, the problem of computing the optimal rank-(q, r, s) Tucker decompo-
sition, X ≈ JG;U,V,WK, is a nonlinear, nonconvex, least squares optimization problem.
Specifically, it is the solution to

min
∥∥X− G×1 U×2 V ×3 W

∥∥
subject to G ∈ Rq×r×s,U ∈ Rm×q,V ∈ Rn×r,W ∈ Rp×s.

(6.1)

In general, this formulation is the most natural way to express the optimization problem
because it explicitly compares X to its Tucker approximation. The objective function value
is the absolute error, which we denote using ERR. In the remainder of this subsection, we
will derive a simplified formulation that eliminates G; the new formulation will be more
amenable to the solution methods we discuss in the remainder of the chapter.

Elimination of the Core

We can simplify the Tucker optimization problem by eliminating the core G from the op-
timization. As explained in Section 5.4, we can impose orthonormality on all the factor
matrices without any loss of generality. Thus, Eq. (6.1) is equivalent to the constrained
problem:

min
∥∥X− G×1 U×2 V ×3 W

∥∥
subject to G ∈ Rq×r×s,U ∈ Om×q,V ∈ On×r,W ∈ Op×s.

(6.2)

Now consider the problem of solving for G if U, V, and W were known. If we express the
problem in vectorized form (using Proposition 5.4), we have a linear least squares problem:

min
∥∥vec(X)− (W ⊗V ⊗U) vec(G)

∥∥
2

subject to G ∈ Rq×r×s.

117

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

118 Chapter 6. Tucker Algorithms

The coefficient matrix (W ⊗V ⊗U) is orthonormal (see Exercise A.27), so the solution
for G is vec(G) = (W ⊗V ⊗U)

⊺
vec(X). In tensor notation, this equates to

G = X×1 U⊺ ×2 V⊺ ×3 W⊺. (6.3)

Thus, any optimal solution of Eq. (6.2) has a G that satisfies Eq. (6.3).

Substituting this expression for G into Eq. (6.1) and using Proposition 3.15, we have

X− G×1 U×2 V ×3 W = X− (X×1 U⊺ ×2 V⊺ ×3 W⊺)×1 U×2 V ×3 W
= X−X×1 UU⊺ ×2 VV⊺ ×3 WW⊺.

(6.4)

Thus, we obtain an optimization problem equivalent to Eq. (6.1) but now in terms of only
the three factor matrices and with no dependency of the core G:

min
∥∥X−X×1 UU⊺ ×2 VV⊺ ×3 WW⊺∥∥

subject to U ∈ Om×q,V ∈ On×r,W ∈ Op×s.
(6.5)

Equivalence to Maximization

We can use the elimination of G to rewrite the objective function as a maximization prob-
lem, as elucidated in Proposition 6.1.

Proposition 6.1 (Alternative 3-way Tucker Optimization Problem) Let X be a 3-way
tensor of size m × n × p. Let U ∈ Om×q , V ∈ On×r, and W ∈ Op×s be orthonormal
matrices. If G = X×1 U⊺ ×2 V⊺ ×3 W⊺ and T = JG;U,V,WK, then

∥∥X− T
∥∥2 =

∥∥X
∥∥2 −

∥∥G
∥∥2 =

∥∥X
∥∥2 −

∥∥X×1 U⊺ ×2 V⊺ ×3 W⊺∥∥2.

Proof. Let the conditions of the proposition hold. Then we have
∥∥X− T

∥∥2 =
∥∥vec(X)

∥∥2
2
− 2
〈
vec(X), vec(T)

〉
+
∥∥vec(T)

∥∥2
2

by Proposition A.1

=
∥∥X
∥∥2 − 2

〈
vec(X), vec(T)

〉
+
∥∥G
∥∥2 by Exercise 5.6

=
∥∥X
∥∥2 − 2

〈
vec(X),

(
W ⊗V ⊗U

)
vec(G)

〉
+
∥∥G
∥∥2 by Proposition 5.6

=
∥∥X
∥∥2 − 2

〈(
W⊺ ⊗V⊺ ⊗U⊺) vec(X), vec(G)

〉
+
∥∥G
∥∥2 by Proposition A.4

=
∥∥X
∥∥2 − 2

〈
X×1 U⊺ ×2 V⊺ ×3 W⊺,G

〉
+
∥∥G
∥∥2 by Proposition 5.6

=
∥∥X
∥∥2 −

∥∥G
∥∥2 by Eq. (6.3).

Hence, the claim.

Proposition 6.1 shows that the squared objective function in Eq. (6.1), equivalently Eq. (6.5),
can be expressed instead as

∥∥X
∥∥2 −

∥∥X×1 U⊺ ×2 V⊺ ×3 W⊺∥∥2.

In the context of optimization, the first term can be ignored, since it is constant. Thus, an
optimal rank-(q, r, s) Tucker approximation of X ∈ Rm×n×p, i.e., a minimizer of Eq. (6.5),
is the solution to

max
∥∥X×1U⊺×2V⊺×3W⊺∥∥ subject to U ∈ Om×q,V ∈ On×r,W ∈ Op×s. (6.6)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

6.1. Optimization Formulation 119

This is also a solution of the original optimization problem in Eq. (6.1) with the optimal
core given by Eq. (6.3).

The idea is that we want to find the optimal combination of mode-wise subspaces (defined
by the ranges of the factor matrices) to produced a compressed representation

G = X×1 U⊺ ×2 V⊺ ×3 W⊺

with maximal norm, as pictured in Fig. 6.1. The larger that norm is, the closer the approxi-
mation is to X.

X

U⊺
V⊺

W⊺

≡G

Figure 6.1: Compressing X to Tucker format G ≡ X×1 U⊺ ×2 V⊺ ×3 W⊺.

Remark 6.2 (Norm of tucker core) If the Tucker decomposition is exact, then ∥G∥2 =
∥X∥2. This means that G has captured the entirety of X and the compression is lossless.
Otherwise, we have lossy compression, with ∥G∥2/∥X∥2 ∈ [0, 1] indicating how well G
represents X.

6.1.2 Tucker Optimization Problem for d-way Tensors
The d-way Tucker optimization problem is analogous to the 3-way case. It is still a non-
linear, nonconvex, least squares optimization problem. The optimal rank-(r1, r2, . . . , rd)
Tucker decompositions of X ∈ Rn1×n2×···×nd is a solution to

min
∥∥X− G×1 U1 ×2 U2 · · · ×d Ud

∥∥
subject to G ∈ Rr1×r2×···×rd and Uk ∈ Rnk×rk for all k ∈ [d].

(6.7)

Exercise 6.1 (Optimal Core for d-way Tucker Decomposition) If orthonormal Uk ma-
trices are fixed for all k ∈ [d], show that G = X ×1 U⊺

1 ×2 U⊺
2 · · · ×d U⊺

d optimizes
Eq. (6.7).

Imposing orthonormality on the factor matrices, we can eliminate the core tensor to obtain
the formulation:

min
∥∥X−X×1 U1U

⊺
1 · · · ×d UdU

⊺
d

∥∥
subject to Uk ∈ Onk×rk for all k ∈ [d].

(6.8)

We can also derive a d-way version of Proposition 6.1, as follows.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

120 Chapter 6. Tucker Algorithms

Proposition 6.3 (Alternative d-way Tucker Optimization Problem) Let X be a d-way
tensor of size n1 × n2 × · · · × nd. Let Uk ∈ Onk×rk for all k ∈ [d] be orthonormal
matrices. If G = X×1 U⊺

1 ×2 U⊺
2 · · · ×d U⊺

d and T = JG;U1,U2, . . . ,UdK, then

∥∥X− T
∥∥2 =

∥∥X
∥∥2 −

∥∥G
∥∥2 =

∥∥X
∥∥2 −

∥∥X×1 U⊺
1 ×2 U⊺

2 · · · ×d U⊺
d

∥∥2.

Exercise 6.2 Prove Proposition 6.3.

Finally, an optimal rank-(r1, r2, . . . , rd) Tucker decomposition of X ∈ Rn1×n2×···×nd ,
i.e., a minimizer of Eq. (6.8), is a solution to

max
∥∥X×1 U⊺

1 ×2 U⊺
2 · · · ×d U⊺

d

∥∥ subject to Uk ∈ Onk×rk for all k ∈ [d]. (6.9)

This is also a solution to the original optimization problem in Eq. (6.7) with the optimal
core given by

G = X×1 U⊺
1 ×2 U⊺

2 · · · ×d U⊺
d . (6.10)

6.1.3 Mode-Wise Optimization
The Tucker optimization problem as given in Eqs. (6.6) and (6.9) maximizes over all factor
matrices simultaneously. If we restrict our attention to a single mode’s factor matrices,
keeping all other fixed, then the problem simplifies. For example, if we fix U and V and
solve for W, then Eq. (6.6) becomes

max
∥∥X×1 U⊺ ×2 V⊺ ×3 W⊺∥∥ subject to W ∈ Op×s.

or equivalently unfolded in the 3rd mode (see Proposition 5.5),

max
∥∥W⊺X(3)(V ⊗U)

∥∥
F

subject to W ∈ Op×s. (6.11)

The matrix X(3)(V ⊗U) is fixed, so Eq. (6.11) can be expressed as

max ∥W⊺Y∥F subject to W ∈ Op×s,

where Y = X(3)(V ⊗ U). This maximization problem is an alternate formulation of
the low-rank matrix approximation problem and discussed in detail in Appendix A.8. By
Theorem A.26, the optimal W ∈ Os×p is given by the leading s left singular vectors of the
SVD of Y and satisfies

∥Y∥2F − ∥W⊺Y∥2F = ∥(I−WW⊺)Y∥2F =

p∑

i=s+1

σi(Y)2,

where σi(Y) denotes the ith singular value of Y. Instead of specifying s, it is also
possible to specify an absolute error tolerance ε and choose the minimum s such that
∥(I −WW⊺)Y∥F ≤ ε. The latter is useful in choosing the rank to satisfy a specified
error threshold.

Each of our Tucker decomposition algorithms will use this mode-wise optimization, so
we provide the leading left singular vectors (LLSV) subroutine in Algorithm 6.1 for this
procedure. It computes the r leading left singular vectors of a given input matrix, and it
determines the appropriate r if the algorithm is given an error threshold, ε, rather than r.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

6.1. Optimization Formulation 121

Algorithm 6.1 Leading Left Singular Vectors (LLSV)

Require: Y ∈ Rm×n, target rank r ≤ min {m,n } or absolute error tolerance ε ≥ 0
Ensure: W ∈ Om×r and ERR ≡ ∥(I−WW⊺)Y∥F where ∥W⊺Y∥F is maximal

and, if ε is given, r is selected such that ERR ≤ ε
1: function LLSV(Y, r or ε)
2: {U,Σ,V } ← SVD(Y) ▷ use economy SVD, Σ = diag {σ1, σ2, . . . , σd }
3: if ε specified then
4: r ← min

{
r ∈ [m]

∣∣ ∑m
i=r+1 σ

2
i ≤ ε2

}
▷ determine rank

5: end if
6: W← U(:, 1:r) ▷ r leading left singular vectors of Y
7: ERR ← (

∑m
i=r+1 σ

2
i)

1/2

8: return {W, ERR}
9: end function

For simplicity, the algorithm calls an SVD routine which returns left and right singular
vectors, and the complexity is O(min{m2n,mn2}). See Appendix A.5.3 for a discussion
of the SVD. In practice, we do not need to compute the right singular vectors, which can
save computational cost; see Appendix A.5.5.

Exercise 6.3 Implement Algorithm 6.1 using a standard SVD routine.

If m < n, as will often be the case for Tucker decomposition, we can compute things
differently. Let the eigendecomposition of the m×m symmetric Gram matrix YY⊺ be

UΛU⊺ = YY⊺,

where U is orthogonal and Λ = diag {λ1, λ2, . . . , λd } sorted so that λ1 ≥ λ2 ≥ · · · ≥
λm. The left singular vectors of Y are given by U and its singular values are σ2

i = λi for all
i ∈ [m] (see Eq. (A.15)). Forming YY⊺ is a symmetric matrix-matrix multiply for a cost
of O(m2n) and the complexity of the eigenvalue problem is O(m3); see Appendix A.5.4.
Because the constants are better, this is generally more efficient than computing the SVD
using standard techniques, though it is not as numerically accurate.

If m > n, then computing the eigendecomposition of YY⊺ is more expensive than stan-
dard approaches. It is possible to compute the eigendecomposition of Y⊺Y, which is a
smaller matrix in this case, but its eigenvectors are the right singular vectors V of Y. We
can recover the left singular vectors using U = YVΣ−1. While this reduces the compu-
tational cost by a constant factor compared to using standard techniques, it is also not as
numerically accurate.

Exercise 6.4 (LLSV with Gram Matrix and Eigendecomposition) Implement Algo-
rithm 6.1 using the eigendecomposition of the Gram matrix approach we just described
instead of a standard SVD routine when m < n. Verify that the codes produce the same re-
sults. Compare the timing of the two variations for (a)m = 500 and n = 500, (b)m = 500
and n = 5, 000, and (c) m = 500 and n = 50, 000.

If Y is a mode-k unfolding of a tensor, as will be the case for the Tucker decomposition,
it is possible to compute the Gram matrix YY⊺ without any permutation of the original
tensor, saving memory movement cost; see Example 2.13.

If the rank is relatively small, then an iterative method is also an option for computing
the SVD. In this case, only the largest singular values are computed. Then Line 4 can be

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

122 Chapter 6. Tucker Algorithms

replaced with

r = min

{
r ∈ [m]

∣∣∣∣∣
r∑

i=1

σ2
i ≥ (1− ε2)∥Y∥2F

}
, (6.12)

and Line 7 can be replaced with ERR = (∥Y∥2F −
∑r

i=1 σ
2
i)

1/2.

Exercise 6.5 Prove Eq. (6.12) and Line 4 of Algorithm 6.1 are mathematically equivalent.

6.2 Higher-Order SVD (HOSVD)
The (truncated) higher-order SVD (HOSVD) is the simplest Tucker decomposition algo-
rithm. The idea is to perform the mode-wise optimization in each mode independently,
ignoring the factor matrices in the other modes. HOSVD was proposed by Tucker (1966)
as the Tucker1 method and popularized under its current name by De Lathauwer, De Moor,
et al. (2000a). It is sometimes also referred to as the multilinear SVD (MLSVD).

Even though HOSVD optimizes each mode independently, it produces a quasi-optimal
decomposition, with an approximation error within a factor of

√
d of the optimal solution.

We present the algorithm and its computational cost in this section, and prove the quasi-
optimality in Chapter 7.

6.2.1 HOSVD for 3-way Tensors
Algorithm 6.3 gives the HOSVD algorithm to compute a rank-(q, r, s) Tucker decompo-
sition. It computes each factor matrix independently as the leading left singular vectors
of the corresponding mode-wise unfolding. Finally, it computes the core and the absolute
error of the approximation. Note that the error computation uses Proposition 6.1, making
it cheap to compute.

If ε ≥ 0 is specified rather than rank (q, r, s), we choose the mode ranks using a key
property of HOSVD (shown later in Theorem 7.3):

∥X− T∥2 ≤ ∥(I−UU⊺)X(1)∥2F + ∥(I−VV⊺)X(2)∥2F + ∥(I−WW⊺)X(3)∥2F .

Hence, if LLSV chooses the mode ranks such that the relative errors ε1, ε2, ε3 are all no
greater than (ε/

√
3)∥X∥, then the final solution is guaranteed to satisfy ∥X−T∥ ≤ ε∥X∥.

Note that the LLSV input tolerance is for absolute error while the HOSVD input tolerance
is for relative error. We can also adjust the error tolerance specified for later modes based
on the actual errors in previous modes; e.g., if ε1 ≪ (ε/

√
3)∥X∥ due to a large gap in

singular values, then ε2 and ε3 can be larger.

Complexity Analysis

The complexity analysis of Algorithm 6.2 depends on that of the LLSV function. For an
m × n matrix, we assume the complexity is O(min{m,n}mn). However, we note that
the hidden constant and the accuracy depends on the underlying SVD algorithm used, and
sometimes the complexity can be greatly reduced for lower accuracy guarantees by, e.g.,
using iterative methods if the matrix is sparse.

The overall cost of the LLSVs in Lines 4 to 6 can be written as

O
((
min{m,np}+min{n,mp}+min{p,mn}

)
mnp

)
. (6.13)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

6.2. Higher-Order SVD (HOSVD) 123

Algorithm 6.2 Higher-Order SVD (HOSVD) for 3-way Tensor

Require: X ∈ Rm×n×p, rank (q, r, s) ∈ [m]⊗ [n]⊗ [p] or relative error tolerance ε ≥ 0
Ensure: Tucker tensor T of rank (q, r, s) with T ≈ X or ERR ≡ ∥X− T∥ ≤ ε∥X∥

1: function HOSVD(X, (q, r, s) or ε)
2: χ← ∥X∥
3: if ε defined then ε̄← (ε/

√
3)χ

4: [U, ε1]← LLSV(X(1), q or ε̄) ▷ q leading left sing. vectors of X(1)

5: [V, ε2]← LLSV(X(2), r or ε̄) ▷ r leading left sing. vectors of X(2)

6: [W, ε3]← LLSV(X(3), s or ε̄) ▷ s leading left sing. vectors of X(3)

7: G← X×1 U⊺ ×2 V⊺ ×3 W⊺ ▷ compress in all modes
8: ERR ← (χ2 − ∥G∥2)1/2 ▷ equivalent to ∥X− T∥
9: return {G,U,V,W, ERR } ▷ T ≡ JG;U,V,WK

10: end function

If m ≤ np, n ≤ mp, and p ≤ mn, then this simplifies to

O(m2np+mn2p+mnp2).

Next, consider the cost of the multi-TTM operation in Line 7 to compute G. As shown in
Section 3.3, TTM is an associative operation across modes, so we can choose the order of
operations. If we order the multi-TTM as (1, 2, 3), the cost is

O(mnpq + npqr + pqrs). (6.14)

The first term corresponds to computing X ×1 U⊺, the second term corresponds to that
result times V⊺ in mode 2, and the third term corresponds to that result times W⊺ in mode
3. Thus, the multi-TTM cost is usually dominated by the first TTM. In the 3-way case, it is
straightforward to enumerate the cost of all 6 orderings and choose the most efficient; see
Section 3.4.

Comparing Eq. (6.13) with Eq. (6.14), we see that the overall cost of HOSVD is dominated
by the cost of the LLSVs since it must be the case that q ≤ min{m,np}, r ≤ min{n,mp}
and s ≤ min{p,mn}.
Exercise 6.6 Consider the Miranda tensor of size 2048× 256× 256.

(a) Compute the ratio of computational complexity of each line of Lines 4 to 7 in Algo-
rithm 6.3 for (q, s, r) = (600, 100, 100) versus (q, s, r) = (300, 50, 50).

(b) Use HOSVD to compute a rank-(600, 100, 100) Tucker decomposition. How long
did it take? What is the error?

(c) Use HOSVD to compute a rank-(300, 50, 50) Tucker decomposition. How long did
it take? What is the error?

(d) What is the ratio of computation times for each step for the two ranks? How does it
compare to the ratios estimated based on the computational complexity?

6.2.2 HOSVD for d-way Tensors
The HOSVD algorithm to compute a rank-(r1, r2, . . . , rd) Tucker decomposition of a d-
way tensor X is presented in Algorithm 6.3. The kth factor matrix is the rk leading singular
vectors of the mode-k unfolding of X. The algorithm’s last steps compute the core and

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

124 Chapter 6. Tucker Algorithms

absolute error of the approximation. The error computation uses Proposition 6.3 to compute
the error implicitly and inexpensively.

If ε ≥ 0 is specified rather than rank (r1, r2, . . . , rd), then we want to compute a solution
such that ∥X− T∥ ≤ ε∥X∥. We use the following property of HOSVD (looking ahead to
Theorem 7.4):

∥X− T∥2 ≤
d∑

k=1

∥X×k (I−UkU
⊺
k)∥2F .

Hence, if each factor matrix satisfies ∥(I −UkU
⊺
k)X(k)∥F ≤ (ε/

√
d)∥X(k)∥F , then the

final solution is guaranteed to satisfy ∥X− T∥ ≤ ε∥X∥. As in the 3-way case, we can use
any division of the errors among the modes, including adaptive techniques, but here we opt
for the same error in each mode.

Algorithm 6.3 Higher-Order SVD (HOSVD) for d-way Tensor

Require: X ∈ Rn1×n2×···×nd , rank (r1, r2, . . . , rd) or relative error tolerance ε ≥ 0
Ensure: Tucker tensor T of rank (r1, r2, . . . , rd) with T ≈ X or ERR ≡ ∥X−T∥ ≤ ε∥X∥

1: function HOSVD(X, (r1, r2, . . . , rd) or ε)
2: χ← ∥X∥
3: if ε defined then ε̄← (ε/

√
d)χ

4: for k = 1, . . . , d do
5: [Uk, εk]← LLSV(X(k), rk or ε̄) ▷ rk leading left sing. vectors of X(k)

6: end for
7: G← X×1 U⊺

1 ×2 U⊺
2 · · · ×d U⊺

d ▷ compress in all modes
8: ERR ← (χ2 − ∥G∥2)1/2 ▷ equivalent to ∥X− T∥
9: return {G,U1,U2, . . . ,Ud, ERR } ▷ T ≡ JG;U1,U2, . . . ,UdK

10: end function

Complexity Analysis

Defining N =
∏d

k=1 nk and Nk =
∏

ℓ ̸=k nℓ, the total cost of the LLSVs in Lines 4 to 6 is

O
(
N

d∑

k=1

min{nk, Nk}
)
.

If we assume nk ≤ Nk, this simplifies to O(N∑d
k=1 nk). The cost for the multi-TTM in

Line 7 to compute G is

O
(

d∑

k=1

(k∏

ℓ=1

rℓ

)(d∏

ℓ=k

nℓ

))
= O

(
r1N + r1r2n2n3 · · ·nd + · · · + r1r2 · · · rdnd

)
.

As in the three-way case, we can change the order of the TTMs (per Proposition 3.19) to
minimize the computational complexity. No matter the order of the TTMs, the cost of the
LLSVs dominate the overall complexity of HOSVD because rk ≤ nk for all k.

Exercise 6.7 Implement HOSVD. With the Miranda scientific simulation tensor, compute
the HOSVD for a rank of 232× 43× 41, timing each call to LLSV and the TTM compres-
sion step. How do the timings compare?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

6.3. Sequentially Truncated HOSVD (ST-HOSVD) 125

Exercise 6.8 With the Miranda scientific simulation tensor, denoted X, compute an ap-
proximation that maximizes compression subject to satisfying a relative error tolerance
ε = 10−2 in the following ways.

(a) Compute a low-rank matrix approximation of X(1).
(b) Compute a low-rank matrix approximation of X(2).
(c) Compute a low-rank matrix approximation of X(3).
(d) Compute a Tucker approximation using HOSVD.
(e) Compare and analyze your results in terms of computation time, final accuracy, and

storage requirements.
(f) What method gives greatest compression?

6.3 Sequentially Truncated HOSVD (ST-HOSVD)
We can improve the efficiency of HOSVD using a technique called sequential truncation.
The HOSVD computes all the factor matrices and then computes the core. In contrast, the
sequentially truncated higher-order SVD (ST-HOSVD) computes a factor matrix in a
mode and then compresses the tensor in that mode before computing the next factor matrix.
Vannieuwenhoven et al. (2012) introduced this approach and coined the name Sequentially
Truncated HOSVD; Hackbusch (2019) simultaneously developed the same idea under the
name Successive HOSVD Projection. ST-HOSVD differs from HOSVD in that it selects
each factor matrix in turn, taking into account the effects of the prior selections. As a
result, it is more computationally efficient than HOSVD and often (but not always) yields
a better solution. The order of computation impacts the computational cost and the result,
and different orders produce different Tucker representations with different approximation
errors. Like HOSVD, ST-HOSVD produces a quasi-optimal decomposition for any order,
with an approximation error within a factor of

√
d of the optimal solution. We present the

algorithm and its computational cost in this section, and we prove the error decomposition
and quasi-optimality in Chapter 7.

6.3.1 ST-HOSVD for 3-way Tensors
ST-HOSVD for a three-way tensor is given as Algorithm 6.4, which can take the target
rank (p, q, r) as input. After each factor matrix is computed, the tensor is truncated in that
mode so that the size of the tensor is successively reduced, and the truncation in the last
mode produces the core tensor of the Tucker representation.

If we are instead given an error tolerance ε as input to Algorithm 6.4, then we use the
following error decomposition of ST-HOSVD (detailed later in Theorem 7.5):

∥X−T∥2 = ∥(I−UU⊺)X(1)∥2F +∥(I−VV⊺)Y(2)∥2F +∥(I−WW⊺)Z(3)∥2F , (6.15)

where Y = X×1U⊺ and Z = X×1U⊺×2V⊺. Hence, if each summand has error less than
or equal to (ε/

√
3)∥X∥, the final solution satisfies ∥X − T∥ ≤ ε∥X∥ with ∥X − T∥2 =

ε21 + ε22 + ε23.

As with HOSVD, we can adjust the error tolerance specified for later modes based on the
actual errors in previous modes. In the case of ST-HOSVD, we have computed the error
exactly (rather than only an upper bound), so the adjustments can be more precise.

The decomposition of the error in Eq. (6.15) also implies that the absolute error of the
approximation can be computed directly from the errors returned by LLSV, as given in
Line 9.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

126 Chapter 6. Tucker Algorithms

Algorithm 6.4 Sequentially Truncated HOSVD (ST-HOSVD) for 3-way Tensor

Require: X ∈ Rm×n×p, rank (q, r, s) or relative error tolerance ε ≥ 0
Ensure: Tucker tensor T of rank (q, r, s) with T ≈ X or ERR ≡ ∥X− T∥ ≤ ε∥X∥

1: function ST-HOSVD(X, (q, r, s) or ε)
2: if ε defined then ε̄← (ε/

√
3)∥X∥

3: [U, ε1]← LLSV(X(1), q or ε̄) ▷ q leading left sing. vectors of X(1)

4: Y← X×1 U⊺ ▷ compress mode 1
5: [V, ε2]← LLSV(Y(2), r or ε̄) ▷ r leading left sing. vectors of Y(2)

6: Z← Y×2 V⊺ ▷ compress mode 2
7: [W, ε3]← LLSV(Z(3), s or ε̄) ▷ s leading left sing. vectors of Z(3)

8: G← Z×3 W⊺ ▷ compress mode 3
9: ERR ← (ε21 + ε22 + ε23)

1/2 ▷ equivalent to ∥X− T∥
10: return {G,U,V,W, ERR } ▷ T ≡ JG;U,V,WK
11: end function

Complexity Analysis

The complexities of each line is as follows.

• Line 3 – O(min{m,np}mnp) for LLSV of m× np matrix,
• Line 4 – O(qmnp) for TTM,
• Line 5 – O(min{n, qp} qnp) for LLSV of n× qp matrix,
• Line 6 – O(qrnp) for TTM,
• Line 7 – O(min{p, qr} qrp) for LLSV of p× qr matrix,
• Line 8 – O(qrsp) for TTM.

Then the total cost of the three LLSVs is

O(min{m,np}mnp+min{n, qp} qnp+min{p, qr} qrp). (6.16)

If we have m ≤ np, n ≤ qp, and p ≤ qr, the cost of the LLSVs simplifies to

O(m2np+ qn2p+ qrp2)

The total cost of the three TTM truncations is

O(mnpq + npqr + pqrs). (6.17)

Comparing the LLSV costs of HOSVD in Eq. (6.13) and ST-HOSVD in Eq. (6.16), we see
that the first terms match and that the second and third terms are smaller for ST-HOSVD by
factors of at least m

q and mn
qr , respectively, since we must have min{n, qp} ≤ min{n,mp}

and min{p, qr} ≤ min{p,mn}. Comparing the TTM costs of HOSVD in Eq. (6.14) and
ST-HOSVD in Eq. (6.17), we see that they are equivalent, assuming the same mode order is
used in both algorithms. Because the LLSV costs of HOSVD dominate those of the TTMs,
the reduction in LLSV costs by ST-HOSVD is significant and leads to noticeable speedups
in practice.

The intuition for the better efficiency of ST-HOSVD is that for each matrix LLSV, the
number of columns involved is reduced when compared to the corresponding matrix LLSV
for HOSVD. When the truncation ranks are specified in advance, the mode order can be
chosen to minimize computational complexity as in the case of multi-TTM.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

6.3. Sequentially Truncated HOSVD (ST-HOSVD) 127

Exercise 6.9 Consider the Miranda scientific simulation tensor of size 2048× 256× 256.
(a) With mode order (1, 2, 3), compute the ratio of computational complexity of each

line of Lines 3 to 8 in Algorithm 6.4 for (q, s, r) = (600, 100, 100) versus (q, s, r) =
(300, 50, 50).

(b) Use ST-HOSVD to compute a rank-(600, 100, 100) Tucker decomposition. How
long did it take? What is the error? How does these compare to HOSVD?

(c) Use ST-HOSVD to compute a rank-(300, 50, 50) Tucker decomposition. How long
did it take? What is the error? How does these compare to HOSVD?

(d) What is the ratio of computation times for each step for the two ranks? How does it
compare to the ratios estimated based on the computational complexity?

6.3.2 ST-HOSVD for d-way Tensors
The ST-HOSVD for a d-way tensor that takes specified rank or error as input is provided
in Algorithm 6.5. The error formulation is based on the ST-HOSVD error decomposition
(looking ahead to Theorem 7.6):

∥X− T∥2 =

d∑

k=1

∥G(k) ×k (I−UkU
⊺
k)∥2F

where G(k) = X ×1 U⊺
1 · · · ×k−1 U⊺

k−1 is the residual tensor at the start of iteration k.
Hence, if each factor matrix satisfies

∥∥∥(I−UkU
⊺
k)G

(k)
(k)

∥∥∥
F
≤ (ε/

√
d)∥X∥,

the final solution satisfies ∥X−T∥ ≤ ε∥X∥ with ∥X−T∥2 = ε21+ · · ·+ε2d because LLSV
guarantees εk ≤ (ε/

√
d)∥X∥ for each k.

Algorithm 6.5 Sequentially Truncated HOSVD (ST-HOSVD) for d-way Tensor

Require: X ∈ Rn1×n2×···×nd , rank (r1, r2, . . . , rd) or relative error tolerance ε ≥ 0
Ensure: Tucker tensor T of rank (r1, r2, . . . , rd) with T ≈ X or ERR ≡ ∥X−T∥ ≤ ε∥X∥

1: function ST-HOSVD(X, (r1, r2, . . . , rd) or ε)
2: if ε defined then ε̄← (ε/

√
d)∥X∥

3: G← X

4: for k = 1, . . . , d do
5: [Uk, εk]← LLSV(G(k), rk or ε̄) ▷ rk leading left sing. vectors of residual
6: G← G×k U⊺

k ▷ compress in mode k
7: end for
8: ERR ← (

∑d
k=1 ε

2
k)

1/2 ▷ equivalent to ∥X− T∥
9: return {G,U1,U2, . . . ,Ud, ERR } ▷ T ≡ JG;U1,U2, . . . ,UdK

10: end function

Complexity Analysis

Define Qk ≡
∏

ℓ<k rℓ and Pk ≡
∏

ℓ>k nℓ. Then the total cost of the LLSVs in Line 5 is

O
(

d∑

k=1

nkQkPk min{nk, QkPk}
)
.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

128 Chapter 6. Tucker Algorithms

If we have nk ≤ QkPk for all k ∈ [d], this simplifies to O(∑d
k=1 n

2
kQkPk). The cost for

the TTMs in Line 6 is the same as for Algorithm 6.3, i.e.,

O
(

d∑

k=1

(k∏

ℓ=1

rℓ

)(d∏

ℓ=k

nℓ

))
= O

(
d∑

k=1

rknkQkPk

)
.

Comparing to HOSVD, we see that the cost of LLSVs is reduced (except for the first
one) and the cost of the TTMs matches exactly, assuming the same mode order is used.
Thus, HOSVD performs more computation than ST-HOSVD, and the difference is more
pronounced when the truncation ranks are small relative to the input dimensions. As in the
three-way case, when the ranks are specified in advance, we can change the mode order of
the algorithm to minimize the computational complexity.

Exercise 6.10 Implement ST-HOSVD. Your implementation should accept the mode order
as an input parameter. Repeat Exercise 6.9 with mode order (3, 2, 1).

6.4 Higher-order Orthogonal Iteration (HOOI)
An alternative to HOSVD and ST-HOSVD is higher-order orthogonal iteration (HOOI).
It is a block coordinate descent method (see Appendix B.3.7) that starts off with initial
guesses for all the factor matrices and improves then repeatedly cycles through optimizing
each factor matrix individually. It maintains orthonormality of the factor matrices at each
step. This is an alternating least squares approach to solving the Tucker minimization
problem as given in Eq. (6.5) for 3-way and Eq. (6.8) for d-way. It is analogous to the
CP-ALS algorithm for computing CP decompositions (see Chapter 11).

In the 3-way case, this method was originally called Tucker ALS or TUCKALS3, as pro-
posed by Kroonenberg and De Leeuw (1980). It was extended to d-way by Kapteyn et al.
(1986) and now goes by the name HOOI, as popularized by De Lathauwer, De Moor, et al.
(2000b).

Unlike HOSVD and ST-HOSVD, HOOI is an iterative algorithm, so its computational cost
and approximation error depend on the number of iterations. Each iteration of HOOI is
cheaper than ST-HOSVD, and the relative cost of HOOI decreases as the truncation ranks
decrease. HOOI often converges quickly and can achieve an approximation error on par
with HOSVD or ST-HOSVD in as few as two iterations.

While HOSVD and ST-HOSVD can be applied with specified ranks or specified error tol-
erance, HOOI can only be used with specified ranks.

6.4.1 HOOI for 3-way Tensors
The HOOI algorithm, given in Algorithm 6.6, starts with an initial guess for the factor
matrices as input. It alternates among the factors matrices, solving for one using LLSV
while holding the others fixed. This is repeated until the relative change in the error is
below the threshold τ or the maximum number of iteration (MAXITERS) is exceeded.

For two factor matrices fixed, the third factor matrix can be computed via a mode-wise
optimization as described in Section 6.1.3. For instance, to update the 2nd mode factor
matrix V as in Eq. (6.11), we compute the leading left singular vectors of the mode-2
unfolding of X×1U⊺×3W⊺, i.e., X(2)(W⊗U)⊺. The number of columns of this matrix
is qs, which is generally much smaller than the number of columns of X(2), mp. Since we
are solving each subproblem exactly, the objective function value is non-decreasing.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

6.4. Higher-order Orthogonal Iteration (HOOI) 129

Algorithm 6.6 Higher-Order Orthogonal Iteration (HOOI) for 3-way Tensor

Require: X ∈ Rm×n×p, initial matrices U ∈ Rq×r, V ∈ Rn×r, W ∈ Rp×s,
convergence tolerance τ > 0, maximum iterations MAXITERS ∈ N

Ensure: rank-(q, r, s) Tucker tensor JG;U,V,WK ≈ X

1: function HOOI(X,U,V,W, τ,MAXITERS)
2: χ← ∥X∥
3: for t = 1, 2, . . . ,MAXITERS do
4: Y← X×2 V⊺ ×3 W⊺

5: U← LLSV(Y(1), q) ▷ update 1st factor matrix
6: Y← X×1 U⊺ ×3 W⊺

7: V← LLSV(Y(2), r) ▷ update 2nd factor matrix
8: Y← X×1 U⊺ ×2 V⊺

9: W← LLSV(Y(3), s) ▷ update 3rd factor matrix
10: G← Y×3 W⊺ ▷ compute core
11: ERRt ← (χ2 − ∥G∥2)1/2 ▷ equivalent to ∥X− JG;U,V,WK∥
12: if (t > 1) and (ERRt − ERRt−1 < τχ) then
13: break ▷ change in relative error < τ
14: end if
15: end for
16: return {G,U,V,W, ERRt } ▷ Tucker tensor is JG;U,V,WK
17: end function

Within an iteration, for each mode, the primary operations are to compute a reduced ten-
sor via multi-TTM and to compute the leading left singular vectors of its unfolding. The
reduced tensors are much smaller than the data tensor because all but one of the modes has
been reduced from the original size to the low-rank dimension.

Complexity Analysis

The cost of a HOOI iteration, assuming the multi-TTMs are computed in order, is as fol-
lows:

• Line 4 – O(mnpr +mprs) for multi-TTM,
• Line 5 – O(mrs min{m, rs}) for LLSV of m× rs matrix,
• Line 6 – O(mnpq + npqs) for multi-TTM,
• Line 7 – O(nqs min{n, qs}) for LLSV of n× qs matrix,
• Line 8 – O(mnpq + nprs) for multi-TTM,
• Line 9 – O(pqr min{p, qr}) for LLSV of p× qr matrix,
• Line 10 – O(pqrs) for TTM.

Observe that the multi-TTMs share some computation: Lines 6 and 8 both compute X ×1
U⊺ first, and U doesn’t change between those two lines. Thus, we can avoid the cost of
recomputing that quantity (see also Section 3.6.1).

For comparison with previous algorithms, we can write the LLSV costs as

O
(
mrs min{m, rs}+ nqs min{n, qs}+ pqr min{p, qr}

)
, (6.18)

and the costs of the TTM truncations together are

O(mnpq +mnpr +mprs+ npqs+ nprs+ pqrs). (6.19)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

130 Chapter 6. Tucker Algorithms

Compared to HOSVD and ST-HOSVD, the LLSVs are much cheaper and the TTM costs
are comparable. As HOSVD and ST-HOSVD are typically dominated by LLSVs, a single
iteration of HOOI is cheaper than HOSVD or ST-HOSVD, and the difference is more
pronounced for smaller ranks.

Exercise 6.11 Consider the Miranda tensor of size 2048× 256× 256.
(a) Compute the ratio of computational complexity of each line of Lines 4 to 9 in Algo-

rithm 6.6 for (q, s, r) = (600, 100, 100) versus (q, s, r) = (300, 50, 50).
(b) Use HOOI to compute a rank-(600, 100, 100) Tucker decomposition. How many

iterations does it take? How long did it take? What is the error?
(c) Use HOOI to compute a rank-(60, 10, 10) Tucker decomposition. How many itera-

tions does it take? How long did it take? What is the error?
(d) What is the ratio of computation times for each step for the two ranks? How does it

compare to the ratios estimated based on the computational complexity?
(e) How does HOOI compare to HOSVD and ST-HOSVD in terms of accuracy and

running time?

6.4.2 HOOI for d-way Tensor
As in the 3-way case, HOOI for a d-way tensor (see Algorithm 6.7) computes a solution
iteratively, starting with the data tensor and initial guesses for the factor matrices. Check-
ing for convergence can be done by tracking the norm of the core, as it determines the
approximation error (see Proposition 6.1). When the error ceases to improve by a sufficient
amount, the iterations can cease. When initialized randomly, HOOI can converge to an
approximation error comparable to HOSVD or ST-HOSVD in as few as two iterations.

Algorithm 6.7 Higher-Order Orthogonal Iteration (HOOI) for d-way Tensors

Require: X ∈ Rn1×n2×···×nd , initial matrices Uk ∈ Rnk×rk for k ∈ [d],
convergence tolerance τ > 0, maximum iterations MAXITERS ∈ N

Ensure: rank-(r1, r2, . . . , rd) Tucker tensor JG;U1,U2, . . . ,UdK ≈ X

1: function HOOI(X,U1,U2, . . . ,Ud, τ,MAXITERS)
2: χ = ∥X∥
3: for t = 1, 2, . . . ,MAXITERS do
4: for k = 1, 2, . . . , d do
5: Y← X×1 U⊺

1 · · · ×k−1 U
⊺
k−1 ×k+1 U

⊺
k+1 · · · ×d U

⊺
d

6: Uk ← LLSV(Y(k), rk) ▷ update kth factor matrix
7: end for
8: G← Y×d U⊺

d ▷ compute core
9: ERRt ← (χ2 − ∥G∥2)1/2 ▷ equivalent to ∥X− JG;U1,U2, . . . ,UdK∥

10: if (t > 1) and (ERRt − ERRt−1 < τχ) then
11: break ▷ change in relative error < τ
12: end if
13: end for
14: return {G,U1,U2, . . . ,Ud, ERRt } ▷ Tucker tensor is JG;U1,U2, . . . ,UdK
15: end function

Complexity Analysis

The cost of the multi-TTMs in Line 5 depends on the order they are evaluated. Assuming
the TTMs are done in increasing mode order, the total TTM cost for an iteration of HOOI

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

6.5. Other Methods 131

is given by

O
(

d∑

k=1

nk

d∑

ℓ=1
ℓ ̸=k

(ℓ∏

m=1
m ̸=k

rm

)(d∏

m=ℓ
m ̸=k

nm

))
.

The most expensive operation of each of the d multi-TTMs is typically the first TTM in-
volving the full tensor X since its complexity involves N =

∏d
k=1 nk.

To reduce the computational cost of the multi-TTMs, we can reuse partial computations
per the discussion of memoization in Section 3.6.1. While the exact complexity depends
on the structure of the dimension tree used, memoization typically reduces the total number
of TTMs from d2−d down toO(d log d). More importantly, it reduces the number of TTMs
involving the full tensor X (and a complexity factor of N) from d down to 2.

For Rk ≡
∏

ℓ ̸=k rℓ for all k ∈ [d], the cost of the LLSVs in Line 6 in a single iteration of
HOOI is

O
(

d∑

k=1

nkRk min{nk, Rk}
)
,

The cost of the final TTM to compute the core in Line 10 is nd
∏d

k=1 rk, which is typically
negligible.

Thus, the cost per iteration of HOOI is dominated by TTMs, and in particular the two TTMs
involving the input tensor (assuming memoization is used). Comparing the costs of HOOI
to ST-HOSVD and HOSVD, we observe that a single iteration of HOOI is cheaper than
the other two methods. For the rank-specified problem, whether HOOI is more efficient
depends on the number of HOOI iterations performed as well as the input dimensions and
truncation ranks.

Exercise 6.12 Consider the computation of a rank-r × r × · · · × r approximation of a
d-way tensor of size n × n × · · · × n. Assume r ≪ n. Compare the costs of HOOI and
ST-HOSVD. Approximately how many iterations of HOOI would you expect to be able to
perform in the time it takes to run ST-HOSVD?

Exercise 6.13 Using the Miranda scientific simulation tensor, compare HOOI (initialized
randomly) and ST-HOSVD in terms of the computation time and final error. Do five runs
each to get some measure of the variance (the solution should not change for ST-HOSVD,
but the run times may vary somewhat). Do this for each of the following core sizes:

(a) 13× 3× 2,
(b) 232× 43× 41,
(c) 583× 102× 99, and
(d) 934× 161× 158.

6.5 Other Methods
Tucker decomposition is useful as a compression method, but the tensors may be so large
that they do not fit into memory. Parallel algorithms for Tucker decomposition have been
developed by Austin et al. (2016) and Ballard, Klinvex, et al. (2020). Another option is
randomized methods, though these may lose the optimality guarantees (Ahmadi-Asl et al.,
2021; Malik and Becker, 2018; Sun et al., 2020), or a combination of parallelization and
randomization (Minster, Li, et al., 2024).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

132 Chapter 6. Tucker Algorithms

The Tucker optimization methods discussed thus far are alternating methods. It is possible
to solve this directly using optimization methods, but the factor matrices are generally
constrained to lie on a Grassmanian manifold; see Eldén and Savas (2009) and Uschmajew
(2010).

Sparse tensors present a special challenge for Tucker decomposition because the sparsity
is typically destroyed in the intermediate computations needed to compute the Tucker de-
composition. Thus, Kaya and Uçar (2016) and Kolda and Sun (2008) take special care to
avoid the so-called “intermediate blow-up problem.”

We have not considered the problem of nonnegative Tucker factorizations, which usually
constrains both the factors and the core to be nonnegative. This substantially modifies the
optimization problem and solutions; see Mørup et al. (2008) and Phan and Cichocki (2008,
2011).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

7
Tucker Approximation
Error

A nice property of Tucker decomposition is that we can determine the exact approxima-
tion error for ST-HOSVD and tight bounds for HOSVD. With this information, we can
choose the ranks of the decomposition to satisfy a given error threshold. Additionally,
for the specified-rank formulation, we can prove that both HOSVD and ST-HOSVD are
quasi-optimal, meaning that their relative approximation error is within

√
d of optimal for

a d-way tensor. In this chapter, we derive the approximation errors for Tucker decomposi-
tions computed via HOSVD and ST-HOSVD. From this analysis, we show how to choose
the ranks in the course of the algorithm to satisfy a given error tolerance as presented in
Chapter 6. We conclude with a proof of the quasi-optimality of HOSVD and ST-HOSVD.
This chapter derives primarily from the work of De Lathauwer, De Moor, et al. (2000a),
Hackbusch (2019), and Vannieuwenhoven et al. (2012).

7.1 Decomposing the Approximation Error
Our goal in this section is to decompose the Tucker approximation error across the modes
of the tensor. This is the key insight into establishing the quasi-optimality of HOSVD and
ST-HOSVD, and it also guides the algorithms in choosing ranks to satisfy a prescribed
approximation error.

Theorem 7.1: Tucker Decomposition Error for 3-way Tensors
(Vannieuwenhoven et al., 2012)

If T = G ×1 U ×2 V ×3 W is a Tucker approximation of a tensor X with U, V, and W
orthonormal and G = X×1 U⊺ ×2 V⊺ ×3 W⊺, then

∥X− T∥2 = ∥X×1 (I−UU⊺)∥2 + ∥X×1 UU⊺ ×2 (I−VV⊺)∥2

+ ∥X×1 UU⊺ ×2 VV⊺ ×3 (I−WW⊺)∥2.

Proof. Given G = X ×1 U⊺ ×2 V⊺ ×3 W⊺, we can eliminate it from the expression of
the residual tensor X − T as in Eq. (6.4). Then we decompose the residual tensor using a
telescoping sum and then combine terms to write it as a sum of three tensors corresponding

133

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

134 Chapter 7. Tucker Approximation Error

to the approximation error of each mode:

X− T = X−X×1 UU⊺ ×2 VV⊺ ×3 WW⊺

= X−X×1 UU⊺ +X×1 UU⊺ −X×1 UU⊺ ×2 VV⊺

+X×1 UU⊺ ×2 VV⊺ −X×1 UU⊺ ×2 VV⊺ ×3 WW⊺
(7.1)

= X×1 (I−UU⊺)︸ ︷︷ ︸
A

+X×1 UU⊺ ×2 (I−VV⊺)︸ ︷︷ ︸
B

+X×1 UU⊺ ×2 VV⊺ ×3 (I−WW⊺)︸ ︷︷ ︸
C

.

(7.2)

Observe, by Proposition A.9, that for any tensors Y,Z and orthonormal matrix Q with
compatible dimensions in mode k,

〈
Y×k QQ⊺,Z×k (I−QQ⊺)

〉
= 0.

Thus,

⟨A,B⟩ =
〈
X×1 (I−UU⊺),

(
X×2 (I−VV⊺)

)
×1 UU⊺

〉
= 0,

⟨A,C⟩ =
〈
X×1 (I−UU⊺),

(
X×2 VV⊺ ×3 (I−WW⊺)

)
×1 UU⊺

〉
= 0,

⟨B,C⟩ =
〈(

X×1 UU⊺)×2 (I−VV⊺),
(
X×1 UU⊺ ×3 (I−WW⊺)

)
×2 VV⊺

〉
= 0.

Then we have

∥X− T∥2 = ∥A+B+ C∥2 = ⟨A+B+ C,A+B+ C⟩
= ∥A∥2 + ∥B∥2 + ∥C∥2 + 2⟨A,B⟩+ 2⟨A,C⟩+ 2⟨B,C⟩
= ∥A∥2 + ∥B∥2 + ∥C∥2.

The approximation error in the 2nd mode per Eq. (7.2), given by B, is based on I−VV⊺

applied to the tensor X×1UU⊺ and not the original tensor X. That is, the error in the later
modes depends on the projections in the previous modes. However, the telescoping sum
uses an arbitrary ordering on the modes. Any permutation of the modes works, yielding six
distinct decompositions of the residual for 3-way tensors.

The result can be extended to d-way tensors.

Theorem 7.2: Tucker Decomposition Error for d-way Tensors
(Vannieuwenhoven et al., 2012)

If T = G ×1 U1 ×2 U2 · · · ×d Ud is a Tucker approximation of a tensor X with
U1,U2, . . . ,Ud orthonormal and G = X×1 U⊺

1 ×2 U⊺
2 · · · ×d U⊺

d , then

∥X− T∥2 = ∥X×1 (I−U1U
⊺
1)∥

2
+ ∥X×1 U1U

⊺
1 ×2 (I−U2U

⊺
2)∥

2
+ · · ·

+
∥∥X×1 U1U

⊺
1 · · · ×d−1 Ud−1U

⊺
d−1 ×d (I−UdU

⊺
d)
∥∥2 .

Exercise 7.1 Prove Theorem 7.2.

7.2 HOSVD Error
We can use the decomposition of the approximation error to obtain an upper bound on the
error from HOSVD. Recall that HOSVD computes the leading left singular vectors of each
mode-wise unfolding of the original tensor using the matrix SVD.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

7.2. HOSVD Error 135

7.2.1 HOSVD Error for 3-way Tensors

Theorem 7.3: HOSVD Error for 3-way tensors (De Lathauwer, De Moor, et al.,
2000a)

Let T = JG;U,V,WK be the rank-(q, r, s) Tucker decomposition of X computed by the
HOSVD algorithm (Algorithm 6.2). Then

∥X− T∥2 ≤ ∥X×1 (I−UU⊺)∥2 + ∥X×2 (I−VV⊺)∥2 + ∥X×3 (I−WW⊺)∥2

=

m∑

i=q+1

σi(X(1))
2 +

n∑

j=r+1

σj(X(2))
2 +

p∑

k=s+1

σk(X(3))
2,

where σi(A) denotes the ith singular value of a matrix A.

Proof. By Proposition A.9, applying an orthogonal projection via TTM to any mode of a
tensor can only decrease its norm. That is, for any tensor Y and orthonormal matrix Q with
compatible dimensions in mode k, ∥Y×k QQ⊺∥ ≤ ∥Y∥.
Then, from Theorem 7.1, we have

∥X− T∥2 = ∥X×1 (I−UU⊺)∥2 + ∥X×1 UU⊺ ×2 (I−VV⊺)∥2
+ ∥X×1 UU⊺ ×2 VV⊺ ×3 (I−WW⊺)∥2

≤ ∥X×1 (I−UU⊺)∥2 + ∥X×2 (I−VV⊺)∥2 + ∥X×3 (I−WW⊺)∥2

= ∥(I−UU⊺)X(1)∥2F + ∥(I−VV⊺)X(2)∥2F + ∥(I−WW⊺)X(3)∥2F .
As U, V, and W are the leading left singular vectors of the respective mode-wise unfold-
ings, the result follows from Theorem A.26.

The bound from Theorem 7.3 motivates HOSVD (Algorithm 6.2) with specified error ε. By
definition of LLSV, we have that U satisfies ∥(I−UU⊺)X(1)∥2F ≤ ε2

3 ∥X∥2, V satisfies
∥(I−VV⊺)X(2)∥2F ≤ ε2

3 ∥X∥2, and W satisfies ∥(I−WW⊺)X(3)∥2F ≤ ε2

3 ∥X∥2. Thus,
∥X− T∥ ≤ ε∥X∥.

7.2.2 HOSVD Error for d-way Tensors
We can generalize the error bound for HOSVD to d-way tensors as follows:

Theorem 7.4: HOSVD Error for d-way tensors (De Lathauwer, De Moor, et al.,
2000a)

Let T = JG;U1,U2, . . . ,UdK by the rank-(r1, r2, . . . , rd) Tucker decomposition of X

computed by the HOSVD algorithm (Algorithm 6.3). Then

∥X− T∥2 ≤
d∑

k=1

∥X×k (I−UkU
⊺
k)∥2

=

d∑

k=1

nk∑

i=rk+1

σi(X(k))
2,

where σi(A) denotes the ith singular value of a matrix A.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

136 Chapter 7. Tucker Approximation Error

Exercise 7.2 Prove Theorem 7.4.

As in the 3-way case, this motivates HOSVD (Algorithm 6.3) with specified error ε.

7.3 ST-HOSVD Error
We can again use the decomposition of the approximation error. In the previous section, we
used the error decomposition to upper bound the HOSVD error. In the case of ST-HOSVD,
the error decomposition yields exactly the ST-HOSVD error.

7.3.1 ST-HOSVD Error for 3-way Tensors

Theorem 7.5: ST-HOSVD Error (3-way)
(Hackbusch, 2019; Vannieuwenhoven et al., 2012)

Let T = JG;U,V,WK by the rank-(q, r, s) Tucker decomposition of X computed by the
ST-HOSVD algorithm (Algorithm 6.4). Then

∥X− T∥2 = ∥X×1 (I−UU⊺)∥2 + ∥Y×2 (I−VV⊺)∥2 + ∥Z×3 (I−WW⊺)∥2

=

m∑

i=q+1

σi(X(1))
2 +

n∑

j=r+1

σj(Y(2))
2 +

p∑

k=s+1

σk(Z(3))
2,

where Y = X×1 U⊺, Z = X×1 U⊺ ×2 V⊺, and σi(A) denotes the ith singular value of a
matrix A.

Proof. We consider each of three terms on the right hand side in turn, showing that each is
equivalent to the corresponding term in Theorem 7.1. The first mode terms match exactly.

For the second mode, recall from Proposition A.7 that applying a column orthonormal
matrix to any mode of a tensor maintains its norm. That is, for a tensor W and orthonormal
matrix Q with compatible dimensions in mode k, we have ∥W×k Q∥ = ∥W∥. Then

∥Y×2 (I−VV⊺)∥2 = ∥X×1 U⊺ ×2 (I−VV⊺)∥2 = ∥X×1 UU⊺ ×2 (I−VV⊺)∥2.

Similarly, for the third mode, we have

∥Z×3 (I−WW⊺)∥2 = ∥X×1 U⊺ ×2 V⊺ ×3 (I−WW⊺)∥2

= ∥X×1 UU⊺ ×2 VV⊺ ×3 (I−WW⊺)∥2.

As U, V, and W are the leading left singular vectors of the respective mode-wise unfold-
ings of X, Y, and Z, the final equality follows from Theorem A.26.

As with HOSVD, Theorem 7.5 justifies Algorithm 6.5 with specified error tolerance. Al-
gorithm 6.5 sets the mode-wise absolute error tolerance to be (ε/

√
3)∥X∥ for each mode.

From Theorem 7.5 and the guarantees of Algorithm 6.1, we have that

ERR =
√
ε21 + ε22 + ε23 ≤

√
(ε2/3)∥X∥2 + (ε2/3)∥X∥2 + (ε2/3)∥X∥2 = ε∥X∥.

7.3.2 ST-HOSVD Error for d-way Tensors
Similar results to Theorem 7.5 can be achieved in the d-way case.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

7.4. Quasi-Optimality 137

Theorem 7.6: ST-HOSVD Error (d-way)
(Hackbusch, 2019; Vannieuwenhoven et al., 2012)

Let T = JG;U1,U2, . . . ,UdK by the rank-(r1, r2, . . . , rd) Tucker decomposition of X

computed by the ST-HOSVD algorithm. Then

∥X− T∥2 =

d∑

k=1

∥G(k) ×k (I−UkU
⊺
k)∥2

=

d∑

k=1

nk∑

i=rk+1

σi(G
(k)
(k))

2,

where G(k) = X ×1 U⊺
1 · · · ×k−1 U

⊺
k−1 and σi(A) is the ith singular value of the matrix

A.

Proof. We consider the kth of d terms in the outer summation of the right hand side and
show that it is equivalent to the kth term in Theorem 7.2. We have

∥G(k) ×k (I−UkU
⊺
k)∥2 = ∥X×1 U⊺

1 · · · ×k−1 U
⊺
k−1 ×k (I−UkU

⊺
k)∥2

= ∥X×1 U1U
⊺
1 · · · ×k−1 Uk−1U

⊺
k−1 ×k (I−UkU

⊺
k)∥2,

where the last equality is a result of Proposition A.7 and the fact that a TTM in any mode
with a column orthonormal matrix maintains the norm of the tensor. ST-HOSVD computes
Uk to be the leading left singular vectors of the mode-k unfolding of G(k), so

∥G(k) ×k (I−UkU
⊺
k)∥2 =

nk∑

i=rk+1

σi(G
(k)
(k))

2

follows from Theorem A.26.

Using this result, we can justify the variation of the d-way ST-HOSVD algorithm, Algo-
rithm 6.5, using a user-specified error. We can partition the error tolerance in any way so
long as

∑d
k=1 ε

2
k ≤ ε2∥X∥2.

Exercise 7.3 Consider the ST-HOSVD algorithm in Algorithm 6.5. Let εk denote the
relative error of the LLSV, i.e., ∥(I −UkU

⊺
k)G(k)∥F /∥G(k)∥F . Prove that replacing the

mode-wise error tolerance in line 5 with
√√√√
(
ε2∥X∥2 −

k−1∑

i=1

ε2i

)
/(d− k + 1).

still ensures the Tucker decomposition error tolerance is satisfied.

7.4 Quasi-Optimality
We show in this section that both HOSVD and ST-HOSVD produce quasi-optimal solu-
tions. That is, the Tucker decompositions returned by these algorithms are within a factor√
d of the optimal Tucker decomposition for a given rank. This relies on the fact that each

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

138 Chapter 7. Tucker Approximation Error

algorithm uses the SVD to solve the mode-wise problems, and the SVD computes the op-
timal solution for each matrix case. We prove the quasi-optimality for 3-way tensors in
Theorems 7.7 and 7.9 and leave the proofs of the results for d-way tensors (Theorems 7.8
and 7.10) as exercises.

Theorem 7.7: Quasi-optimality of HOSVD for 3-way tensors
(Hackbusch, 2019; Vannieuwenhoven et al., 2012)

Let T be the rank-(q, r, s) Tucker decomposition computed by the HOSVD algorithm for
the three-way tensor X. Then T is within a factor

√
3 of optimal, i.e.,

∥X− T∥ ≤
√
3 ∥X− T∗∥,

where T∗ is an optimal rank-(q, r, s) decomposition.

Proof. Given a tensor X, let T = JG;U,V,WK be the Tucker decomposition computed
by the HOSVD algorithm, and let T∗ = JG∗;U∗,V∗,W∗K be an optimal Tucker decom-
position. From Theorem 7.3, we have

∥X− T∥2 ≤ ∥X×1 (I−UU⊺)∥2 + ∥X×2 (I−VV⊺)∥2 + ∥X×3 (I−WW⊺)∥2.

Consider the first term of the right hand side. HOSVD computes U to be the leading left
singular vectors of X(1). From Theorem A.26, UU⊺X(1) is the best rank-q approximation
of X(1). In particular, it has a smaller approximation error than the rank-q approximation
given by T∗

(1) = U∗G∗
(1)(W

∗ ⊗V∗)⊺. That is, while T∗ is an optimal Tucker decompo-
sition of X, its mode-1 unfolding is not necessarily an optimal low-rank approximation of
X(1). Thus,

∥X×1 (I−UU⊺)∥ = ∥X(1) −UU⊺X(1)∥F ≤ ∥X(1) −T∗
(1)∥F = ∥X− T∗∥.

Similar arguments for the 2nd and 3rd terms give ∥X−T∥2 ≤ 3∥X−T∗∥2, and the result
follows.

Theorem 7.8: Quasi-optimality of HOSVD for d-way tensors
(Hackbusch, 2019; Vannieuwenhoven et al., 2012)

Let T be the rank-(r1, r2, . . . , rd) Tucker decomposition computed by the HOSVD algo-
rithm (Algorithm 6.3) for the d-way tensor X. Then T is within a factor

√
d of optimal,

i.e.,
∥X− T∥ ≤

√
d ∥X− T∗∥,

where T∗ is the optimal rank-(r1, r2, . . . , rd) approximation.

Exercise 7.4 Prove Theorem 7.8.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

7.4. Quasi-Optimality 139

Theorem 7.9: Quasi-optimality of ST-HOSVD for 3-way tensors
(Hackbusch, 2019; Vannieuwenhoven et al., 2012)

Let T be the rank-(q, r, s) Tucker approximation computed by the ST-HOSVD algorithm
(Algorithm 6.4) for the three-way tensor X. Then T is within a factor

√
3 of optimal, i.e.,

∥X− T∥ ≤
√
3 ∥X− T∗∥,

where T∗ is the optimal rank-(q, r, s) approximation.

Proof. Given a tensor X, let T = JG;U,V,WK be the Tucker decomposition computed
by the ST-HOSVD algorithm, and let T∗ = JG∗;U∗,V∗,W∗K be an optimal Tucker de-
composition. From Theorem 7.5, we have

∥X− T∥2 = ∥X×1 (I−UU⊺)∥2 + ∥Y×2 (I−VV⊺)∥2 + ∥Z×3 (I−WW⊺)∥2,

where Y = X×1 U⊺ and Z = X×1 U⊺ ×2 V⊺.

Consider the first term of the right hand side. ST-HOSVD computes U to be the leading
left singular vectors of X(1). From Theorem A.26, this is the best rank-q approximation
of X(1). In particular, it has a smaller approximation error than that of the rank-q approx-
imation given by T∗

(1) = U∗G∗
(1)(W

∗ ⊗ V∗)⊺. That is, while T∗ is an optimal Tucker
decomposition of X, its mode-1 unfolding is not necessarily an optimal low-rank approxi-
mation of X(1). Thus,

∥X×1 (I−UU⊺)∥ = ∥X(1) −UU⊺X(1)∥F ≤ ∥X(1) −T∗
(1)∥F = ∥X− T∗∥.

Consider the second term. Again from Theorem A.26, ST-HOSVD computes the best
rank-r approximation to Y(2). In particular, it is smaller than the squared error of the rank-
r approximation given by the mode-2 unfolding of T∗ ×1 U⊺, which is V∗G∗

(2)(W
∗ ⊗

U⊺U∗)⊺. Thus,

∥Y×2 (I−VV⊺)∥ = ∥Y(2) −VV⊺Y(2)∥F
≤ ∥Y(2) −V∗G∗

(2)(W
∗ ⊗U⊺U∗)⊺∥F

= ∥Y− T∗ ×1 U⊺∥
= ∥X×1 U⊺ − T∗ ×1 U⊺∥
= ∥(X− T∗)×1 U⊺∥
≤ ∥X− T∗∥,

where the last inequality is due to Proposition A.7 and the fact that a TTM with a row
orthonormal matrix can only decrease the norm of a tensor.

The argument for the third term is similar. ST-HOSVD computes the best rank-s approx-
imation to Z(3), and therefore it is smaller than the squared error of the mode-3 unfolding

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

140 Chapter 7. Tucker Approximation Error

of T∗ ×1 U⊺ ×2 V⊺, another rank-s approximation. Thus,

∥Z×3 (I−WW⊺)∥ = ∥Z(3) −WW⊺Z(3)∥F
≤ ∥Z(3) −W∗G∗

(3)(V
⊺V∗ ⊗U⊺U∗)⊺∥F

= ∥Z− T∗ ×1 U⊺ ×2 V⊺∥
= ∥X×1 U⊺ ×2 V⊺ − T∗ ×1 U⊺ ×2 V⊺∥
= ∥(X− T∗)×1 U⊺ ×2 V⊺∥
≤ ∥X− T∗∥.

Combining terms, we have ∥X− T∥2 ≤ 3∥X− T∗∥2, and the result follows.

Theorem 7.10: Quasi-optimality of ST-HOSVD for d-way tensors
(Hackbusch, 2019; Vannieuwenhoven et al., 2012)

Let T be the rank-(r1, r2, . . . , rd) Tucker approximation computed by the ST-HOSVD al-
gorithm (Algorithm 6.5) for the d-way tensor X. Then T is within a factor

√
d of optimal,

i.e.,
∥X− T∥ ≤

√
d ∥X− T∗∥,

where T∗ is the optimal rank-(r1, r2, . . . , rd) approximation.

Exercise 7.5 Prove Theorem 7.10.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

8
Tensor Train
Decomposition

The tensor train (TT) decomposition compresses a tensor X of any order into a series of
products of 3-way (or lower order) tensors. Figure 8.1 provides a conceptual illustration of
the tensor decomposition for a d-way tensor. For a tensor of size n1 × n2 × · · · × nd, train
car Gk is of size rk−1 × nk × rk, with r0 = rd = 1 (so that the engine and caboose are
matrices). We explain the details in the sections that follow.

· · ·
G1 GdG2 G3 Gd−1

Figure 8.1: Conceptual tensor train decomposition. The engine and caboose are matrices,
and the remaining train cars are three-way tensors.

The TT decomposition aims to avoid the curse of dimensionality in the Tucker decompo-
sition. As illustration, consider a d-way tensor of size n × n × · · · × n which requires nd

storage. The storage is exponential in d, so we say this is the curse of dimensionality. A
Tucker decomposition of the tensor has a core of size r×r×· · ·×r and d factor matrices of
size n×r which requires rd+dnr storage. The storage is still exponential in d, even though
the base is lower, so Tucker still suffers from the curse of dimensionality. If we make the
same simplifying assumption of a tensor of size n×n×· · ·×n and all interior ranks being
equal, i.e., r1 = · · · = rd−1 = r, then a TT decomposition requires (d − 2)nr2 + 2nr
storage. There is no direct exponential dependence on d, so the TT decomposition appears
to be free from the curse of dimensionality. However, it is not quite as simple as that as
we must still consider the accuracy of the decomposition. The Tucker decomposition of
equivalent rank will yield a better approximation.

The tensor train decomposition was developed by Oseledets (2011) and Oseledets and Tyr-
tyshnikov (2009), but later discovered to be a rediscovery of an older method in quantum
chemistry known as matrix product states (MPS); see Grasedyck et al. (2013) and Hack-
busch (2014) and references therein. Additionally, this is a special case of a more general
methods known as hierarchical tensor decomposition; see Section 17.4.2.

In this chapter, we discuss the TT decomposition, an SVD-based algorithm for fitting it
and the quasi-optimality of the resulting solution, and compare TT with Tucker on example
datasets.

141

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

142 Chapter 8. Tensor Train Decomposition

8.1 Formulation of the TT Decomposition
We consider the formulation of the TT decomposition for 3-way, 4-way, and d-way tensors.
The case for 3-way tensors is almost identical to Tucker, but we include it for completeness.

8.1.1 TT Decomposition of 3-way Tensors
For a three-way tensor X of size m× n× p, the TT decomposition is the product of:

• a tensor G1 of size 1×m× r (a matrix),
• a tensor G2 of size r × n× s, and
• a tensor G3 of size s× p× 1 (a matrix).

As with Tucker, the size parameters (r, s) have to be specified by the user or determined by
algorithm to achieve a specified error tolerance. Elementwise, the approximation is

X(i, j, k) ≈
r∑

α=1

s∑

β=1

G1(i, α)G2(α, j, β)G3(β, k). (8.1)

We can visualize what is happening in Fig. 8.2. The two-mode tensors (i.e., matrices) G1

and G2, are oriented with rows horizontal and columns vertical. However, the tensor G2

is oriented differently than we have seen so far, with mode-1 vertical, mode-3 horizontal,
and mode-2 going into the page. This makes it easy to visualize that element (i, j, k) is
calculated as the product of row i from G1 (an r row vector) with the mode-2 hyperslice j
from G2 (an r × s matrix) times column k from G3 (an s column vector).

i

j
k

G1

G2 G3

Figure 8.2: Calculating element (i, j, k) from TT decomposition of 3-way tensor

The tensor network diagram is shown in Fig. 8.3. Recall from Section 3.8.3 that the degree
of the node is the order of the tensor and connections between two nodes indicates contrac-
tion in that dimension. The 3-way tensor X is the product of a 2-way tensor G1, a 3-way
tensor G2, and a 2-way tensor G3. The TT decomposition is a train with three cars.

X ≈ G1 G2 G3

Figure 8.3: Tensor network diagram of TT decomposition of a 3-way tensor

In the 3-way case, the TT decomposition is identical to Tucker except that it only com-
presses in two of the three modes. Hence, there is no advantage to TT decomposition in the
3-way case.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

8.1. Formulation of the TT Decomposition 143

For illustrative purposes, consider the problem of computing a tensor from a given TT de-
composition, i.e., X̂ = JG1,G2,G3K, where we use the J·K notation to denote the tensor
train constructed from the constituent parts. There are a few different ways to do the recon-
struction, but we will give an example of going from right to left in Fig. 8.4. In Step 1, we
create a tensor Y of size r × n× p that combines G2 and G3 via matrix-matrix multiply of
reshapings:

Y({ 1,2 }×3) = [G2]({ 1,2 }×3)︸ ︷︷ ︸
rn×s

G3︸︷︷︸
s×p

.

Then we can compute X̂ of size m× n× p via via matrix-matrix multiply of reshapings:

X̂(1×{ 2,3 }) = G1︸︷︷︸
m×r

Y(1×{ 2,3 })︸ ︷︷ ︸
r×np

.

While it is mathematically difficult to express the shifts in the expressions from matrices to
tensors and vice versa, the computations do not require any rearrangement in memory.

G1 G2 G3
r s

m n p

G1 Y
r

m n

p

X̂
m

n

p

Step 0

Step 1

Step 2

Figure 8.4: Reconstruction of 3-way tensor from TT decomposition X̂ = JG1,G2,G3K

Exercise 8.1 What is the cost for each step of the reconstruction illustrated in Fig. 8.4?

Exercise 8.2 Consider the case of reconstructing only X̂(:, j, :) of sizem×p. Explain how
to do that in two steps, with a cost of O(rsp) for the first step and O(mrp) for the second
step.

8.1.2 TT Decomposition of 4-way Tensors
If X is a 4-way tensor of size n1 × n2 × n3 × n4, we would compress it to the product of

• a tensor G1 of size 1× n1 × r1,
• a tensor G2 of size r1 × n2 × r2, and
• a tensor G3 of size r2 × n3 × r3, and
• a tensor G4 of size r3 × n4 × 1.

Elementwise, this means

X(i1, i2, i3, i4) ≈
r1∑

j1=1

r2∑

j2=1

r3∑

j3=1

G1(i1, j1)G2(j1, i2, j2)G3(j2, i3, j3)G4(j3, i4). (8.2)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

144 Chapter 8. Tensor Train Decomposition

Figure 8.5 explains this formula: It is the product of row i1 from G1, mode-2 hyperslice i2
from G2, mode-2 hyperslice i3 from G3, and column i4 from G4.

i1

i2 i3
i4

G1

G2 G3 G4

Figure 8.5: Calculating element (i1, i2, i3, i4) from a TT decomposition of 4-way tensor

In the TT decomposition, there is generally no guarantee small values of rk will yield an
accurate approximation. In fact, it can be the case that that rk’s are relatively large with
rk > nk, as we illustrate in Fig. 8.6. We describe how large the rk can grow in Remark 8.1.

i1

i2 i3
i4

G1

G2

G3

G4

Figure 8.6: Calculating element (i1, i2, i3, i4) from a TT decomposition of 4-way tensor

The tensor network diagram of a 4-way tensor is shown in Fig. 8.7. Now node X has four
edges emanating to show it is a 4-way tensor. The TT decomposition is a train with four
cars.

X ≈ G1 G2 G3 G4

Figure 8.7: Tensor network diagram of TT decomposition of a 4-way tensor

To reconstruct a tensor from a 4-way TT decomposition, i.e., X̂ = JG1,G2,G3,G4K, we
can compute the reconstruction as pictured in Fig. 8.8. We have a choice in the order of
operations and can contract along the connected edges in any order. In the first step, we
contract G3 and G4 to get a tensor Y of size r2 × n3 × n4. In the second step, we contract
G1 and G2 to a get a tensor Z of size n1 × n2 × r2. Finally, in the third step, we contract
Z and Y to get the final result, X̂.

Exercise 8.3 In Fig. 8.8, explicitly state the reshaping for the matrix-matrix multiplication
needed to compute Y, Z, and X̂.

8.1.3 TT Decomposition of d-way Tensors
If X is a d-way tensor of size n1 × n2 × · · · × nd, the TT decomposition compresses it
to the product of 2 matrices and (d − 2) tensors of order three as shown in Fig. 8.9. The
matrix G1 is of size n1 × r1, the matrix Gd is of size rd−1 × nd, and the tensors Gk for
k ∈ { 2, . . . , d− 2 } are of size rk−1 × nk × rk.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

8.2. Algorithm and Error Analysis 145

G1 G2 G3 G4
r1 r2 r3

n1 n2 n3 n4

G1 G2 Y
r1r1 r2

n1 n2

n
3

n4

Z Y

n
1

n2
n
3

n4

r2

X̂

n
1

n2
n
3

n4

Step 0

Step 1

Step 2

Step 3

Figure 8.8: Reconstruction of 4-way tensor from TT decomposition

X

n 1

n2

n
d

n
d−1

≈ G1 G2
r1 r2 rd−2

Gd−1 Gd

rd−1

n1 n2 nd−1 nd

Figure 8.9: TT decomposition of d-way tensor

Elementwise, for all (i1, i2, . . . , id) ∈ [n1]⊗ [n2]⊗ · · · ⊗ [nd], we have

X(i1, i2, . . . , id) ≈
r1∑

j1=1

r2∑

j2=1

· · ·
rd−1∑

jd−1=1

G1(i1, j1)

(
d−1∏

k=2

Gk(jk−1, ik, jk)

)
Gd(jd, id).

8.2 Algorithm and Error Analysis
There are a variety of TT decomposition methods, and here we cover a basic algorithm
with controllable error. The algorithm computes a series of SVDs and can choose the size
of each component of the decomposition to preserve a specified error.

For the algorithms, recall that the function LLSV refers to Algorithm 6.1 and calculates
the leading left singular vectors for a specified rank or error and returns the subspace error.
In other words,

[U, ε] = LLSV(Y, r or ε̄)

returns the matrix U ∈ On×r (the set of n × r orthonormal matrices) that minimizes the
subspace error:

ε = ∥(I−UU⊺)Y∥F = min
V∈On×r

∥(I−VV⊺)Y∥F .

Equivalently, the best rank-r approximation is given by Y ≈ U(U⊺Y) (see Theorem A.26).
If ε is specified, then r is chosen to be the dimension of the smallest subspace such that the
subspace error satisfies ε ≤ ε̄.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

146 Chapter 8. Tensor Train Decomposition

8.2.1 TT-SVD Decomposition for 4-way Tensor
The algorithm for 4-way TT decomposition is shown in Algorithm 8.1 and illustrated in
Fig. 8.10. The user can specify (r1, r2, r3) or select these ranks automatically to guarantee
ε error, as explained in the analysis that follows.

Algorithm 8.1 TT-SVD for 4-way Tensor

Require: X ∈ Rn1×n2×n3×n4 , ranks (r1, r2, r3) or relative error tolerance ε ≥ 0

Ensure: TT decomposition X̂ of rank (r1, r2, r3) or ERR = ∥X− X̂∥ ≤ ε∥X∥
1: function TTSVD(X, (r1, r2, r3) or ε)
2: ε̄← (ε/

√
3)∥X∥

3: [G1, ε1]← LLSV(X(1), r1 or ε̄) ▷ n1 × r1 orthonormal
4: G1 ← G1

5: Y2 ← G⊺
1X(1) ▷ reduced to size r1 × n2n3n4

6: Ȳ2 ← reshape(Y2, r1n2 × n3n4)
7: [G2, ε2]← LLSV(Ȳ2, r2 or ε̄) ▷ r1n2 × r2 orthonormal
8: G2 ← reshape(G2, r1 × n2 × r2)
9: Y3 ← G⊺

2Ȳ2 ▷ reduced to size r2 × n3n4
10: Ȳ3 ← reshape(Y3, r2n3 × n4)
11: [G3, ε3]← LLSV(Ȳ3, r3 or ε̄) ▷ r2n3 × r3 orthonormal
12: G3 ← reshape(G3, r2 × n3 × r3)
13: Y4 ← G⊺

3Ȳ3 ▷ reduced to size r3 × n4
14: G4 ← Y4

15: ERR ←
√
ε21 + ε22 + ε23 ▷ ERR = ∥X− X̂∥

16: return
{
G1,G2,G3,G4, ERR

}
▷ X̂ ≡ JG1,G2,G3,G4K

17: end function

We compute the tensor trains, Gk, in order. To compute G1, we compute a matrix G1 that
is the LLSV of X unfolded to X(1). Then we set Y2 = G⊺

1X(1) so that

X(1) ≈ G1Y2.

The matrix G1 is G1. The matrix Y2 of size r1 × n2n3n4 is the projection of X(1) down
to the subspace spanned by the columns of G1. We can envision Y2 as a remainder tensor
Y2 of size r1 × n2 × n3 × n4 — this is what remains to be factored.

To compute G2, we reshape Y2 to Ȳ2 of size r1n2 × n3n4 and compute its LLSV to get
G2. Then we set Y3 = G⊺

2Ȳ2 so that

Ȳ2 ≈ G2Y3.

The tensor G2 comes from G2 reshaped to size r1 × n2 × r4. The matrix Y3 of size
r2 × n3n4 is the projection of Ȳ2 down to the subspace spanned by the columns of G2.
We can envision Y2 as a tensor Y2 of size r2 × n3 × n4.

Finally, to compute G3 and G4, we reshape Y3 to Ȳ3 of size r2n3 × n4 and compute its
LLSV G3 and set Y4 = G⊺

3Ȳ3 so that

Ȳ3 ≈ G3Y4.

Then G3 is G3 reshaped to size r2 × n3 × r3 and G4 is Y4 (the remainder, which is now
just a matrix) of size r3 × n4.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

8.2. Algorithm and Error Analysis 147

X
n1

n2

n3

n4

G1 Y2

n 2

n3

n
4

n1

r1

G1 G2 Y3

n3

n
4

n1 n2

r1 r2

G1 G2 G3 G4

n1 n2 n3 n4

r1 r2 r3

Initialization:

Calculate G1:

Calculate G2:

Calculate G3 and G4:

Figure 8.10: Illustration of TT decomposition of a 4-way tensor

Remark 8.1 (How large can TT ranks grow?) Let us consider how big the dimensions of
the Gk’s can be. For simplicity, assume X is of size n×n×n×n. In step 1, we have r1 ≤ n.
In step 2, we have r2 ≤ min { r1n, n2 } ≤ n2. In step 3, we have r3 ≤ min { r2n, n } ≤ n.
So, it can be the case that G2 is as large as n× n× n2, the size of X!

Error Analysis of 4-way TT Decomposition

Algorithm 8.1 sequentially projects X down onto reduced subspaces. However, the method-
ology may not make this obvious. Here, we express the projections as linear transforma-
tions on vec(X).

In the first step, we create an approximation of X as

vec(X) ≈ vec(G1Y2) = vec(G1G
⊺
1X(1))

= (In2n3n4 ⊗G1G
⊺
1) vec(X)

= (In2n3n4
⊗G1)(In2n3n4

⊗G1)
⊺ vec(X)

= U1 U
⊺
1 vec(X)︸ ︷︷ ︸
vec(Y2)

where U1 = In2n3n4
⊗G1.

Observe that the Kronecker product U1 = In2n3n4 ⊗G1 is orthonormal by Exercise A.27.
Next, we proceed to build an approximation of Y2 and Y3, using similar arguments to
deduce that

vec(Y2) ≈ U2U
⊺
2 vec(Y2) where U2 = In3n4 ⊗G2

vec(Y3) ≈ U3U
⊺
3 vec(Y3) where U3 = In4 ⊗G3.

Here U2 and U3 are also orthonormal by Exercise A.27. Putting this sequence of approxi-
mations together, we have that overall TT approximation to X is given by

vec(X) ≈ vec(X̂) ≡ U1U2U3U
⊺
3U

⊺
2U

⊺
1 vec(X).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

148 Chapter 8. Tensor Train Decomposition

Thus, we can use a telescoping sum to see

vec(X)− vec(X̂)

= vec(X)−U1U
⊺
1 vec(X)

+U1U
⊺
1 vec(X)−U1U2U

⊺
2U

⊺
1 vec(X)

+U1U2U
⊺
2U

⊺
1 vec(X)−U1U2U3U

⊺
3U

⊺
2U

⊺
1 vec(X)︸ ︷︷ ︸

vec(X̂)
= (I−U1U

⊺
1) vec(X)

+U1(I−U2U
⊺
2)U

⊺
1 vec(X)︸ ︷︷ ︸
vec(Y2)

+U1U2(I−U3U
⊺
3)U

⊺
2U

⊺
1 vec(X)︸ ︷︷ ︸

vec(Y3)

= (I−U1U
⊺
1) vec(X) +U1(I−U2U

⊺
2) vec(Y2) +U1U2(I−U3U

⊺
3) vec(Y3).

By Proposition A.9, we can obtain the following proposition.

Proposition 8.2 (Norm Decomposition) For any orthonormal matrix U ∈ Rn×p with
n ≥ p and vectors a ∈ Rn and b ∈ Rp, we can split the norm

∥∥(I−UU⊺)a+Ub
∥∥2
2
=
∥∥(I−UU⊺)a

∥∥2
2
+
∥∥b
∥∥2
2
.

Proof. We have
∥∥(I−UU⊺)a+Ub

∥∥2
2

=
∥∥(I−UU⊺)

[
(I−UU⊺)a+Ub

]∥∥2
2
+
∥∥UU⊺[(I−UU⊺)a+Ub

]∥∥2
2

=
∥∥(I−UU⊺)a

∥∥2
2
+
∥∥Ub

∥∥2
2

=
∥∥(I−UU⊺)a

∥∥2
2
+
∥∥b
∥∥2
2

by Proposition A.7.

Therefore, using Proposition 8.2 repeatedly, we can decompose the error as

∥X− X̂∥2

= ∥(I−U1U
⊺
1) vec(X) +U1[(I−U2U

⊺
2) vec(Y2) +U2(I−U3U

⊺
3) vec(Y3)]∥22

= ∥(I−U1U
⊺
1) vec(X)∥22 + ∥(I−U2U

⊺
2) vec(Y2) +U2(I−U3U

⊺
3) vec(Y3)∥22

= ∥(I−U1U
⊺
1) vec(X)∥22 + ∥(I−U2U

⊺
2) vec(Y2)∥22 + ∥(I−U3U

⊺
3) vec(Y3)∥22

= ∥(I−G1G
⊺
1)X(1)∥2F + ∥(I−G2G

⊺
2)Ȳ2∥2F + ∥(I−G3G

⊺
3)Ȳ3∥2F .

The TT squared error is exactly the sum of the approximation errors from each of the LLSV
steps. This means that we can compute the ranks for a TT decomposition that achieves a
desired error. We formalize this in the next result.

Theorem 8.3 (Error of 4-way TT Decomposition) Let X ∈ n1 × n2 × n3 × n4 and let
X̂ = JG1,G2,G3,G4K be its TT decomposition calculated by Algorithm 8.1. Then

∥X− X̂∥2 = ε21 + ε22 + ε23

where εk are the LLSV errors from Lines 3, 7 and 11.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

8.2. Algorithm and Error Analysis 149

8.2.2 TT-SVD for d-way Tensor
The algorithm for an arbitrary order-d tensor X is given in Algorithm 8.2. This is analogous
to the algorithm for the 4-way tensor.

In the start of each iteration, we have residual tensor Yk of size rk−1 × nk × · · · × nd of
order (d−k+2) that still has (d−k) modes left to be reduced in size. In the first iteration,
Y1 = X with r0 = 1; in the remaining iterations, the matrix Ȳk is the tensor Yk reshaped
to size (rk−1nk)×(nk+1 · · ·nd). We never explicitly reference the tensor Y, only different
unfoldings of it.

In Line 10, we compute the LLSV of Ȳk so that Gk is the leading left singular vectors and
of size rk−1nk × rk (an orthonormal matrix) and

Ȳk ≈ GkYk+1 = GkG
⊺
kȲk.

The matrix Yk+1 of size rk × (nk+1 · · ·nd) is the projection of Ȳk onto the subspace
spanned by the columns of Gk. The error in the low-rank factorization is

εk = ∥Ȳk −GkG
⊺
kȲk∥F ≤ min

rank(W)=rk
∥Ȳk −W∥F

In order that the train cars link together for the tensor contraction operation, Gk is reshaped
to Gk of size rk−1 × nk × rk.

The caboose is given by the final remainder, Gd = Yd, and this completes the decomposi-
tion. The value ERR = ∥X− X̂∥ can be computed from the LLSV errors as we will show
in Theorem 8.6.

Algorithm 8.2 TT-SVD for d-way Tensor

Require: X ∈ Rn1×n2×···×nd , ranks (r1, r2, . . . , rd−1) or error tolerance ε ≥ 0

Ensure: TT decomposition X̂ of rank (r1, r2, . . . , rd−1) or ERR = ∥X− X̂∥ ≤ ε∥X∥
1: function TTSVD(X, (r1, r2, . . . , rd−1) or ε)
2: ε̄← (ε/

√
d− 1)∥X∥

3: r0 ← 1
4: for k = 1, . . . , d− 1 do
5: if k = 1 then
6: Ȳ1 ← X(1)

7: else
8: Ȳk ← reshape

(
Yk, (rk−1nk)× (nk+1 · · ·nd)

)

9: end if
10: [Gk, εk]← LLSV(Ȳk, rk or ε̄) ▷ rk−1nk × rk orthonormal
11: Yk+1 ← G⊺

kȲk ▷ remainder of size rk × (nk+1 · · ·nd)
12: Gk ← reshape(Gk, rk−1 × nk × rk) ▷ reshape result to 3-way tensor
13: end for
14: Gd ← Yd

15: ERR ←
√∑d−1

k=1 ε
2
k

16: return
{
G1,G2, . . . ,Gd, ERR

}
▷ X̂ ≡ JG1,G2, . . . ,GdK

17: end function

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

150 Chapter 8. Tensor Train Decomposition

Remark 8.4 (How large can TT ranks grow?) Let us consider how big the dimensions of
the Gk’s can be. For simplicity, assume X is a d-way tensor of size n × n × · · · × n. Let
r̄k denote the maximum possible rank at step k. In iteration k, we have

r̄k = min { r̄k−1n, n
d−k } .

We can conclude,

r̄k =

{
nk if k ≤ ⌊d/2⌋
nd−k otherwise.

In particular, if d is even and k = d/2, then Gk could be of size nk−1 × n × nk, meaning
its total size is nd, the same as X!

Complexity of TT-SVD

At step k, the TT-SVD calculates the LLSV for the matrix Ȳk of size (rk−1nk)×(nk+1 · · ·nd).
Define Pk ≡

∏
ℓ>k nℓ for all k ∈ [d− 1]. At iteration k, the cost of the LLSV in Line 10 is

O(rk−1nkPk min{rk−1nk, Pk}),

and the cost of the matrix-matrix multiplication in Line 11 is

O(rkrk−1nkPk).

Since rk ≤ min{rk−1nk, Pk}, the LLSV cost dominates. Hence, the total cost is

d−1∑

k=1

O(rk−1nkPk min{rk−1nk, Pk}).

Letting N =
∏d

k=1 nk and recalling that r0 = 1, the first step has cost O(n1N), which is
the same as for ST-HOSVD.

Error Analysis of d-way TT Decomposition

Just as in the 4-way case, Algorithm 8.2 sequentially projects X down onto reduced sub-
spaces. We provide a more general analysis for the d-way case, requiring more extensive
definitions. For consistency, we treat the first and last matrices in the TT decomposition as
3-way tensors G0 ∈ Rr0×n1×r1 and Gd ∈ Rrd−1×nd×rd with r0 = rd = 1.

At iteration k of the algorithm, the residual tensor Yk is of order d − k + 2 and size
rk−1 × nk × · · · × nd. For k = 1, the tensor Y1 is of size 1× n1 × n2 × · · · × nd. In
Algorithm 8.2, the matrix Yk in the algorithm is Yk reshaped to size rk−1 × (nk · · ·nd),
and the matrix Ȳk is Yk reshaped to size rk−1nk × (nk+1 · · ·nd).
Using the Gk orthonormal matrices of size rk−1nk×rk from Line 10 (the TT components),
we define

Uk = Ink+1···nd
⊗Gk ∈ Rrk−1nk···nd×rknk+1···nd for all k ∈ [d− 1]. (8.3)

Exercise 8.4 Let k ∈ [d − 1]. Prove that U1 · · ·Uk−2Uk−1 = Ink+1···nd
⊗Wk where

Wk is an orthonormal matrix with

Wk = (In2···nk
⊗G1) · · · (Ink−1nk

⊗Gk−2)(Ink
⊗Gk−1). ∈ Rn1···nk×nkrk−1 .

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

8.2. Algorithm and Error Analysis 151

By Exercise A.27, the matrices Uk are orthonormal. Using these matrices instead of the
Gk’s enables us to avoid the notation awkwardness of reshaping from Yk to Ȳk at each
step and instead reason with respect to yk ≡ vec(Yk). Specifically, from Line 11, we can
relate subsequent yk’s recursively via

yk+1 = vec(G⊺
kȲk) = (Ink+1···nd

⊗G⊺
k) vec(Ȳk) = U⊺

kyk, (8.4)

with y1 = vec(X). With this formulation, we can elicit the following relationship:

yk+1 = U⊺
k · · ·U

⊺
1 vec(X). (8.5)

Exercise 8.5 Show ∥(I−UkU
⊺
k)yk∥2 = ∥(I−GkG

⊺
k)Ȳk∥F .

Let us define Xk to be the TT model that has been built by the start of iteration k of the
algorithm. In other words, Xk is the tensor contraction of G1 to Gk−1 and Yk; see Fig. 8.11.
This means that X1 = X and Xd = X̂ = JG1,G2, · · · ,Gd−1,GdK (since Gd = Yd).

Xk = G1

n1

r1 Gk−1

nk−1

rk−2
Yk

rk−1

nk

nd

Figure 8.11: TT decomposition model of a d-way tensor before step k of algorithm

If we define xk ≡ vec(Xk), then that series of k − 1 tensor contractions can be expressed
in vectorized notation as

xk = vec(Xk)

= U1 · · ·Uk−1yk (8.6)
= U1 · · ·Uk−1U

⊺
k−1 · · ·U

⊺
1 vec(X).

The second step uses Eq. (8.5). At the initial step, we have x1 = y1 = vec(X); and, after
the final step, we have xd = vec(X̂).

Exercise 8.6 Show xk+1 = UkU
⊺
kxk.

Proposition 8.5 (TT Error Recursion) Let X ∈ n1×n2× · · · ×nd and let Xk be the tensor
contraction of G1 through Gk−1 and Yd as illustrated in Fig. 8.11, i.e., the TT model that
has been built by the beginning of iteration k in Algorithm 8.2. Then for any k ∈ [d − 1],
we have

∥xk − xd∥22 = ε2k + ∥xk+1 − xd∥22,
where εk is the LLSV error from Line 10.

Proof. Recall two useful facts from Proposition A.7. First, the product of orthonormal
matrices is orthonormal. Second, ∥Ux∥2 = ∥x∥2 for orthonormal U and any x.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

152 Chapter 8. Tensor Train Decomposition

For k ∈ [d− 1], we have

∥xk − xd∥22
= ∥U1 · · ·Uk−1(yk −Uk · · ·Ud−1yd)∥22 by Eq. (8.6)

= ∥yk −Uk · · ·Ud−1yd∥22
= ∥yk −UkU

⊺
kyk +UkU

⊺
kyk −Uk · · ·Ud−1yd∥22

= ∥(I−UkU
⊺
k)yk +Uk(yk+1 −Uk+1 · · ·Ud−1yd)∥22 by Eq. (8.4)

= ∥(I−UkU
⊺
k)yk∥2 + ∥yk+1 −Uk+1 · · ·Ud−1yd∥22 by Prop. 8.2

= ∥(I−UkU
⊺
k)yk∥2 + ∥U1 · · ·Ukyk+1 −U1 · · ·Ud−1yd∥22

= ∥(I−UkU
⊺
k)yk∥2 + ∥xk+1 − xd∥22

Exercise 8.5 completes the proof.

The following theorem states that the squared error of the TT-SVD decomposition is exactly
the sum of the squared errors from the SVD computations. An inequality version of this
result appeared in Oseledets and Tyrtyshnikov (2010), though this result appears again with
a different proof in Oseledets (2011). Theorem 8.6 is the d-way analogue of Theorem 8.3
for 4-way tensors.

Theorem 8.6 (Error of d-way TT Decomposition) Let X ∈ n1 × n2 × · · · × nd and let
X̂ = JG1,G2, · · · ,Gd−1,GdK be its TT decomposition calculated by Algorithm 8.2. Then

∥X− X̂∥2 =

d−1∑

k=1

ε2k

where εk is the LLSV error in Line 10 of Algorithm 8.2.

Proof. Using Proposition 8.2, we have

∥X− X̂∥2 = ∥ vec(X)− vec(X̂)∥22 = ∥x1 − xd∥22
= ε21 + ∥x2 − xd∥22
= ε21 + ε22 + ∥x3 − xd∥22
...

= ε21 + ε22 + · · ·+ ε2d−1 + ∥xd − xd∥22.

We can further establish the quasi-optimality of the TT decomposition.

Theorem 8.7 (Quasi-optimality of d-way TT Decomposition) Let X ∈ n1×n2×· · ·×nd
and let X̂ = JG1,G2, · · · ,Gd−1,GdK be its TT decomposition of rank (r1, r2, . . . , rd−1)

calculated by Algorithm 8.2. Then X̂ is within a factor of
√
d− 1 of optimal, i.e.,

∥∥X− X̂
∥∥ ≤
√
d− 1

∥∥X−X∗∥∥

where X∗ is the optimal rank (r1, r2, . . . , rd−1) TT decomposition.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

8.2. Algorithm and Error Analysis 153

Proof. Let X∗ = JG∗
1, · · · ,G∗

dK be the optimal rank-(r1, . . . , rd−1) TT decomposition of
X. Let x = vec(X) and x∗ = vec(X∗).

For any k ∈ [d], define Ak to be the tensor contraction of G∗
1 through G∗

k and Bk to be the
tensor contraction of G∗

k+1 through G∗
d:

Ak Bk

G∗
1 G∗

k G∗
k+1 G∗

d

n1 nk nk+1 nd

rkr1 rk−1 rk+1 rd−1

Then, we can say x∗ = vec(AkBk) where

Ak = reshape(Ak, (n1 . . . nk)× rk) and Bk = reshape(Bk, rk × (nk+1 . . . nd)),

Let the orthonormal matrices {Uk } associated with the TT decomposition tensor {Gk } be
as defined in Eq. (8.3). Since the product or orthonormal matrices is orthonormal, the ma-
trix U1 · · ·Uk−1 is orthonormal. Since ∥U⊺x∥2 ≤ ∥x∥2 for any orthonormal U (Proposi-
tion A.7), we have

∥X−X∗∥ = ∥x− x∗∥2 ≥ ∥U⊺
k−1 · · ·U

⊺
1(x− x∗)∥2.

By Eq. (8.5), U⊺
k−1 · · ·U

⊺
1x = yk . By Exercise 8.4, we can write

U⊺
k−1 · · ·U

⊺
1 = Ink+1···nd

⊗W⊺
k

where Wk is of size n1 · · ·nk × nkrk−1. Hence,

U⊺
k−1 · · ·U

⊺
1x

∗ =
(
Ink+1···nd

⊗W⊺
k

)
vec(AkBk) = vec(W⊺

kAk︸ ︷︷ ︸
Ck

Bk),

where the last step is by Eq. (A.11e) and we define Ck = W⊺
kAk of size nkrk−1 × rk.

Putting this altogether, we have

∥X−X∗∥ ≥ ∥U⊺
k−1 · · ·U

⊺
1(x− x∗)∥2

= ∥yk − vec(CkBk)∥2
= ∥Ȳk −CkBk∥F ≥ εk

The last step is because CkBk is a rank-k matrix, and we know εk is the best possible
residual for a rank-k factorization of Ȳk.

Finally, combing the last statement with Theorem 8.6, we have

∥X− X̂∥2 =

d−1∑

k=1

ε2k ≤
d−1∑

k=1

∥X−X∗∥2 = (d− 1)∥X−X∗∥.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

154 Chapter 8. Tensor Train Decomposition

8.3 Example: TT of Discretized Function Tensor
We consider an example tensor known to have small TT ranks (Tobler, 2012, Example 3.9).
The tensor is a discretization of a multivariate function with elements given by the formula

xi1i2···id =
1

ti1 + ti2 + · · · tid
for (i1, i2, . . . , id) ∈ [n]⊗ [n]⊗ · · · ⊗ [n], (8.7)

where t is a discretization of the range [1, 10] so that ti = 1+ (i− 1) 9
n−1 . Here the tensor

is parametrized by the number of modes d and the dimension in each mode n.

Figure 8.12 shows the memory footprint and relative error for several TT decompositions
of two instantiations of the input tensor, one for d = 5 and n = 40 and one for d = 8
and n = 10. These sizes are chosen so that the two tensors have approximately the same
number of entries. The decompositions are computed using Algorithm 8.2 with specified
relative tolerances ranging from 10−1 to 10−6.

For comparison, we also compute Tucker decompositions using the same tolerances. We
observe that for the smaller value of d = 5, there is little difference between TT and Tucker
in navigating the tradeoff between memory and error. However, for the larger value of
d = 8 and smaller value of n = 10, TT is much more memory efficient than Tucker for the
same approximation error. This is because the TT ranks and Tucker ranks are comparable
for this tensor, so the 3-way TT cores require much less memory than the 8-way Tucker
core. In general, the TT ranks grow larger than the Tucker ranks, particularly in the middle
modes, so which format provides more efficient decompositions is problem dependent.

10−710−610−510−410−310−210−1

103

104

105

106

Relative Error

M
em

or
y

(i
n

by
te

s) TT
Tucker

10−710−610−510−410−310−210−1

Relative Error

TT
Tucker

(a) Tucker versus TT decomposition of
5-way tensor of size 40×40×· · ·×40

(b) Tucker versus TT decomposition of
8-way tensor of size 10×10×· · ·×10

(c) Corresponding ranks

Rel. d = 5, n = 40 d = 8, n = 10
Error TT Tucker TT Tucker

10−1 (1, 1, 1, 1) (1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1, 1)
10−2 (2, 2, 2, 2) (2, 2, 2, 2, 2) (2, 2, 2, 2, 2, 2, 2) (2, 2, 2, 2, 2, 2, 2, 2)
10−3 (3, 3, 3, 3) (3, 3, 3, 3, 3) (3, 3, 3, 3, 3, 3, 3) (3, 3, 3, 3, 3, 3, 3, 3)
10−4 (4, 4, 4, 4) (4, 4, 4, 4, 4) (3, 4, 4, 4, 4, 4, 3) (3, 3, 3, 3, 3, 3, 3, 3)
10−5 (4, 5, 5, 4) (4, 4, 4, 4, 4) (4, 4, 5, 5, 5, 4, 4) (4, 4, 4, 4, 4, 4, 4, 4)
10−6 (5, 6, 6, 5) (5, 5, 5, 5, 5) (5, 5, 5, 5, 5, 5, 5) (5, 5, 5, 5, 5, 5, 5, 5)

Figure 8.12: Memory-error tradeoff for TT and Tucker decompositions of tensor defined
by Eq. (8.7). Explicit representation of the two tensors requires approximately 800 MB
(≈ 109 bytes) in both cases.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

CP

Decompositio
n

Part III

155

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

9
Canonical Polyadic
(CP) Decomposition

The CP decomposition of a tensor refers to its expression as a sum of r rank-one compo-
nents (Carroll and Chang, 1970; Harshman, 1970; Hitchcock, 1927). Each component is
a vector outer product. We refer to r colloquially as the rankrank of the decomposition,
though this is technically only precise if r is minimal. Each vector is called a factor, and
the set of factors of a mode is called a factor matrix. We can visualize this in the case of a
3-way tensor as shown in Fig. 9.1.

full tensor

=

component 1

+

component 2

+ · · ·+

component r

factor
matrix 1 factor

matrix 2

factor
matrix 3

Figure 9.1: CP tensor factorization for 3-way tensor, illustrating how columns of factor
matrices are used to construct components of the decomposition

In the 3-way case, each component is the outer product of three factors. Specifically, com-
ponent j is the outer product of column j of factor matrix 1, column j of factor matrix 2,
and column j of factor matrix 3. The factors are matched and not interchangeable. We
provide detailed mathematical formulas in what follows, but the main idea here is that CP
reduces a 3-way tensor to 3 factor matrices, each containing r factor vectors. The factors
are useful for interpretation of the data, and the rows of the factor matrices map to latent
representations.

The CP decomposition goes by a variety of names, including CANDECOMP (canonical
decomposition), PARAFAC (parallel factors), or canonical polyadic decomposition. See
Section 9.9 for further discussion on the origins of the nomenclature.

157

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

158 Chapter 9. Canonical Polyadic (CP) Decomposition

○ The canonical polyadic (CP) decomposition is also known as
CANDECOMP (canonical decomposition) or PARAFAC (parallel factors).

This chapter covers some basics about the CP decomposition, including its formulation and
utility for interpretation, its expression as an optimization problem, computational methods,
and example applications.

9.1 Formulation of CP Decomposition
The CP decomposition is a method for unsupervised learning because it finds patterns
in multi-way data. As we show using applications in Sections 9.6 to 9.8, the resulting
vectors reveal inherent structures within the data. A typical use case is analyzing data
measurements formatted as

object feature scenario× × .

This is visualized in Fig. 9.2. This is just a prototypical scenario and should not be limiting.

o
b

je
c

ts

features sc
enario

s

Figure 9.2: Prototypical format of tensor in data analysis

For example, we discuss an example in Section 9.6 of looking at different emission× exci-
tation matrices for samples with different compositions, which might be better interpreted
as feature× feature× scenario. Further, CP decomposition is not limited to 3-way tensors;
see Section 9.1.2.

9.1.1 CP Decomposition for 3-way Tensors
We provide the mathematical formulation of CP for 3-way tensors. Given a tensor X ∈
Rm×n×p and decomposition rank r ∈ N, the goal is to find factor matrices A ∈ Rm×r,
B ∈ Rn×r and C ∈ Rp×r such that

xijk ≈
r∑

ℓ=1

aiℓ bjℓ ckℓ for all (i, j, k) ∈ [m]⊗ [n]⊗ [p].

We write this in shorthand as
X ≈ JA,B,CK.

Definition 9.1 (Tensor Rank) Given a tensor X ∈ Rm×n×p, its rank is the smallest r such
that there exists A ∈ Rm×r, B ∈ Rn×r and C ∈ Rp×r with X = JA,B,CK.

If X = JA,B,CK, then we say that the decomposition is exact. The rank of a tensor X
is the smallest r for which it has an exact CP decomposition. The rank of a tensor may be

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

9.1. Formulation of CP Decomposition 159

larger than the largest of its dimensions; see Chapter 16 for a detailed discussion on typical
and maximal ranks. Computing the exact rank of a tensor is NP-hard (Håstad, 1990; Hillar
and Lim, 2013), but as most data tensors are noisy, we typically seek approximate rather
than exact decompositions. As mentioned previously, the term “rank” is used colloquially
to refer to the number of components in the CP decomposition, but this is technically only
an upper bound on the rank of the decomposition. Finally, we note that the rank depends
on the field and that the rank over C, the complex numbers, may be less than the rank over
R, the reals.

Remark 9.2 (Tensor rank and tensor size) The rank of a tensor can be larger than any of
its dimensions. For a tensor X of size m × n × p, it is typically the case that rank(X) >
max {m,n, p }. This contrasts with the matrix case, where rank(X) ≤ min {m,n } for
any matrix X of size m× n.

If we denote the columns of the factor matrices as

A =
[
a1 a2 · · · ar

]
, B =

[
b1 b2 · · · br

]
, and C =

[
c1 c2 · · · cr

]
,

then we can visualize the 3-way CP decomposition as in Fig. 9.3.

≈
b1

+
b2

+ · · ·+
br

a1

c1

a2

c2

ar

cr

X

Figure 9.3: CP decomposition of 3-way tensor

This is sometimes written using vector outer products (Section 3.2) as

X ≈
r∑

ℓ=1

aℓ , bℓ , cℓ.

The (i, j, k) entry of an outer product a , b , c is aibjck. (Sometimes the notation ⊗
is used for outer product rather than ,, but we reserve the former symbol for the matrix
Kronecker product.)

Example 9.1 (2× 2× 2 Tensor of Rank 3, Kruskal, 1983) Consider the 2× 2× 2 tensor
X given by

X(:, :, 1) =

[
1 0
0 1

]
and X(:, :, 1) =

[
0 1
−1 0

]
.

A rank decomposition is X = JA,B,CK with

A =

[
1 0 1
0 1 −1

]
, B =

[
1 0 1
0 1 1

]
, and C =

[
1 1 0
−1 1 1

]
.

This means rank(X) = 3, larger than any single dimension of X. (We defer the details of
proving this is a rank decomposition to Section 16.8.2.)

Exercise 9.1 Validate X = JA,B,CK for quantities defined in Example 9.1.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

160 Chapter 9. Canonical Polyadic (CP) Decomposition

○ Explicit weights for the CP components are optional.

There is also a variation of CP that uses explicit components weights, λ ∈ Rr, i.e.,

xijk ≈
r∑

ℓ=1

λℓ aiℓ bjℓ ckℓ for all (i, j, k) ∈ [m]⊗ [n]⊗ [p].

This is useful if we want to scale the factors to length one (i.e., ∥aℓ∥2 = ∥bℓ∥2 = ∥cℓ∥2 =
1 for all ℓ ∈ [r]). We write this in shorthand as

X ≈ Jλ;A,B,CK.

In this format, we can easily sort the components from largest to smallest using the λℓ val-
ues. The weights are optional and generally not used in fitting the model; their significance
is in interpretation because components with a smaller λℓ are less important than those with
a larger λℓ.

Exercise 9.2 Rewrite the factorization JA,B,CK in Example 9.1 using weights and nor-
malizing the factors to unit length.

The storage required for the CP factorization is linear in the dimensions, i.e., r(m+n+ p)
storage, making it potentially orders of magnitude smaller than the original tensor of size
mnp. This would seem to make CP an ideal method for compression except for the problem
that we cannot easily determine the rank for a specified error threshold; see Section 9.2.2.

9.1.2 CP Decomposition for d-way Tensors
CP can be extended naturally to d-way tensors. Consider a d-way tensor X ∈ Rn1×n2×···×nd .
Its CP factorization of rank r ∈ N involves factor matrices Ak ∈ Rnk×r for k ∈ [d] such
that

X(i1, i2, . . . , id) ≈
r∑

j=1

A1(i1, j)A2(i2, j) · · ·Ar(ir, j)

for all (i1, i2, . . . , id) ∈ [n1]⊗ [n2]⊗ · · · ⊗ [nd].

We express this in shorthand as

X ≈ JA1,A2, . . . ,AdK.

Exercise 9.3 What is the storage requirement for the d-way CP factorization of rank r?

9.1.3 Connection to Matrix Low-Rank Approximation
The CP decomposition can be considered a higher-order analogue of PCA (see Appendix C.4),
and PCA is an application of the SVD. PCA decomposes a matrix into the sum of outer
products of pairs of vectors, known as components and loadings. Other methods such as
independent component analysis (ICA) and nonnegative matrix factorization (NMF) are
similar because they are also sums of vector outer products. The PCA component and
loading vectors can be used for interpretation in ways analogous to interpretation using the
CP factors. However, PCA requires that the component and loading vectors be orthogonal,
whereas an advantage of CP decomposition is that it does not require orthogonality of the
factors.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

9.2. Properties of CP Decompositions 161

In fact, an issue with matrix low-rank approximation is that it lacks uniqueness, unless
there are additional constraints such as orthogonality or independence. Cattell (1944) was
an early proponent of tensor factorizations who asked, “What set of factors will be most
parsimonious at once with respect to this and other matrices considered together?” CP ten-
sor decomposition addresses this question because it can be viewed as factorizing multiple
matrices simultaneously. Further, factorizing multiple matrices simultaneously can ensure
uniqueness of the factors without additional constraints and yield better interpretability (see
Section 9.2.3).

9.2 Properties of CP Decompositions
9.2.1 Inherent Ambiguities

○ CP has two fundamental ambiguities: scaling and permutation. If it
is unique except for those ambiguities, it is called essentially unique.

Any CP decomposition has two inherent ambiguities: permutation and scaling. The per-
mutation ambiguity means that we can reorder the components of the decomposition with-
out changing the sum. (This is discussed in detail in Section 10.4.1.)

Exercise 9.4 Which of the following two expressions is equivalent to the factorization in
Example 9.1? Why?

Choice 1: A =

[
0 1 −1
1 0 1

]
, B =

[
0 1 1
1 0 1

]
, and C =

[
−1 1 1
1 1 0

]
.

Choice 2: A =

[
1 1 0
−1 0 1

]
, B =

[
1 1 0
1 0 1

]
, and C =

[
0 1 1
1 −1 1

]
.

The scaling ambiguity is a bit more complex and has to do with the optional weight term
in the CP decomposition. We can, for example, scale a1 by 4 and b1 by 1

2 and c1 by 1
2

without changing their outer product. Thus, the scaling is ambiguous. (This is discussed in
detail in Section 10.4.2.) The scaling ambiguity means that there is a manifold of equivalent
solutions, which can be challenging for optimization methods.

9.2.2 Fundamental Challenges
There are several fundamental challenges to computing CP decompositions, which we
briefly touch upon here and discuss in more detail in subsequent chapters.

Determining the rank of a tensor is NP-hard (Håstad, 1990; Hillar and Lim, 2013). For
example, there is a famous 9 × 9 × 9 problem for which the rank is bounded between
19 and 23, but the exact rank is still unknown (Bläser, 2003; Laderman, 1976). This
tensor, given later in Eq. (16.10), has attracted particular attention because it corresponds
to identifying a fast algorithm for matrix multiplication, which can be formulated as CP
tensor decomposition problem. We discuss the connection between tensor rank and fast
matrix multiplication in Section 16.6.

Luckily, for most applications we do not need to find an exact rank decomposition and
can instead use a rank-k approximation. Some heuristics for choosing an approximate
rank are discussed in Section 9.4.1. However, there is still a problem in that the the best

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

162 Chapter 9. Canonical Polyadic (CP) Decomposition

rank-2 tensors

rank-3 tensor
on boundary
between
rank-2 and
rank-3 tensors

Figure 9.4: In space of 2×2×2 tensors, a sequence of rank-2 tensors converges to a rank-3
tensor because the set of rank-2 tensors is not closed. The measure-zero boundary between
rank-2 (blue) and rank-3 (green) tensors contains tensors of rank 0, 1, 2 and 3.

rank-k approximation of a tensor may not exist. The set of tensors of a given rank is not
necessarily a closed set and can converge to a tensor of higher rank. Consequently, a tensor
of rank r may be the limit of a sequence of tensors of rank less than r. Thus, the problem
of finding a best rank-k approximation may be ill-posed (de Silva and Lim, 2008; Paatero,
2000), as illustrated in Fig. 9.4. Ill-posedness is discussed further in Chapter 16, including
Example 16.2 which is an explicit sequence of rank-2 tensors that converge to a tensor of
rank-3. Pragmatically, however, this problem appears to be uncommon in practice and can
be mitigated with regularization on the factors; see Section 9.4.2.

9.2.3 Uniqueness

○
A sufficient condition for a 3-way CP decomposition JA,B,CK

to be essentially unique is that rank(A) = rank(B) = r
and every pair of columns in C is linearly independent.

One important benefit of the CP decomposition, assuming we can compute it, is that it
is unique under mild conditions. For example, an exact 3-way CP decomposition X =
JA,B,CK is unique up to permutation and scaling if rank(A) = rank(B) = r and every
pair of columns of C is linearly independent (Kruskal, 1989); see Sections 10.5 and 16.7
for further details. Not every tensor meets the conditions for uniqueness, as we see in
Example 9.2.

Example 9.2 (Non-uniqueness) Consider the 2×2×2 tensor X from Example 9.1 given
by

X(:, :, 1) =

[
1 0
0 1

]
and X(:, :, 1) =

[
0 1
−1 0

]
.

An alternate rank decomposition of X is X = JÂ, B̂, ĈK with

Â =

[
2 1 1
0 1 −1

]
, B̂ =

[
0 1 1
1 1 −1

]
, and Ĉ =

[
0 1/2 1/2
1 −1/2 1/2

]
.

Observe that this is not a scaling or permutation or the other rank decomposition in Exam-
ple 9.1. Hence, the decomposition of X is not unique.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

9.3. Overview of Methods for Computing CP 163

Exercise 9.5 Show X = JÂ, B̂, ĈK for the quantities in Example 9.2.

9.3 Overview of Methods for Computing CP
Fitting the CP decomposition is a rich topic of study. In this section, we give a high-level
overview of some methods for computing CP, with pointers to extensive discussions in the
chapters that follow. For the purposes of this discussion, we assume that the rank r is
already specified; see Section 9.4.1 for discussion on choosing r.

To compute the CP model, we want to minimize the sum of squares error. We focus on the
situation of a 3-way tensor X ∈ Rm×n×p for this overview. In this case, the least squares
error is

∥∥X− JA,B,CK
∥∥2 ≡

m∑

i=1

n∑

j=1

p∑

k=1

(
xijk −

r∑

ℓ=1

aiℓ bjℓ ckℓ

)2
. (9.1)

Thus, the CP optimization problem for given r ∈ N is

min
A,B,C

∥∥X− JA,B,CK
∥∥2 subject to A ∈ Rm×r,B ∈ Rn×r,C ∈ Rp×r. (9.2)

This problem is a nonconvex nonlinear least-squares problem. It may be ill-posed unless we
impose bound constraints or regularization, though this may not be a problem in practice.

The usual way to solve the CP optimization problem in Eq. (9.2) is using iterative optimiza-
tion methods. We give a brief overview of these methods in the context of 3-way tensors
in Sections 9.3.1 and 9.3.2. Detailed derivations and discussions of the algorithms for both
3-way and d-way tensors are provided in Chapters 11 to 13.

In general, it is not possible to compute CP using direct methods except in special cir-
cumstances that are primarily interesting for theoretical analysis; see Section 9.3.3 and
Section 16.8.

Additionally, it is not possible to use a greedy approach where, for example, we compute
the best rank-one factorization and assume this is the first component of the best rank-two
factorization. See Section 16.9 for further discussion and examples.

9.3.1 Alternating Least Squares (CP-ALS)
The workhorse method for solving the CP optimization problem is alternating least squares
(CP-ALS) , proposed simultaneously by Carroll and Chang (1970) and Harshman (1970).
In optimization nomenclature, this is a form of block coordinate descent (see Appendix B.3.7).
The main idea is that we cycle through the factor matrices, optimizing with respect to each
single factor matrix while holding the others fixed, and repeating this cycle until conver-
gence.

In the 3-way case, the CP-ALS algorithm is as follows.

Prototype CP-ALS, 3-way
while not converged do

A← argminA
∥∥X− JA,B,CK

∥∥2

B← argminB
∥∥X− JA,B,CK

∥∥2

C← argminC
∥∥X− JA,B,CK

∥∥2
end while

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

164 Chapter 9. Canonical Polyadic (CP) Decomposition

We defer details of the method until Chapter 11. Briefly, each subproblem is a linear least
squares problem. The cost to solve the subproblem is O(mnpr).
Exercise 9.6 Consider solving for A ∈ Rm×r as in the first subproblem. Show how this is
a linear least squares problem. Show that the computational complexity isO(mnpr) where
we assume r < min {m,n, p }.

The reduction to linear least squares problems means that each subproblem can be solved
exactly and efficiently, making CP-ALS a standard for comparison in the development of
new algorithms.

There are numerous extensions on this idea, including CP-ALS with nonnegativity con-
straints (Bro and De Jong, 1997), streaming versions of CP-ALS (Zhou, Vinh, et al.,
2016), and randomized methods focused on efficiently solving the least squares subprob-
lems (Battaglino et al., 2018; Cheng et al., 2016; Larsen and Kolda, 2022; Vervliet and De
Lathauwer, 2016), to name a few.

9.3.2 All-at-once Optimization (CP-OPT and CP-NLS)
Another approach to solve the CP optimization problem in Eq. (9.2) is to use standard
optimization methods that operate on all unknowns simultaneously. In other words, we
group the the factor matrices into a single vector of unknowns,

min
v
f(v) where v ≡

vec(A)
vec(B)
vec(C)

 ∈ Rr(m+n+p) and f(v) ≡

∥∥X− JA,B,CK
∥∥2.

In Chapter 12, we show how to use gradient-based optimization methods (CP-OPT) to
solve Eq. (9.2) (Acar, Dunlavy, and Kolda, 2011). Gradient-based optimization methods
include gradient descent (see Appendix B.3.2) and quasi-Newton methods such as L-BFGS
(see Appendix B.3.5). Each iteration of a gradient-based optimization method involves
computing ∇f(vk), the gradient at the current iterate, and its cost is the same cost as one
iteration of CP-ALS, i.e., O(mnpr).
In Chapter 13, we discuss nonlinear least squares optimization (CP-NLS) methods for
Eq. (9.2) (Paatero, 1997, 1999; Phan, Tichavský, et al., 2013; Tomasi and Bro, 2005,
2006). These methods depend on the Jacobian of ϕ(v) ≡ vec(X − JA,B,CK) as well as
the gradient. Since it is a nonlinear least-squares problem, we can solve it using specialized
methods such as damped Gauss-Newton (see Appendix B.3.6). At each iteration, a CP-
NLS method solves a linear system of the form

(J⊺J+ λI)dk = −∇f(vk), (9.3)

where J ∈ Rr(m+n+p)×mnp is the Jacobian of ϕ at vk and λ is a damping parameter.
In general, NLS methods are only competitive with gradient-based methods if the linear
system in Eq. (9.3) is solved using a preconditioned conjugate gradient method that never
forms J⊺J explicitly (Vervliet and De Lathauwer, 2019), and we focus primarily on this
approach.

9.3.3 Direct Computation via Simultaneous Diagonalization
In general, CP cannot be computed directly. There is an exception in a very specific sce-
nario: a 3-way tensor of size m × n × p of exact rank r ≤ min {m,n, p }. In this case,

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

9.4. Practical Considerations 165

CP may be able to be computed directly using an approach known as simultaneous diag-
onalization (Domanov and De Lathauwer, 2014; Harshman, 1972; Leurgans et al., 1993;
Sanchez and Kowalski, 1990; ten Berge and Tendeiro, 2009)1. We describe a simple ver-
sion of this approach in Section 16.8.4. The rank condition is a specific and unusual cir-
cumstance since a generic tensor of size m× n× p would not have rank sufficiently small
to satisfy the conditions because a randomly generated m × n × p tensor will have rank
r > min {m,n, p } for most choices of (m,n, p); see Section 16.4. Furthermore, because
a small perturbation may change the rank, the simultaneous diagonalization approach is
sensitive to noise in the data. Thus, the practical utility of simultaneous diagonalization is
limited.

9.4 Practical Considerations
There are several computational considerations that are common to all methods. These
considerations may even be more important than the choice of solution method.

9.4.1 Choosing the CP Rank

○ There is no general method for determining the
rank of a tensor, so heuristics are used in practice.

Before we discuss computational methods for CP, we have the problem of choosing an
appropriate rank for the decomposition. As mentioned in Section 9.2.2, there is no general
methodology for determining the rank of a tensor. For this reason, most users employ
heuristics.

Until we achieve an error of zero, increasing the rank always enables an improved fit.
Ideally, we want the smallest rank that fits the signal but not the noise in the measurements.
So, one common practice is to choose the smallest rank r that significantly reduces the
relative error compared to rank r − 1. For a 3-way tensor, the relative error is

relative
error =

∥∥X− JA,B,CK
∥∥

∥∥X
∥∥ ≡

(m∑

i=1

n∑

j=1

p∑

k=1

(
xijk −

r∑

ℓ=1

aiℓ bjℓ ckℓ

)2)1
2

(m∑

i=1

n∑

j=1

p∑

k=1

x2ijk

)1
2

.

Figure 9.5 shows an example of the plot we might get with the relative error decreasing
as the value of the CP rank, r, increases. In this case, we see a major difference between
r = 1 and r = 2 and again between r = 2 and r = 3. Going from r = 3 to r = 4, however,
the change is only 0.39%, so this is a reason to consider r = 3 as the “best” rank. What
qualifies as a significant enough change as the rank changes may vary by application.

One caveat, as we discuss in more detail in the next section, is that we cannot compute the
best rank-r factorization because the optimization methods may converge to only a local
minimum. For this reason, we recommend a methodology such as using multiple random
starts and then selecting the best relative error for each rank. Figure 9.5 uses the lowest
relative error of five runs for each choice of rank r.

1The simultaneous diagonalzation approach is sometimes mistakenly referred to as Jennrich’s Algorithm, but
this is an incorrect attribution. See https://www.mathsci.ai/post/jennrich/ for further details.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://www.mathsci.ai/post/jennrich/

166 Chapter 9. Canonical Polyadic (CP) Decomposition

1 2 3 4 5
0

10

20

30

40

50

“best” rank

45.21%

13.90%

3.30% 2.91% 2.66%

CP Rank (r)

R
el

at
iv

e
E

rr
or

(%
)

Figure 9.5: Choosing the smallest rank that that significantly improves the error for EEM
tensor

There are many other heuristics for choosing the rank. One of the most popular is the core
consistency diagnostic, also known as CORCONDIA, that considers all combinations of
the existing factors in a Tucker model (Bro and Kiers, 2003). Another option is to choose
a rank that yields stable components (Williams, Kim, et al., 2018).

9.4.2 Regularization
It may be desirable to add a regularization term to the least squares problem, e.g., replace
Eq. (11.2) with

∥∥X− JA,B,CK
∥∥2 + ρ

(
∥A∥2F + ∥B∥2F + ∥C∥2F

)
, (9.4)

where ρ > 0 is the regularization term. When the rank is uncertain, regularization may en-
courage zeroing out of extra factors. Additionally, regularization addresses any issues with
the low-rank factorization problem being ill posed. The main challenge in regularization is
choosing a suitable regularization parameter.

9.4.3 Initialization and Multiple Runs
Because the CP optimization problem in Eq. (9.2) is nonconvex, there is no guarantee that
any optimization method will converge to a global minimizer. For this reason, standard
practice is to run the optimization multiple times using different random guesses, and then
to select the best answer according to criteria such as the relative error.

○
The CP optimization problem is nonconvex, so multiple runs of the

optimization with different starting points are strongly recommended
to increase the likelihood of converging to a global minimizer.

There are several methods for randomly initializing CP-ALS. In the 3-way case, we need
to make initial guesses for A ∈ Rm×r, B ∈ Rn×r, and C ∈ Rp×r.

• Random. Using random factor matrices, e.g., entries drawn from the standard nor-
mal distribution, is usually effective. In other words,

aiℓ, bjℓ, ckℓ ∼ N (0, 1) for all i ∈ [m], j ∈ [n], k ∈ [p], ℓ ∈ [r].

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

9.4. Practical Considerations 167

• Random Fiber Combination. The initial factor matrix is a random linear combi-
nation of the mode-k fibers, ensuring that the initial guess is within the range of the
column space of the matrix of mode-k fibers; see Sherman and Kolda (2020). In this
case, we use

A = X(1)Ω where Ω ∈ Rnp×r is random,

B = X(2)Ω where Ω ∈ Rmp×r is random,

C = X(3)Ω where Ω ∈ Rmn×r is random.

The main computational cost is the matrix-matrix multiplies, i.e., O(mnpr).
• HOSVD. The HOSVD (see Section 6.2) has the advantage of ensuring that the initial

factors for mode-k are the leading left singular vectors of the matrix of mode-k fibers.
In this case we use,

A = r leading left singular vectors of X(1),

B = r leading left singular vectors of X(2),

C = r leading left singular vectors of X(3).

This initialization is only available if r ≤ min {m,n, p }. The main advantage of the
HOSVD is that the initial guesses are within the “leading subspace” of each mode.
Otherwise, the primary disadvantage of the HOSVD is the cost of computing the
SVD of the unfolded tensor. Assuming each dimension is smaller than the product
of the other two, the cost is O(mnp(m+ n+ p)).

• HOSVD with Random Projection. We can combine the previous two ideas so that
we need only take the SVD of a smaller matrix; see the Randomized Ranger Finder
in Halko et al. (2011). In this case we use,

A = r leading left singular vectors of X(1)Ω where Ω ∈ Rnp×q is random,

B = r leading left singular vectors of X(2)Ω where Ω ∈ Rmp×q is random,

C = r leading left singular vectors of X(3)Ω where Ω ∈ Rmn×q is random.

Like HOSVD, this initialization is only available if r ≤ min {m,n, p }. If q =
r +O(1) < min {m,n, p }, the computational cost is O(mnpq + q2(m+ n+ p)).

9.4.4 Preprocessing
Since the CP model is optimizing the sum of squared errors, as in Eq. (9.1), we have to
consider the scaling of the data. If the data is measuring quantities on different scales,
which may happen when fusing data of different types or from multiple sources, then these
values may not contribute equally to the sum of squared errors measure. For instance,
if we are measure the weight in kg and the height in cm of newborn babies, the average
weight may be something like 3 kg whereas the height will be around 50 cm. A 10% error
in the height will contribute much more to the sum of squares error than a 10% error in
the weight, which may skew the results. One normalization option is to center and scale
each set of variables, i.e., subtract the mean and divide by the standard deviation. Another
normalization option is to rescale the data to the [0, 1] interval.

9.4.5 Postprocessing
The inherent scaling and permutation ambiguities discussed in Section 9.2.1 can poten-
tially hinder consistent interpretation of results and comparison of solutions from different

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

168 Chapter 9. Canonical Polyadic (CP) Decomposition

starting points. Hence, it is useful to post-process any solution as follows.

1. Normalization of components. Normalize the factors in a consistent way, e.g.,
normalizing all the factors to unit length and using an explicit component weight.

2. Reorder the components in order of decreasing weight. There is no prescribed
order for components, but ordering by weight is often useful since then the most
significant components are first.

3. Resolve sign ambiguity as best as possible. While the scaling ambiguity can be
addressed via normalization, there is no clear resolution for sign ambiguity. Several
methods have been proposed in the literature (Bro, Acar, et al., 2008; Bro, Leardi,
et al., 2013). A simple solution is to set the largest magnitude entry to be positive in
each factor, assuming that this flips the sign for an even number of factors.2

9.4.6 Comparison of Methods
Comparing different methods for computing CP must be done with some care. The follow-
ing are caveats to bear in mind.

• Problems with different qualities (tensor order and size, decomposition rank, com-
ponent correlations, sparsity, constraints, etc.) could change the comparison results.

• Stopping conditions should be consistent, if possible. Additionally, solutions should
be validated to ensure that all the methods converge to the same solution or at least a
solution of equivalent quality (e.g., same relative error).

• Optimization methods vary in the cost per iteration. Therefore, the number of itera-
tions is not necessarily an ideal metric.

• The time to converge is an alternative to number of iterations, but this can vary ac-
cording to the implementation and computer architecture. Therefore, the total time
is not necessarily an ideal metric.

• The computational complexity per iteration can be a useful metric but does not reflect
total number of iterations required nor the nuances of the implementation.

In general, there is no perfectly consistent way to compare methods. Most importantly,
different methods may be appropriate in different contexts.

9.5 Extensions of CP
In this section, we present extensions to CP for incorporating constraints, handling missing
data, changing the objective function, and imposing symmetry. We provide in-depth cov-
erage for incomplete data (Chapter 14) and alternative objective functions (Chapter 15) in
their own chapters.

2A reference implementation can be found in the Tensor Toolbox for MATLAB in the function
@ktensor/fixsigns.m.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

9.5. Extensions of CP 169

9.5.1 Nonnegativity and Other Constraints
Nonnegative tensor factorizations constrain the factor matrices to be positive. This often
leads to more interpretable components. The formulation in the 3-way case would be:

min
∥∥X− JA,B,CK

∥∥2

subject to A ≥ 0, B ≥ 0, and C ≥ 0.

These constraints are elementwise. The idea was proposed in matrix factorization by
Paatero and Tapper (1994) and later by Lee and Seung (1999, 2001). For tensor factoriza-
tion, Bro and De Jong (1997) proposed nonnegative CP and used an alternating approach
and solve a specially adapted nonnegative least squares (NNLS) solver for each subprob-
lem. Paatero (1997, 1999) simultaneously proposed nonnegative CP for tensors using a
Gauss-Newton method with a logarithmic barrier function to enforce the nonnegativity
constraint.

An advantage of the all-at-once optimization approach is that we can choose an optimiza-
tion methods that can handle constraints. For example, we can solve the CP optimiza-
tion problem with bound constraints by using the bound-constrained L-BFGS (L-BFGS-B)
method of Zhu et al. (1997).

Remark 9.3 (Constraints) One potential advantage of using standard optimization meth-
ods is that many already have support for constraints.

Other constraints are also possible. For example, Friedlander and Hatz (2008) impose
sparseness constraints on the factors (using an ℓ1-norm penalty function) as well as non-
negativity.

One constraint that is popular but not recommended is requiring the factor matrices to be
orthogonal. A tensor that has a decomposition where all of its factor matrices are orthog-
onal is called an orthogonally decomposable (ODECO) tensor. We stress that the space
of ODECO tensors is measure zero, meaning that the probability of a randomly generated
tensor having a decomposition with factor matrices that are orthogonal is zero. Therefore,
constraining factor matrices to be orthogonal (even just a subset of the matrices) is not
recommended. See, e.g., Kolda (2001, 2003) and also Section 17.1.8.

○ The space of orthogonally decomposable (ODECO) tensors is measure zero.

9.5.2 Methods for Incomplete Data (EM and CP-WOPT)
A special case arises when X is only partly known, in which case we say that X is incom-
plete because it has missing data. We discuss computing CP for problems with incomplete
data in Chapter 14. These methods can be used for tensor completion, but its main goal is
the decomposition itself. Here we give a high-level overview.

Consider a 3-way tensor X ∈ Rm×n×p where some entries are unknown. It useful to define
the weight tensor W ∈ Rm×n×p such that

wijk =

{
1 if xijk is known,
0 otherwise.

If the proportion of known values is very small, we refer to X as a scarce tensor, which

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

170 Chapter 9. Canonical Polyadic (CP) Decomposition

can benefit from special handling akin to what we do for sparse tensors and result in com-
putational and memory efficiencies.

Expecation Maximization for CP (CP-EM)

One approach for a small amount of missing data is expectation maximization; see Kiers
(1997) for discussion of EM in the context of tensor factorization. A guess is made for the
missing data using the current model (expectation step) and then the model is updated to
best fit the data (maximization step). The algorithm proceeds as follows.

EM for Missing Data
while not converged do

X̂←W∗X+ (1−W)∗ JA,B,CK
(A,B,C)← factor matrices of CP decomposition of X̂

end while
The notation ∗ represents elementwise multiplication. The advantage of this approach is
that existing solvers for CP can be used. The disadvantage is that it involves computing the
CP decomposition multiple times.

Exercise 9.7 Suppose only a few entries of X are missing so that (1 −W) is extremely
sparse. How would you compute X̂←W∗X+ (1−W)∗ JA,B,CK efficiently? What
is the computational complexity?

Weighted optmization for CP (CP-WOPT)

An alternate approach to EM is to optimize with respect to only the known values. Tomasi
and Bro (2005) have considered damped Gauss-Newton (nonlinear least squares) methods,
and Acar, Dunlavy, Kolda, and Mørup (2010, 2011) propose using gradient-based methods.
The optimization can be formulated as a weighted optimization problem:

min
A,B,C

∥∥∥W∗ (X− JA,B,CK
)∥∥∥

2

=

m∑

i=1

n∑

j=1

p∑

k=1

wijk

(
xijk −

r∑

ℓ=1

aiℓ bjℓ ckℓ

)2
. (9.5)

Equation (9.5) can also be solved using weighted alternating least squares (CP-WALS). See
Chapter 14 for further details.

9.5.3 Other Loss Functions with Generalized CP (GCP)

○ The GCP framework allows for objection functions other than
sum of squared errors, such as KL divergence for count data.

The de facto loss function for CP decomposition is the sum of squared errors as in Eq. (9.2),
but alternative loss functions are possible and can provide superior interpretation for integer
count data, binary data, nonnegative data, etc.

For example, KL divergence has been made famous in matrix factorization by Lee and
Seung (1999, 2001) and extended to CP tensor factorization by Welling and Weber (2001);
see also Chi and Kolda (2012), Hansen et al. (2015), and Shashua and Hazan (2005). For a
3-way tensor of nonnegative integers, the KL divergence objective function is

m∑

i=1

n∑

j=1

p∑

k=1

mijk − xijk logmijk where M = JA,B,CK.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

9.6. Example: CP on EEM Tensor 171

The generalized CP (GCP) decomposition framework was designed for alternative loss
functions such as KL divergence. We describe GCP and options for loss functions in Chap-
ter 15

9.5.4 Methods for Symmetric Tensors
If a tensor is symmetric, then it is natural to desire a symmetric factorization in which all
factor matrices are equal. If a tensor is partially symmetric, then we would likewise desire
that the corresponding factors be equal. When two or more factor matrices are equal, the
problem is no longer linear with respect to the individual factor matrices. For this reason,
there is no way to enforce symmetry in the standard CP-ALS approach. One technique
is to ignore the symmetry and then make corrections (e.g., averaging the factors) in post
processing (Carroll and Chang, 1970; Kolda, 2015a; ten Berge, Kiers, and de Leeuw, 1988;
ten Berge, Sidiropoulos, et al., 2004). This works surprisingly well, but it has few theory
guarantees.

The more standard approach is direct optimization, in which we compute the gradients and
apply an optimization method (Kolda, 2015a). If the symmetric tensor has special structure
such as being an empirical moment tensor, the CP model can be calculated without forming
the tensor at all (Sherman and Kolda, 2020). See Section 17.3 for further discussion.

9.6 Example: CP on EEM Tensor
We consider the EEM tensor from fluorescence spectroscopy (Acar, Papalexakis, et al.,
2014; Kolda, 2021a), as described in Section 1.5.2. The EEM tensor, denoted here by X, is
of size 18×251×21 corresponding to 18 samples generating 251×21 excitation-emission
matrices. The norm of the tensor is ∥X∥ = 2.17 × 107. Figure 9.6 shows some lateral
slices on this tensor.

18
sa

m
p

le
s

251 emissions
21

exc
ita

tio
ns

Figure 9.6: EEM tensor

Exercise 9.8 Using an existing code for computing CP, compute the CP model of X for
ranks r ∈ { 1, 2, 3, 4, 5 }, using five different initial guesses for each r. Plot the relative
error for each solution. Which rank seems best and why?

X18

251
21

a1

b1

c1
λ1

a2

b2

c2
λ2

a3

b3

c3
λ3

≈ + +

Figure 9.7: Rank-3 CP decomposition of EEM tensor

Consider a rank-3 CP factorization of X ≈ Jλ;A,B,CK with λ ∈ R3, A ∈ R18×3,
B ∈ R251×3, and C ∈ R21×3, whose form is illustrated (not to scale) as in Fig. 9.7. We

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

172 Chapter 9. Canonical Polyadic (CP) Decomposition

can calculate an approximate CP decomposition with r = 3 such that the relative error is
∥∥X− Jλ;A,B,CK

∥∥ /
∥∥X
∥∥ = 3.30%.

With the factors normalized such that

∥aj∥2 = ∥bj∥2 = ∥cj∥2 = 1 for all j = 1, 2, 3,

we have component weights of

λ1 = 1.77× 107, λ2 = 9.49× 106, and λ3 = 4.29× 106.

Exercise 9.9 What are the λ values for the best rank-3 tensor computed in Exercise 9.8.

9.6.1 Comparing to EEM Ground Truth
Ideally, the three components in the CP model correspond to the three analytes in the mix-
tures. Recall from the description of the EEM tensor in Section 1.5.2 that we happen
to know the true mixture matrix, which we denote here as Atrue along with its column-
normalized version Âtrue:

Atrue =

5.00 0.00 0.00
0.00 5.00 0.00
0.00 0.00 5.00
1.25 5.00 3.75
3.75 1.25 5.00
5.00 3.75 2.50
3.75 3.75 5.00
6.25 1.25 1.25
1.25 5.00 2.50
2.50 6.25 2.50
5.00 1.25 3.75
1.25 3.75 2.50
2.50 3.75 1.25
3.75 0.00 2.50
2.50 0.00 3.75
5.00 0.00 1.25
3.75 0.00 3.75
3.75 0.00 5.00

and Âtrue =

0.33 0.00 0.00
0.00 0.38 0.00
0.00 0.00 0.36
0.08 0.38 0.27
0.25 0.09 0.36
0.33 0.28 0.18
0.25 0.28 0.36
0.41 0.09 0.09
0.08 0.38 0.18
0.16 0.47 0.18
0.33 0.09 0.27
0.08 0.28 0.18
0.16 0.28 0.09
0.25 0.00 0.18
0.16 0.00 0.27
0.33 0.00 0.09
0.25 0.00 0.27
0.25 0.00 0.36

.

The A matrix in the factorization should ideally match Âtrue, up to permutation. Compare
the A that was computed versus a permuted version of Âtrue:

A =

−0.00 0.00 0.31
0.00 0.39 0.03
0.35 0.01 0.01
0.28 0.36 0.11
0.33 0.10 0.26
0.20 0.29 0.33
0.32 0.28 0.26
0.11 0.11 0.39
0.21 0.38 0.10
0.21 0.46 0.19
0.27 0.10 0.33
0.21 0.28 0.09
0.12 0.29 0.17
0.21 0.00 0.24
0.28 0.00 0.16
0.11 0.00 0.31
0.28 0.01 0.24
0.32 0.01 0.25

versus Âtrue

0 0 1
0 1 0
1 0 0

 =

0.00 0.00 0.33
0.00 0.38 0.00
0.36 0.00 0.00
0.27 0.38 0.08
0.36 0.09 0.25
0.18 0.28 0.33
0.36 0.28 0.25
0.09 0.09 0.41
0.18 0.38 0.08
0.18 0.47 0.16
0.27 0.09 0.33
0.18 0.28 0.08
0.09 0.28 0.16
0.18 0.00 0.25
0.27 0.00 0.16
0.09 0.00 0.33
0.27 0.00 0.25
0.36 0.00 0.25

.

These are very close, especially given that some inaccuracies are expected due to the in-
exactness of the mixture preparations and instrumentation of the experiment. Since we

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

9.6. Example: CP on EEM Tensor 173

know the columns of Atrue correspond to the chemicals Val-Tyr-Val, Try-Gly, and Phe, we
can infer that the components of the computed CP model refer to these same chemicals in
permuted order, i.e., Phe, Try-Gly, and Val-Tyr-Val, respectively.

Exercise 9.10 What permutation best matches Atrue to the A in your rank-3 CP model?
What are the cosines of the angles between the matched vectors?

9.6.2 Interpreting CP Factors for EEM Tensor
We can visualize the components of JA,B,CK as shown in Fig. 9.8. Recall that the tensor
is organized as sample (18) × emission (251) × excitation (21). In the visualization, we
plot the vectors corresponding to the factors of the CP decomposition. The first mode factor
of the first component, a1, is in the upper left location. It is normalized to the norm of the
component. It has 18 entries, which we plot as a bar chart. Note that this factor is zero for
the first two elements of a1, meaning that this component does not contribute to the first two
samples. The second mode factor of the first component, b1, is in the top middle plot. This
is normalized to length one, and here we just plot it in a line plot. We denote the individual
data points, of which there are 251, as dots. The third mode factor of the first component,
c1, is in the top right plot. This is also normalized to length one. This factor has only 21
data points, and is also plotted as a line plot with dots for the individual points. From the
discussion of the true mixtures in the prior subsection, we can deduce that the combination
of b1 and c1 yield the emission-excitation profile for the compound Phe, which we label
in the background of that row of plots. The second and third components are in the middle
and bottom sets of plots, respectively, corresponding to the other compounds as labeled.

0

2

4

6

·106 Sample

0

0.1

0.2

Emission (normalized)

0

0.2

0.4

Excitation (normalized)

0

2

4

6

·106

0

0.1

0.2

0

0.2

0.4

0 5 10 15
0

2

4

6

·106

300 400 500
0

0.1

0.2

250 300
0

0.2

0.4

Phe
Try-Gly

Val-Tyr-Val
Figure 9.8: CP factors for EEM tensor computed by CP-ALS with r = 3

Remark 9.4 (Stopping conditions for CP-ALS) The stopping condition used for CP-ALS
in computing Fig. 9.8 was that the change in the relative error in subsequent iterations was
less than 10−4.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

174 Chapter 9. Canonical Polyadic (CP) Decomposition

Exercise 9.11 What does it mean that several of the values of a2 are at or near zero? How
does this relate to the ground true? Does it “make sense”?

Exercise 9.12 Plot the factors for other rank-3 CPs computed with different starting points.
Are they all the same? Plot the factors for ranks 4 and 5. How do they compare to the best
rank-3 factorization?

Exercise 9.13 Compute the rank-3 CP with 50 different starting points. What is the range
of fit values? How often does it achieve the best fit? Visualize one of the lower fit values.
What is the difference between that and a high fit value?

9.7 Example: CP on Monkey BMI Tensor
Recall the monkey BMI neuron activation data from Section 1.5.3 (Kolda, 2022a; Vyas,
Even-Chen, et al., 2018; Vyas, O’Shea, et al., 2020) and pictured in Fig. 9.9. In this
experiment, a monkey uses a brain-machine interface to move a cursor to a target location
at an angle of 0, 90, 180, or 270 degrees relative to the starting point. After achieving
the target, the monkey must hold the cursor at the target location for 500 ms. The data is
normalized so that the first half of each trial is target acquisition and the second half is
holding the cursor at the target. Data are recorded from 88 neurons over 88 trials. The
number of trials for each target is documented in Table 1.2. The tensor is arranged as 55
neurons × 200 times steps × 88 trials.

43
n

e
ur

o
n

s

200 time steps

88
tri

als

0.00

0.03

0.06

0.09

0.12

0.15

0.18

Figure 9.9: Monkey BMI tensor

9.7.1 Nonnegative CP on Monkey BMI Tensor
We illustrate a rank-10 factorization in Fig. 9.10. This data is nonnegative, so for this
example we compute a nonnegative tensor factorization. The 10-component factorization

X43

200

88

= + + · · ·+

a1

b1

c1

a2

b2

c2

a10

b10

c10

Figure 9.10: Rank-10 nonnegative CP decomposition of monkey BMI tensor

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

9.7. Example: CP on Monkey BMI Tensor 175

yields a relative error of
∥∥X− Jλ;A,B,CK

∥∥
∥X∥ = 35.08%.

This may seem large, but many real-world datasets have larger errors. This does not neces-
sarily mean that the factorization is not useful, as we see below.

An illustration of a 10-component nonnegative factorization is shown in Fig. 9.11. We plot
each component as a row in the figure. The component numbers are plotted along the left
side. The first plot is a bar chart plotting the neuron activity levels, normalized to the norm
of the component. The neurons are sorted according to total activity across all trials, from
most to least active. In the middle is a plot of the time mode. It is interesting that the curves
are smooth since we did nothing explicitly to enforce smoothness. Recall that the first 100
time steps correspond to obtaining the target and the second 100 time steps correspond to
maintaining the cursor at the target. Finally, on the right is the plot of the different trials, as
a scatter chart. Each is colored by the target angle, even though the tensor decomposition
does not have access to that information.

1

Neuron Time (normalized) Trial (normalized) 0 90 180 270

2

3

4

5

6

7

8

9

0 10 20 30 40

10

0 50 100 150 0 20 40 60 80

Figure 9.11: CP factorization of Monkey BMI tensor data with 10 components, constrained
to be nonnegative. Each component is displayed as a row, with neuron activation level in
the first column as bar charts (scaled to component magnitude), time in the second column
as line plots (scaled to unit norm), and trials color-coded in scatter plots in the third column
(scaled to unit norm).

We can make some interpretation of the components.

• Component 1 corresponds to the 90 degree target (yellow).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

176 Chapter 9. Canonical Polyadic (CP) Decomposition

• Components 2 is fairly consistent across all trials and seems to correspond to activity
at the onset of each trial.

• Component 3 corresponds to the 0 degree target (red).

• Component 4 seems to be active mostly towards the end of each trial and has weak
correlation with 180 degrees (purple).

• Component 5 corresponds fairly well to the 180 degree target (purple), but the lowest
scoring 180 degree trials and not well separated from the highest scoring 90 degree
targets (yellow).

• Component 6 corresponds to 90 or 180 degree targets (yellow and purple).

• Component 7 corresponds to activity at the end of each trial.

• Component 8 corresponds to 180 and 270 degree targets (blue and purple), somewhat
mixed together.

• Component 9 correlated mainly with the 90 degree target (yellow).

• Component 10 corresponds mainly to the second half of the trial where the cursor is
held at the target location.

This factorization does not have components that clearly associate with the targets; how-
ever, the results can still be useful as we demonstrate in the clustering demonstration in the
next subsection. Additionally, we have an alternative and more interpretable factorization
using GCP in Section 15.6.

Remark 9.5 (Computational methodology) These results in Fig. 9.11 were computed
using the CP-OPT methodology, as described in Chapter 12, using the objective function
∥X − JA,B,CK∥/∥X∥. (Dividing by ∥X∥ impacts the scaling of the problem.) We use
a lower bound of zero on all optimization variables. The optimization method is bound-
constrained limited-memory BFGS (L-BFGS-B) with the following settings per Zhu et al.
(1997). The memory parameter (m) is 5. The method stopped after 209 iterations (423
total iterations) because the gradient was below the projected gradient tolerance (pgtol)
of 1e-5. The other stopping conditions (not triggered) were set as follows: maximum
number of iterations (maxIts) was 1000, maximum number of total iterations including
inner iterations for the line search (maxTotalIts) was 10000, and the function tolerance
divided by machine epsilon (factr) was 1e-10/eps or 4.5e5.

Exercise 9.14 Using an existing code for computing nonnegative CP, compute the decom-
position for ranks 5 through 15, using at least 3 starting points per run and saving the best
decomposition for each rank. Plot relative error versus CP rank.

9.7.2 Clustering Monkey BMI Trials
Recall that the tensor has no explicit information about the differences between the trials.
If we did not already know that differences among the trials, could we separate them based
on the tensor analysis of the neuron signals? To answer this question, we consider each
row in the C matrix, of size 88×10 to be a set of features describing the trial and apply the
k-means clustering algorithm to the data (using 5 replicates and correlation as the distance
measure). The resulting clustering perfectly partitions the trials according to the angles as
shown in the following confusion matrix in table Table 9.1.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

9.8. Example: GCP on Chicago 2019 Crime Tensor 177

Table 9.1: Cluster confusion matrix comparing experiment angle and cluster using factor
matrix C from rank-10 CP factorization of Monkey BMI tensor

.

Cluster 0 90 180 270

1 0 28 0 0
2 0 0 0 19
3 20 0 0 0
4 0 0 21 0

Exercise 9.15 Using the results of Exercise 9.14, cluster the data as described above and
produce the confusion matrix for each rank. How does the clustering performance vary
with the rank?

9.8 Example: GCP on Chicago 2019 Crime Tensor
We consider the Chicago crime tensor (Kolda, 2022b), as described in Section 1.5.4. The
Chicago crime tensor, denoted here by X, is a four-way tensor of size 365× 24× 77× 12
where each entry denotes the count for a particular day, hour, community, and crime type.
The values are integers in the range { 0, 1, 2, . . . , 23 }.
The factorization will have four factor matrices, so we have a model of the form

M ≡ JA1,A2,A3,A4K.

9.8.1 Choosing the Objective Function
The difference between CP and GCP is that GCP allows for other objective functions. In
many applications, using different objective functions leads to more meaningful interpre-
tations of the factors. Since X contains count data, it is appropriate to minimize the KL
divergence loss function, i.e.,

365∑

i=1

24∑

j=1

77∑

k=1

12∑

ℓ=1

mijkℓ − xijkℓ log(mijkℓ), (9.6)

which has discarded constant terms. This corresponds to assuming that the tensor entries
are Poisson distributed, and the value mijkℓ corresponds to mean value of the Poisson
distribution for entry (i, j, k, ℓ).

9.8.2 Choosing the Model Rank
The first question is the choice of rank, so we run an experiment to see how loss function
varies as we increase the rank. Additionally, we run each experiment three times to see how
much variation there is per run. The results are shown in Fig. 9.12. The three runs yield
nearly identical loss values in all cases. The decrease in the function value continues to
improve as the rank increase, so there is not necessarily a clear choice for the “best” rank.
Nevertheless, we focus on the rank-7 solution in the remainder of our discussion and leave
investigation of other ranks as exercises.

9.8.3 Interpretting the Decomposition
The rank-7 decomposition is shown in Fig. 9.13. The components are presented in order
of overall magnitude, and the components have been normalized to unit norm except the

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

178 Chapter 9. Canonical Polyadic (CP) Decomposition

1 2 3 4 5 6 7 8 9 10 11 12

9.1

9.2

9.3

9.4

·105

GCP Rank (r)

Fu
nc

tio
n

V
al

ue

run 1
run 2
run 3
min

Figure 9.12: GCP rank versus KL divergence loss metric for Chicago crime tensor

day component, which reflects the weight of the component overall. The first component
corresponds to the day and is of length 365, and the beginning of each month is indicated
by a vertical gridline. The second component corresponds to the hour, with hour 0 corre-
sponding to midnight to 12:59am, hour 1 corresponding to 1:00am to 1:59am, and so on.
The third component corresponds to community area. Map visualizations are provided in
Fig. 9.14. the fourth component corresponds to crime type.

We can make a few observations about the components.

• Component 1 is most active in the areas known as “Near North” and “Loop”, which
are heavily populated by tourists. We see a pattern of crime reports peaking during
afternoon hours (roughly noon – 6 pm). And the main crime type is theft. These
crimes are active throughout the entire year. There is a peak in early August, and
the timing and location indicate that this peak may be connected with Lollapalooza
festival, which took place in Grant Park (Loop area) on August 1 – 4.

• Component 2 peaks in the area known as Austin (in the West Side) but involves many
other parts of the city as well. The most prevalent crime types are battery and assault.
This is consistent throughout the year and drops off in the overnight hours.

• Component 3 is consistent throughout the year. It is mainly during the daytime with
peaks around 10 am and 8 pm. The neighborhoods correspond to the region known
as West Side. The main crime is narcotics.

• Component 4 has mild peaks approximately every weekend, with more activity in
the warmer months. These are mainly in the middle of the night, peaking around
midnight. The primary area is again Austin in the West Side. The primary crime
type is battery.

• Component 5 has strong peaks every weekend and also is in the middle of the night.
The main areas for this one, however, are Near North and Lakeview. Both theft and
battery are prevalent.

• Component 6 is fairly consistent across the days, hours, and communities. The main
crime types are theft and criminal damage.

• Component 7 is interesting because it has a large peak on January 1 and peaks at the
beginning of each month. The top times are noon, midnight, and 9 am. The commu-

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

9.8. Example: GCP on Chicago 2019 Crime Tensor 179

Day (Weighted) Hour Community Type

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 0 6 12 18 11 22 33 44 55 66 77

th
ef

t
ba

tte
ry

cr
im

in
al

da
m

ag
e

as
sa

ul
t

de
ce

pt
iv

e
pr

ac
tic

e
ot

he
ro

ff
en

se
na

rc
ot

ic
s

bu
rg

la
ry

m
ot

or
ve

hi
cl

e
th

ef
t

ro
bb

er
y

cr
im

in
al

tr
es

pa
ss

w
ea

po
ns

vi
ol

at
io

n

1

2

3

4

5

6

7

Figure 9.13: Chicago crime tensor rank-7 GCP (KL divergence for count data) factors.
Each row represents one component, sorted from largest to smallest magnitude. Factors
for hour, community, and (crime) type normalized to length one. Factors for day hold the
weight of the component.

(a) Component 1 (b) Component 2 (c) Component 3 (d) Component 4

(e) Component 5 (f) Component 6 (g) Component 7
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Figure 9.14: Map visualization for factor 3 (community) of Fig. 9.13

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

180 Chapter 9. Canonical Polyadic (CP) Decomposition

nities are throughout the city. The top crime is deceptive practice. One interpretation
is that the crimes identified by this component are those that do not have an easily
identified start time, so the reports just provide an approximation that is the first day
of the year or month and an arbitrary hour.

Remark 9.6 (Computational methodology) These results in Figs. 9.12 to 9.14 were
computed using the GCP-OPT methodology as described in Chapter 15. We use the ob-
jective function in Eq. (9.6) (but adding 10−10 to the quantity inside the log) and impose
a lower bound of zero on all optimization variables. The optimization method is bound-
constrained limited-memory BFGS (L-BFGS-B) with the following settings per Zhu et al.
(1997). The method stopped after 430 iterations (915 total iterations) because the change
in the relative change function value was less than the tolerance of 2.22 × 10−9 (corre-
sponding to factr equal to 107). The other stopping conditions (not triggered) were set
as follows: maximum number of iterations (maxIts) was 500, maximum number of total
iterations including inner iterations for the line search (maxTotalIts) was 5000, and the
projected gradient tolerance was 0.8094, which is 10−7 times the total size of the tensor
(8,094,240).

Exercise 9.16 Compute a decomposition using any method that produces a nonnegative
decomposition of rank-7. Do the components have any interpretation similar to the above?

9.9 Origins of the Name “CP”
A natural first question is what does “CP” mean? The name comes to us via an interesting
evolution. The original idea of CP is attributed to Hitchcock (1927) whose algebraic treat-
ment referred to CP as a polyadic expression. (We also attribute the Tucker decomposition
to the same work.) In 1970, two different groups proposed 3-way CP independently. Car-
roll and Chang (1970) proposed the canonical decomposition of 3-way tensors, abbreviated
as CANDECOMP. Simultaneously, Harshman (1970) proposed the same idea under the
name of parallel factors, abbreviated as PARAFAC. Several other groups came up with
the idea of CP as well; see, e.g., Möcks (1988). The multitude of names made the topic
somewhat confusing in literature searches, so Kiers (2000) proposed a compromise name
of “CP,” short for CANDECOMP/PARAFAC, which were the two primary names in use at
the time. Starting circa 2010, the term CP started to be expanded as canonical polyadic;
see, e.g., Phan, Tichavský, et al. (2011), Royer et al. (2011), and Sorensen and De Lath-
auwer (2010).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10
Kruskal Tensor
Structure

Before we talk about how to compute the CP decomposition in subsequent chapters, we
focus on the special properties of a Kruskal tensor, which forms the approximation to
the data tensor in a CP decomposition. A Kruskal tensor is a tensor that can be expressed
as the sum of vector outer products. We say a tensor is a Kruskal tensor when we store
the vectors to form the outer products (a decomposed format) rather than the full version (a
dense tensor). Working with Kruskal tensors makes many computations, such as computing
the norm, less expensive than with the equivalent full tensor.

10.1 Rank-1 Tensors
Rank-1 tensors are the building blocks of Kruskal tensors, so we begin with these.

10.1.1 Rank-1 3-way Tensors
Definition 10.1 (Rank-1 3-way Tensor) In the 3-way case, a rank-1 tensor is a tensor that
can be written as the outer product of three vectors. In other words, a tensor X ∈ Rm×n×p

is rank 1 if there exist vectors a ∈ Rm, b ∈ Rn, and c ∈ Rp such that X = a , b , c or,
elementwise,

xijk = aibjck for all (i, j, k) ∈ [m]⊗ [n]⊗ [p].

We visualize a rank-1 tensor in Fig. 10.1.

X

a

b
c

=

Figure 10.1: Rank-1 3-way tensor

It is more efficient to store a 3-way rank-1 tensor as a set of vectors rather than as a full
tensor; the storage is m+ n+ p for the vectors versus mnp for the full tensor.

Example 10.1 (Rank-1 Tensor) Let a = [10], b = [10], and c =
[

1
−1

]
. Then X = a◦b◦c

means

X(:, :, 1) =

[
1 0
0 0

]
and X(:, :, 2) =

[
−1 0
0 0

]
.

181

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

182 Chapter 10. Kruskal Tensor Structure

Exercise 10.1 Show that the norm of X = a , b , c can be computed as ∥X∥ =
∥a∥2∥b∥2∥c∥2 for a cost of only O(m+ n+ p) versus O(mnp) for the full tensor.

Exercise 10.2 Prove the following. A tensor X ∈ Rm×n×p is rank 1 if and only if
rank(X(1)) = rank(X(2)) = rank(X(3)) = 1.

10.1.2 Rank-1 d-way Tensors
The d-way case is analogous to the 3-way case.

Definition 10.2 (Rank-1 d-way Tensor) A rank-1 tensor of order d is a tensor that can be
written as the outer product of d vectors. In other words, X ∈ Rn1×n2×···×nd is rank 1 if
there exist vectors {ak }dk=1 with ak ∈ Rnk for all k ∈ [d] such that

X = a1 , · · ·, ad. (10.1)

Equivalently, each element of X can be written as the product of elements of the vectors so
that

xi1···id =

d∏

k=1

ak(ik) for all (i1, . . . , id) ∈ [n1]⊗ · · · ⊗ [nd]. (10.2)

The storage efficiencies become even more pronounced for d-way rank-1 tensors. The
storage for the vectors is

∑d
k=1 nk versus the storage for the full tensor of

∏d
k=1 nk.

Exercise 10.3 Le ak ∈ Rn for all k ∈ [d]. What is the storage for a rank-1 tensor X =
a1 , · · ·, ad? What would the storage be for a dense tensor of size n×n× · · · ×n? How
do these compare?

10.2 Kruskal Tensor Format

○
The storage for a Kruskal tensor in factored form (storing only the
factor matrices) is proportional in the sum of its dimensions versus
storage that is the product of the dimensions for the full tensor.

10.2.1 Kruskal 3-way Tensor Format
A Kruskal tensor is a tensor that is expressed as the sum of rank-1 tensors.

Definition 10.3: Kruskal Tensor (3-way)

A 3-way Kruskal tensor K = JA,B,CK is defined by factor matrices A ∈ Rm×r,
B ∈ Rn×r, and C ∈ Rp×r. Specifically, it is the sum of the outer products of the matching
matrix columns, i.e.,

K =

r∑

ℓ=1

aℓ , bℓ , cℓ ∈ Rm×n×p,

where aℓ, bℓ, and cℓ represent column ℓ of A, B, and C, respectively. Each outer product
aℓ , bℓ , cℓ is referred to as a component, and each vector is referred to as a factor. We
refer to r as the number of components or, colloquially, the rank.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10.2. Kruskal Tensor Format 183

The factor matrices can have different numbers of rows but must each have the same num-
ber of columns, depicted visually (with columns labeled) as shown in Fig. 10.2a. The jth
column of each factor matrix is used in the jth component of the Kruskal tensor. A 3-
way Kruskal tensor is defined completely by three matrices; thus, we use the shorthand
K = JA,B,CK. Visually, a 3-way Kruskal tensor is depicted as shown in Fig. 10.2b.
The name and notation JA,B,CK follows Bader and Kolda (2007) and is in tribute to the
pioneering work of Kruskal (1989) and Kruskal (1977).

A

a1a2 ar· · ·

B

b1b2 br· · ·

C

c1 c2 cr· · ·

(a) Factor matrices with columns labeled

K

a1

b1

c1

a2

b2

c2

ar

br

cr

= + + · · ·+

(b) 3-way Kruskal tensor K = JA,B,CK

Figure 10.2: Conversion of factor matrices to 3-way Kruskal tensor

The (i, j, k) element of K = JA,B,CK can be expressed as

K(i, j, k) =

r∑

ℓ=1

aiℓbjℓckℓ. (10.3)

A tensor is stored in Kruskal tensor form by storing only its factor matrices. This means
that the storage for a Kruskal tensor is r(m+ n+ p) . In comparison, the storage for a full
tensor is mnp.

Example 10.2 (Rank-2 Kruskal Tensor) Let

A =

−1 2
2 0
−1 1

, B =

1 −2
0 −2
−1 1

, and C =

[
0 2
−2 −1

]

Then X = JA,B,CK means

X(:, :, 1) =

−8 −8 4
0 0 0
−4 −4 2

 and X(:, :, 2) =

6 4 −4
−4 0 4
4 2 −3

.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

184 Chapter 10. Kruskal Tensor Structure

10.2.2 Kruskal d-way Tensor Format

Definition 10.4: Kruskal Tensor (d-way)

A d-way Kruskal tensor K = JA1,A2, . . . ,AdK is defined by d factor matrices Ak ∈
Rnk×r to be the sum of the outer products of the matching matrix columns, i.e.,

K =

r∑

j=1

A1(:, j) , A2(:, j) , · · ·, Ad(:, j) ∈ Rn1×n2×···×nd .

Each outer product is referred to as a component, and each vector is referred to as a factor.
We refer to r as the number of components or, colloquially, the rank.

The (i1, i2, . . . , id) element of K = JA1,A2, . . . ,AdK can be expressed as

K(i1, i2, . . . , id) =

r∑

j=1

d∏

k=1

Ak(ik, j). (10.4)

If n = n1 = · · · = nk, then the storage is drn in factored format versus nd for the full
tensor, which correspond to a many orders of magnitude difference in storage as shown in
the Fig. 10.3.

16 32 64 128 256 512 1,024

10 KB

100 KB

1 MB

10 MB

100 MB

1 GB

10 GB

100 GB

1 TB

10 TB

Dimension n

St
or

ag
e

4-way dense tensor
3-way dense tensor
4-way Kruskal tensor
3-way Kruskal tensor

Figure 10.3: Kruskal tensor storage for 3-way n × n × n or 4-way n × n × n × n tensor
with r = 50 versus the full tensor

10.2.3 Kruskal 3-way Tensor Format with Component Weights

○
Normalizing the factors and weights makes the magnitude

of each component explicit. It is then also typical to
reorder the components so that λ1 ≥ λ2 ≥ · · · ≥ λr.

A Kruskal tensor may also have component weights. We can compute the norm of each
component of a Kruskal tensor using Exercise 10.1. It may be convenient to express the
Kruskal tensor with explicit weights that represent the norms. For example, given a rank-1
tensor K = a , b , c, we define λ = ∥a∥2∥b∥2∥c∥2. Then we have K = λ ā , b̄ , c̄
where ā = a/∥a∥2, b̄ = b/∥b∥2, and c̄ = c/∥c∥2 all have unit norm.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10.2. Kruskal Tensor Format 185

To this end, it is useful to define the Kruskal tensor with an optional weight vector. The
weights need not be restricted to component norms. In the 3-way case, we have the follow-
ing.

Definition 10.5: Kruskal Tensor with Weights (3-way)

A 3-way Kruskal tensor K = Jλ;A,B,CK is defined by factor matrices A ∈ Rm×r,
B ∈ Rn×r, and C ∈ Rp×r, and a weight vector λ ∈ Rr. Specifically, it is the sum of the
outer products of the matching matrix columns, i.e.,

K =

r∑

ℓ=1

λℓ aℓ , bℓ , cℓ ∈ Rm×n×p.

Each outer product λℓ aℓ , bℓ , cℓ is referred to as a component, each λℓ is a compo-
nent weight, and each vector is referred to as a factor. We refer to r as the number of
components.

If λ1 = · · · = λr = 1, then Definition 10.5 is equivalent to Definition 10.3.

Exercise 10.4 If K = Jλ;A,B,CK, what is K(i, j, k)?

Exercise 10.5 Consider the rank-1 tensor a , b , c. Let â = αa, b̂ = βb, and ĉ = γc,
where αβγ = 1. Show that ∥a , b , c∥ = ∥â , b̂ , ĉ∥.

10.2.4 Kruskal d-way Tensor Format with Component Weights
The extension to d-way is analogous, as we formalize in the next definition.

Definition 10.6: Kruskal Tensor with Weights (d-way)

A d-way Kruskal tensor K = Jλ;A1,A2, . . . ,AdK is defined by d factor matrices Ak ∈
Rnk×r and a weight vector λ ∈ Rr to be the sum of the weighted outer products of the
matching matrix columns, i.e.,

K =

r∑

j=1

λj A1(:, j) , A2(:, j) , · · ·, Ad(:, j) ∈ Rn1×n2×···×nd .

Each outer product λj aj , bj , cj is referred to as a component, each λj is referred to
as a component weight, and each vector is referred to as a factor. We refer to r as the
number of components.

This definition is equivalent to Definition 10.4 if λ1 = · · ·λr = 1. Strictly speaking, the
weights are redundant in the definition of a Kruskal tensor.

The (i1, i2, . . . , id) element of K = Jλ;A1,A2, . . . ,AdK can be expressed as

K(i1, i2, . . . , id) =

r∑

j=1

λj

d∏

k=1

Ak(ik, j). (10.5)

For a given Kruskal tensor, a normalized version with weights can be computed as shown
in the following algorithm.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

186 Chapter 10. Kruskal Tensor Structure

Kruskal Tensor Renormalization
given {A1,A2, . . . ,Ad }
for j = 1, . . . , r do

λj ← 1
for k = 1, . . . , d do

ηkj ← ∥Ak(:, j)∥2
λj ← λjηkj
Bk(:, j)← Ak(:, j)/ηkj

end for
end for
return {λ,B1,B2, . . . ,Bd } ▷ JA1,A2, . . . ,AdK = Jλ;B1,B2, . . . ,BdK

If the tensor already has weights, then λj need not be initialized to one. The value ηjk can
be any nonzero value, such as the one norm or infinity norm of column j. The key is that it
is balanced by being multiplied into the weight and divided out of the factor.

Example 10.3 (Renormalizing Rank-2 Kruskal Tensor) Let

A1 =

−1 2
2 0
−1 1

, A2 =

1 −2
0 −2
−1 1

, A3 =

[
0 2
−2 −1

]
.

We can renormalize the columns of each factor so that the component weights are the
products of the column norms, i.e.,

λ =

[
(
√
6)(
√
2)(
√
4)

(
√
5)(
√
5)(
√
9)

]
=

[
6.93

15.00

]
.

Then JA1,A2,A3K = Jλ;B1,B2,B3K where the all the columns for the factor matrices
have been rescaled to norm one:

B1 =

−0.41 0.89
0.82 0.00
−0.41 0.45

, B2 =

0.71 −0.67
0.00 −0.67
−0.71 0.33

, and B3 =

[
0.00 0.89
−1.00 −0.45

]
.

10.3 Unfolding a Kruskal Tensor
10.3.1 Vectorizing or Unfolding a 3-way Kruskal Tensor
Recall that a vectorization of a tensor rearranges its elements into a vector; see Eq. (2.9).
For a rank-one tensor, the vectorization is a Kronecker product of its factor vectors, as given
in Eq. (3.5b) of Proposition 3.7. To vectorize a Kruskal tensor, we can think of summing the
vectorizations of the components, which we can express via matrix-vector multiplication
with the Khatri-Rao product of factor matrices.

Proposition 10.7 (Kruskal Tensor Vectorization, 3-way) The vectorization of the Kruskal
tensor K = Jλ;A,B,CK with λ ∈ Rr, A ∈ Rm×r, B ∈ Rm×r, C ∈ Rm×r is

vec(K) = (C⊙B⊙A)λ.

An illustration of the vectorization is shown in Fig. 10.4.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10.3. Unfolding a Kruskal Tensor 187

= + +

scale-accurate
vectorization = + + =

λ1

λ2

λ3

K = Jλ;A,B,CK

vec(K) =
3∑

ℓ=1

λℓ cℓ ⊗ bℓ ⊗ aℓ = (C⊙B⊙A)λ

Figure 10.4: Vectorization of 4× 3× 2 Kruskal tensor with 3 components

Example 10.4 (Kruskal Tensor Vectorization, 3-way) We revisit the 2 × 2 × 2 tensor of
rank 3 from Example 9.1. We have

X(:, :, 1) =

[
1 0
0 1

]
and X(:, :, 1) =

[
0 1
−1 0

]
,

and X = JA,B,CK with

A =

[
1 0 1
0 1 −1

]
, B =

[
1 0 1
0 1 1

]
, and C =

[
1 1 0
−1 1 1

]
.

Then, Proposition 10.7 says

(C⊙B⊙A)13 =

1 0 0
0 0 −0
0 0 0
0 1 −0
−1 0 1
0 0 −1
0 0 1
0 1 −1

1
1
1

 =

1
0
0
1
0
−1
1
0

= vec(X).

Exercise 10.6 Prove Proposition 10.7. (Hint: Use Proposition 3.7.)

The mode-k unfolding of Kruskal tensors are used repeatedly in developing algorithms for
computing CP decompositions.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

188 Chapter 10. Kruskal Tensor Structure

Proposition 10.8: Mode-k Unfolding of Kruskal Tensor (3-way)

Let K = JA,B,CK. Its mode-k unfoldings are

K(1) = A(C⊙B)⊺, K(2) = B(C⊙A)⊺, and K(3) = C(B⊙A)⊺.

We provide an illustration of the mode-1 unfolding in Fig. 10.5.

= + +

K = JA,B,CK

scale-accurate
mode-1 unfolding

=

K = A(C⊙B)⊺

Figure 10.5: Mode-1 unfolding of 4× 3× 2 Kruskal tensor with 3 components

Example 10.5 (Kruskal Tensor Unfolding, 3-way) Using the same setup as Example 10.4,
observe the equivalencies of the unfoldings per Proposition 10.8.

A(C⊙B)⊺ =

[
1 0 1
0 1 −1

]

1 0 0
0 1 0
−1 0 1
0 1 1

 =

[
1 0 0 1
0 1 −1 0

]
= X(1),

B(C⊙A)⊺ =

[
1 0 1
0 1 1

]

1 0 0
0 1 −0
−1 0 1
0 1 −1

 =

[
1 0 0 −1
0 1 1 0

]
= X(2),

C(B⊙A)⊺ =

[
1 1 0
−1 1 1

]

1 0 1
0 0 −1
0 0 1
0 1 −1

 =

[
1 0 0 1
0 −1 1 0

]
= X(3).

Exercise 10.7 Prove Proposition 10.8. (Hint: Use Proposition 3.7.)

Exercise 10.8 How many computational operations are required to compute the unfolding
of a Kruskal tensor?

Exercise 10.9 What are the mode-k unfoldings for K = Jλ;A,B,CK?

10.3.2 Vectorizing or Unfolding a d-way Kruskal Tensor
For the d-way case, recall that the vectorization of a tensor of size n1 × n2 × · · · × nd
rearranges its elements into a vector of length N =

∏d
k=1 nk (see Definition 2.14).

Proposition 10.9 (Kruskal Tensor Vectorization, d-way) The vectorization of the Kruskal
tensor K = Jλ;A1,A2, . . . ,AdK is

vec(K) = (Ad ⊙Ad−1 ⊙ · · · ⊙A1)λ.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10.3. Unfolding a Kruskal Tensor 189

Proof. Let N =
∏d

k=1 nk. Then we have

vec(K) = vec
(r∑

j=1

λjA1(:, j) , · · ·, Ad(:, j)
)

via Definition 10.6

=

r∑

j=1

λj vec
(
A1(:, j) , · · ·, Ad(:, j)

)
via linearity of vec operation

=

r∑

j=1

λj Ad(:, j)⊗ · · · ⊗A1(:, j)︸ ︷︷ ︸
jth column of (Ad⊙Ad−1⊙···⊙A1)

via Proposition 3.10

= (Ad ⊙Ad−1 ⊙ · · · ⊙A1)λ.

Hence, the claim.

In the d-way case, recall that the mode-k unfolding of a tensor of size n1 × n2 × · · · × nd
rearranges its entries into a matrix of size nk × Nk where Nk =

∏d
ℓ=1
ℓ̸=k

nk (see Defini-

tion 2.18).

Proposition 10.10 (Mode-k Unfolding of Kruskal Tensor, d-way) The mode-k unfolding
of the Kruskal tensor K = Jλ;A1,A2, . . . ,AdK is

K(k) = AkΛ
(
Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1

)⊺
,

where Λ ≡ diag(λ). (If there are no weights, then Λ = I).

This can be proved directly by rearranging terms in the elementwise expression as we did
for vectorization.

Exercise 10.10 Prove Proposition 10.10.

The general unfolding of a tensor of size n1 × n2 × · · · × nd rearranges the elements into
a matrix of size M ×N where MN =

∏d
k=1 nk (see Definition 2.19).

Proposition 10.11 (Unfolding of a Kruskal Tensor, d-way) Let the modes { 1, . . . , d } be
partitioned into two ordered sets:

R = (r1, r2, . . . , rδ) and C = (c1, c2, . . . , cd−δ).

The unfolding of the Kruskal tensor K = Jλ;A1,A2, . . . ,AdK with respect to row set R
and column set C is

K(R×C) =
(
Arδ ⊙Arδ−1

⊙ · · · ⊙Ar1

)
Λ
(
Acd−δ

⊙Acd−δ−1
⊙ · · · ⊙Ac1

)⊺
.

Exercise 10.11 Prove Proposition 10.11.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

190 Chapter 10. Kruskal Tensor Structure

10.4 Kruskal Tensor Ambiguities

○ A Kruskal tensor has inherent permutation and scaling ambiguities.

10.4.1 Permutation Ambiguity
Consider the 3-way Kruskal tensor

K = a1 , b1 , c1 + a2 , b2 , c2 + a3 , b3 , c3.

We can write this as K = JA,B,CK where

A = [a1 a2 a3] ∈ Rm×3,
B = [b1 b2 b3] ∈ Rn×3, and
C = [c1 c2 c3] ∈ Rp×3.

However, the order of the rank-1 components does not matter. Hence, we can equivalently
write K as

K = a2 , b2 , c2 + a3 , b3 , c3 + a1 , b1 , c1.

So, we can express this equivalently with permuted factor matrices, so long as every matrix
is permuted in the same way. We have K = JÂ, B̂, ĈK where

Â = [a2 a3 a1] ∈ Rm×3,

B̂ = [b2 b3 b1] ∈ Rn×3, and
Ĉ = [c2 c3 c1] ∈ Rp×3.

Exercise 10.12 Let A = Ja1 a2 a3K and Â = Ja2 a3 a1K. Find the permutation matrix
P ∈ R3×3 such that Â = AP.

Definition 10.12 (Permutation Ambiguity for Kruskal Tensors) Let P be an r × r permu-
tation matrix. Given a 3-way Kruskal tensor JA,B,CK with r components, we have

JA,B,CK = JAP,BP,CPK.

More generally, given a d-way Kruskal tensor JA1,A2, . . . ,AdK with r components, we
have

JA1,A2, . . . ,AdK = JA1P,A2P, . . . ,AdPK.
Thus, there is no inherent order to the columns of the factor matrices. We refer to this as
the permutation ambiguity.

Exercise 10.13 Let P be an r × r permutation matrix and let JA1,A2, . . . ,AdK be a
Kruskal tensor with r components. Prove JA1,A2, . . . ,AdK = JA1P,A2P, . . . ,AdPK.

10.4.2 Scaling Ambiguity
Consider a rank-1 3-way tensor

K = a , b , c.

Let scalars α, β, γ ∈ R be such that their product is one, i.e., αβγ = 1. Define the new
vectors

â = αa, b̂ = βb, and ĉ = γc,

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10.5. Kruskal Tensor Uniqueness 191

and the new tensor
K̂ = â , b̂ , ĉ.

It is easy to see that K̂ = K because

K̂(i, j, k) = âi b̂j ĉk = (αai) (βbj) (γck) = (αβγ)aibjck = aibjck = K(i, j, k)

for any (i, j, k) ∈ [m] ⊗ [n] ⊗ [p]. Given a Kruskal tensor with r components, the factors
of each individual component can be rescaled independently. We refer to this as scaling
ambiguity because any scaling works so long as the product of the scaling factors is one.

Definition 10.13 (Scaling Ambiguity for Kruskal Tensors) In the 3-way case, let
DA,DB,DC ∈ Rr×r be diagonal matrices such that DADBDC = I. If JA,B,CK
is a Kruskal tensor with r components, then

JA,B,CK = JADA,BDB,CDCK.

Likewise, in the d-way case, let {Dk }dk=1 be r × r diagonal matrices such that
D1D2 · · ·Dd = I. If JA1,A2, . . . ,AdK is a Kruskal tensor with r components, then

JA1,A2, . . . ,AdK = JA1D1,A2D2, . . . ,AdDdK.

Thus, there is no inherent scaling to the factors. We refer to this as the scaling ambiguity.

Sign Ambiguity A special case of the scaling ambiguity is the sign ambiguity. That is,
we can flip the signs of any pair of vectors without changing the full tensor and without
changing the norms of the factors. Sometimes this is exploited to improve interpretation;
for example, we can flip the signs so that the largest entry of each vector is positive, pro-
vided that the signs can be flipped in pairs.

Remark 10.14 (Ambiguity mitigation) We can largely mitigate permutation and scaling
ambiguities by normalizing the components and sorting them by weight. However, the sign
ambiguity is more challenging to cleanly resolve.

Figure 10.6 shows an example of the scaling and sign ambiguity for a rank-1 tensor. Each
column depicts one of the three factors of the 3-way, rank-1 tensor, where in each plot the
x-axis corresponds to the vector index and the y-axis corresponds to the value of the vector
entry. The first two rows show different scalings of the factors, and the final row shows how
it might be normalized, with all the largest entries positive (we were able to flip the signs of
the last two components compared to the top row) and an explicit component weight, i.e.,

λ = ∥a∥2∥b∥2∥c∥2, ā = a/∥a∥2, b̄ = −b/∥b∥2, c̄ = −c/∥c∥2.

10.5 Kruskal Tensor Uniqueness
An important property of higher-order Kruskal tensors is that they are often unique, up to
the inherent permutation and scaling ambiguities described in Section 10.4. In such a case,
we say the Kruskal tensor is essentially unique. Uniqueness is very helpful in interpreting
the factors of a CP decomposition, like those shown in Sections 9.6 to 9.8. We can normal-
ize and reorder the factors so that the permutation and scaling ambiguities have a minimal
impact on interpretation of an essentially unique factorization. The main ambiguity that
can be challenging to resolve is the sign ambiguity, as discussed in Section 10.4.2.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

192 Chapter 10. Kruskal Tensor Structure

0 5 10 15

−0.2

0

0.2

0.4

0.6
a ∈ R18

0 100 200
−0.4

−0.2

0

0.2

0.4
b ∈ R251

0 10 20

−0.5

0

0.5

c ∈ R21

0 5 10 15

−0.2

0

0.2

0.4

0.6
â ∈ R18

0 100 200
−0.4

−0.2

0

0.2

0.4
b̂ ∈ R251

0 10 20

−0.5

0

0.5

ĉ ∈ R21

0 5 10 15

−0.2

0

0.2

0.4

0.6
ā ∈ R18

0 100 200
−0.4

−0.2

0

0.2

0.4
b̄ ∈ R251

0 10 20

−0.5

0

0.5

c̄ ∈ R21

λ = 1.77

Figure 10.6: Scaling and sign ambiguity for rank-1 tensor. Each row illustrates factors of
the same rank-1 tensor, i.e., a , b , c = â , b̂ , ĉ = λ ā , b̄ , c̄. The bottom row has
each component normalized and sign-flipped, with the weight of the component listed to
the left.

We first formalize the concept of essential uniqueness for 3-way tensors.

Definition 10.15: Essential Uniqueness (3-way)

We say a Kruskal tensor K = JA,B,CK is essentially unique if it is unique up to per-
mutation and scaling ambiguity. That is, if K is essentially unique then, for any other
factorization K̂ = JÂ, B̂, ĈK such that K̂ = K, there exists an r × r permutation matrix
P and r × r diagonal scaling matrices {D1,D2,D3 } with DADBDC = I such that
A = ÂDAP, B = B̂DBP, C = ĈDCP.

A key property of Kruskal tensors is their essential uniqueness, achieved under mild con-
ditions such as having full rank factor matrices per the following corollary of Kruskal’s
famous uniqueness theorem (Theorem 16.14).

Corollary 10.16 (Sufficient Conditions for Uniqueness, 3-way) A Kruskal tensor K =
JA,B,CK is essentially unique if rank(A) = rank(B) = rank(C) = r.

Uniqueness results with less stringent conditions are discussed in in Section 16.7. For
example, if rank(A) = rank(B) = r and every pair of columns from C is linearly inde-
pendent, then K = JA,B,CK is still essentially unique.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10.6. Full Construction from Kruskal Tensors 193

Remark 10.17 (What does uniqueness mean for approximate decompositions?) If
we compute an inexact CP decomposition of a tensor X, i.e.,

X ≈ JA,B,CK,

then we can only say that Y = JA,B,CK is essentially unique. Although this uniqueness
may be useful, it does not necessarily prohibit existence of a completely different approxi-
mation,

X ≈ JÂ, B̂, ĈK
such that JA,B,CK ̸= JÂ, B̂, ĈK.

Kruskal tensors are not always essentially unique. If d = 2, for example (the matrix case),
then K = JA,BK = AB⊺ = (AM)(M−1B⊺) for any nonsingular matrix M, so K is
not essentially unique. Example 9.2 shows that there is a 3-way tensor that has multiple
Kruskal representations and is not essentially unique.

We can extend the ideas to d-way tensors as follows.

Definition 10.18: Essential Uniqueness (d-way)

We say a Kruskal tensor K = JA1,A2, . . . ,AdK is essentially unique if it is unique up to
permutation and scaling ambiguity. That is, if K is essentially unique then, for any other
factorization K̂ = JB1,B2, . . . ,BdK such that K̂ = K, there exists an r × r permutation
matrix P and r × r diagonal scaling matrices {D1,D2, . . . ,Dd } with D1D2 · · ·Dd = I
such that Ak = BkDkP for all k ∈ [d].

The following is a corollary of Theorem 16.15, the generalization of Kruskal’s uniqueness
theorem by Sidiropoulos and Bro (2000). The full result has less stringent requirements;
see Section 16.7.

Theorem 10.19: Sufficient Conditions for Kruskal Tensor Uniqueness (d-way)

A Kruskal tensor K = JA1,A2, . . . ,AdK with r components and d ≥ 3 is essentially
unique if its factor matrices all have rank r.

Theorem 10.19 only applies if r ≤ min {nk | k ∈ [d] }.

10.6 Full Construction from Kruskal Tensors
This section discusses the full construction of a dense tensor from a Kruskal factored tensor.
We generally want to work with a Kruskal tensor in factored form, since computing its full
form is expensive in time and memory. However, in situations where we need to compute
the full form, we want to do so efficiently.

10.6.1 Full Construction from 3-way Kruskal Tensors
Consider the 3-way Kruskal tensor K = JA,B,CK. A straightforward computation of
X = full(JA,B,CK) uses Proposition 10.9 as follows.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

194 Chapter 10. Kruskal Tensor Structure

Full 3-way Kruskal Tensor (Naive)
1: L← C⊙B⊙A
2: v← L1r

3: X← reshape(v,m× n× p)
This method computes the Khatri=Rao product in the first step. In the second step, it
multiplies the result of the first step times the all-ones vector of length r, producing a
vectorized version of the final result. A problem with the above method is that it creates
the intermediate L matrix is of size mnp× r, requiring r times more storage than the final
result.

Instead, it is more efficient to compute the mode-1 matrix unfolding of the final result from
Proposition 10.8.

Full 3-way Kruskal Tensor (Efficient)
1: R← C⊙B
2: Y ← AR⊺

3: X← reshape(Y,m× n× p)
In this case, the first step computes the Khatri-Rao product of just two of the three matrices.
In the second step, this result is multiplied times the remaining matrix. We use the mode-1
unfolding because the result is already in the correct order to be reshaped into the final
result without any permutation. The intermediate R matrix is of size np × r and will
generally be smaller than the final result. Additionally, the matrix-matrix multiply in the
second step is generally more efficient than matrix-vector multiply as in the second step of
the naive version.

Exercise 10.14 Write down an analogous efficient method for X = full
(
Jλ;A,B,CK

)
.

10.6.2 Full Construction from d-way Kruskal Tensors
Now consider the general d-way problem. We want to compute a general unfolding such
that vec(X(R×C)) = vec(X), i.e., the entries are in the same order. This restricts us to
partitions of the form

R = { 1, . . . , k } and C = { k + 1, . . . , d } .

The algorithm to compute X = full(JA1,A2, . . . ,AdK) is as follows.

Full d-way Kruskal Tensor
1: k ← “split point”
2: L← Ak ⊙Ak−1 ⊙ · · · ⊙A1

3: R← Ad ⊙Ad−1 ⊙ · · · ⊙Ak+1

4: Y ← LR⊺

5: X← reshape(Y, n1 × n2 × · · · × nd)
We explain how to determine the split point below, after we consider the storage and com-
putation time for each step. For all k ∈ [d], define

Mk =
∏

ℓ≤k

nℓ and Nk =
∏

ℓ>k

nℓ. (10.6)

To compute L, the computation and storage are bothMkr. To compute R, the computation
and storage are both Nkr. Finally, to compute Y, the computation is MkNkr and the

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10.6. Full Construction from Kruskal Tensors 195

storage is MkNk. The choice split point impacts the computation and storage costs for
L and R, so we want to find the k that minimizes Mk + Nk. Thus, the “split point”
minimization problem is

min
k
Mk +Nk. (10.7)

If we want to compute X = full(Jλ;A1,A2, . . . ,AdK), then we could change line 4 to
be Y ← Ldiag(λ)R⊺. However, it is more efficient to absorb λ into the smallest factor
before the full reconstruction. In other words, absorbing into the last factor, we have

full
(q

λ;A1,A2, . . . ,Ad

y)
= full

(q
A1,A2, . . . ,Ad−1,

(
Ad diag(λ)

)y)
.

Exercise 10.15 Suppose we have a tensor of size 100×40×80×200. What is the optimal
split point per Eq. (10.7)?

10.6.3 Masked Full Construction from a Kruskal Tensor
In some situations, we need only reconstruct a subset of the entries of a Kruskal tensor. For
example, this happens in the case of computing a CP decomposition for incomplete tensors
as discussed in Chapter 14. If the subset of entries is relatively few, computing the full
reconstruction and then extracting only the masked entries may be inefficient. Instead, we
can just directly compute the masked entries directly.

Masked Full from 3-way Kruskal Tensors

Consider a 3-way Kruskal tensor JA,B,CK of size m × n × p and rank r. The masked
reconstruction creates a sparse tensor K̂ of size m× n× p such that

K̂ = M∗ JA,B,CK
where the mask M is a sparse tensor of size m× n× p with zeros for masked entries and
ones for unmasked entries. Assuming M has q one values, we can express it as a sparse
tensor M = JΩ,1K where

Ω ∈ Nq×3

are the indices of the unmasked entries. See Section 3.7 for details on sparse tensors.

The masked reconstruction will have the same generic sparsity pattern as M, so we just
need to compute the array of values as shown in the following pseudocode.

Masked Full from 3-way Kruskal Tensor
v← 0 ▷ zero vector of length q
for α ∈ [q] do

for ℓ ∈ [r] do
vq ← vq +A(ω1q, ℓ) B(ω2q, ℓ) C(ω3q, ℓ)

end for
end for
return v ▷ K̂ = JΩ,vK

Then we have K̂ = JΩ,vK; there is trivial possibility that some of the reconstructed entries
may be zero, but these would simply be ignored or removed in the sparse representation.
The time for a full reconstruction of JA,B,CK and then applying the mask M would be
proportional to O(mnpr), whereas the time for masked reconstruction is proportional to
O(qr).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

196 Chapter 10. Kruskal Tensor Structure

Masked Reconstruction for d-way Kruskal Tensors

The situation for d-way tensors is analogous to the 3-way case. Given a Kruskal tensor and
mask, we can construct a sparse tensor using the elementwise expression Eq. (10.4). This
method is formalized in Algorithm 10.1. The computational cost of Masked Reconstruction
for a d-way, rank-r Kruskal tensor with q entires is O(qrd). The temporary variable z can
be an array to enable flexibility in structuring the loops over the nonzeros (indexed by α)
and the columns of the factor matrices (indexed by j).

Algorithm 10.1 Masked Full from d-way Kruskal Tensor

Require: Sparse mask M = JΩ,1K ∈ Rn1×···×nd with Ω ∈ Nq×d, {Aj ∈ Rnj×r }j∈[d]

Ensure: Vector v yielding the sparse representation JΩ,vK = M∗ JA1,A2, . . . ,AdK
1: function MASKEDFULL(Ω,A1,A2, . . . ,Ad)
2: v← 0 ▷ zero vector of length q
3: for α = 1 to q do
4: for j = 1 to r do
5: z ← 1 ▷ temporary variable depending on (α, j)
6: for ℓ = 1 to d do
7: z ← zAℓ(ωαℓ, j)
8: end for
9: vα ← vα + z

10: end for
11: end for
12: return v ▷ JΩ,vK = M∗ JA1,A2, . . . ,AdK
13: end function

Remark 10.20 (Similarity of masked reconstruction and sparse MTTKRP) The computa-
tional structure of this approach mirrors that of MTTKRP for sparse tensors (Algorithm 3.5
in Section 3.7.4). In a MTTKRP for a sparse tensor, the inputs are a sparse tensor and d−1
factor matrices (usually from a Kruskal tensor), and the output is a matrix. In a masked
reconstruction, the inputs are a sparse mask tensor and a Kruskal tensor (i.e., d factor matri-
ces), and the output is a sparse tensor. Nevertheless, the loops are similar, so optimizations
applied to one can be useful for the other.

10.7 Operations with Kruskal Tensors
Many operations with Kruskal tensors are more computationally and memory efficient
than with the equivalent full tensor. We assume throughout this section that any specified
Kruskal tensor has conforming factor matrices, i.e., this means that all the factor matrices
have the same number of columns and the weight vector has that number of entries. In the
3-way case, for instance,

K = Jλ;A,B,CK with λ ∈ Rr,A ∈ Rm×r,B ∈ Rm×r,C ∈ Rm×r. (10.8)

In the d-way case, the analogue is

K = Jλ;A1,A2, . . . ,AdK with λ ∈ Rr,Ak ∈ Rnk×r for all k ∈ [d]. (10.9)

Additionally, all the results apply to a Kruskal tensor without weights by setting λ equal to
the all-ones vector. We use the notation Λ ≡ diag(λ).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10.7. Operations with Kruskal Tensors 197

10.7.1 Inner Products and Norms of Kruskal Tensors
Inner Products and Norms of 3-way Kruskal Tensors

Computing the inner product of two Kruskal tensors is very efficient, as we show below.
We consider first the 3-way case.

Proposition 10.21 (Kruskal Tensor Inner Product, 3-way) Consider the 3-way Kruskal
tensors K = JA,B,CK and K̄ = JĀ, B̄, C̄K of size m× n× p with r and r̄ components,
respectively. Their inner product is

⟨K, K̄⟩ = 1⊺
r (A

⊺Ā∗B⊺B̄∗C⊺C̄)1r̄,

where 1r and 1r̄ are vectors of all ones of lengths r and r̄, respectively

Proof. We have

⟨K, K̄⟩ =
〈
vec(K), vec(K̄)

〉
,

=
〈
(C⊙B⊙A)1r, (C̄⊙ B̄⊙ Ā)1r̄

〉
per Proposition 10.8,

= 1⊺
r (C⊙B⊙A)⊺(C̄⊙ B̄⊙ Ā)1r̄,

= 1⊺
r (A

⊺Ā∗B⊺B̄∗C⊺C̄)1r̄ per Proposition A.23.

Exercise 10.16 What is the computational and storage complexity of ⟨K, K̄⟩ in Proposi-
tion 10.21? How does this compare to computing the inner product of two full tensors?

Exercise 10.17 What is ⟨K, K̄⟩ for K = Jλ,A,B,CK and K̄ = Jλ̄, Ā, B̄, C̄K, both of
size m × n × p with r and r̄ components, respectively? What is the computational and
storage complexity?

The norm of a 3-way tensor is then a corollary.

Corollary 10.22 (Kruskal Tensor Norm, 3-way) Consider the 3-way Kruskal tensors K =
Jλ;A,B,CK. Its norm is

∥K∥2 = λ⊺(A⊺A∗B⊺B∗C⊺C)λ.

Exercise 10.18 What is the computational and storage complexity for computing ∥K∥ for
K = Jλ;A,B,CK of size m× n× p with r components.

Inner Products and Norms of d-way Kruskal Tensors

The situation is analogous for the d-way case.

Proposition 10.23 (Kruskal Tensor Inner Product, d-way) Consider the d-way Kruskal
tensors KA and KB of size n1 × n2 × · · · × nd defined as KA = Jλ;A1,A2, . . . ,AdK
and KB = Jγ;B1,B2, . . . ,BdK. Then

⟨KA,KB⟩ = λ⊺(A⊺
dBd ∗A⊺

d−1Bd−1 ∗ · · · ∗A⊺
1B1)γ.

If KA has r components and KB has s components, then the computational cost is
O(rs∑d

k=1 nk).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

198 Chapter 10. Kruskal Tensor Structure

In the above result, we do not assume that KA and KB have the same number of compo-
nents. We prove only the first part of the result and leave the second part as an exercise.

Proof. We have

⟨KA,KB⟩ = ⟨vec(KA), vec(KB)⟩ per Exercise 3.2
= ⟨(Ad ⊙ · · · ⊙A1)λ, (Bd ⊙ · · · ⊙B1)γ⟩ per Proposition 10.9
= λ⊺(Ad ⊙ · · · ⊙A1)

⊺(Bd ⊙ · · · ⊙B1)γ

= λ⊺(A⊺
dBd ∗ · · · ∗A⊺

1B1

)
γ per Proposition A.23 .

Hence, the claim.

Exercise 10.19 Prove the statement about total work in Proposition 10.23. How does the
work compare to the cost for two full tensors? How does the storage compare?

An immediate corollary is the norm of a Kruskal tensor.

Corollary 10.24 (Kruskal Tensor Norm, d-way) Consider the d-way Kruskal tensor K =
Jλ;A1,A2, . . . ,AdK of size n1 × n2 × · · · × nd with r components. Then

∥K∥2 = λ⊺(A⊺
dAd ∗A⊺

d−1Ad−1 ∗ · · · ∗A⊺
1A1)λ.

Further, the total work is O(r2∑d
k=1 nk).

10.7.2 Approximation Error
Since Kruskal tensors are often used to provide approximations to data tensors, we may
wish to compute

ERR = ∥X− JA,B,CK∥2

where X ∈ Rm×n×p is a data tensor and JA,B,CK is a rank-r approximation of X.

The most obvious way to compute this is to first compute the full tensor Y = full(JA,B,CK),
as discussed in Section 10.6, and then calculate the norm of the difference, ∥X−Y∥2. The
complexity is dominated by the computation of Y and so is O(mnpr). In general, this is
the best we can do for dense X.

However, there are some scenarios where we may want to avoid forming full(JA,B,CK)
explicitly. For instance, if X is sparse, the memory requirement for full(JA,B,CK) may
be prohibitive.

Approximation Error, 3-way

Consider an alternate way to compute the error:

∥X− JA,B,CK∥2 = ∥X∥2 + ∥JA,B,CK∥2 − 2
〈
X, JA,B,CK

〉
. (10.10)

Let us assume that the norm of X is precomputed. From Proposition 10.21, the second
term can be computed efficiently for a computational cost of O((m+ n+ p)r):

∥JA,B,CK∥2 = 1⊺
r (A

⊺A ∗B⊺B ∗C⊺C)1r.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10.7. Operations with Kruskal Tensors 199

So, the problem reduces to when the last term can be computed efficiently. Rewriting in
terms of matrices, the third term can be expressed as:

〈
X, JA,B,CK

〉
=
〈
X(3),C(B⊙A)⊺

〉
=
〈
X(3)(B⊙A),C

〉
.

The first term in the resulting dot product is an MTTKRP.

Sparse Tensor If X is sparse, then computing the MTTKRP X(3)(B⊙A) costsO(nnz(X)r).
So the dot product with C can be computed for an additional cost of pr2. More importantly,
we avoid the storage cost of mnp for Y = full(JA,B,CK).
Exercise 10.20 Let X be sparse. Write an efficient algorithm to compute

〈
X, JA,B,CK

〉

directly, without computing any MTTKRPs.

Extra Information In the midst of algorithms to compute a CP decomposition of the form
JA,B,CK, it is not unusual that we have already computed the MTTKRP X(3)(B ⊙A).
So the dot product with C can be computed for an additional cost of pr2.

Exercise 10.21 Consider the computation of ERR = ∥X − Jλ;A,B,CK∥2 (with explicit
weights). Let χ = ∥X∥, U = X(3)(B⊙A), and V = (B⊺B)∗ (A⊺A).

(a) Show
∥∥X − Jλ;A,B,CK

∥∥2 =
∥∥X
∥∥2 +

∥∥Jλ;A,B,CK
∥∥2 − 2

〈
X, Jλ;A,B,CK

〉
.

(Hint: Convert to equivalent vectorized expression.)

(b) Show α ≡ λ⊺(C⊺C ∗V)λ =
∥∥Jλ;A,B,CK

∥∥2.
(c) Show β ≡ 1⊺

rC
⊺Uλ =

〈
X, Jλ;A,B,CK

〉
.

(d) Show ERR = χ2 + β − 2α.

Approximation Error, d-way

In the d-way case, we may want to compute

ERR =
∥∥X− JA1,A2, . . . ,AdK

∥∥2

where X ∈ Rn1×n2×···×nd and JA1,A2, . . . ,AdK is a rank-r approximation of X. Com-
puting Y = full(JA1,A2, . . . ,AdK) costs O(Nr) where N =

∏d
k=1 nk and that dom-

inates the cost of computing the error. In general, this is the best we can do for dense
X.

As discussed above, however, it is not unusual that we already know some quantities of
interest such as

χ = ∥X∥2, U = X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1), and
V = A⊺

dAd ∗ · · · ∗A⊺
k+1Ak+1 ∗A⊺

k−1Ak−1 ∗ · · · ∗A⊺
1A1.

In such a scenario, we can compute the approximate error more efficiently. We can rewrite

∥X− JA1,A2, . . . ,AdK∥2 = ∥X∥2 + ∥JA1,A2, . . . ,AdK∥2− 2
〈
X, JA1,A2, . . . ,AdK

〉
.

The first term is already calculated as χ. From Proposition 10.23, the second computation
is O(r2):

∥JA1,A2, . . . ,AdK∥2 = 1⊺
r (V ∗A⊺

kAk)1r.

Rewriting in terms of matrices, the third computation is O(r3):
〈
X, JA1,A2, . . . ,AdK

〉
=
〈
X(k),Ak(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)

⊺〉

=
〈
X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1),Ak

〉

=
〈
U,Ak

〉
.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

200 Chapter 10. Kruskal Tensor Structure

Exercise 10.22 Let X ∈ Rn1×n2×···×nd and let Jλ;A1,A2, . . . ,AdK be a rank-r approx-
imation of X. Assume we have computed

Ud = X(d)(Ad−1 ⊙ · · · ⊙A1), and
Vd = (A⊺

d−1Ad−1)∗ · · · ∗ (A⊺
1A1).

How can we efficiently calculate ∥X−Jλ;A1,A2, . . . ,AdK∥2? What is the computational
complexity?

Remark 10.25 (Accuracy of efficient error evaluation) This efficient method for com-
puting the relative error does sacrifice some accuracy compared to the direct method of
computation. We typically care only about the order of magnitude of relative error, so
some loss of accuracy is not a problem. The efficient method cannot compute relative error
values smaller than the square root of machine precision (around 10−8 in double precision).
This is because the expression in Eq. (10.10) relies on cancellation to compute small val-
ues, and the roundoff error due to subtraction is of size O(εm∥X∥2) where εm is machine
precision. After taking a square root and dividing by ∥X∥ to compute the relative error
value, the error in the computed relative error value becomesO(√εm). To accurately com-
pute relative error values smaller than O(√εm), we must use the more expensive, direct
evaluation of the error.

10.7.3 MTTKRP with Kruskal Tensors
MTTKRP with 3-way Kruskal Tensors

Let K = JA,B,CK be a Kruskal tensor of size m × n × p with r components. Consider
the MTTKRP of K with B̄ ∈ Rn×s and C̄ ∈ Rp×s. The special structure of K can yield
computational savings. For instance, consider the following mode-1 MTTKRP: K(1)(C̄⊙
B̄). If K were a full tensor, that computation would costO(mnps) operations. Its structure
means that

K(1)(C̄⊙ B̄) = A(C⊙B)⊺(C̄⊙ B̄),

= A(C⊺C̄∗B⊺B̄).

The cost of this operation is O((m+ n+ p)rs), and the full version of K is never formed.

Exercise 10.23 Let K = Jλ;A,B,CK (with weights) be a Kruskal tensor, and let Ā ∈
Rm×s and C̄ ∈ Rp×s. How can K(2)(C̄ ⊙ Ā) be computed in fewer than O(mnps)
operations?

MTTKRP with d-way Kruskal Tensors

Consider the d-way MTTKRP (see Definition 3.27) where the tensor is a Kruskal tensor.
The special structure means the MTTKRP can be computed implicitly.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10.7. Operations with Kruskal Tensors 201

Proposition 10.26 (Kruskal Tensor MTTKRP) Let K = Jλ;A1,A2, . . . ,AdK be a Kruskal
tensor of size n1 × n2 × · · · × nd with r components, and let Bk ∈ Rnk×s for all k ∈ [d].
Then the mode-k MTTKRP can be computed as

K(k)(Bd ⊙ · · · ⊙Bk+1 ⊙Bk−1 ⊙ · · · ⊙B1) =

AkΛ(A⊺
dBd ∗ · · · ∗A⊺

k+1Bk+1 ∗A⊺
k−1Bk−1 ∗ · · · ∗A⊺

1B1) ∈ Rnk×s. (10.11)

The total work is O(rs∑d
k=1 nk).

Exercise 10.24 Prove Proposition 10.26 and compare to the total work for a full tensor.

Exercise 10.25 (Mode-k Gramian of a Kruskal Tensor) For the Kruskal tensor K =
Jλ;A1,A2, . . . ,AdK of size n1×n2×· · ·×nd and r components, how can we efficiently
compute K(k)K

⊺
(k)? What is the total cost?

10.7.4 TTM with Kruskal Tensors
Recall from Section 3.3 that the mode-k TTM modifies all the mode-k fibers of a tensor
by multiplying them by the specified matrix. We generally do not directly need TTM for
any CP computations, but this does have application in the case of computing CP on a
Tucker-structured tensor core; see Section 17.2.

TTM with 3-way Kruskal Tensors

In the 3-way case, the TTM with a Kruskal tensor has a special structure, as follows.

Proposition 10.27 (Kruskal TTM, 3-way) Let K = Jλ;A,B,CK be an m× n× p Kruskal
tensor with r components. Let U ∈ Rm̄×m, V ∈ Rn̄×n, W ∈ Rp̄×p. Then we have

K×1 U = Jλ;UA,B,CK ∈ Rm̄×n×p,

K×2 V = Jλ;A,VB,CK ∈ Rm×n̄×p,

K×3 W = Jλ;A,B,WCK ∈ Rm×n×p̄,

K×1 U×2 V ×3 W = Jλ;UA,VB,WCK ∈ Rm̄×n̄×p̄.

Exercise 10.26 Prove Proposition 10.27.

Exercise 10.27 What is the cost of updating a Kruskal tensor implicitly via a TTM versus
the standard cost of a TTM?

TTM with d-way Kruskal Tensors

Proposition 10.28 (Kruskal TTM, d-way) Let K = Jλ;A1,A2, . . . ,AdK be a Kruskal ten-
sor and let V be a matrix of size nk ×m where nk is the size of mode k of X. Then

K×k V = Jλ;A1, . . . ,Ak−1,VAk,Ak+1, . . . ,AdK.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

202 Chapter 10. Kruskal Tensor Structure

Proof. Define Y = K×k V. Then

Y(k) = VK(k) per Definition 3.14

= V
(
AkΛ(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)

)
per Proposition 10.10

= (VAk)Λ(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1).

Plugging VAk in as factor matrix k for Y in Proposition 10.10 completes the proof.

Thus, a Kruskal tensor can be updated via a TTM implicitly at a cost of a small matrix
multiplication, i.e., O(mnkr). Compare this to the standard cost of a TTM, which is
O(m∏d

k=1 nk).

10.8 Measuring Similarity of Kruskal Tensors
As we have discussed, Kruskal tensors have inherent permutation and scaling ambiguities.
This means that measuring the similarity of two Kruskal tensors can be challenging. There
are many ways this can be done, and here we present just one idea that will open the door
to other options.

10.8.1 Measuring Similarity of 3-way Kruskal Tensors
Consider first the simple case of two rank-1 3-way Kruskal tensors with normalized factors.
Let

K = λ a , b , c with ∥a∥2 = ∥b∥2 = ∥c∥2 = 1, and

K̄ = λ̄ ā , b̄ , c̄ with ∥ā∥2 = ∥b̄∥2 = ∥c̄∥2 = 1.

One measure that we can use for comparison is the cosine of that angle between them,
⟨vec(K), vec(K̄)⟩, which is 1 if the vectors are perfectly aligned. This works out to

score(K, K̄) =
〈
a, ā
〉 〈

b, b̄
〉 〈

c, c̄
〉
∈ [−1, 1].

This is sometimes referred to as congruence (Tomasi and Bro, 2006).

We usually are only comparing the factors for tensors that are identical in norm or close to
it, which would imply that λ ≈ λ̄. However, if we want to also account explicitly for the
weights, we can add some sort of penalty for the difference in the weights such as

ψ(λ, λ̄) ≡ 1− |λ− λ̄|
max {λ, λ̄ } ∈ [0, 1]. (10.12)

Then we could score the similarity as a weighted congruence:

score(K, K̄) = ψ(λ, λ̄)
〈
a, ā
〉 〈

b, b̄
〉 〈

c, c̄
〉
∈ [−1, 1].

So, we understand now how to compare two rank-1 3-way components.

Next, consider the problem of comparing two 3-way tensors with normalized factors. Let

K = Jλ;A,B,CK with ∥āj∥2 = ∥b̄j∥2 = ∥c̄j∥2 = 1 for all j ∈ [r], and

K̄ = Jλ̄; Ā, B̄, C̄K with ∥aj∥2 = ∥bj∥2 = ∥cj∥2 = 1 for all j ∈ [r].

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

10.8. Measuring Similarity of Kruskal Tensors 203

We can take the average of all the matched-pair component scores, but we must consider the
permutation ambiguity. This means we should ideally find the permutation of components
that maximizes the average of the r matched-pair component scores, i.e.,

score(K, K̄) = max
{

1
r

∑r
j=1 score(Kj , K̄πj)

∣∣∣ π ∈ Π(r)
}

(10.13)

where the Kj and K̄j pick out the jth component. In other words,

Kj ≡ λjaj , bj , cj and K̄j = λ̄j āj , b̄j , c̄j .

Here Π(r) is the set of all r-permutations. This is a weighted bipartite matching problem,
also known as an assignment problem. That is, we first compute the score between every(
r
2

)
= O(r2) pair of components, and we then solve the assignment problem to determine

the matching. The cost of computing the pairwise scores is O(r2∑d
k=1 nk), and the cost

of solving the assignment problem is O(r3) (Edmonds and Karp, 1972).

Definition 10.29 (Kruskal Tensor Similarity Score, 3-way) Suppose we are given two
column-normalized Kruskal tensors of size m× n× p and each having r components:

K = Jλ;A,B,CK and K̂ = Jλ̄; Ā, B̄, C̄K,

The similarity score between K and K̄ is

score(K, K̄) = max
π

1

r

r∑

j=1

ψ(λj , λ̄πj) ⟨aj , āπj ⟩⟨bj , b̄πj ⟩⟨cj , c̄πj ⟩,

where π ranges over the set of r-permutations and ψ is a function of the weights such as
Eq. (10.12). To ignore the weights, set ψ(λ, λ̄) = 1.

10.8.2 Measuring Similarity of d-way Kruskal Tensors
We provide the general d-way score below.

Definition 10.30: Kruskal Tensor Similarity Score

Suppose we are given two column-normalized Kruskal tensors of size n1 × n2 × · · · × nd
and each having r components:

K = Jλ, A1,A2, . . . ,AdK and K̄ = Jλ̄, Ā1, Ā2, . . . , ĀdK,

The similarity score between K and K̄ is

score(K, K̄) = max
π

1

r

r∑

j=1

ψ(λj , λ̄πj
)

d∏

k=1

〈
Ak(:, j), Āk(:, πj)

〉
,

where π ranges over the set of r-permutations and ψ is a function of the weights such as
Eq. (10.12). To ignore the weights, set ψ(λ, λ̄) = 1.

All scores are in the range [−1, 1]. If the two Kruskal tensors are identical except for
permutation, then their score is one.

If KB has r̂ > r components, then the score can be used as is with the only difference

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

204 Chapter 10. Kruskal Tensor Structure

that π is selected among all r̂ permutations. We use the best r out of r̂ components for the
comparison, and the remainder are simply ignored.

Remark 10.31 (Absolute values on component scores) When we take the product of
the factor inner products, negative signs can cancel out. Perhaps for this reason, Acar,
Dunlavy, and Kolda (2011) use the absolute value of the component scores, restricting the
score to be in the range [0, 1]. This could give a high score to a component that is sign-
flipped, but it would be unlikely that this would happen in practice. (This is how the score
is implemented in Tensor Toolbox for MATLAB as of Version 3.4.)

Exercise 10.28 Consider the EEM tensor discussed in Sections 1.5.2 and 9.6. Compute the
rank-3 CP with 50 different starting points and determine the model that yields the minimal
error. Compute the similarity score of the other 49 solutions with the one the yielded
the minimal error. What are the range of similarity scores? Visualize the best solution
alongside a solution with a high similarity score. How do they compare? Conversely,
visualize the least similar solution alongside the best. How do they compare?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

11
CP Alternating Least
Squares (CP-ALS)
Optimization

Computing a CP decomposition requires solving a nonlinear least squares optimization
problem using an iterative algorithm. In this chapter, we cover what is arguably the most
common approach for CP: solve for one factor matrix at a time, holding all the others
fixed. Each subproblem is a linear least squares problem which can be solved exactly. We
then cycle through the factor matrices, solving each in turn, so we have an alternating
least squares method and thus refer to this as CP-ALS. CP-ALS cycles repeatedly through
all the factor matrices until convergence. The CP-ALS approach for three-way tensors
was proposed in the earliest papers on computing CP by Carroll and Chang (1970) and
Harshman (1970).1

The ALS approach is not the only way to fit a CP model. Alternative optimization ap-
proaches such as gradient-based (CP-OPT) and nonlinear least squares (CP-NLS) are dis-
cussed in Chapters 12 and 13, respectively.

11.1 CP-ALS for 3-way Tensors
Suppose we want to compute the CP factorization JA,B,CK with r components for the
tensor X ∈ Rm×n×p. This requires solving

min
A,B,C

∥∥X− JA,B,CK
∥∥2 subject to A ∈ Rm×r,B ∈ Rn×r,C ∈ Rp×r. (11.1)

This is a nonlinear, nonconvex optimization problem. One approach is to alternate between
the factor matrices, solving for each in turn while the others are fixed. We repeat this cycle
until convergence. This is a form of block coordinate descent (see Appendix B.3.7) where
the blocks are the factor matrices. The basic method is as follows:

CP-ALS Prototype, 3-way
while not converged do

A← argminA
∥∥X− JA,B,CK

∥∥2

B← argminB
∥∥X− JA,B,CK

∥∥2

C← argminC
∥∥X− JA,B,CK

∥∥2
end while

1Harshman credits Robert Jennrich with the CP-ALS algorithm in his 1970 paper. This should not be confused
with the simultaneous diagonalization algorithm that is often incorrectly attributed to Jennrich; see Kolda (2021b).

205

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

206 Chapter 11. CP Alternating Least Squares (CP-ALS) Optimization

11.1.1 Least Squares Subproblem for 3-way Tensors
Each subproblem is a linear least squares problem. Consider the first subproblem:

argmin
A

∥∥X− JA,B,CK
∥∥2,

with B and C fixed. The key to computing A is to unfold the tensor expression in the first
mode. Using the unfolding of the Kruskal tensor yields

∥∥X− JA,B,CK
∥∥2 =

∥∥X(1) −A(C⊙B)⊺
∥∥2
F

(see Exercise 11.1). Now it may be apparent that solving for A is a linear least squares
problem. To make it more obvious, we transpose the expression and reverse the terms to
obtain, equivalently, ∥∥(C⊙B)A⊺ −X⊺

(1)

∥∥2
F
, (11.2)

so that the coefficient matrix is C⊙B and the right hand side is X⊺
(1), matching the format

of a standard matrix least squares problem in Eq. (A.19). This problem is usually solved
via the normal equations, which produces the linear system

(C⊙B)⊺(C⊙B)A⊺ = (C⊙B)⊺X⊺
(1).

The coefficient matrix can be computed cheaply by using a property of the Khatri-Rao
product (Proposition A.23), simplifying to

(C⊺C∗B⊺B)A⊺ = (C⊙B)⊺X⊺
(1).

The r × r matrix (C⊺C ∗ B⊺B) is symmetric positive definite if (C ⊙ B) is full rank
(see Exercises 11.2 and 11.3), so we can solve for A using the Cholesky decomposition.
Transposed, we have

A(C⊺C∗B⊺B) = X(1)(C⊙B). (11.3)

The right hand side of the normal equations is a matricized-tensor times Khatri-Rao product
(MTTKRP), see Section 3.5.

The computational complexity of the solution via the normal equations is as follows for a
dense tensor.

• The MTTKRP costs O(mnpr).
• The Gramian matrices and their Hadamard product cost O(nr2 + pr2 + r2).
• The Cholesky factorization costs O(r3).
• The backsolves cost O(r2m).

The dominant cost is O(mnpr) for the MTTKRP.

Remark 11.1 (Structured tensors) If X has structure such as being a sparse tensor, a
Kruskal tensor, or a Tucker tensor, the cost of computing the MTTKRP may be reduced,
making CP-ALS significantly less computationally expensive than with dense inputs. See
Section 11.2.4.

Exercise 11.1 Show
∥∥X − JA,B,CK

∥∥2 =
∥∥X(1) −A(C ⊙B)⊺

∥∥2
F

. Hint: Use Proposi-
tion 10.10.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

11.1. CP-ALS for 3-way Tensors 207

Exercise 11.2 Let B ∈ Rn×r and C ∈ Rp×r. Prove that if rank(B) = rank(C) = r,
then rank(C⊙B) = r . Hint: Use Proposition A.24.

Exercise 11.3 If rank(C⊙B) = r, prove (C⊺C ∗B⊺B) is symmetric positive definite.
Hint: Use Proposition A.14.

Exercise 11.4 (Regularization) If we add regularization as described in Section 9.4.2,
show that the normal equation for A given by Eq. (11.3) becomes

A
(
(C⊺C∗B⊺B) + ρIr

)
= X(1)(C⊙B).

Exercise 11.5 Derive solutions analogous to Eq. (11.3) for B and C via the second and
third subproblems in CP-ALS.

Remark 11.2 (Linear solves) In many works, the solution of Eq. (11.3) is written in terms
of (C⊺C∗B⊺B)−1, the inverse of (C⊺C∗B⊺B). We want to stress that we want to avoid
explicitly creating the inverse (or pseudoinverse if singular). Instead, let U = X(1)(C⊙B)
and V = (C⊺C∗B⊺B), and then solve the linear system AV = U for A using Cholesky
decomposition.

If the linear system is singular or ill-conditioned, then using QR decomposition or regular-
ization may help. See also Remark 11.3.

Remark 11.3 (Solving least squares via QR rather than the normal equations) The
least squares problem in Eq. (11.2) can be solved via QR rather than least squares (see
Appendix A.7). This would be especially appropriate if (C⊙B) is ill-conditioned because
the normal equations are more sensitive to roundoff error; however, this rarely occurs in
practice. If r < min {m,n, p }, the computational complexity using the QR solution is
O(mnpr), which is the same as using the normal equations. Special care can be taken
to avoid forming the Khatri-Rao product and its QR factorization explicitly; see Minster,
Viviano, et al. (2023).

11.1.2 CP-ALS Algorithm for 3-way Tensors
A detailed CP-ALS algorithm for a three-way tensor is provided in Algorithm 11.1. The
inputs are the tensor, the desired rank, initial guesses for the factor matrices (an initial
guess for A is not required since that is the first matrix that is computed), and algorithm
parameters for the maximum number of iterations and stopping tolerance. The output is a
CP decomposition that is either the best after MAXITERS iterations or the result after the
reduction is relative error is below the threshold τ .

Algorithm 11.1 saves variables for reuse in several places, like computing the norm of X
once in Line 2 and the column scalings in Line 19. The COLUMNNORMALIZE function
used in Algorithm 11.1 rescales each column so that its norm is one and optionally returns
a second argument with the original column norms. Strictly speaking, renormalization
of the columns is unnecessary. However, it is a way to address the scaling ambiguity
which could potentially manifest roundoff errors in extreme cases. Other normalizations
are possible, such as scaling by the one norm (sum of absolute values of entries) or infinity
norm (maximum entry).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

208 Chapter 11. CP Alternating Least Squares (CP-ALS) Optimization

Algorithm 11.1 CP-ALS for 3-way Tensor

Require: data tensor X ∈ Rm×n×p, CP rank r ∈ N, convergence tolerance τ > 0,
maximum iterations MAXITERS ∈ N

Ensure: CP model Jλ;A,B,CK with r components such that Jλ;A,B,CK ≈ X

1: function CP-ALS(X, r, τ,MAXITERS)
2: χ← ∥X∥
3: initialize B ∈ Rn×r, C ∈ Rp×r ▷ alternatively, pass as inputs
4: S2 ← B⊺B, S3 ← C⊺C
5: for t = 1, 2, . . . ,MAXITERS do
6: U1 ← X(1)(C⊙B) ▷ MTTKRP
7: V1 ← S3 ∗ S2

8: A← solution of AV1 = U1

9: A← COLUMNNORMALIZE(A)
10: S1 ← A⊺A

11: U2 ← X(2)(C⊙A) ▷ MTTKRP
12: V2 ← S3 ∗ S1

13: B← solution of BV2 = U2

14: B← COLUMNNORMALIZE(B)
15: S2 ← B⊺B

16: U3 ← X(3)(B⊙A) ▷ MTTKRP
17: V3 ← S2 ∗ S1

18: C← solution of CV3 = U3

19: {C,λ } ← COLUMNNORMALIZE(C) ▷ λ holds column norms
20: S3 ← C⊺C

21: α← 1⊺C⊺U3λ ▷ α = ⟨X, JA,B,CK⟩
22: β ← λ⊺(S3 ∗V3)λ ▷ β = ∥JA,B,CK∥2
23: et ← (χ2 − 2α+ β)1/2 ▷ et = ∥X− JA,B,CK∥
24: if (t > 1) and (et − et−1 < τχ) then
25: break ▷

stop if decrease in
relative error less than τ

26: end if
27: end for
28: Optional post-processing to reorder components by weight and adjust signs
29: return {λ,A,B,C } ▷ CP model is Jλ;A,B,CK
30: end function

31: function COLUMNNORMALIZE(A)
32: for j = 1, 2, . . . , r do ▷ r = number of columns in A
33: λj ← ∥aj∥2 ▷ aj = jth column of A
34: aj ← aj/λj
35: end for
36: return {A,λ }
37: end function

Exercise 11.6 Consider Algorithm 11.1. (a) What is the cost of each step of Algo-
rithm 11.1? (b) Assuming r < min {mn,mp, np }, which step is the most expensive?

Lines 21 to 23 are steps in computing et = ∥X−Jλ;A,B,CK∥, as shown in Exercise 10.21

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

11.2. CP-ALS for d-way Tensors 209

and discussed in more detail in Section 10.7.2. The method terminates when the change in
relative error is less than τ , where the relative error is defined as

relative error =

∥∥X− Jλ;A,B,CK
∥∥

∥X∥ .

The relative error at iteration t is et/χ in the notation of Algorithm 11.1. The error is
nonincreasing; see Exercise 11.7.

Exercise 11.7 Consider Algorithm 11.1. Prove et ≤ et−1 for all t > 1.

○ The error in CP-ALS is nonincreasing, i.e., the error
at step t + 1 is no greater than the error at step t.

11.2 CP-ALS for d-way Tensors
The d-way case follows the same reasoning as the 3-way case. Given a tensor X ∈
Rn1×n2×···×nd , suppose we want to compute a CP factorization Jλ;A1,A2, . . . ,AdK with
r components. If we use alternating optimization, solving for one factor matrix at a time
while the others are fixed, the basic algorithm is

Prototype CP-ALS, d-way
while not converged do

for k = 1, 2, . . . , d do
Ak ← argminAk

∥∥X− JA1,A2, . . . ,AdK
∥∥2

end for
end while

11.2.1 Least Squares Subproblem for d-way Tensors
The least squares problem for the kth factor matrix can be rewritten as explicitly in matrix
notation as

min
Ak∈Rnk×r

∥X(k) −Ak(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)
⊺∥F . (11.4)

Here, we have used Proposition 10.10.

Exercise 11.8 Consider the least squares problem in Eq. (11.4).
(a) Write the problem in standard form, i.e., minX ∥AX−B∥2F where we say A is the

coefficient matrix, X is the unknown, and B is the right hand side.
(b) What is the size of the coefficient matrix? What is the cost of computing the Khatri-

Rao product to form the coefficient matrix explicitly?
(c) What is the size of the right-hand side?
(d) What is the cost to solve the least squares problem via the normal equations, ignoring

the structure of the coefficient matrix?

The normal equation for this least squares problem is

AkVk = X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1), (11.5)

where

Vk = (Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)
⊺(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)

= A⊺
dAd ∗ · · · ∗A⊺

k+1Ak+1 ∗A⊺
k−1Ak−1 ∗ · · · ∗A⊺

1A1.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

210 Chapter 11. CP Alternating Least Squares (CP-ALS) Optimization

Here, we have used Proposition A.23 (applied repeatedly). We can solve the normal equa-
tions using a Cholesky decomposition. As in 3-way case, the coefficient matrix Vk is r×r,
and the right hand side is an MTTKRP. See also Remark 11.2.

Exercise 11.9 Consider the normal equations in Eq. (11.5).
(a) What is the cost to compute the MTTKRP, i.e., X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙
· · · ⊙A1)? What is the size of the result?

(b) What is the cost to compute Vk?
(c) Once the normal equations are formed, what is the remaining cost to solve for Ak

via Cholesky factorization?
(d) Which step is most expensive?

11.2.2 CP-ALS Algorithm for d-way Tensors
We present a detailed version of CP-ALS for a d-way tensor in Algorithm 11.2. The inputs
are the tensor, the desired rank, initial guesses for the factor matrices (an initial guess for
A1 is not required since that is the first matrix that is computed), and algorithm param-
eters for the maximum number of iterations and stopping tolerance. Each outer iteration
(indexed by t) cycles through all d factor matrices, optimizing each in turn. The output is
a CP decomposition that is either the best after MAXITERS iterations or the result after the
reduction is relative error is below the threshold τ . See Remark 11.2 regarding the linear
solves in Line 11.

As in the 3-way case, the d-way CP-ALS procedure iterates until the change in the rela-
tive error goes below the specified convergence threshold (τ) or the maximum iterations
(MAXITERS) is exceeded. This is similar to tracking the change of the objective function
in optimization. Other stopping conditions are possible, such as tracking the change in the
factor matrices and stopping when those changes become suitably small.

○ The usual stopping criterion for CP-ALS is to stop when the
change in relative error goes below a user-specified tolerance.

11.2.3 Complexity Analysis for CP-ALS
The costs of each line in an outer iteration of CP-ALS are given in Table 11.1. Before
we derive the complexity of each line, we note that the computational complexity of the
MTTKRPs involve the product of tensor dimensions. Every other cost is proportional to
the sum of tensor dimensions (at most). This is because the MTTKRP is the only oper-
ation in the loop that involves the input tensor; therefore, it dominates the computational
complexity.

○ The most expensive step in CP-ALS is the MTTKRP.

The MTTKRP tensor operation is described in Section 3.5.2 and is computed directly for
dense tensors by forming the Khatri-Rao product of the factor matrices followed by matrix
multiplication with the unfolded tensor. Regardless of mode, the cost of an MTTKRP in an
inner iteration is O(Nr) where N =

∏d
k=1 nk.

Each outer loop requires d MTTKRP calculations, which can be performed independently
for a cost of O(dNr). The cost can be reduced to O(Nr) by re-using intermediate quan-
tities across MTTKRPs in different modes instead of recomputing those quantities; see the

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

11.2. CP-ALS for d-way Tensors 211

Algorithm 11.2 CP-ALS for d-way Tensor

Require: data tensor X ∈ Rn1×n2×···×nd , rank r ∈ N, convergence tolerance τ > 0,
maximum iterations MAXITERS ∈ N

Ensure: CP model Jλ;A1, . . . ,AdK with r components such that Jλ;A1, . . . ,AdK ≈ X

1: function CP-ALS(X, r, τ,MAXITERS)
2: χ← ∥X∥
3: for k = 2, . . . , d do
4: initialize Ak ∈ Rnk×r ▷ alternatively, pass as inputs
5: Sk ← A⊺

kAk

6: end for
7: for t = 1, . . . ,MAXITERS do
8: for k = 1, . . . , d do
9: Uk ← X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1) ▷ MTTKRP

10: Vk ← Sd ∗ · · · ∗ Sk+1 ∗ Sk−1 ∗ · · · ∗ S1

11: Ak ← solution of AkVk = Uk

12: {Ak,λ } ← COLUMNNORMALIZE(Ak) ▷ See Algorithm 11.1
13: Sk ← A⊺

kAk

14: end for
15: α← 1⊺A⊺

dUdλ ▷ α = ⟨X, Jλ;A1,A2, . . . ,AdK⟩
16: β ← λ⊺(Sd ∗Vd)λ ▷ β = ∥Jλ;A1,A2, . . . ,AdK∥2
17: et ← (χ2 − 2α+ β)1/2 ▷ et = ∥X− Jλ;A1,A2, . . . ,AdK∥
18: if (t > 1) and (et−1 − et < τχ) then
19: break ▷

stop if decrease in
relative error less than τ

20: end if
21: end for
22: Optional post-processing to reorder components by weight and adjust signs
23: return {λ,A1,A2, . . . ,Ad } ▷ CP model is Jλ;A1,A2, . . . ,AdK
24: end function

discussion of memoization in Section 3.6.2. Because this optimization reduces the compu-
tational complexity by a factor of approximately d/2, it can have a significant impact on
the running time of CP-ALS without sacrificing accuracy or convergence.

The costs of the other lines are lower-order terms in the overall complexity. The linear
solves and Gram computations in Lines 11 and 13 are the next most expensive operation
after the MTTKRPs. In mode k, the costs are dominated by the triangular solves involving
the Cholesky factor of Vk and computing the Gram matrix Sk, which both cost O(nkr2).
Summing over all modes yields the cost in Table 11.1. The Hadamard products computed
in Line 10 each cost O(r2) multiplications, and there are d(d − 2) of them to perform in
direct evaluation. Like the MTTKRPs, the cost can be reduced by a factor of O(d) us-
ing memoization; see Exercise 11.10. Normalization in Line 12 involves only a couple of
passes over each factor matrix, and the cost of efficient computation of the error in Lines 15
to 17 depends only on a single tensor dimension. These costs are typically negligible. If
the error computation is performed directly to ensure high-accuracy as discussed in Sec-
tion 10.7.2, then its cost is comparable to a single MTTKRP.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

212 Chapter 11. CP Alternating Least Squares (CP-ALS) Optimization

Table 11.1: CP-ALS per-outer-iteration computational complexity for rank-r CP decom-
position of (dense) tensor of size n1 × n2 × · · · × nd with N =

∏d
k=1 nk

Calculation Line(s) Complexity See Also

MTTKRP Line 9 O(Nr) Section 3.5.2

Hadamard product Exercise 11.10 O(dr2) Section 3.6.2

Linear solve Line 11 O(dr3 + r2
∑d

k=1 nk) Appendix A.6.4

Normalization Line 12 O(r∑d
k=1 nk)

Gram Line 13 O(r2 ∑d
k=1 nk) Appendix A.4.1

Error Lines 15 to 17 O(rnd + r2) Section 10.7.2

Exercise 11.10 Consider the computation of

Vk = Sd ∗ · · · ∗ Sk+1 ∗ Sk−1 ∗ · · · ∗ S1

at iteration k in line 10 of Algorithm 11.2. Define the matrices

Lk = Sd ∗ · · · ∗ Sk+1 and Rk = Sk−1 ∗ · · · ∗ S1

so that Vk = LkRk for 1 < k < d. (a) Show that pre-computing all Lk matrices
can be performed using O(d) Hadamard products at the beginning of each outer itera-
tion. (b) Show that Vk and Rk+1 can be computed from Lk and Rk using two Hadamard
products at iteration k, yielding a total of O(d) Hadamard products per outer iteration.

11.2.4 CP-ALS with Sparse and Structured Tensors
There are only two lines in CP-ALS (Algorithm 11.2) that use the tensor X: the norm
calculation in Line 2 and the MTTKRP in Line 9. The former is computed only once at a
cost of O(N) for a dense tensor X of size n1 × n2 × · · · × nd with N =

∏d
k=1 nk. The

latter is the most expensive operation, requiring O(Nr) operations per CP-ALS iteration.

If the tensor has special structure, we can compute MTTKRPs and the norm more effi-
ciently. For example, if X is a sparse tensor, then we can efficiently compute the MTTKRP
and norm per Sections 3.7.2 and 3.7.4. In particular, the complexity of a single MTTKRP
involving a sparse tensor can be reduced from O(Nr) down to O(dqr), where q is the
number of nonzeros in the tensor.

There are other structures we can exploit as well. For instance, if X is a Tucker tensor,
then we can compute the MTTKRP and norm as described in Sections 5.7.1 and 5.7.3.
In the case of a Tucker tensor with orthonormal factor matrices, we can compute a CP
decomposition of only the Tucker core (see Section 17.2). Likewise, if X is a Kruskal
tensor (where the number of components is larger than the anticipated rank), then we can
compute the MTTKRP and norm as described in Sections 10.7.1 and 10.7.3. For further
discussion of sparse and structured tensors, see Bader and Kolda (2007).

Exercise 11.11 How does the computational cost of Eq. (11.3) change if X is a sparse
tensor with nnz(X)≪ mnp?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

11.3. Further Notes on CP-ALS 213

○ We can gain efficiencies in computing CP-ALS with an
efficient method for MTTKRP for sparse or structured tensors.

Remark 11.4 (Norm in CP-ALS is dispensable) The norm is not critical to the algorithm.
It is used solely in computing the error-based stopping criterion, which is not essential.

11.3 Further Notes on CP-ALS
As Kolda and Bader (2009) say, CP-ALS is the “workhorse” algorithm for computing the
CP decomposition. It is easy to implement and relatively efficient. We discuss a few further
ideas below.

Nonnegativity We may impose nonnegativity on each least squares solve to obtain non-
negative factor matrices. A classic method for solving a linear least squares problem with
nonnegativity constraints is Lawson and Hanson (1974), and Bro and De Jong (1997) have
a faster version that is amenable to use in an iterative method such as CP-ALS. These meth-
ods are guaranteed to find an exact solution in a finite number of steps. See also Kim et al.
(2014) for an overview of different methods.

Convergence and Rate of Convergence Let et denote the error of CP-ALS at
iteration t, as in Algorithm 11.1 or Algorithm 11.2. It can be shown that et+1 ≤ et for
all t, so the error never increases in CP-ALS; see Exercise 11.7. Since the error is also
bounded below by zero, the sequence { et } must converge. We cannot prove that the
iterates themselves converge without additional assumptions; see, e.g., Uschmajew (2012).
However, the iterates seem to always converge to a stationary point in practice.

Sketched Least Squares The least squares problems in ALS are tall and thin, making
them amenable to randomized methods for solving least squares problems. This has in-
spired both methods and related analyses; see Cheng et al. (2016), Battaglino et al. (2018),
Jin et al. (2020), Malik and Becker (2020), and Larsen and Kolda (2022).

11.4 CP-ALS on Data Tensors
We have already studied CP-ALS on the EEM tensor in the introductory chapter on CP
(Section 9.6), and recommend reviewing this material.

Additionally, we illustrate the results of this chapter on the four-way Chicago crime tensor
as described in Section 1.5.4. This is a tensor of size 365 × 24 × 77 × 12 where entry
(i, j, k, ℓ) indicates the number of crimes on day i (out of 365) and hour j (of 24) in com-
munity k (of 77) and of type ℓ (of 12). Since this is a four-way tensor, a rank-r CP model
will be of the form

M = JA1,A2,A3,A4K
where A1 ∈ R365×r, A2 ∈ R24×r, A3 ∈ R77×r, and A4 ∈ R12×r.

In Fig. 11.1, we plot the rank versus the relative error. For each rank, we run CP-ALS
three times with different initial guesses. First, observe that the relative error is over 90%.
Although this error is quite high, we will still find interpretable patterns in the data. Second,
there is no clear best rank. Some examination of the components may be in order to make a
determination. We will use rank r = 7 in subsequent example because it balances reducing
the relative error with model parsimony.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

214 Chapter 11. CP Alternating Least Squares (CP-ALS) Optimization

Remark 11.5 (CP-ALS parameters) For running CP-ALS on the Chicago crime tensor,
we used τ = 10−4 and MAXITERS = 50.

1 2 3 4 5 6 7 8 9 10 11 12
0.92

0.93

0.94

0.95

CP Rank (r)

R
el

at
iv

e
E

rr
or

run 1
run 2
run 3
min

Figure 11.1: CP rank versus relative error for Chicago crime tensor

The results of the rank-7 CP decomposition are shown in Figs. 11.2 and 11.3. The first
component corresponds to the day and is of length 365, the beginning of each month is
indicated by a vertical gridline, and zero is indicated by a horizontal gray line. The second
component corresponds to the hour, with hour 0 corresponding to midnight to 12:59am, and
so on. The third component corresponds to community area, and map visualizations are
provided in Fig. 11.3. The fourth component corresponds to crime type. The components
are presented in order of overall magnitude, and the components have been normalized to
unit norm except the day component, which reflects the weight of the component overall.

We can make a few observations about the components.

• Component 1 is most active in the areas known as “Near North” and “Loop”, which
are heavily populated by tourists. We see a pattern of crime reports mainly during
daytime and evening hours, peaking from 5-7pm. The main crime type is theft,
followed by deceptive practice. These crimes are active throughout the entire year.

• Component 2 is arguably the main trend as it is fairly consistent across the days,
hours, communities, and crimes (with the exception of deceptive practice).

• Component 3 is an outlier component focused on a few dates (early August), the
evening hours peaking around 10pm, a single community (Loop area), and a single
crime type (theft). This corresponds with the Lollapalooza festival which took place
in Grant Park in the Loop area on August 1–4. Some of the elements of the first
factor in this component are negative, making it harder to interpret.

• Component 4 is mainly narcotics, in the western part of the city, throughout the year,
and mainly during the daytime with peaks around 10am and 7pm.

• Component 5 has interesting time behavior, likely corresponding to the ways in
which some crimes are reported. The main crimes are deceptive practice and theft.
The unusual time pattern is peaks at the start of each month and at the hours of noon,
midnight, and 9am. These seem to indicate crimes the lacked specificity of the date
and time, so these were just recorded as the first of the month and an arbitrary time.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

11.4. CP-ALS on Data Tensors 215

Day (Weighted) Hour Community Type

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 0 6 12 18 11 22 33 44 55 66 77

th
ef

t
ba

tte
ry

cr
im

in
al

da
m

ag
e

as
sa

ul
t

de
ce

pt
iv

e
pr

ac
tic

e
ot

he
ro

ff
en

se
na

rc
ot

ic
s

bu
rg

la
ry

m
ot

or
ve

hi
cl

e
th

ef
t

ro
bb

er
y

cr
im

in
al

tr
es

pa
ss

w
ea

po
ns

vi
ol

at
io

n

1

2

3

4

5

6

7

Figure 11.2: Chicago 2019 crime tensor rank-7 CP factors. Each row represents one com-
ponent, sorted from largest to smallest magnitude. Factor for hour, community, and (crime)
type are normalized to length one. Factor for day holds weight of component. Horizontal
line in day factors at zero.

(a) Component 1 (b) Component 2 (c) Component 3 (d) Component 4

(e) Component 5 (f) Component 6 (g) Component 7
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

Figure 11.3: Map visualization for factor 3 of Fig. 11.2

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

216 Chapter 11. CP Alternating Least Squares (CP-ALS) Optimization

• Component 6 is somewhat similar to component 1, but more a focus on crimes in the
middle of the night and more focused geographically on the tourist areas.

• Component 7 is broadly crimes in the middle of the night, with battery and criminal
damage being the main crimes.

Remark 11.6 (CP versus GCP on Chicago crime tensor) In Section 9.8, we analyzed
the Chicago 2019 crime data using GCP (to be covered in Chapter 15) and obtained some-
what different results. One cause for concern with CP is that the relative error is very high,
over 90%. Further, the results from CP are arguably less interesting. For instance, Com-
ponent # 3 of the CP decomposition in Figs. 11.2 and 11.3 focuses on just a few days in
August (these dates and the locations identified corresponds with the Lollapalooza festival
which took place in Grant Park in the Loop area on August 1–4). The GCP results are more
balanced and able to incorporate the high number of reports on those few days as a spike
in time for a more general component. The CP factors have some negative entries, which
also impacts interpretability. The main difference between CP and GCP is that objective
functions. CP uses the sum of squared errors (SSE), i.e.,

365∑

i=1

24∑

j=1

77∑

k=1

12∑

ℓ=1

(
mijkℓ − xijkℓ

)2
,

whereas GCP used a KL divergence loss function, i.e.,

365∑

i=1

24∑

j=1

77∑

k=1

12∑

ℓ=1

mijkℓ − xijkℓ log(mijkℓ).

Exercise 11.12 Contrast these components to those found by GCP in Section 9.8. What is
similar? What is different?

Exercise 11.13 Implement 3-way CP-ALS (Algorithm 11.1). Test it on the EEM dataset;
see Sections 1.5.2 and 9.6. Run the method with r = 3 several times using different starting
point and save the best solution. Does it compute the same decomposition as shown in
Section 9.6? Which step is the most expensive?

Exercise 11.14 Implement CP-ALS as in Algorithm 11.2. Create test problems with
known rank, with and without noise, to test the method. Recommend trying both three
and four-way tensors, of sizes 100 × 80 × 60 and r = 10 and 50 × 40 × 30 × 20
and r = 8. Try generating random factor matrices, e.g., using the Tensor Toolbox
command A=matrandnorm(n,r) as well as matrices that have congruent factors via
A=matrandcong(n,r,gamma) which ensures that (a⊺i aj)/(∥ai∥2∥aj∥2) = γ for all
pairs of columns of A. For γ = 0, all columns are orthogonal. For γ = 1, all columns are
identical. The problems generally become more difficult for γ ≥ 0.5.

Exercise 11.15 Generate a figure comparing rank and relative error for one of the test
problems you created in Exercise 11.14. Be sure to compute the fit for multiple starting
points for each choice of rank.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

11.4. CP-ALS on Data Tensors 217

Exercise 11.16 Test your implementation of 3-way CP-ALS (Algorithm 11.1) on the
Chicago dataset to reproduce the results in this section. (a) Compute the relative error
for different ranks (using multiple starts). (b) Visualize the components for rank r = 7.
(c) (Bonus) Try a different rank (e.g., r = 6). Explain how the results change.

Exercise 11.17 (a) Implement CP-ALS for sparse tensors; see Section 3.7. (b) Compare
its performance to CP-ALS for dense tensors on the Chicago crime 2019 tensor for a rea-
sonable rank (e.g., r = 7). (c) Do they obtain similar relative errors and solutions? (d) How
do their times compare? (e) For each method, which step is most expensive? Discuss.

Remark 11.7 (Larger Chicago crime tensor) The Chicago crime 2019 tensor is small
enough that there is no major advantage to handling it as a sparse tensor. The advan-
tage is pronounced, however, if running on a larger dateset. To test this, a larger sparse
Chicago crime dataset is available at https://gitlab.com/tensors/tensor_
data_chicago_crime that spans 2002-2022 for a total of 7484 days (2002-04-22 to
2022-10-17).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://gitlab.com/tensors/tensor_data_chicago_crime
https://gitlab.com/tensors/tensor_data_chicago_crime

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

12
CP Gradient-Based
Optimization (CP-OPT)

In this chapter, we consider general gradient-based optimization methods that minimize
the loss with respect to all factor matrices simultaneously. By gradient-based optimization
methods, we refer to those methods that require only function values and gradients and as-
sume no special problem structure. In other words, the user need only provide functionality
to evaluate the function and gradient, so we focus on how to compute these. This enables
us to use a variety of general-purpose optimization methods including gradient descent and
quasi-Newton methods as well as methods for constrained optimization.

For context, other chapters consider the special structure of the problem. In Chapter 11, we
discussed the ALS approach for computing CP, a form of alternating optimization wherein
we solve for one block of variables at a time use the special structure that each subproblem
is a linear least squares problem. On the other hand, in Chapter 13, we will consider the
nonlinear least squares (NLS) structure and discuss how to solve it using a damped Gauss-
Newton method with an iterative solver for the Gauss-Newton system.

12.1 CP Optimization Problem
A typical optimization problem (see Appendix B) is formulated in terms of a vector-valued
function f : Rn → R as

min
v∈Rn

f(v),

The prototypical gradient-based optimization method computes a search direction based
on the gradient ∇f : Rn → Rn. For example, the method of steepest descent uses
dk = −∇f(vk) and a limited-memory quasi-Newton method uses a more complex calcu-
lation involving information from previous iterations. The step length can be fixed (usually
called a learning rate) or computed using a line search. A line search will typically involve
function and gradient evaluations to determine the suitability of the proposed step. Con-
vergence is generally checked using the norm of the gradient. We discuss considerations in
the choice of method in Section 12.3.

Prototypical Optimization Method
v0 ← initial guess
repeat k = 0, 1, . . .

dk ← compute search direction depending on ∇f(vk)
αk ← step length in direction dk, potentially requiring f(vk + αdk) and
∇f(vk + αdk) for different values of α

vk+1 ← vk + αkdk

until converged

219

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

220 Chapter 12. CP Gradient-Based Optimization (CP-OPT)

The key to using an optimization method, therefore, is being able to provide a method for
computing functions and gradients of iterates. This is the focus of this chapter. The first
issue is that CP is solving for the CP factor matrices. So, how do we reconcile the fact that
the variables in the CP fitting problem are the factor matrices? We have to reorganize these
into a single vector for the purposes of the optimization.

○ We must express the optimization problem as a function of
a vector in order to use standard optimization approaches.

12.1.1 CP Optimization Formulation for 3-way CP
For a three-way tensor X ∈ Rm×n×p, the rank-r CP is the solution to the following mini-
mization problem:

min
A,B,C

1

2

∥∥X− JA,B,CK
∥∥2 subject to A ∈ Rm×r, B ∈ Rn×r, C ∈ Rp×r. (12.1)

To write this as a function with a vector input, we present operations that convert a Kruskal
tensor to and from a vector.

Conversion of a Kruskal tensor to a vector stacks the vectorized factor matrices

v = mats2vec(A,B,C) ≡

vec(A)
vec(B)
vec(C)

 ∈ Rmr+nr+pr.

The converse is somewhat trickier to express mathematically, but it reduces to unpacking
the array into three segments and reshaping them into matrices, i.e.,

vec2mats(v,m, n, p, r) = {A,B,C }

where

A = reshape(v(1 : mr),m× r),
B = reshape(v(mr + 1 : mr + nr), n× r),
C = reshape(v(mr + nr + 1 : mr + nr + pr), p× r).

(12.2)

Note that the size of the tensor and the number of factors is needed to figure out how
to reassemble the elements of v into the constituent factor matrices. We may write just
vec2matsv when the sizes are clear by context.

With these transformations, we can rewrite the optimization problem in terms of the func-
tion f : R(m+n+p)r → R, i.e.,

min
v

f(v) ≡ 1

2

∥∥X− JA,B,CK
∥∥2,

where {A,B,C } = vec2mats(v,m, n, p, r).
(12.3)

We will usually write the optimization in terms of factor matrices as in Eq. (12.1), but there
is an implicit transformation to Eq. (12.3) in order to use optimization solvers.

Remark 12.1 (Where are the weights?) We assume throughout this chapter that the
Kruskal tensor component weights are equal to one and so can be ignored. This enables us
to leave the factor matrices unconstrained, though there is still a scaling ambiguity.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

12.1. CP Optimization Problem 221

12.1.2 CP Optimization Formulation for d-way CP
For a d-way tensor X ∈ Rn1×n2×···×nd , we can compute a rank-r CP as the solution to the
following minimization problem:

min
{Ak }

1

2

∥∥X− JA1,A2, . . . ,AdK
∥∥2 subject to Ak ∈ Rnk×r for all k ∈ [d].

The conversion functions are analogous to the 3-way case. Converting a Kruskal tensor to
a vector stacks the vectorized factor matrices. The converse reduces to unpacking the array
into d segments and reshaping into factor matrices, and it requires the factor matrix sizes.

Definition 12.2: Kruskal tensor components to vector (mats2vec)

Conversion of a Kruskal tensor’s components, Ak ∈ Rnk×r for k ∈ [d], to a vector is
accomplished by stacking the vectorized factor matrices as

v = mats2vec(A1,A2, . . . ,Ad) ≡

vec(A1)
vec(A2)

...
vec(Ad)

 ∈ Rr(n1+n2+···+nd).

Definition 12.3: Vector to Kruskal tensor components (vec2mats)

Given the sizes of the intended Kruskal tensor ({n1, n2, . . . , nd } and r) and a vector v of
length r

∑d
k=1 nk, we can convert v into the components of a Kruskal tensor via

vec2mats(v, n1, n2, . . . , nd, r) = {A1,A2, . . . ,Ad}

where ik = 1 + r

k−1∑

ℓ=1

nℓ, jk = r

k∑

ℓ=1

nℓ, and

Ak = reshape(v(ik : jk), nk × r) for all k ∈ [d]. (12.4)

Remark 12.4 (Conversion shorthand) Converting a vector representation into a Kruskal
tensor requires specifying the sizes of all the factor matrices. However, we will omit
the sizes when the context is clear; in other words, vec2mats(v) is shorthand for
vec2mats(v, n1, n2, . . . , nd, r).

With these transformations, we can rewrite the optimization problem as a function f :
Rr(n1+n2+···+nd) → R:

min
v

f(v) ≡ 1

2

∥∥X− JA1,A2, . . . ,AdK
∥∥2,

where {A1,A2, . . . ,Ad } = vec2mats(v).
(12.5)

This transformation between the Kruskal tensor and the vector is usually done “under the
hood” and not written out explicitly. In other words, If we write f(A1,A2, . . . ,Ad), then
we treat f simply as a function of r(n1+n2+ · · ·+nd) variables and compute its gradients
in terms of f(v) where v = mats2vec(A1,A2, . . . ,Ad).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

222 Chapter 12. CP Gradient-Based Optimization (CP-OPT)

12.2 Gradients for CP
Recall that we stack the vectorized factor matrices to consider f as a function of a vector.
The gradient is computed with respect to each (vectorized) factor matrix, and then these
are stacked to form the gradient. In the three-way case, for example, we need to compute

∇f =

∂f
∂ vec(A)

∂f
∂ vec(B)

∂f
∂ vec(C)

 ∈ Rr(m+n+p) (12.6)

It is convenient to look at each partial gradient separately. We employ colloquial notation
so that the gradient is the same shape as the original input, e.g.,

∂f

∂A
≡ reshape

(
∂f

∂ vec(A)
,m× r

)
and, conversely,

∂f

∂ vec(A)
= vec

(
∂f

∂A

)
.

We stress that we are always computing ∂f
∂ vec(A) , regardless of how it is written. We review

some relevant matrix calculus before proceeding to compute the gradients for CP.

12.2.1 Preliminaries for Computing CP Gradients
We start by reviewing some multi-variable calculus topics addressed in Appendix B.1. The
gradient (Definition B.1) of a function f : Rn → R is a vector of partial derivatives
denoted by∇f : Rn → Rn and defined by

[∇f(x)]i =
∂f

∂xi
for all i ∈ [n].

We let ∂f
∂u denote the partial gradient of f with respect to a subset of variables u. We restate

Proposition B.2 since it will be useful.

Proposition 12.5 (Vector 2-norm Gradient) Let f(x) = 1
2∥x∥22. Then ∇f(x) = x.

For a vector-valued function f : Rn → Rm, its Jacobian (Definition B.5) is the matrix-
valued function Df : Rn → Rm×n defined by

[Df(x)]ij =
∂fi
∂xj

(x) for all (i, j) ∈ [m]⊗ [n].

We let df
du denote the partial Jacobian of f with respect to a subset of variables u.

For a real-valued function f : Rn → R, because we follow the convention of column-
oriented gradients, we have the property that the gradient is the transpose of the Jacobian,
i.e.,∇f = [Df]⊺ : Rn → Rn. Likewise, ∂f

∂u = [dfdu]
⊺ : Rn → Rn.

We present one key specialized proposition on the multivariate chain rule (Theorem B.11).

Proposition 12.6 (Specialized Chain Rule) Let h : Rn → Rp, let g : Rp → R, and define
f = g ◦ h : Rn → R. Then the gradient of f(x) is given by

∇f(x) = [Dh(x)]
⊺

︸ ︷︷ ︸
n×p

∇g(h(x))︸ ︷︷ ︸
p×1

.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

12.2. Gradients for CP 223

Next, we recall an important property of the Kronecker product from Eq. (A.11e) in Ap-
pendix A.4.3. We present the special case that the first matrix is the identity. For any
matrices X ∈ Rm×p and Y ∈ Rn×p, we have

vec(XY⊺) = vec(ImXY⊺) = (Y ⊗ Im) vec(X). (12.7)

Lastly, with reference to Definition 2.24 in Section 2.4.2, recall that the tensor perfect
shuffle permutation Pk is such that

vec(X(k)) = Pk vec(X). (12.8)

Since the mode-1 unfolding is identical to that of the original tensor, we have P1 = I.

12.2.2 CP Gradient for 3-way Tensors
To compute the gradient with respect to each factor matrix, we write f in a convenient form
for application of the chain rule(Proposition 12.6):

f(A,B,C) =
1

2

∥∥∥X− JA,B,CK
∥∥∥
2

=
1

2

∥∥∥vec
(
X
)
− vec

(
JA,B,CK

)∥∥∥
2

2
.

Before we apply the chain rule, it is useful to compute the Jacobians for the vectorized
Kruskal tensors with respect to the factor matrices. These are given below.

Proposition 12.7 (3-way Kruskal Tensor Jacobians) Let A ∈ Rm×r, B ∈ Rn×r, and
C ∈ Rp×r. Then, the partial Jacobians of the vectorized Kruskal tensor operation
h(A,B,C) = vec(JA,B,CK) are

dh

d vec(A)
= (C⊙B)⊗ Im,

dh

d vec(B)
= P⊺

2

[
(C⊙A)⊗ In

]
, and

dh

d vec(C)
= P⊺

3

[
(B⊙A)⊗ Ip

]
,

where Pk is the tensor perfect shuffle permutation such that vec(X) = P⊺
k vec(X(k)).

Proof. From the definition of a Jacobian, for a function f(v) = Av, we have Df = A.
Applying Eqs. (12.7) and (12.8), the result follows from rewriting the function in terms of
mode-k unfoldings:

vec(JA,B,CK) = vec
(
A(C⊙B)⊺

)
=

[
(C⊙B)⊗ Im

]
vec(A)

= P⊺
2 vec

(
B(C⊙A)⊺

)
= P⊺

2

[
(C⊙A)⊗ In

]
vec(B)

= P⊺
3 vec

(
C(B⊙A)⊺

)
= P⊺

3

[
(B⊙A)⊗ Ip

]
vec(C).

Using the result above, it is now possible to derive the gradient for the CP objective function
in terms of the factor matrices.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

224 Chapter 12. CP Gradient-Based Optimization (CP-OPT)

Theorem 12.8 (CP Gradient) Let f(A,B,C) = 1
2∥X − JA,B,CK∥2. Then its partial

gradients are

∂f

∂ vec(A)
= vec

(
A(C⊺C ∗B⊺B)−X(1)(C⊙B)

)
, (12.9a)

∂f

∂ vec(B)
= vec

(
B(C⊺C ∗A⊺A)−X(2)(C⊙A)

)
, (12.9b)

∂f

∂ vec(C)
= vec

(
C(B⊺B ∗A⊺A)−X(3)(B⊙A)

)
. (12.9c)

Before we provide the proof, we provide an alternate expression as a corollary.

Corollary 12.9 (CP Gradient, Matrix Form) Let f(A,B,C) = 1
2∥X− JA,B,CK∥2. Its

partial gradients can be equivalently expressed as

∂f

∂A
= A(C⊺C ∗B⊺B)−X(1)(C⊙B), (12.10a)

∂f

∂B
= B(C⊺C ∗A⊺A)−X(2)(C⊙A), (12.10b)

∂f

∂C
= C(B⊺B ∗A⊺A)−X(3)(B⊙A). (12.10c)

Proof of Theorem 12.8. Let us consider computing the partial gradient of f with respect to
vec(B). Define functions g : Rmnp → R and ϕ : Rr(m+n+p) → Rmnp as

g(v) =
1

2

∥∥v
∥∥2
2

and ϕ(A,B,C) = vec
(
JA,B,CK−X

)
.

Then observing that f = g ◦ ϕ, we compute the gradient via the chain rule. By Propo-
sition 12.5, we have ∇g(v) = v. Since ϕ(A,B,C) = vec

(
JA,B,CK

)
− vec(X) and

vec(X) is a constant, we need only consider the vec
(
JA,B,CK

)
term in computing the

Jacobian of ϕ and can apply Proposition 12.7 directly.

Thus,

∂f

∂ vec(B)
=

[
dϕ

d vec(B)

]⊺
∇g
(
ϕ
)

by Proposition 12.6

=
(
P⊺

2

[
(C⊙A)⊗ In

])⊺
vec
(
JA,B,CK−X

)
by Propositions 12.5 and 12.7

=
[
(C⊙A)⊺ ⊗ In

]
P2 vec

(
JA,B,CK−X

)
by Eq. (A.11b)

=
[
(C⊙A)⊺ ⊗ In

]
vec
(
B(C⊙A)⊺ −X(2)

)
by Eq. (12.8)

= vec
[(
B(C⊙A)⊺ −X(2)

)
(C⊙A)

]
by Eq. (12.7)

= vec
[
B(C⊺C∗A⊺A)−X(2)(C⊙A)

]
by Proposition A.23.

Reshaping the result yields Eq. (12.10b). We leave the partial gradients with respect to A
and C as Exercise 12.1.

Exercise 12.1 Complete the proof of Theorem 12.8 for A and C.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

12.2. Gradients for CP 225

Remark 12.10 (Connection between CP-OPT and CP-ALS) The CP-ALS algorithm
discussed in Chapter 11 solves for one block of variables at a time. We can alternatively de-
rive CP-ALS from this optimization formulation. Per the first-order optimality conditions
(Theorem B.19), any minimizer f(A,B,C) with respect to A will have a zero gradient,
i.e.,

∂f

∂A
= A(C⊺C ∗B⊺B)−X(1)(C⊙B) = 0.

Solving this is equivalent to solving the linear system

A(C⊺C∗B⊺B) = X(1)(C⊙B),

which is exactly the normal equations for the ALS subproblem to update A; see Eq. (11.3).

The pseudocode for computing the CP function and gradient is shown in Algorithm 12.2.
We precompute the norm squared of X (for a cost of O(mnp) for dense X) and pass this
in as χ. We assume the input is in vectorized form and has to be unpacked via vec2mats
before computing the function and gradient; likewise, we return the gradient in vectorized
form. Recall that the notation ⟨A,B⟩ for two same-sized matrices A and B is the inner
product, i.e., ⟨A,B⟩ = vec(A)⊺ vec(B). There are a few minor efficiencies, as follows.
We save the r× r Gram matrices, each of which is used twice is subsequent computations.
We save subparts of the gradient with respect to C for use in calculating f . It is possible to
realize further efficiencies since the algorithm is computing a sequence of MTTKRPs; see
Section 3.6.2.

Algorithm 12.1 Computing CP Function and Gradient for 3-way Tensor

Require: data tensor X ∈ Rm×n×p, χ = ∥X∥2, input vector v ∈ Rr(m+n+p)

Ensure: f = 1
2

∥∥X− JA,B,CK
∥∥2 and g = ∇f where {A,B,C } = vec2mats(v)

1: function CP-FG(X, χ, v)
2: {A,B,C } ← vec2mats(v)
3: S1 ← A⊺A
4: S2 ← B⊺B
5: S3 ← C⊺C
6: G1 ← A(S3 ∗ S2)−X(1)(C⊙B) ▷G1 = ∂f

∂A

7: G2 ← B(S3 ∗ S1)−X(2)(C⊙A) ▷G2 = ∂f
∂B

8: V3 ← S2 ∗ S1 ▷ Saving for reuse
9: U3 ← X(3)(B⊙A) ▷ Saving for reuse

10: G3 ← CV3 −U3 ▷G3 = ∂f
∂C

11: f ← 1
2
χ− ⟨C,U3⟩+ 1

2 ⟨V3,S3⟩ ▷ f = 1
2

∥∥X− JA,B,CK
∥∥2

12: g← mats2vec(G1,G2,G3)
13: return {f,g}
14: end function

Exercise 12.2 Compare the computational complexity of one outer iteration of 3-way CP-
ALS and computing the gradients as in Algorithm 12.1. Which is more costly?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

226 Chapter 12. CP Gradient-Based Optimization (CP-OPT)

12.2.3 CP Gradient for d-way Tensors
As in the three-way case, we can rewrite the objective function in a convenient form for
application of the chain rule:

f(A1,A2, . . . ,Ad) =
1

2

∥∥∥vec
(
X
)
− vec

(
JA1,A2, . . . ,AdK

)∥∥∥
2

2
.

The gradient has the form

∇f =

∂f
∂ vec(A1)

...
∂f

∂ vec(Ad)

 ∈ Rn1r+···+ndr.

We consider the derivative of f with respect to each factor matrix in the d-way case.

It is first useful to consider the generalization of Proposition 12.7 to the d-way case for
computing the Jacobian of the vectorized Kruskal tensor.

Proposition 12.11 (Kruskal Tensor Jacobian, d-way) Let Ak ∈ Rnk×r for k ∈ [d]. The
kth partial Jacobian of h(A1,A2, . . . ,Ad) ≡ vec

(
JA1,A2, . . . ,AdK

)
is

dh

d vec(Ak)
= P⊺

k

[
(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)⊗ Ink

]
for all k ∈ [d],

where Pk is the tensor perfect shuffle permutation such that vec(X) = P⊺
k vec(X(k)).

Exercise 12.3 Prove Proposition 12.11.

We can follow reasoning analogous to the 3-way case to derive the gradients.

Proposition 12.12: CP Gradient, d-way

Let f(A1,A2, . . . ,Ad) =
1
2

∥∥X− JA1,A2, . . . ,AdK
∥∥2. Then

∂f

∂ vec(Ak)
= vec

(
AkVk −X(k)Zk

)
or, equivalently,

∂f

∂Ak
= AkVk −X(k)Zk,

where

Zk ≡ Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1 and
Vk ≡ A⊺

dAd ∗ · · · ∗A⊺
k+1Ak+1 ∗A⊺

k−1Ak−1 ∗ · · · ∗A⊺
1A1.

Exercise 12.4 Prove Proposition 12.12. For the chain rule, use f = g ◦ ϕ with g(v) =
1
2∥v∥2 and

ϕ(A1,A2, . . . ,Ad) = vec
(
JA1,A2, . . . ,AdK

)
− vec(X).

Exercise 12.5 Consider f , Zk, and Vk as defined in Proposition 12.12. Suppose that
∥X∥2, X(k),Zk, and Vk have already been computed. How many additional operations
does it cost to compute f(A1,A2, . . . ,Ad)? Hint: ∥X−Y∥2 = ∥X∥2 + ∥Y∥2 − 2⟨X,Y⟩.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

12.2. Gradients for CP 227

Exercise 12.6 (Explicit Weights) Let f(λ,A1, . . . ,Ad) = 1
2

∥∥X − Jλ;A1, . . . ,AdK
∥∥2.

What is ∂f
∂Ak

and ∂f
∂λ?

The pseudocode for computing the CP function and gradient is shown in Algorithm 12.2.
We precompute the norm squared of X, for a cost ofO(∏d

k=1 nk) for dense X, and pass this
in as χ. We assume the input is in vectorized form and has to be unpacked via vec2mats
before computing the function and gradient; likewise, we return the gradient in vectorized
form. Recall that the notation ⟨A,B⟩ for two same-sized matrices A and B is the inner
product, i.e., ⟨A,B⟩ = vec(A)⊺ vec(B).

Algorithm 12.2 Computing CP Function and Gradient for d-way Tensor

Require: data tensor X ∈ Rn1×n2×···×nd , χ = ∥X∥, input vector v ∈ Rr(n1+n2+···+nd)

Ensure: f = 1
2∥X − JA1,A2, . . . ,AdK∥2 where {A1,A2, . . . ,Ad } = vec2mats(v)

and g = ∇f
1: function CP-FG(X, χ, v)
2: {A1,A2, . . . ,Ad } ← vec2mats(v)
3: for k = 1, . . . , d do
4: Sk ← A⊺

kAk

5: end for
6: for k = 1, . . . , d do
7: Uk ← X(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1) ▷ seq. of MTTKRPs
8: Vk ← Sd ∗ · · · ∗ Sk+1 ∗ Sk−1 ∗ · · · ∗ S1

9: Gk ← AkVk −Uk ▷Gk = ∂f
∂Ak

10: end for
11: f ← 1

2
χ2 − ⟨Ad,Ud⟩+ 1

2 ⟨Vd,Sd⟩ ▷ f = 1
2

∥∥X− JA1, . . . ,AdK
∥∥2

12: g← mats2vec(G1,G2, . . . ,Gd)
13: return {f,g}
14: end function

Exercise 12.7 Show that line 11 of Algorithm 12.2 computes the correct function value.
(See also Exercise 12.5.)

Exercise 12.8 (Regularization) Let

f =
1

2
∥X− JA1,A2, . . . ,AdK∥2 + ν

(
d∑

k=1

∥Ak∥2F

)
.

What is ∂f
∂ vec(Ak)

?

Exercise 12.9 Implement Algorithm 12.2 using existing functions for MTTRKP (or a se-
quence of MTTKRPs).

12.2.4 Complexity Analysis for Computing CP Gradient
The costs of each line of Algorithm 12.2 for computing the CP function value and gradient
are given in Table 12.1. Note the similarity with the costs of an iteration of the CP-ALS
algorithm (see Table 11.1 in Section 11.2.3). Before we derive the complexity of each
line, we note that the cost of only the MTTKRPs involve the quantity N =

∏d
k=1 nk, the

product of tensor dimensions. Other costs are proportional to the sum of tensor dimensions

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

228 Chapter 12. CP Gradient-Based Optimization (CP-OPT)

∑d
k=1 nk. This is because the MTTKRP is the only operation in the loop that involves the

input tensor; therefore, it dominates the computational complexity.

The computation of the Gram matrices in Line 4 costs O(r2∑d
k=1 nk). The MTTKRPs in

Line 7 each cost O(Nr), but re-using intermediate quantities (memoization), as described
in Section 3.6.2, reduces the cost by a factor of d. The computation of the Hadamard
products in Line 8 costs O(d2r2). This cost can also be reduced by a factor of O(d) using
Exercise 11.10. Computing the partial gradients using matrix multiplication in Line 9 costs
another O(r2∑d

k=1 nk) operation. Given the precomputed quantities for each mode, the
CP function value can be computed very cheaply using two matrix inner products with
matrices that have dimensions nd×r and r×r, respectively, as described in Section 10.7.2.
Hence, as N ≫ ∑d

k=1 nk, the MTTKRP computation typically dominates the cost of
Algorithm 12.2.

Table 12.1: CP-FG computational complexity for rank-r CP decomposition of dense tensor
of size n1 × n2 × · · · × nd with N =

∏d
k=1 nk

Calculation Line(s) Complexity See Also

Gram Line 4 O(r2 ∑d
k=1 nk) Appendix A.4.1

MTTKRP Line 7 O(Nr) Section 3.6.2

Hadamard product Line 8 O(dr2) Exercise 11.10

Gradient Assembly Line 9 O(r2 ∑d
k=1 nk) Appendix A.3.6

Function Line 11 O(rnd + r2) Section 10.7.2

Remark 12.13 (Computations with sparse X) If X is sparse, then the MTTKRP cost is
reduced to O

(
nnz(X)rd2

)
; see Section 3.7.

12.3 CP-OPT Method
We have provided the tools for computing the function and gradient, enabling us to use
any gradient-based optimization method. We do, however, have some recommendations of
appropriate optimization algorithms to use.

A major consideration in choosing an optimization algorithm is its expense per iteration.
For simplicity, consider computing the rank-r CP decomposition of a d-way tensor of size
n1 × n2 × · · · × nd. The computational complexity of an optimization method depends in
part on the number of variables, and for CP we have

number of optimization variables = r

d∑

k=1

nk.

Any gradient-based algorithm computes the gradient at a cost of O(Nr), where N =∏d
k=1 nk, as described in Section 12.2.4. Thus, methods with computation costs that are

linear in the number of variables, such as gradient descentand (limited-memory) quasi-
Newton methods, will have per-iteration complexity dominated by the computation of the
CP gradient.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

12.3. CP-OPT Method 229

We can also consider a method whose storage and computation are quadratic in the number
of variables, such as BFGS (see Appendix B.3.4). Its computation and storage would be
proportional to O((r∑d

k=1 nk)
2). This computational cost is dominated by that of the CP

gradient as long as r(
∑d

k=1 nk)
2 < N , which is a reasonable assumption but certainly not

guaranteed. In the case of sparse input tensors, the costs of the CP gradient computation
becomes cheaper (proportional to the number of nonzeros), so the quadratic costs of BFGS
are more likely to become a bottleneck. This is the reason the less expensive methods are
generally recommended.

Gradient descent (see Appendix B.3.2) is a viable method since its cost per iteration is linear
in the number of variables. A limited-memory quasi-Newton method such as L-BFGS (see
Appendix B.3.5) has cost proportion to m times the number of optimization variables,
where m is the limited-memory parameter (m = 5 is a typical choice). So the per-iteration
cost is still dominated by the gradient computation for this method. L-BFGS generally
converges in fewer iterations than gradient descent and is our recommendation for most
users. There is also a bound-constrained version, L-BFGS-B (Byrd et al., 1995). Other
first-order optimization methods many be considered such as momentum-based methods
or various first-order methods for constrained optimization; see, e.g., Wright and Recht
(2022).

○ Limited-memory BFGS (L-BFGS) is the default
recommendation for optimization in CP-OPT.

Implementations of the afore-mentioned methods are readily available, requiring the user to
provide a procedure for evaluating the function and gradient. As discussed in Section 12.1,
from the point of view of the optimization algorithm, this procedure should take a vector-
valued input v and return the function value f(v) and gradient ∇f(v). In the three-way
case, we use Algorithm 12.1, and in the d-way case, we use Algorithm 12.2.

Once we are able to compute the function and gradient, we have the basic ingredients for
working with an optimization method. There are a few other practical considerations.

Scaling and Stopping Most optimization methods use something like the following
conditions to determine when to stop:

1. The relative change in function value is sufficiently small, or

2. The norm of the gradient is sufficiently small.

Both the two-norm and infinity-norm are popular choices in measuring the gradient. It is
important to investigate the settings for these. If they are too loose, the optimization routine
may exit prematurely. If they are too tight, it may run much longer than necessary. The
relative change in the function value should be insensitive to scaling, but the gradient is
not.

Exercise 12.10 Implement Algorithm 12.2 and connect it with a suitable optimization
method such as L-BFGS.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

230 Chapter 12. CP Gradient-Based Optimization (CP-OPT)

12.4 CP-OPT on Data Tensors
We revisit the EEM tensor from Section 9.6. Recall that the EEM tensor, denoted here by
X, is of size 18× 251× 21. We consider an optimization problem of the form

min
v∈R290r

f(v) ≡
∥∥X− JA,B,CK

∥∥2 + ν∥v∥22
where {A,B,C } = vec2mats(v) and v ≥ ℓ.

Here, v represents the matrices A,B, and C vectorized and stacked. The constraint v ≥ ℓ
is to be interpreted elementwise, i.e., every entry to every factor matrix is greater than ℓ.
The value ν is the regularization parameter.

Remark 12.14 (Computational methodology) For the CP-OPT optimization method,
we use L-BFGS-B with the following settings per Zhu et al. (1997). The memory parameter
(m) is 5. The maximum number of iterations (maxIts) is 1000. The maximum number of
total iterations including inner iterations for the line search (maxTotalIts) is 10000. The
convergence tolerance depends on two values: the projected gradient tolerance (pgtol) is
1e-5 and the function tolerance divided by machine epsilon (factr) is 1e-9/eps or
4.5e6.

On the EEM tensor, we compare the best of five runs each with r = 3, ν = 0, and ℓ = 0
for the CP-OPT (using L-BFGS-B) solution in Fig. 12.1. Since CP-ALS and CP-OPT are
solving the same problem, we do not see a pronounced difference between them on most
problems. We see a only a tiny difference in the second factor, where the nonnegativity
constraint plays a role. You will investigate further in Exercise 12.11.

0

2

4

6

·106 Sample

0

0.1

0.2

Emission (normalized)

0

0.2

0.4

Excitation (normalized)

0

2

4

6

·106

0

0.1

0.2

0

0.2

0.4

0 5 10 15
0

2

4

6

·106
OPT+NN

ALS

300 400 500
0

0.1

0.2 OPT+NN

ALS

250 300
0

0.2

0.4

Figure 12.1: CP-OPT, using L-BFGS-B with nonnegativity constraint (NN) and no regu-
larization, versus CP-ALS to compute rank r = 3 decomposition of EEM tensor

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

12.4. CP-OPT on Data Tensors 231

Exercise 12.11 Let us compare some different approaches for Computing the rank-3 CP
decomposition of the EEM tensor:

• CP-ALS,
• CP-OPT with ℓ = −∞ (no lower bound) and ν = 0 (no regularization),
• CP-OPT with ℓ = −∞ and ν = 107 (regularization),
• CP-OPT with ℓ = 0 (nonnegativity constraint) and ν = 0, and
• CP-OPT with ℓ = 0 and ν = 107,

Here, we recommend CP-OPT with L-BFGS-B and the settings described in Remark 12.14.
Run each method five times with different starting points and save the best solution (ac-
cording to the relative error). (a) How would you expect the relative errors to compare? In
other words, should adding a nonnegativity constraint lead to a solution with a lower rel-
ative error? What about regularization? (b) How do the relative errors actually compare?
(c) Visualize the solutions from the different methods? How do they compare?

Regularization plays a more important role in situations where the model rank is larger
than the true rank. Since we generally do not know the true rank in advance, this can be
important. Figure 12.2 compares CP-OPT (using L-BFGS-B) without and with regular-
ization (ν = 107). Both methods use a lower bound of zero. The sample (first) mode is
weighted, while the other two modes are normalized to norm one. Observe that the reg-
ularized solution has negligible fourth and fifth components. The emission and excitation
components of these factors are relatively strange looking, but this is irrelevant since they
are unimportant. The unregularized solution, on the other hand, has split some of the com-
ponents. Component 1 has split into components 1 and 4, while component 2 has split into
components 2 and 4. The main challenge is choosing the regularization parameter. This is
explored further in Exercise 12.12.

Exercise 12.12 Let us compare some different approaches for computing the rank-4 and
rank-5 CP decomposition of the EEM tensor:

• CP-ALS,
• CP-OPT with ℓ = −∞ (no lower bound) and ν = 0 (no regularization),
• CP-OPT with ℓ = −∞ and ν = 107 (regularization),
• CP-OPT with ℓ = 0 (nonnegativity constraint) and ν = 0, and
• CP-OPT with ℓ = 0 and ν = 107,

Here, we recommend CP-OPT with L-BFGS-B and the settings described in Remark 12.14.
Run each method five times with different starting points and save the best solution (accord-
ing to the relative error). (a) How would you expect the relative errors to compare? In other
words, should adding a nonnegativity constraint lead to a solution with a lower relative
error? What about regularization? (b) How do the relative errors actually compare? (c) Vi-
sualize the solutions from the different methods? How do they compare? (d) What happens
for different values of ν, like 106 or 108?

Exercise 12.13 (a) Implement a version of d-way CP-OPT for sparse tensors that avoids
forming any dense tensors. (b) Apply to the (sparse) Chicago Crime dataset to compute a
rank-7 decomposition, using lower bounds to constrain the factors to be positive. (Recom-
mend using L-BFGS-B with the settings in Remark 12.14 with the exception that the func-
tion tolerance divided by machine epsilon (factr) is 1e-4/eps or 4.5e+11.) (c) Do
the same with an implementation for dense data. (Use same settings.) (d) How do the
sparse and dense implementations compare in terms of run time?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

232 Chapter 12. CP Gradient-Based Optimization (CP-OPT)

0

2

4

6

·106
Sample

0

0.1

0.2

Emission (normalized)

0

0.2

0.4

0.6

Excitation (normalized)

0

2

4

6

·106

0

0.1

0.2

0

0.2

0.4

0.6

0

2

4

6

·106

Opt+Reg/NN

Opt+NN

0

0.1

0.2

0

0.2

0.4

0.6

0

2

4

6

·106

0

0.1

0.2

0

0.2

0.4

0.6

0 5 10 15
0

2

4

6

·106

300 400 500
0

0.1

0.2

250 300
0

0.2

0.4

0.6

Figure 12.2: Comparison of CP-OPT, using L-BFGS-B with and without regularization,
on a rank-5 decomposition of EEM tensor

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

13
CP Nonlinear Least
Squares (CP-NLS)
Optimization

In this chapter, we consider the nonlinear least squares structure of the CP optimization
problem to develop Gauss-Newton methods, which have been in use for CP decomposition
since the work of Paatero (1997). We build on Chapter 12, in which we considered gradient-
based optimization methods for computing CP. An advantage of a Gauss-Newton method is
that it may achieve quadratic convergence, which is superior to the gradient-based methods
that achieve only linear or superlinear convergence. However, Gauss-Newton methods re-
quires solving a large linear system at each iteration, which can be prohibitively expensive
if the system is solved directly, even if the special structure of the CP problem is taken into
account (Phan, Tichavský, et al., 2013). However, solving the linear system approximately
via an iterative preconditioned conjugate gradient method reduces the cost per iteration to
be on par with other gradient-based methods (Sorber et al., 2013; Vervliet and De Lath-
auwer, 2019), and this is our focus.

13.1 CP Nonlinear Least Squares Problem
A nonlinear least squares problem is a structured optimization problem of the form

min
v∈Rn

f(v) ≡ 1

2
∥ϕ(v)∥22 , (13.1)

where ϕ : Rn → Rm is a nonlinear function. As discussed in Appendix B.3.6, the gradient
of f is ∇f = J⊺ϕ where J : Rn → Rn×m is the Jacobian of ϕ. A Gauss-Newton op-
timization method exploits the least-squares problem structure to approximate the second-
order Hessian ∇2f with a Gauss-Newton matrix J⊺J and thereby achieve a faster rate
of convergence than gradient descent, which uses only first-order information. The basic
structure of the method is as follows.

Prototypical Nonlinear Least Squares Method
v0 ← initial guess
repeat k = 0, 1, . . .

λk ← damping parameter for iteration k
dk ← solution to

(
J(vk)

⊺J(vk) + λkI
)
dk = −∇f(vk)

αk ← step length in direction dk, potentially requiring f(vk + αdk) and
∇f(vk + αdk) for different values of α

vk+1 ← vk + αkdk

until converged

Since the Gauss-Newton matrix J⊺J can be singular, we add a damping parameter, λI, to

233

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

234 Chapter 13. CP Nonlinear Least Squares (CP-NLS) Optimization

enforce positive definiteness. Various strategies can be used for setting the damping param-
eter λk at each iteration, and for performing the line search to determine αk, similar to the
gradient-based optimization methods discussed in Chapter 12. These choices are largely
independent of the structure of the CP objective function. We focus our attention on how to
solve the Gauss-Newton linear system for the search direction dk because we can exploit
the CP-specific structure of the problem. Since a direct method such as Cholesky (see Ap-
pendix A.6.4) would be prohibitively expensive, we describe how to solve the linear system
iteratively using the preconditioned conjugate gradient method (see Appendix A.6.4).

13.1.1 CP Jacobian for 3-way Tensors
For a rank-r CP decomposition of a 3-way tensor X ∈ Rm×n×p, the ϕ function, the ϕ
function in the nonlinear least squares problem in Eq. (13.1) is

ϕ(v) = vec(JA,B,CK−X) where {A,B,C } = vec2mats(v).

The transformation vec2mats between the vector and matrices is the same as for CP-
OPT; see Section 12.1.1.

Consider the Jacobian J ≡ Dϕ. If we let h(v) = vec(JA,B,CK), then ϕ(v) = h(v) −
vec(X). Since the Jacobian of vec(X) is zero, the Jacobian of ϕ is simply the Jacobian of
h, as given by Proposition 12.7:

J =
[
JA JB JC

]
∈ Rmnp×r(m+n+p) (13.2a)

where

JA ≡
dϕ

d vec(A)
= (C⊙B)⊗ Im ∈ Rmnp×rm, (13.2b)

JB ≡
dϕ

d vec(B)
= P⊺

2 [(C⊙A)⊗ In] ∈ Rmnp×rn, (13.2c)

JC ≡
dϕ

d vec(C)
= P⊺

3 [(B⊙A)⊗ Ip] ∈ Rmnp×rp. (13.2d)

Recall that Pk is the tensor perfect shuffle matrix such that vec(X) = P⊺
k vec(X(k)), and

P1 is not written explicitly because it is the identity matrix.

The Kronecker products with identity matrices and tensor perfect shuffle transformations
make the Jacobian highly structured. Figure 13.1 shows the nonzero patterns for different
sizes and ranks. Exploiting this structure is key to efficient calculations with the Jacobians.

13.1.2 CP Jacobian for d-way Tensors
Considering a rank-r CP decomposition of a d-way tensor X ∈ Rn1×n2×···×nd , the ϕ
function in the nonlinear least squares problem in Eq. (13.1) is

ϕ(v) = vec(JA1, . . . ,AdK−X) where {A1, . . . ,Ad } = vec2mats(v).

The transformation vec2mats between the vector and matrices is the same as for CP-
OPT; see Section 12.1.2.

To compute the Jacobian J ≡ Dϕ, we employ Proposition 12.11, using analogous reason-
ing to the 3-way case:

J =
[
J1 J2 · · · Jd

]
∈ R(n1n2···nd)×r(n1+n2+···+nd) (13.3a)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

13.2. Solving the Gauss-Newton Linear System 235

(a) Tensor size 5× 4× 3 and CP rank r = 2 (b) Tensor size 3× 5× 4 and CP rank r = 3

Figure 13.1: Nonzero patterns of Jacobians for different sizes and ranks

where, for all k ∈ [d], we let Jk ≡ dϕ
d vec(Ak)

, and so

Jk = P⊺
k[(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)⊗ Ink

] ∈ R(n1n2···nd)×rnk . (13.3b)

As before, Pk is the tensor perfect shuffle matrix such that vec(X) = P⊺
k vec(X(k)).

13.2 Solving the Gauss-Newton Linear System
At every iteration of a nonlinear least squares method, we have to solve the damped Gauss-
Newton linear system of the form:

(
J⊺J+ λI

)
d = −∇f. (13.4)

This is a linear system of equations in r(m + n + p) variables in the 3-way case and
r(n1+n2+ · · ·nd) variables in the d-way case. The damping parameter λ ≥ 0 is generally
chosen to ensure the matrix J⊺J+ λI is positive definite.

As mentioned in the introduction, Gauss-Newton methods were employed by Paatero (1997).
However, even though the number of iterations is typically fewer than for other approaches,
a comparison of algorithms by Tomasi and Bro (2006) showed that Gauss-Newton meth-
ods can be slow due to the cost of solving Eq. (13.4) with a direct method at every it-
eration. Phan, Tichavský, et al. (2013) provided more efficient ways to form the in-
verse of the matrix by exploiting the structure of the CP problem, but this still did not
make Gauss-Newton competitive enough with gradient-based methods. However, inex-
act Gauss-Newton methods, which approximately solve Eq. (13.4) using a preconditioned
conjugate gradient method, are much cheaper per iteration and more competitive with other
approaches (Sorber et al., 2013; Vervliet and De Lathauwer, 2019).

A preconditioned conjugate gradient method is an iterative method that with a per-iteration
cost proportional to the cost of multiplying the matrix times a vector. For a dense linear
system, iterative methods have cost quadratic in the number of variables per iteration rather

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

236 Chapter 13. CP Nonlinear Least Squares (CP-NLS) Optimization

than cubic for direct methods such as Cholesky decomposition. For sparse or structured
linear systems, the cost of iterative methods can be even lower. See Appendix A.6.4 for
further details. The linear system in Eq. (13.4) is highly structured, so this makes a precon-
ditioned conjugate gradient method appealing.

In addition to computing the gradient, there are two operations that need to be efficient in
order to make preconditioned conjugate gradient methods efficient for solving Eq. (13.4).

1. First, we need to be apply the approximate Hessian, by which we mean computing
the matrix-vector product (J⊺J+ λI)v̄.

2. Second, we need a preconditioner M ≈ J⊺J + λI such that linear systems of the
form Mx = y are expeditious to solve.

In the remainder of this chapter, we focus on these operations.

In terms of computational complexity, the cost of computing the gradient isO(Nr), where
N =

∏d
k=1 nk (see Section 12.2.4). Each iteration of a preconditioned conjugate gradi-

ent method requires an application of the approximate Hessian and an application of the
preconditioner. As we will see in Sections 13.2.3 and 13.2.4, the cost of each of these
two operations is O(r2∑d

k=1 nk). Thus, each iteration of CP-NLS using inexact Gauss-
Newton is dominated by the gradient computation as long as cr

∑d
k=1 nk < N , where c is

the number of preconditioned conjugate gradient iterations.

13.2.1 Applying Approximate CP Hessian for 3-way Tensors
We consider fast computation of (J⊺J+λI)v̄ for the 3-way case. Rather than forming J or
J⊺J explicitly, we use the structure of these matrices to compute the matrix-vector product
without computing any explicit Kronecker or Khatri-Rao products. From Eq. (13.2a), the
block structure of J⊺J is

J⊺J =

J⊺
AJA J⊺

AJB J⊺
AJC

J⊺
BJA J⊺

BJB J⊺
BJC

J⊺
CJA J⊺

CJB J⊺
CJC

 .

Consider a vector v̄ ∈ R(m+n+p)r, and let { Ā, B̄, C̄ } = vec2mats(v̄). Then

J⊺Jv̄ =

J⊺
AJA vec(Ā) + J⊺

AJB vec(B̄) + J⊺
AJC vec(C̄)

J⊺
BJA vec(Ā) + J⊺

BJB vec(B̄) + J⊺
BJC vec(C̄)

J⊺
CJA vec(Ā) + J⊺

CJB vec(B̄) + J⊺
CJC vec(C̄)

 .

Consider the structure of one of the terms corresponding to an off-diagonal block of J⊺J:

J⊺
AJB vec

(
B̄
)
= J⊺

AP⊺
2

[
(C⊙A)⊗ In

]
vec
(
B̄
)

from Eq. (13.2c)

= J⊺
AP⊺

2 vec
(
B̄(C⊙A)⊺

)
from Eq. (A.11e)

= J⊺
A vec

(
JA, B̄,CK

)
from definition of P2

= J⊺
A vec

(
A(C⊙ B̄)⊺

)
from Proposition 10.8

=
[
(C⊙B)⊗ Im

]⊺
vec
(
A(C⊙ B̄)⊺

)
from Eq. (13.2b)

= vec
(
A(C⊙ B̄)⊺(C⊙B)

)
from Eq. (A.11e)

= vec
(
A(C⊺C∗ B̄⊺

B)
)

from Proposition A.23. (13.5)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

13.2. Solving the Gauss-Newton Linear System 237

The other eight terms can be simplified similarly (see Exercise 13.1), which means we can
compute J⊺J times a vector efficiently as elucidated in the following proposition.

Proposition 13.1: Applying Gauss-Newton Matrix for 3-way Tensor

For a tensor X of size m × n × p and a same-sized Kruskal tensor JA,B,CK of rank r,
let J be the Jacobian of the function ϕ(v) = vec(JA,B,CK − X) where {A,B,C } =
vec2mats(v). For a vector v̄ ∈ Rr(m+n+p), let { Ā, B̄, C̄ } = vec2mats(v̄). Then

J⊺Jv̄ =

vec
(
Ā(B⊺B∗C⊺C) +A(B̄

⊺
B∗C⊺C) +A(B⊺B∗ C̄⊺

C)
)

vec
(
B(Ā

⊺
A∗C⊺C) + B̄(A⊺A∗C⊺C) +B(A⊺A∗ C̄⊺

C)
)

vec
(
C(Ā

⊺
A∗B⊺B) +C(A⊺A∗ B̄⊺

B) + C̄(A⊺A∗B⊺B)
)

 .

Exercise 13.1 Prove Proposition 13.1.

Using this structure, Algorithm 13.1 shows how to compute (J⊺J + λI)v̄. The algorithm
takes two vectors as input. The vector v is the current iterate in the Gauss-Newton method
on which the Jacobian J is based, and the vector v̄ is the vector to be multiplied. The total
cost is O(r2(m+ n+ p)).

Algorithm 13.1 Applying CP-NLS Approximate Hessian for 3-way Tensor

Require: v, v̄ ∈ Rr(m+n+p), where v determines J and v̄ is the input vector, λ ≥ 0
Ensure: ṽ = (J⊺J+ λI)v̄, where J is the Jacobian of ϕ(v)

1: function CP-APPLY-JTJ(v, v̄, λ,m, n, p, r)
2: {A,B,C } ← vec2mats(v,m, n, p, r) ▷ determines Jacobian
3: { Ā, B̄, C̄ } ← vec2mats(v̄,m, n, p, r) ▷ unpack input vector
4: SA ← A⊺A
5: SB ← B⊺B
6: SC ← C⊺C

Calculate Gram matrices

7: S̄A ← Ā
⊺
A

8: S̄B ← B̄
⊺
B

9: S̄C ← C̄
⊺
C

Calculate cross matrices

10: Ã← Ā(SB ∗ SC + λI) +A(S̄B ∗ SC + SB ∗ S̄C)
11: B̃← B̄(SA ∗ SC + λI) +B(S̄A ∗ SC + SA ∗ S̄C)
12: C̃← C̄(SA ∗ SB + λI) +C(S̄A ∗ SB + SA ∗ S̄B)

Calculate result blockwise

13: ṽ = mats2vec(Ã, B̃, C̃) ▷ pack output vector
14: return ṽ
15: end function

13.2.2 Preconditioning in Approximate Gauss-Newton for
3-way Tensors
Preconditioning enables a conjugate gradient linear solver to converge in few iterations.
The goal is to find a matrix M that captures some of the structure of the original ma-
trix while being fast to invert. To choose an appropriate preconditioner, we consider the
structure of the Gauss-Newton matrix, elucidated in Proposition 13.2. The proof follows
reasoning similar to Sidiropoulos, De Lathauwer, et al. (2017, Section VIII).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

238 Chapter 13. CP Nonlinear Least Squares (CP-NLS) Optimization

Proposition 13.2: Explicit Gauss-Newton Matrix for 3-way Tensors

For a tensor X of size m × n × p and a same-sized Kruskal tensor JA,B,CK of rank r,
let J be the Jacobian of the function ϕ(v) = vec(JA,B,CK − X) where {A,B,C } =
vec2mats(v). Then we have

J⊺J =

(B⊺B∗C⊺C)⊗ Im (Ir ⊗A)ΨC(Ir ⊗B⊺) (Ir ⊗A)ΨB(Ir ⊗C⊺)
(Ir ⊗B)ΨC(Ir ⊗A⊺) (A⊺A∗C⊺C)⊗ In (Ir ⊗B)ΨA(Ir ⊗C⊺)
(Ir ⊗C)ΨB(Ir ⊗A⊺) (Ir ⊗C)ΨA(Ir ⊗B⊺) (A⊺A∗B⊺B)⊗ Ip

where for any matrix X with r columns, we define ΨX = Pr,r diag(vec(X
⊺X)) and Pr,r

is the (r, r)-perfect shuffle matrix of size r2 × r2.

Proof. The expressions for the blocks of J⊺J can be verified by applying them to arbitrary
vectors and comparing the results to successive application of partial Jacobians as described
in Section 13.2.1. For example, to verify J⊺

AJB = (Ir ⊗A)ΨC(Ir ⊗ B⊺), we consider
for an arbitrary B̄,

(Ir ⊗A)ΨC(Ir ⊗B⊺) vec
(
B̄
)

= (Ir ⊗A)ΨC vec
(
B⊺B̄

)
from Eq. (A.11e)

= (Ir ⊗A)Pr,r diag(vec(C
⊺C)) vec

(
B⊺B̄

)
from definition of ΨC

= (Ir ⊗A)Pr,r vec
(
C⊺C ∗B⊺B̄

)
from Exercise A.25

= (Ir ⊗A) vec
(
C⊺C ∗ B̄⊺

B
)

from Definition A.10

= vec
(
A(C⊺C ∗ B̄⊺

B)
)

from Eq. (A.11e),

which matches Eq. (13.5). The remainder of the proof follows the same reasoning and so
is omitted.

Our goal is to choose a preconditioner M ≈ J⊺J + λI such that computing M−1v̄ is
expeditious for an arbitrary vector v̄. Let {Av̄,Bv̄,Cv̄ } = vec2mats(v̄). The structure
of J⊺J hints at an effective block-diagonal preconditioner. For instance, the first diagonal
block of J⊺J+ λIr(m+n+p) is

J⊺
AJA + λImr = (B⊺B∗C⊺C)⊗ Im + λImr = (B⊺B∗C⊺C+ λIr)⊗ Im.

It is efficient to apply the inverse of this to the first block component of v̄:

(
(B⊺B∗C⊺C+ λIr)⊗ Im

)−1
vec(Av̄)

=
(
(B⊺B∗C⊺C+ λIr)

−1 ⊗ Im
)
vec(Av̄) by Eq. (A.11c)

= vec
(
Av̄(B

⊺B∗C⊺C+ λIr)
−1) by Eq. (A.11e).

Applying the inverse of the diagonal block amounts to a Cholesky decomposition of the r×
r matrix B⊺B∗C⊺C+λIr (which needs to happen only once and can be used repeatedly
for different values of v̄ in the iterative linear solve) and 2m triangular solves with the
Cholesky factor (per value of v̄). In fact, applying the inverse of J⊺

AJA+λImr is the same
computational cost as solving the normal equations to update A in a CP-ALS subiteration
(see Eq. (11.3)), though with a slightly modified coefficient matrix and different right hand
side matrix. Applying the inverses of J⊺

BJB+λInr and J⊺
CJC+λIpr can be done similarly.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

13.2. Solving the Gauss-Newton Linear System 239

Hence, the block diagonal of J⊺J+ λIr(m+n+p), given by

M =

(B⊺B∗C⊺C+ λIr)⊗ Im 0 0

0 (A⊺A∗C⊺C+ λIr)⊗ In 0

0 0 (A⊺A∗B⊺B+ λIr)⊗ Ip

 ,

is a good preconditioner because

M−1v̄ =

vec
(
Av̄(B

⊺B∗C⊺C+ λIr)
−1)

vec
(
Bv̄(A

⊺A∗C⊺C+ λIr)
−1)

vec
(
Cv̄(A

⊺A∗B⊺B+ λIr)
−1)

 .

Thus, with very little extra cost per conjugate gradient iteration, we can accelerate its con-
vergence and reduce the cost of each Gauss-Newton linear solve.

13.2.3 Applying Approximate CP Hessian for d-way Tensors
We consider fast computation of (J⊺J+λI)v̄ for the d-way case where J has the structure
in Eq. (13.3). As in the 3-way case, we use the structure of these matrices to compute the
matrix-vector product without computing any explicit Kronecker or Khatri-Rao products.

The Gauss-Newton matrix J⊺J can be expressed blockwise as

J⊺J =

J⊺
1J1 J⊺

1J2 · · · J⊺
1Jd

J⊺
2J1 J⊺

2J2 · · · J⊺
2Jd

...
...

. . .
...

J⊺
dJ1 J⊺

dJ2 · · · J⊺
dJd

.

The (k, ℓ) block has size rnk × rnℓ.
We can compute J⊺J times a vector v̄ of length r(n1 + n2 + · · · + nd) as follows. Let
{ Ā1, Ā2, . . . , Ād } = vec2mats(v̄) so that Āk ∈ Rnk×r. Then we have

J⊺Jv̄ =

J⊺
1J1 vec(Ā1) + J⊺

1J2 vec(Ā2) + · · ·+ J⊺
1Jd vec(Ād)

J⊺
2J1 vec(Ā1) + J⊺

2J2 vec(Ā2) + · · ·+ J⊺
2Jd vec(Ād)

...
J⊺
dJ1 vec(Ā1) + J⊺

dJ2 vec(Ā2) + · · ·+ J⊺
dJd vec(Ād)

. (13.6)

We consider how to efficiently compute terms of the forms J⊺
kJk vec(Āk) and J⊺

kJℓ vec(Āℓ).
To do this, we define some useful quantities. We first have Khatri-Rao products:

Zk =

1⊙

h=d
h̸=k

Ah, Zk,ℓ =

1⊙

h=d
h̸=k,ℓ

Ah, and Z̄k,ℓ =

ℓ+1⊙

h=d
h̸=k

Ah ⊙ Āℓ ⊙
1⊙

h=ℓ−1
h̸=k

Ah. (13.7)

The matrix Zk is the Khatri-Rao product of all factor matrices except the kth, and we have
used this notation before in discussing CP-ALS and CP-OPT. The matrix Zk,ℓ is the Khatri-
Rao product of all factor matrices except the kth and the ℓth. Finally, the matrix Z̄k,ℓ is

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

240 Chapter 13. CP Nonlinear Least Squares (CP-NLS) Optimization

the same size as Zk and is the Khatri-Rao of all factor matrices except the k and with Āℓ

swapped in for Aℓ.

Further, we define some analogous Hadamard products:

Vk =

d∗
h=1
h ̸=k

A⊺
hAh, Vk,ℓ =

d∗
h=1
h̸=k,ℓ

A⊺
hAh, and V̄k,ℓ = Vk,ℓ ∗ Ā⊺

ℓAℓ. (13.8)

These matrices comes from products of the Z matrices, as shown in Exercise 13.2.

Exercise 13.2 Show the following:

Vk = Z⊺
kZk, Vk,ℓ = Z⊺

k,ℓZk,ℓ, and V̄k,ℓ = Z̄
⊺
k,ℓZk.

Hint: Use Proposition A.23.

Proposition 13.3: Applying Gauss-Newton Matrix for d-way Tensor

For a tensor X of size n1×n2×· · ·×nd and a same-sized Kruskal tensor JA1,A2, . . . ,AdK
of rank r, let J be the Jacobian of the function

ϕ(v) = vec(JA1,A2, . . . ,AdK−X) where {A1,A2, . . . ,Ad } = vec2mats(v).

For a vector v̄ ∈ Rr(n1+n2+···+nd), let { Ā1, Ā2, . . . , Ād } = vec2mats(v̄). Then

J⊺Jv̄ =

vec
(
Ā1V1 +A1V̄1,2 + · · ·+A1V̄1,d

)

vec
(
A2V̄2,1 + Ā2V2 + · · ·+A2V̄2,d

)

...
vec
(
AdV̄d,1 +AdV̄d,2 + · · ·+ ĀdVd

)

where Vk and V̄k,ℓ are the r × r matrices defined in Eq. (13.8).

Proof. Using Eq. (13.6), we show that each summand in the vectorized blocks has the right
form, i.e., considering each J⊺

kJℓ vec(Āℓ). For k = ℓ, we have

J⊺
kJk vec(Āk) = (Z⊺

k ⊗ Ink
)PkP

⊺
k(Zk ⊗ Ink

) vec(Āk) from Eqs. (13.3) and (A.11b)
= (Z⊺

k ⊗ Ink
) vec(ĀkZ

⊺
k) from Eq. (A.11e) and PkP

⊺
k = I

= vec(ĀkZ
⊺
kZk) from Eq. (A.11e)

= vec(ĀkVk) from Exercise 13.2.

For k ̸= ℓ, we have

J⊺
kJℓ vec(Āℓ) = (Z⊺

k ⊗ Ink
)PkP

⊺
ℓ (Zℓ ⊗ Inℓ

) vec(Āℓ) from Eqs. (13.3) and (A.11b)
= (Z⊺

k ⊗ Ink
)PkP

⊺
ℓ vec(ĀℓZ

⊺
ℓ) from Eq. (A.11e)

= (Z⊺
k ⊗ Ink

) vec(AkZ̄
⊺
k,ℓ) from Exercise 13.3 and Eq. (13.3)

= vec(AkZ̄
⊺
k,ℓZk) from Eq. (A.11e)

= vec(AkV̄k,ℓ) from Exercise 13.2.

Hence, the claim.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

13.2. Solving the Gauss-Newton Linear System 241

Exercise 13.3 Let T = JA1,A2, . . . ,AdK. For k ∈ [d], let Pk be the tensor perfect shuffle
matrix such that vec(T) = P⊺

k vec(T(k)). Show

vec
(
Ak(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)

⊺)

= PkP
⊺
ℓ vec

(
Aℓ(Ad ⊙ · · · ⊙Aℓ+1 ⊙Aℓ−1 ⊙ · · · ⊙A1)

⊺).

Using the structure of J⊺Jv̄ in Proposition 13.3, Algorithm 13.2 shows how to compute
(J⊺J+ λI)v̄. The algorithm takes two vectors as input. The vector v is the current iterate
in the Gauss-Newton method at which the Jacobian is evaluated, and the vector v̄ is the
vector to be multiplied.

Algorithm 13.2 Applying CP-NLS Approximate Hessian for d-way Tensor

Require: v, v̄ ∈ Rr(n1+n2+···+nd), where v determines Jacobian, v̄ is input vector, λ ≥ 0
Ensure: ṽ = (J⊺J+ λI)v̄, where J is the Jacobian of ϕ(v)

1: function CP-APPLY-JTJ(v, v̄, λ, n1, n2, . . . , nd, r)
2: {A1,A2, . . . ,Ad } = vec2mats(v, n1, n2, . . . , nd, r) ▷ determines Jacobian
3: { Ā1, Ā2, . . . , Ād } = vec2mats(v̄, n1, n2, . . . , nd, r) ▷ unpack input vector
4: for k = 1, . . . , d do
5: Sk ← A⊺

kAk ▷ Calculate Gram matrice
6: S̄k ← Ā

⊺
kAk ▷ Calculate cross matrices

7: end for
8: for k = 1, . . . , d do
9: Vk ←∗h̸=k Sh ▷ “diagonal” factor

10: V̄k ← 0r×r

11: for ℓ = 1, . . . , k − 1, k + 1, . . . , d do
12: V̄k,ℓ ←∗h̸=k,ℓ Sh ∗ S̄ℓ

13: V̄k ← V̄k + V̄k,ℓ ▷ accumulate “off-diagonal” factors
14: end for
15: Ãk ← Āk(Vk + λIr) +AkV̄k

16: end for
17: ṽ = mats2vec(Ã1, Ã2, . . . , Ãd) ▷ pack output vector
18: return ṽ
19: end function

Exercise 13.4 Implement Algorithm 13.2.

Complexity Analysis

Line 5, line 6, and line 15 involve multiplying matrices of size nk × r and r × r in mode
k. Thus, the cost of each line is O(r2∑d

k=1 nk) for one application of the approximate
Hessian.

In computing the Hadamard products, line 9 costs O(d2r2), and line 12 has a cost of
O(d3r2). Memoization can reduce both these costs by a factor ofO(d) (see Exercise 11.10
for line 9).

The total cost is thus dominated by O(r2∑d
k=1 nk). The computations involving only the

current iterate in the Gauss-Newton method (vector v) do not vary over conjugate gradient
iterations. So line 5 and line 9 can be avoided by precomputing those quantities and pass-

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

242 Chapter 13. CP Nonlinear Least Squares (CP-NLS) Optimization

ing them into the function, which reduces the computational cost of Algorithm 13.2 by a
constant factor.

13.2.4 Preconditioning in Approximate Gauss-Newton for
d-way Tensors
We consider preconditioning in the d-way case, first identifying the explicit Gauss-Newton
matrix in Proposition 13.4.

Proposition 13.4: Explicit Gauss-Newton Matrix for d-way Tensors

For a tensor X of size n1×n2×· · ·×nd and a same-sized Kruskal tensor JA1,A2, . . . ,AdK
of rank r, let J be the Jacobian of the function ϕ(v) = vec(JA1,A2, . . . ,AdK−X) where
{A1,A2, . . . ,Ad } = vec2mats(v). Then we have that the blocks of J⊺J are given by

J⊺
kJℓ =

{
Vk ⊗ Ir if ℓ = k,

(Ir ⊗Ak)Pr,r diag
(
vec(Vk,ℓ)

)
(Ir ⊗Aℓ)

⊺ if ℓ ̸= k.
(13.9)

where Pr,r is the (r, r)-perfect shuffle matrix of size r2 × r2.

Just as in the 3-way case, we can employ a cheap and effective preconditioner for conjugate
gradients. The diagonal blocks of J⊺J + λI have Kronecker structure that makes it easy
to apply their inverses. That is, for each k ∈ [d], J⊺

kJk + λInkr = (Vk + λIr) ⊗ Ink
, so

applying the inverse of the kth diagonal block amounts to a single Cholesky decomposition
of the r×r matrix Vk+λIr and 2nk triangular solves with the Cholesky factor. The overall
cost of applying the preconditioner is thenO(dr3+r2∑d

k=1 nk). Note that this coefficient
matrix is nearly the same as the one from the normal equations to update Ak in a CP-ALS
subiteration (see Eq. (11.5)), though with a different right hand side matrix. Thus, with
very little extra cost per conjugate gradient iteration, we can accelerate the convergence of
conjugate gradients and reduce the cost of each Gauss-Newton iteration.

Exercise 13.5 Prove Eq. (13.9).

13.3 CP-NLS on Data Tensors
We consider a synthetic tensor to illustrate the convergence advantages of methods that
exploit the least squares structure. We create a 250 × 250 × 250 tensor with exact rank
10 (no noise) from factor matrices that are constructed to have specified pairwise congru-
ence values. A factor congruence value γ ∈ [0, 1] means that for each pair of distinct
columns u and v in a factor matrix, the cosine of the angle between u and v is γ, i.e.,
u⊺v/(∥u∥2∥v∥2) = γ. Congruence values near zero yield easier problems because the
factors are nearly orthogonal and easy to separate; congruence values near one yield harder
problems because the factors are close together and hard to separate. If the factor matrices
are generated as standard normal random matrices, the congruence values are close to zero.

Figure 13.2 shows a comparison of CP-NLS and CP-ALS on synthetic tensors with con-
gruence values of γ = 0.1 and γ = 0.8. Here, we plot the relative error versus iteration for
the best of ten trials (i.e., the trial with the lowest final function value). Bear in mind that
the cost per iteration is roughly 2–3 times higher for CP-NLS than CP-ALS.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

13.3. CP-NLS on Data Tensors 243

Remark 13.5 (Computational methodology) For CP-NLS, we use the Gauss-Newton
method with an iterative preconditioned conjugate gradient (PCG) linear solver and back-
tracking line search using the following settings. The damping parameter λ for the Gauss-
Newton matrix is set to 0. The maximum number of PCG iterations is set to 20, and the
tolerance (for the relative magnitude of the residual within PCG) is set to 1e-4. The tol-
erance for both CP-NLS and CP-ALS, with respect to change in relative error, is set to
1e-10, and the maximum number of iterations is 500.

For congruence value γ = 0.1, NLS converges in about half as many iterations. However,
since ALS is cheaper per iteration, the total run time is similar.

In the case of congruence γ = 0.8, we see a stark difference in the number of iterations
to converge. ALS converges linearly, and achieves relative error of only 1e-6 after 500
iterations. The convergence rate of NLS is quadratic, and it converges to relative error near
machine precision after 35 iterations. In this case, even with a higher cost per iteration, the
NLS method solves the problem in much less time than ALS.

0 20 40
10−16

10−6

104

Iteration

R
el

at
iv

e
E

rr
or

ALS
NLS

0 200 400
10−16

10−6

104

Iteration

R
el

at
iv

e
E

rr
or

ALS
NLS

(a) Congruence γ = 0.1 (b) Congruence γ = 0.8

Figure 13.2: Convergence of best of 10 trials of CP-NLS and CP-ALS on 250× 250× 250
synthetic tensors of rank 10 (no noise). Congruence γ measures the similarity of the vectors
in the factor matrices, and higher values mean the problem is more challenging.

Note that with no noise added to this problem, the minimum function value is 0. As de-
scribed in Appendix B.3.6, the Gauss-Newton matrix is a particularly good approximation
of the Hessian in this case as the iterates approach the solution. You will explore in Exer-
cise 13.6 how the convergence behavior changes with noise added to the problem.

Exercise 13.6 Create test problems with known rank, with and without noise, to
test the convergence of CP-NLS. Generate three random 250 × 10 factor matrices
with specified congruence γ = {0.1, 0.8}, e.g., using the Tensor Toolbox command
A=matrandcong(n,r,gamma). If X is the tensor with exact rank 10, compute
Z = X + η ∥X∥

∥N∥ · N, where η is the fraction of noise to add and N is a randomly gen-
erated tensor. How does convergence behavior vary across η = {0, 0.0001, 0.1}? Be sure
to try from multiple random starts.

Exercise 13.7 Implement CP-NLS using existing implementations for computing the CP
gradient (see Exercise 12.9), the preconditioned conjugate gradient method, and applying
the approximate Hessian (see Exercise 13.4).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

244 Chapter 13. CP Nonlinear Least Squares (CP-NLS) Optimization

Exercise 13.8 Using an existing implementation of CP-NLS, compare the results for com-
puting a rank-3 CP decomposition of the EEM tensor using CP-NLS with the results using
CP-ALS and CP-OPT as in Exercise 12.11.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

14
CP Algorithms for
Incomplete or Scarce
Data

In many real-world data analysis tasks, we have to work with tensors that are incomplete,
meaning that some entries are missing. This chapter considers the problem of computing
CP for incomplete tensors, even when most of the data is missing. We refer to the later case
with only a sparse set of known entries as scarce (Kolda and Duersch, 2017).

Example 14.1 (Incomplete Tensor) An incomplete tensor X ∈ R2×2×2 is

X(:, :, 1) =

[
8 7
? ?

]
and X(:, :, 2) =

[
? ?
0 5

]
,

where ? denotes a missing value.

Incomplete tensors are prevalent in real-world scenarios. For instance, Fig. 14.1 shows the
EEM tensor from Fig. 1.8 before preprocessing filled in the missing data; the white areas
indicate regions devoid of accurate data. This data was collected using fluorescence spec-
troscopy, and a phenomenon known as Rayleigh scattering makes it impossible to collect
accurate data in certain regions.

We consider the problem of computing CP for tensors with incomplete data. We are not
necessarily focused on the problem of filling in missing data, though the techniques we
discuss can be used for that purpose as we will do with the EEM tensor. Primarily, we
focus on computing the CP factorization when some or even the majority of data is missing.
There are many different techniques to handle missing data, depending on how much data
is missing and under what circumstances (Tomasi and Bro, 2005). We have described
expectation maximization (EM) in Section 9.5.2, but this is primarily useful when just a
handful of entries are missing and may require extensive computation. In this chapter, we
focus on optimization approaches whereby missing data are not used in the model fitting
(Acar, Dunlavy, Kolda, and Mørup, 2010, 2011). This enables us to compute low-rank CP
factorizations in extreme cases where the vast majority of the data is missing.

○ We say a tensor is incomplete if one or more entries is unknown. We
say an incomplete tensor is scarce if most of the data is missing.

Throughout the chapter, we assume that the missing data is missing at random rather due
to some inherent property which might lead to bias in computing the CP model.

245

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

246 Chapter 14. CP Algorithms for Incomplete or Scarce Data

5.00 / 0.00 / 0.00
230
280

0.00 / 5.00 / 0.00
230
280

0.00 / 0.00 / 5.00
230
280

1.25 / 5.00 / 3.75
230
280

3.75 / 1.25 / 5.00
230
280

5.00 / 3.75 / 2.50
230
280

3.75 / 3.75 / 5.00
230
280

6.25 / 1.25 / 1.25
230
280

1.25 / 5.00 / 2.50
230
280

2.50 / 6.25 / 2.50
230
280

5.00 / 1.25 / 3.75
230
280

1.25 / 3.75 / 2.50
230
280

2.50 / 3.75 / 1.25
230
280

3.75 / 0.00 / 2.50
230
280

2.50 / 0.00 / 3.75
230
280

5.00 / 0.00 / 1.25
230
280

3.75 / 0.00 / 3.75
230
280

3.75 / 0.00 / 5.00
230
280

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

ex
ci

ta
tio

n
w

av
el

en
gt

h
(n

m
)

emission wavelength (nm)

0

1

2

3

4

5

6

×105

Figure 14.1: EEM matrices from fluorescence spectroscopy experiments on 18 samples.
Each sample is labeled with the concentrations of the three chemical compounds (Val-Tyr-
Val/Try-Gly/Phe). The white regions show where the data was not acquired.

14.1 Representing Incomplete or Scarce Data
Before we can formulate the mathematical problem, we need notation and mechanisms for
working with incomplete tensors. Without loss of generality, we assume that the indices of
the known values are known explicitly and that the missing values are occupied by some
numerical value such that multiplication by zero will results in a zero.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

14.1. Representing Incomplete or Scarce Data 247

Remark 14.1 (Representing missing values) There is no standard for representing miss-
ing values in terms of data representations. NaN is the IEEE arithmetic representation for
Not-a-Number, but this is not necessarily consistent across languages and computer archi-
tectures. Oftentimes, missing values are represented by a value that would not otherwise
appear in the data, like 99 or -1 or 0. Some care is needed in preprocessing data with
missing values to ensure the right conventions are used. It may also be worth nothing that
multiplication of a NaN by any other value is still a NaN, so replacing NaN’s with zeros
requires explicitly setting those values.

14.1.1 Known Value Indicator Set
We define the known value indicator set, denoted here by Ω, to be the indices of the
known entries for an incomplete tensor. The complement of the indicator set is the missing
value indicator set, denoted by Ωc.

Example 14.2 (Known Value Indicator Set) For the tensor

X(:, :, 1) =

[
8 7
? ?

]
and X(:, :, 2) =

[
? ?
0 5

]
,

the known value indicator set is

Ω = { (1, 1, 1), (1, 2, 1), (2, 1, 2), (2, 2, 2) } .

Exercise 14.1 For Example 14.2, what is Ωc?

If only a few entries are missing, it may be more efficient to store Ωc than Ω, since Ω
can then be determined implicitly. The set of indices in Ω or Ωc can be stored as tuples,
linearized indices, or as a weight tensor discussed in the next subsection.

14.1.2 Known Value Selection Matrix
For an indicator set Ω for tensors of a given size, we can define a known value selection
matrix, SΩ, such that multiplying S⊺

Ω times a vectorized tensor extracts the elements in Ω.

Supposing Ω has q entries and is for tensors of size m × n × p, then SΩ ∈ Rmnp×q . It
is a subset of the columns of the mnp ×mnp identity matrix. Specifically, it extracts the
columns in the set {L(i, j, k) : (i, j, k) ∈ Ω }. Recall that L(i, j, k) = i + m(j − 1) +
mn(k − 1) is the linear index; see Section 2.1.1.

Since SΩ is a subset of columns from the mnp×mnp identity matrix, it is an orthonormal
matrix. From this, we can form an orthogonal projector SΩS

⊺
Ω that has the property of

zeroing out the entries of a vectorized tensor that are not in Ω. In general, SΩ is a very large
matrix that we would not form explicitly, but it is useful in our mathematical discussions,
and its action can be easily implemented.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

248 Chapter 14. CP Algorithms for Incomplete or Scarce Data

Example 14.3 (Known Value Selection Matrix) The known value selection matrix for
Ω = { (1, 1, 1), (1, 2, 1), (2, 1, 2), (2, 2, 2) }, is

SΩ =

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

. (14.1)

For the tensor

X(:, :, 1) =

[
8 7
−100 150

]
and X(:, :, 2) =

[
100 −250
0 5

]
,

we have

S⊺
Ω vec(X) =

8
7
0
5

 .

Setting vec(Y) = SΩS
⊺
Ω vec(X) yields

Y(:, :, 1) =

[
8 7
0 0

]
and Y(:, :, 2) =

[
0 0
0 5

]
.

We have yijk = 0 for every (i, j, k) ∈ Ω, but observe carefully that not every zero in Y

corresponds to an index in Ω.

14.1.3 Known Value Weight Tensor
For a known value indicator set Ω, we can define a known value weight tensor WΩ that
has ones for known entries and zeros elsewhere. For instance, in the 3-way case, WΩ

would be defined as

WΩ(i, j, k) =

{
1 if (i, j, k) ∈ Ω,

0 otherwise.
(14.2)

Computing the Hadamard (elementwise) product of any tensor and WΩ has the effect of
zeroing out any entry (i, j, k) ̸∈ Ω.

Exercise 14.2 In Example 14.2, what is the weight tensor and corresponding indicator set
Ω?

The known value weight tensor is an alternative way to achieve the effect of the orthogonal
projection with the known value selection matrix. Specifically,

vec(WΩ ∗X) = SΩS
⊺
Ω vec(X). (14.3)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

14.2. Missing Data CP Function and Gradient 249

14.2 Missing Data CP Function and Gradient
We express the function for the missing data problem and compute its gradient.

14.2.1 Missing Data CP Function and Gradient: 3-way
Let X be a tensor of size m × n × p that has q < mnp observed entries. Let Ω denote its
indicator set, i.e.,

Ω = { (i, j, k) | xijk is observed } ⊆ [m]⊗ [n]⊗ [p].

The CP minimization problem that ignores the unknown entries is

min
A,B,C

f̃(A,B,C) ≡ 1

2

∑

(i,j,k)∈Ω

(
xijk−

r∑

ℓ=1

aiℓbjℓckℓ

)2

=
1

2

∥∥∥WΩ∗(X−JA,B,CK
)∥∥∥

2

.

where WΩ is the weight tensor defined as in Eq. (14.2), so we can refer to this as a weighted
optimization problem. This objective function picks out the squared errors for only the
observed entries.

Let us consider the gradient with respect to vec(B). For computing the gradient, it is useful
to write the objective in terms of a vectorized version using Eq. (14.3):

f̃(A,B,C) =
1

2

∥∥∥SΩS
⊺
Ω vec

(
X− JA,B,CK

)∥∥∥
2

2
. (14.4)

As we did in the all-at-once optimization approach in Section 12.2.2, we can compute the
gradient using the chain rule (Proposition 12.6). We write f̃ = g ◦ h as a composition of
functions where g : Rmnp → R and h : R(m+n+p)r → Rmnp are defined as follows:

g(x̄) =
1

2

∥∥∥SΩS
⊺
Ω

(
vec(X)− x̄

)∥∥∥
2

2
and h(A,B,C) = vec

(
JA,B,CK

)
.

Exercise 14.3 Let A be an m × n matrix and x, x̄ ∈ Rn and show show the gradient of
g(x̄) = ∥A(x− x̄)∥22 is∇g(x̄) = A⊺A(x̄−x). (Hint: This is similar to Proposition 12.5.)

By Exercise 14.3, the gradient of g is

∇g(x̄) =
(
SΩS

⊺
Ω

)⊺
SΩS

⊺
Ω

(
x̄− vec(X)

)
= SΩS

⊺
Ω

(
x̄− vec(X)

)
.

Thus, plugging in h(A,B,C) for x̄ yields

∇g
(
h(A,B,C)

)
= SΩS

⊺
Ω vec(JA,B,CK−X) = vec

(
WΩ ∗ (JA,B,CK−X)

)
.

Finally, the partial Jacobian of h with respect to vec(B) is given by Proposition 12.7.
Denoting the weighted residual as

Y = WΩ ∗ (X− JA,B,CK) (14.5)

and plugging these components into the chain rule (Proposition 12.6) yields

∂f̃

∂ vec(B)
=

[
dh

d vec(B)

]⊺
∇g
(
h
)

(14.6)

=
[
(C⊙A)⊺ ⊗ In

]
P2 vec(−Y) (14.7)

=
[
(C⊙A)⊺ ⊗ In

]
vec(−Y(2))

= vec
[
−Y(2)(C⊙A)

]
.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

250 Chapter 14. CP Algorithms for Incomplete or Scarce Data

Recall that P2 is the permutation such that P2 vec(X) = vec(X(2)) for any m × n × p
tensor X.

Following similar logic for A and C (left as an exercise), we have the following result.

Proposition 14.2 Let X be an incomplete 3-way tensor whose known entries are indexed
in Ω, and let WΩ be the corresponding weight tensor with ones for entries in Ω and ze-
ros elsewhere. Consider the weighted objective function f̃(A,B,C) = 1

2

∥∥WΩ ∗ (X −
JA,B,CK)

∥∥2. Define Y ≡WΩ ∗ (X− JA,B,CK
)
. Then

∂f̃

∂ vec(A)
= vec

[
−Y(1)(C⊙B)

]
,

∂f̃

∂ vec(B)
= vec

[
−Y(2)(C⊙A)

]
,

∂f̃

∂ vec(C)
= vec

[
−Y(3)(B⊙A)

]
.

Equivalently, in matrix notation

∂f̃

∂A
= −Y(1)(C⊙B),

∂f̃

∂B
= −Y(2)(C⊙A),

∂f̃

∂C
= −Y(3)(B⊙A),

Exercise 14.4 Prove Proposition 14.2 for the gradients with respect to A and C.

The weighted residual tensor Y is the residual between X and the model JA,B,CK with
values corresponding to missing entries in X zeroed out. This means that those (unknown)
differences between the data tensor and the model do not contribute towards the gradi-
ent. Though it may not be obvious, this formula is nearly identical to the gradient for the
problem with no missing data.

14.2.2 Missing Data CP Function and Gradient: d-way
The situation in the d-way case is analogous. We assume we have a tensor X of size
n1 × n2 × · · · × nd that has q <

∏d
k=1 nk observed entries, and we let Ω be the indicator

set, i.e.,

Ω = { (i1, i2, . . . , id) | xi1i2···id is observed } ⊂ [n1]⊗ [n2]⊗ · · · ⊗ [nd].

The weight tensor WΩ in the d-way case is a tensor of size n1 × n2 × · · · × nd with

WΩ(i1, i2, . . . , id) =

{
1 if (i1, i2, . . . , id) ∈ Ω

0 otherwise.

We can express the problem as a weighted optimization problem:

min
A1,A2,...,Ad

f̃(A1,A2, . . . ,Ad) ≡
1

2

∥∥∥WΩ ∗ (X− JA1,A2, . . . ,AdK
)∥∥∥

2

.

The following proposition derives the gradient.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

14.3. Weighted All-at-once Optimization (CP-WOPT) 251

Proposition 14.3 Let X be an incomplete d-way tensor whose known entries are indexed
in Ω, and let WΩ be the corresponding weight tensor with ones for entries in Ω and zeros
elsewhere. Consider the weighted objective function

f̃(A1,A2, . . . ,Ad) =
1

2

∥∥∥WΩ ∗ (X− JA1,A2, . . . ,AdK
)∥∥∥

2

2
.

Define the weighted residual tensor

Y = WΩ ∗ (X− JA1,A2, . . . ,AdK
)
.

Then for all k ∈ [d], we have

∂f̃

∂ vec(Ak)
= − vec

[
Y(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)

]
.

Equivalently, in matrix notation we have

∂f̃

∂Ak
= −Y(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1).

The proof follows the same logic as the three-way case and is left as an exercise.

Exercise 14.5 Prove Proposition 14.3. You will need to use the permutation matrix Pk

such that Pk vec(X) = vec(X(k)) for any tensor X of size n1 × n2 × · · · × nd.

14.3 Weighted All-at-once Optimization (CP-WOPT)
With formulations for the gradients, we can apply a first-order optimization method and
follow the same advice as in the case of no missing data for handling regularization, con-
straints, and so on. As with CP-OPT, we provide the tools for computing the function and
gradient, enabling us to use any first-order optimization method such as L-BFGS. The
same considerations apply here as for CP-OPT; see Section 12.3 for further discussion.

14.3.1 CP-WOPT Method
We show the algorithm for computing the function and gradients in the case of missing
data in Algorithm 14.1. In the case of no missing data, Algorithm 12.2 does not form an
explicit weighted residual tensor and computes the function value implicitly. Unfortunately,
Algorithm 14.1 needs the weighted residual tensor explicitly.

Line 3 of Algorithm 14.1 computes the weighted residual tensor, Y. Assuming that the
weight tensor WΩ is dense, we can explicitly construct the full Kruskal tensor (see Sec-
tion 10.6), take its difference with X, and then zero out any entries corresponding to miss-
ing entries. The norm of the tensor Y computed in Line 4 is the function value, and the
sequence of MTTKRPs (see Section 3.6.2) with Y in Lines 5 to 7 computes the gradient.

Exercise 14.6 Assuming WΩ is dense, analyze the computational complexity of Algo-
rithm 14.1.

Unfortunately, even if X is sparse, the weighted residual tensor is dense. However, if X
is scarce (and so WΩ is sparse), then the tensor Y will be sparse and can be computed

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

252 Chapter 14. CP Algorithms for Incomplete or Scarce Data

Algorithm 14.1 Computing CP-WOPT Function and Gradient for d-way Tensor

Require: data and weight tensors X,WΩ ∈ Rn1×···×nd , input vector v ∈ Rr(n1+···+nd)

Ensure: f̃ = 1
2

∥∥WΩ ∗ (X− JA1,A2, . . . ,AdK
)∥∥2 and g̃ = ∇f̃

where {A1,A2, . . . ,Ad } = vec2mats(v)
1: function CP-FG(X, WΩ, v)
2: {A1,A2, . . . ,Ad } ← vec2mats(v)
3: Y←WΩ ∗ (X− JA1,A2, . . . ,AdK

)
▷ Weighted residual tensor

4: f̃ ← ∥Y∥2 ▷ f̃ = 1
2

∥∥WΩ ∗ (X− JA1,A2, . . . ,AdK
)∥∥2

5: for k = 1, . . . , d do ▷ Sequence of MTTKRPs
6: G̃k ← −Y(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1) ▷ G̃k = ∂f̃

∂Ak

7: end for
8: g̃← mats2vec

(
G̃1, G̃2, . . . , G̃d

)

9: return {f̃ , g̃}
10: end function

efficiently as we discuss in the next section.

14.3.2 Special Handling of Scarce Tensors
If the tensor X is scarce, then Algorithm 14.1 can be more efficient. Since X is scarce, then
WΩ must be a sparse tensor with zeros for unknown (masked) entries and ones for known
(unmasked entries). We can store this as a sparse tensor: WΩ = JΩ,1K where Ω is the
matrix representation of the set Ω.

If WΩ is sparse, then the weighted residual tensor Y = WΩ ∗ (X − JA1,A2, . . . ,AdK
)
,

computed in Line 3 of Algorithm 14.1, must be sparse with the same sparsity pattern as
WΩ. We write this as two terms:

Y = WΩ ∗X−WΩ ∗ JA1,A2, . . . ,AdK.

For the first term, if we let the vector v denote the values known values of X in the order
specified by Ω, then the masked version is a sparse tensor, i.e., WΩ ∗X = JΩ,vK.

The second term is a masked full operation; see Section 10.6.3. It will also have the same
sparsity pattern as WΩ, so we can compute v̂ such that JΩ, v̂K = WΩ∗JA1,A2, . . . ,AdK.

Finally, the sparse tensor Y is given by Y = JΩ, v̄K where v̄ = v − v̂.

There are some implementation nuances in that some values in v, v̂, and v̄ may be zero. In
the sparse tensors using these vectors, the zero entries can be filtered or ignored.

The remaining parts of the algorithm are efficient because Y is sparse. The norm in Line 4
is with respect to the sparse tensor (see Section 3.7.2) and the sequence of MTTKRPs
computed in Line 6 is with a sparse tensor (see Sections 3.7.3 and 3.7.4).

○ If X is scarce, the gradient can be computed in time
proportional to the number of known entries in X.

Exercise 14.7 Assuming WΩ is sparse (X is scarce), analyze the computational complex-
ity of Algorithm 14.1 and compare to the case that WΩ is dense.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

14.4. Weighted Alternating Optimization (CP-WALS) 253

14.4 Weighted Alternating Optimization (CP-WALS)
For the alternating optimization approach, a form of block coordinate descent, we sequen-
tially set each gradient to zero and solve for the corresponding factor matrix. In the three-
way case, this would look like the following.

CP-WALS Prototype
while not converged do

A← solution to ∂f̃
∂A (A,B,C) = 0

B← solution to ∂f̃
∂B (A,B,C) = 0

C← solution to ∂f̃
∂C (A,B,C) = 0

end while
Though it may not be obvious, this is also a least squares problem, albeit not the same one
as in the standard case. We consider the case of solving for B given a three-way tensor X
with known elements Ω, and fixed values for A and C. Recall from Eq. (14.6) that we can
write the gradient as

∂f̃

∂ vec(B)
=
[
(C⊙A)⊺ ⊗ In

]
P2 vec(−Y).

Here, P2 is the tensor perfect shuffle matrix such that P2 vec(X) = vec(X2).

Recalling also that vec(Y) = SΩS
⊺
Ω vec(X− JA,B,CK) and setting the gradient equal to

zero yields
[
(C⊙A)⊺ ⊗ In

]
P2SΩS

⊺
Ω vec(JA,B,CK−X) = 0.

If we let q = |Ω| and define

U2 = S⊺
ΩP

⊺
2

[
(C⊙A)⊗ In

]
∈ Rq×nr,

then we have

U⊺
2S

⊺
Ω vec(JA,B,CK) = U⊺

2S
⊺
Ω vec(X)

U⊺
2S

⊺
ΩP

⊺
2 vec

(
B(C⊙A)⊺

)
= U⊺

2S
⊺
Ω vec(X)

U⊺
2S

⊺
ΩP

⊺
2

[
(C⊙A)⊗ In

]
vec(B) = U⊺

2S
⊺
Ω vec(X)

U⊺
2U2 vec(B) = U⊺

2S
⊺
Ω vec(X).

Setting x = S⊺
Ω vec(X), this can be viewed as the normal equations for the least squares

problem

min
1

2
∥U2 vec(B)− x∥22.

Exercise 14.8 Given X ∈ Rm×n×p, known value indicator set Ω, and setting U2 =
S⊺
ΩP

⊺
2

[
(C⊙A)⊗ In

]
where P2 is such that P2 vec(X) = vec(X2), show that

∥∥∥WΩ ∗ (X− JA,B,CK
)∥∥∥

2

=
∥∥∥U2 vec(B)− S⊺

Ω vec(X)
∥∥∥
2

2
.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

254 Chapter 14. CP Algorithms for Incomplete or Scarce Data

The matrix S⊺
Ω can be viewed as picking out particular rows of the matrix

[
(C⊙A)⊗ In

]

(with P2 ensuring the ordering is consistent). Specially, the resulting matrix and right-hand
side are

U2 =

[(
C(k, :)∗A(i, :)

)
⊗ In(j, :)

]

(i,j,k)∈Ω

and x =

[
xijk

]

(i,j,k)∈Ω

.

The intermediate matrix
[
(C ⊙ A) ⊗ In

]
is potentially expensive to form. However, we

can use the special structure of U2 to form it directly and more cheaply in the case that
q ≪ mnp (i.e., X is scarce).

A final observation is that the least squares problem can be decoupled into n independent
least squares problems, one per row of B. Define Ωj ≡ { (i, k) | (i, j, k) ∈ Ω } for all
j ∈ [n], and consider the subset of equations corresponding to Ωj :

[(
C(k, :)∗A(i, :)

)
⊗ In(j, :)

]
(i,k)∈Ωj

vec(B) =
[
xijk

]
(i,k)∈Ωj

.

Using the rule for Kronecker products in Eq. (A.11e), we can rewrite this as

vec

(
In(j, :)︸ ︷︷ ︸
1×n

B︸︷︷︸
n×r

[
C(k, :)∗A(i, :)

]⊺
(i,k)∈Ωj︸ ︷︷ ︸

r×|Ωj |

)
=
[
xijk

]
(i,k)∈Ωj

,

which (realizing vec on a row vector has the effect of a transpose) simplifies to
[
C(k, :)∗A(i, :)

]
(i,k)∈Ωj

B(j, :)⊺ =
[
xijk

]
(i,k)∈Ωj

.

So, the least squares problems for the the individual rows are decoupled and can be solved
independently (and in parallel).

14.5 Example: CP-WOPT on EEM Tensor
We revisit the EEM tensor from fluorescence spectroscopy as described in Section 1.5.2 and
used in Section 9.6, but now look at the raw data. The raw data for EEM omits emission
data in an interval of 10 nm from the excitation wavelength in order to avoid first-order
Rayleigh scatter (Acar, Papalexakis, et al., 2014), and these entries are indicated by NaN
(not-a-number). Additionally, some entries are negative due to measurement errors.

14.5.1 Computing CP on EEM with Missing Data
The EEM tensor is of size 18×251×21, and the raw data has 7398 (7.8%) missing entries.
We let Ω denote the known value indicator set, so |Ω| = 7398. The remaining entries are
in the range [−1.0405e+04, 6.9768e+05]. There are 4935 (5.2%) negative entries, though
the data is ideally nonnegative. The missing data is indicated by white regions in Fig. 14.1.

Before we discuss applying weighted optimization (WOPT) to this data, we mention one
technique that is often used in practice: filling in missing data with the average of the
known values. In other words, construct a tensor X̄ such that

x̄ijk =

{
xijk if (i, j, k) ∈ Ω,
1
|Ω|
∑

i∈Ω xijk otherwise.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

14.5. Example: CP-WOPT on EEM Tensor 255

We can then apply standard methods for computing the CP decomposition to the tensor X̄.
We will compare WOPT to this heuristic approach, which we call FILL+OPT.

To computing CP with weighted optimization, we construct a known value weight tensor
WΩ as in Eq. (14.2). Then we solve the weighted optimization (WOPT) problem

min
v∈R290r

f̃(v) ≡
∥∥∥WΩ ∗ (X− JA,B,CK

)∥∥∥
2

subject to {A,B,C } = vec2mats
(
v
)

and v ≥ 0.

Here, v represents the matrices A,B, and C vectorized and stacked. The constraint v ≥ 0
is to be interpreted elementwise, i.e., every entry to every factor matrix is greater than 0.

We compare FILL+OPT and WOPT on the raw EEM tensor. We run each method five times
and take the best solution according to each objective function. The results are shown in
Fig. 14.2, and the WOPT solution is somewhat better than FILL+OPT.

0

2

4

6

·106 Sample

0

0.1

0.2

Emission (normalized)

0

0.2

0.4

Excitation (normalized)

0

2

4

6

·106

0

0.1

0.2

0

0.2

0.4

0 5 10 15
0

2

4

6

·106
FILL+OPT

WOPT

300 400 500
0

0.1

0.2 FILL+OPT

WOPT

250 300
0

0.2

0.4

Figure 14.2: Comparison of weighted optimization (WOPT) and filling in missing data
with average known entry (FILL+OPT) on raw EEM tensor of size 18 × 251 × 21 with
7.8% missing entries. Both formulations have nonnegativity constraints and compute a
rank r = 3 decomposition.

Exercise 14.9 Implement Algorithm 14.1 and reproduce the experiment use to generate
Fig. 14.2.

Exercise 14.10 Implement the EM algorithm Section 9.5.2. Compare its performance to
CP-WOPT in terms of time and solution quality.

Exercise 14.11 Implement the CP-WALS outlined in Section 14.4. Compare its perfor-
mance to CP-WOPT in terms of time and solution quality.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

256 Chapter 14. CP Algorithms for Incomplete or Scarce Data

14.5.2 EEM Tensor with Even More Missing Data
We make the problem more difficult by removing additional data. We remove an additional
50% of the known entries at random. The result is a tensor with 51138 (53.9%) missing
entries. We run the same experiment as before and show the results in Fig. 14.3. With a
larger degree of missing data, the difference between naively filling in the missing entries
with an average value and using weighted optimization is dramatic. The FILL+OPT ap-
proach cannot recover the third component, but the weighted optimization yields the same
result as before.

0

2

4

6

·106 Sample

0

0.1

0.2

Emission (normalized)

0

0.2

0.4

Excitation (normalized)

0

2

4

6

·106

0

0.1

0.2

0

0.2

0.4

0 5 10 15
0

2

4

6

·106
FILL+OPT

WOPT

300 400 500
0

0.1

0.2 FILL+OPT

WOPT

250 300
0

0.2

0.4

Figure 14.3: Comparing weighted optimization (WOPT) and filling in missing data with
average entry (FILL+OPT) on EEM tensor of size 18 × 251 × 21 with 53.9% missing
entries. Both formulations have nonnegativity constraints and compute a rank r = 3 de-
composition.

Exercise 14.12 Start with the raw EEM tensor and remove a portion (ρ) of the entries.
Compare FILL+OPT and WOPT on this tensor, as we did in the experiment that produced
Fig. 14.3. (a) Use ρ = 0.25. (b) Use ρ = 0.5 (reproducing Fig. 14.3). (c) Use ρ = 0.75.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

15
Generalized CP (GCP)
Decomposition

In this chapter, we consider generalizing the loss function used in computing a low-rank
CP model. We refer to this as generalized CP (GCP) decomposition. The specific GCP
formulation that we discuss here was introduced by Hong et al. (2020); however, different
loss functions have been promoted in various contexts before that work. For instance,
several authors have promoted Kullback-Leibler (KL) divergence for count tensors, starting
with Welling and Weber (2001) and also including Chi and Kolda (2012), Hansen et al.
(2015), and Shashua and Hazan (2005). Alpha and beta divergences have been proposed for
nonnegative data by Cichocki, Zdunek, et al. (2007). These formulations fit within the GCP
framework. GCP is also sometimes referred to as non-least-squares cost (Vandecappelle et
al., 2020).

In this chapter, we discuss the concept of generalized loss functions in Section 15.1. and
some choices for loss functions in Section 15.2. We cast this as an optimization formula-
tion in Section 15.3, compute the gradient in Section 15.4, and discuss its optimization in
Section 15.5. Finally, we consider application to the Monkey BMI tensor in Section 15.6
and the Chicago crime tensor in Section 15.7.

15.1 Generalized Loss Functions
The GCP minimization problem for X ∈ Rm×n×p computes a rank-r Kruskal tensor Y =
JA,B,CK that minimizes a GCP loss function which sums the differences between X and
Y at each element. The general problem for a 3-way tensor is

min
A,B,C

f(A,B,C) ≡
m∑

i=1

n∑

j=1

p∑

k=1

fijk(yijk) subject to Y = JA,B,CK.

where f : R(m+n+p)r → R is called the loss function and fijk : R → R is called the
elementwise loss function. Each function fijk depends on entry (i, j, k) of X, the data
tensor, for its definition and evaluates entry (i, j, k) of Y, which depends on the inputs
{A,B,C }, to compute some metric of similarity or distance.

GCP encapsulates standard CP if f is the sum of squared errors (SSE), i.e.,

fijk(yijk) = (xijk − yijk)2.

In terms of other functions, KL divergence is useful for count data (Chi and Kolda, 2012;
Hong et al., 2020; Welling and Weber, 2001), in which case the choice for the elementwise
loss function is

fijk(yijk) = yijk − xijk log yijk.

257

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

258 Chapter 15. Generalized CP (GCP) Decomposition

These and other options are discussed in Section 15.2.

The GCP loss function for a d-way tensor X ∈ Rn1×n2×···×nd and Y = JA1,A2, . . . ,AdK
is the same except that the summation is over all d modes rather than just three, i.e.,

min
A1,A2,...,Ad

f(A1,A2, . . . ,Ad) ≡
n1∑

i1=1

n2∑

i2=1

· · ·
nd∑

id=1

fi1i2···id(yi1i2···id)

subject to Y = JA1,A2, . . . ,AdK.

As in the above, the elementwise loss function fi1i2···id depends on xi1i2···id .

To simplify the notation, we can write the GCP loss function using multi-index notation
where i ≡ (i1, i2, . . . , id).

Definition 15.1 (GCP Loss Function) For a tensor X ∈ Rn1×n2×···×nd , the GCP loss
function is

f(A1,A2, . . . ,Ad) ≡
∑

i∈I
fi(yi) subject to Y = JA1,A2, . . . ,AdK,

where i ≡ (i1, i2, . . . , id), I = [n1]⊗ [n2]⊗ · · · ⊗ [nd] is the set of all multi-indices, and
each elementwise loss function fi : R→ R depends on xi.

15.2 Choices for Loss Functions
There are many ways to select the loss function, f . It can be heuristic or derived from some
specific principles, and we discuss some options in this section. The general requirement
we impose (for ease of fitting the model using optimization) is that each fi : R → R be
continuously differentiable.

One methodology is based on statistical maximum likelihood estimation; see Appendix C.2.
In this case, we think of each xi as a random variable drawn from a random distribution
defined by p : R→ R, a parameterized probability distribution function (pdf) or probabil-
ity mass function (pmf). The parametrization depends (perhaps indirectly) on yi. In other
words, we presume that

xi ∼ p(xi|θi) where θi = L(yi).

Here L : R → R is an invertible real-valued link function that maps yi to some natural
parameter θi of the distribution. The idea of a natural parameter will make more sense as
we delve into examples in the sections that follow. Under this assumption, our objective is
to maximize the likelihood of the low-rank CP model Y given X, i.e., to solve

max
A1,A2,...,Ad

∏

i∈I
p
(
xi|L(yi)

)
subject to Y = JA1,A2, . . . ,AdK.

Working with the product is inconvenient and potentially problematic (e.g., underflow er-
rors can occur in finite precision arithmetic). For this reason, we apply the (natural) log,
which does not change the maximizer because it is monotonic. Further, it is convenient
to cast this as a minimization problem by taking its negative. So, rather than computing
the maximum likelihood, we instead compute the minimum negative log-likelihood. This

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

15.2. Choices for Loss Functions 259

results in the following minimization problem:

min
A1,A2,...,Ad

f ≡
∑

i∈I
− log p

(
xi|L(yi)

)
subject to Y = JA1,A2, . . . ,AdK. (15.1)

Hence, the elementwise loss function is fi(yi) = − log p
(
xi|L(yi)

)
. We give examples

of using this methodology in for real-valued, count, binary, and nonnegative data in the
subsequent discussion.

15.2.1 Sum of Squared Errors (Normal-Distributed Data)
In this subsection, we show that the standard CP elementwise loss function, fi(yi) =
(xi − yi)2 can be derived under the assumption that the data is low-rank plus white noise.
Specifically, assume

X = Y+ E,

where Y is a low-rank tensor and E is a noise tensor such that εi ∼ N (0, σ) for all i ∈ I
and σ is some fixed constant across all entries. We can rewrite this as

xi ∼ yi + εi with εi ∼ N (0, σ) for all i ∈ I.

Alternatively, we can think of xi being normally distributed with mean yi and standard
deviation σ so that we have

xi ∼ N (yi, σ) for all i ∈ I.

Plugging the negative log likelihood for the normal distribution from Eq. (C.4) into Eq. (15.1)
with µi = L(yi) ≡ yi yields the negative log likelihood of Y:

f ≡ 1

2σ2

∑

i∈I
(xi − yi)2 − |I| log(

√
πσ2)︸ ︷︷ ︸

constant

.

We can drop the constant term and constant multiplicative factor to simplify to the standard
CP loss function:

f ≡
∑

i∈I
(xi − yi)2.

The elementwise loss function for several sample values of xi is shown in Fig. 15.1. The
elementwise loss function is minimized when yi = xi, though we cannot achieve this for
all entries because Y is low rank.

Exercise 15.1 What is the derivative of the Gaussian elementwise loss function, i.e.,
f(y) = (x− y)2 where x is a constant? Prove that y = x is a stationary point.

15.2.2 Logistic Regression (Binary Data)
Suppose the data in X is binary, e.g., values in { 0, 1 }. In this case, it may be reasonable to
assume the data is Bernoulli distributed; see Appendix C.3.2. This means we assume

xi ∼ Bernoulli(ρi) where ρi ∈ [0, 1] for all i ∈ I.

The parameter ρi is the probability of observing a 1. We have to link the natural parameter
to the model, i.e., ρi = L(yi). We have three ways we could make this link.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

260 Chapter 15. Generalized CP (GCP) Decomposition

−4 −2 0 2 4 6 8

0

5

10

y

f
(y
)

x = −2
x = 0

x = 2

x = 5

Figure 15.1: Gaussian elementwise loss function f(y) = (x− y)2 for several fixed values
of x ∈ R

One option is to simply define L(yi) = yi. However, this approach has the major disad-
vantage that yi must be constrained to [0, 1]. This is a nonlinear constraint with respect to
the entries for the model factor matrices. For this reason, we do not consider this approach
further.

A second option is to define the link as L(yi) = yi/(1+ yi). This means that yi represents
the odds of observing a 1, and we need only constrain yi to be nonnegative. This link is
especially nice for data where zero represents something very common (i.e., the default)
and ones are somewhat rare.

Exercise 15.2 Let ρ ∈ [0, 1] the the probability of an event. Prove that ρ = y/(1 + y) if
and only if y = ρ/(1− ρ) is the odds of the event.

Plugging the negative log likelihood for the Bernoulli distribution from Eq. (C.6) into
Eq. (15.1) with ρi = L(yi) = yi/(1 + yi) yields the negative log likelihood of Y to
be

f ≡
∑

i∈I
log(1 + yi)− xi log yi with yi ≥ 0 for all i ∈ I.

The elementwise loss function for both sample values of xi is shown in Fig. 7.2a. If xi = 0,
the elementwise loss function is minimized at yi = 0. If xi = 1, the elementwise loss
function is minimized at yi = +∞.

Exercise 15.3 What is the derivative for the Bernoulli elementwise loss function with log
link, i.e., f(y) = log(1 + y)− x log y? Prove that the minimizer is y = 0 if x = 0. (Hint:
Use Proposition B.25.)

A third option is to define the link as L(yi) = eyi/(1 + eyi). This means that eyi =
ρi/(1− ρi) represents the log-odds of observing a 1, and yi is unconstrained.

Exercise 15.4 Let ρ ∈ [0, 1] the the probability of an event. Prove that ρ = ey/(1 + ey) if
and only if y = log(ρ/(1− ρ)) is the log-odds of the event.

Plugging the negative log likelihood for the Bernoulli distribution from Eq. (C.6) into
Eq. (15.1) with ρi = L(yi) = eyi/(1 + eyi) yields the negative log likelihood of Y to
be

f ≡
∑

i∈I
log(1 + eyi)− xiyi.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

15.2. Choices for Loss Functions 261

0 0.5 1 1.5 2 2.5 3

0

2

4

y

f
(y
)

x = 0

x = 1

−3 −2 −1 0 1 2 3

0

1

2

3

y

(a) Bernoulli elementwise loss function
f(y) = log(1 + y)− x log y (log link)

(b) Bernoulli elementwise loss function
f(y) = log(1 + ey)− xy (logit link)

Figure 15.2: Bernoulli elementwise loss functions with different links

The elementwise loss function for xi ∈ { 0, 1 } is shown in Fig. 7.2b. If xi = 0, the
elementwise loss function is minimized at yi = −∞. If xi = 1, the elementwise loss
function is minimized at yi = +∞.

Exercise 15.5 What is the derivative for the Bernoulli elementwise loss function with logit
link, i.e., fi(yi) = log(1 + eyi)− xiyi?

15.2.3 KL Divergence (Count Data)
Suppose the data in X is count data, e.g., values in N ≡ { 0, 1, 2, . . . }. In this case, it may
be reasonable to assume the data is Poisson distributed; see Appendix C.3.3. This means
we assume

xi ∼ Poisson(λi) where λi ≥ 0 for all i ∈ I.
The parameter λi is the mean and need not be an integer. We have to link the natural
parameter to the model, i.e., ρi = L(yi). We have two ways we could make this link.

One option is to simply define L(yi) = yi. This means that yi represents the expected
value of xi, and we need only constrain yi to be positive.

Plugging the negative log likelihood for the Poisson distribution from Eq. (C.8) into Eq. (15.1)
with λi = L(yi) = yi yields the negative log likelihood of Y to be

f ≡
∑

i∈I
yi − xi log yi + log xi!︸ ︷︷ ︸

constant w.r.t. Y

with yi > 0 for all i ∈ I.

This is the KL divergence. The last term does not involve yi and so can be ignored for
the purposes of optimization, leading to an elementwise loss function of the form fi(yi) =
yi − xi log yi. Hence, the objective function becomes

f =
∑

i∈I
yi − xi log yi with yi > 0 for all i ∈ I.

The constraint that yi be strictly positive can be difficult to enforce. In practice, we use
fi(yi) = yi − xi log(yi + ε) where ε is a very small constant and then constraint yi ≥ 0.

The elementwise loss function for sample values of xi is shown in Fig. 7.3a. The loss
function is minimized at yi = xi.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

262 Chapter 15. Generalized CP (GCP) Decomposition

Exercise 15.6 What is the derivative for the Poisson elementwise loss function with iden-
tity link, i.e., f(y) = y − x log y for fixed x? Prove that y = x satisfies the optimal-
ity conditions for nonnegativity constraints (see Proposition B.25) for all x ≥ 0 (assume
0 log 0 = 0 for the case of x = 0).

0 2 4 6 8 10

0

5

10

y

f
(y
)

x = 0

x = 1

x = 2

x = 5

−3 −2 −1 0 1 2 3

0

10

20

y

x = 0

x = 1

x = 2

x = 5

(a) Poisson elementwise loss function
f(y) = y − x log y (identity link)

(b) Poisson elementwise loss function
f(y) = ey − xy (log link)

Figure 15.3: Poisson elementwise loss functions for several fixed values of x ∈ N

Another option is to define L(yi) = eyi . This means that eyi represents the expected value
of xi, and yi is unconstrained.

Plugging the negative log likelihood for the Poisson distribution from Eq. (C.8) into Eq. (15.1)
with λi = L(yi) = eyi yields the negative log likelihood of Y to be

f ≡
∑

i∈I
eyi − xiyi + log xi!︸ ︷︷ ︸

constant w.r.t. Y

with yi > 0 for all i ∈ I.

The last term does not involve yi and so can be ignored for the purposes of optimization,
leading to an elementwise loss function of the form fi(yi) = em − xm. Hence, the
objective function becomes

f ≡
∑

i∈I
eyi − xiyi with yi > 0 for all i ∈ I.

The elementwise loss function for sample values of xi is shown in Fig. 7.3b. The loss
function is minimized at eyi = xi. For xi = 0, this means the optimal value of yi is −∞.

Exercise 15.7 What is the derivative for the Poisson elementwise loss function with log
link, i.e., f(y) = ey − xy with fixed x? Prove that y = log x satisfies the optimality
conditions for nonnegativity constraints (see Proposition B.25) for all x > 0.

15.2.4 Loss Functions for Nonnegative Data
There are many distributions for nonnegative data.

Gamma distribution

One general option is the gamma distribution, which includes some well known distribu-
tions as special cases; see Appendix C.3.4. The gamma function is only defined for strictly
positive data, and it has two parameters:

xi ∼ Gamma(K, θi) where θi > 0 for all i ∈ I.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

15.2. Choices for Loss Functions 263

We assume K is constant and use the link function θi = L(i) = yi/K, which means
yi = Kθi = E[xi].

Plugging the negative log likelihood for the Gamma distribution from Eq. (C.10) into
Eq. (15.1) with θi = L(i) = yi/K yields the negative log likelihood of Y to be

∑

i∈I
log Γ(K)︸ ︷︷ ︸

constant

+K log
yi
K

+K log xi︸ ︷︷ ︸
constant w.r.t Y

+
Kxi
yi

where yi > 0 for all i ∈ I.

Removing terms that do not involved yi and factoring out K, which can both be ignored
for the purposes of optimization, the elementwise loss function is fi(yi) = log yi +

xi

yi

with the constraint yi > 0, so the overall loss function is

f ≡
∑

i∈I
log yi +

xi
yi

where yi > 0 for all i ∈ I.

In practice, we use fi(yi) = log(yi + ε) + xi

yi+ε where ε is a very small constant, and then
we can relax the constraint to yi ≥ 0.

The elementwise loss function is shown in Fig. 15.4. The loss function is minimized when
yi = xi.

0 1 2 3

0

5

10

y

f
(y
)

x = 0.5

x = 1.0

x = 2.0

Figure 15.4: Gamma elementwise loss function f(y) = log y+x/y for several fixed x ∈ R
with x > 0

Exercise 15.8 What is the derivative for the Gamma elementwise loss function, i.e.,
fi(yi) = log yi − xi

yi
? Prove that yi = xi satisfies the optimality conditions for non-

negativity constraints (see Proposition B.25) for all xi > 0.

Beta Divergence

Another popular loss function for nonnegative data is the β-divergence (Cichocki and
Amari, 2010; Cichocki, Zdunek, et al., 2007; Févotte and Idier, 2011), though this does
not derive from a distribution. The origin of β-divergence is attributed to Basu et al. (1998)
and Mihoko and Eguchi (2002). For fixed x and β, the β-divergence is defined as

β-divergence(y) =

1
β(β−1)

(
xβ + (β − 1)yβ − βxyβ−1

)
if β ∈ R \ { 0, 1 } ,

x log x
y − x+ y if β = 1,

x
y − log x

y − 1 if β = 0.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

264 Chapter 15. Generalized CP (GCP) Decomposition

For β ∈ R \ { 0, 1 }, ignoring the terms that are constant with respect to the optimization,
the loss function becomes

f ≡
∑

i∈I

1

β
yβi −

1

β − 1
xiy

β−1
i where yi ≥ 0 for all i ∈ I.

Loss functions for different values of β are shown in C Fig. 15.5.

0 1 2 3
−10

−5

0

5

10

y

f
(y
)

0 1 2 3
−10

−5

0

5

10

y

x = 0.0
x = 0.5
x = 1.0
x = 2.0

0 1 2 3
−10

−5

0

5

10

y

(a) β = −0.5 (b) β = 0.5 (c) β = 1.5

Figure 15.5: Beta divergence elementwise loss function f(y) = yβ

β −
xyβ−1

β−1 for different
values of parameter β and several fixed x ∈ R with x ≥ 0

Exercise 15.9 What is the derivative for the beta divergence elementwise loss function
with β ̸∈ { 0, 1 }, i.e., f(y) = yβ/β − xyβ−1/(β − 1)? Prove that y = x satisfies the
optimality conditions for nonnegativity constraints (see Proposition B.25) for all x > 0.

The case of β = 0 reduces to the same loss function as for Gamma distribution.

Exercise 15.10 Prove that the elementwise loss function for β = 0 can be simplified to the
same as that for Gamma distribution with identity link, i.e., f(y) = log y + x/y.

The case of β = 1 reduces to the same loss function as for Poisson distribution.

Exercise 15.11 Prove that the elementwise loss function for β = 1 can be simplified to the
same as that for Poisson with identity link, i.e., f(y) = y − x log y.

15.2.5 Robust Loss Functions
One heuristic choice is the so-called Huber loss (Huber, 1964) which is a robust loss func-
tion (Hastie et al., 2009). For threshold ∆, the Huber elementwise loss function is

fi(yi) ≡
{
(xi − yi)2 if |xi − yi| ≤ ∆,

2∆|xi − yi| −∆2 otherwise.
(15.2)

We compare the Huber loss to the usual CP loss in Fig. 15.6. The Huber loss increases
more slowly away from the minimizer, making it more robust against outliers.

Exercise 15.12 What is the derivative for the Huber elementwise loss function? Prove
that y = x satisfies the optimality conditions for nonnegativity constraints (see Proposi-
tion B.25) for all x > 0.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

15.2. Choices for Loss Functions 265

−6 −4 −2 0 2 4 6

0

5

10

15

y

f
(y
)

Huber loss with x = −1.5
CP loss with x = −1.5
Huber loss with x = 0.5

CP loss with x = 0.5

Huber loss with x = 2.0

CP loss with x = 2.0

Figure 15.6: Comparison of Huber loss (with ∆ = 1.0) and CP loss for several fixed x ∈ R

15.2.6 Summary of Loss Functions
We summarize the options for the elementwise loss function in Table 15.1. In some cases,
strict positivity is required on y. However, we can add a small ε to relax this constraint.
Essentially, this indicates that we can never have yi = 0 if xi ̸= 0. In the table, we provide
a fix in the loss function, but it is also possible to design Y itself to have an extra “noise”
component per Remark 15.2.

Remark 15.2 (Handling strict positivity) Consider a case where strict positivity is re-
quired, such as the Bernoulli odds link. To compute a 3-way rank-r GCP decomposition
Y = JA,B,CK that satisfies strict positivity, we can optimize over a rank-(r + 1) decom-
position of the form

Ỹ = JA,B,CK + τ 1 , 1 , 1,

where τ > 0 is a regularization parameter, 1 represents a vector of all ones, and A,B,C
are only required to be nonnegative rather than strictly positive.

Table 15.1: Options for elementwise loss functions in GCP. Here, subscripts i are omitted,
data tensor element is x, and CP model element is y. Notation “≥ 0” indicates strict in-
equality is technically required; however, functions are adjusted by adding a small positive
constant “+ ε” to justify only nonnegativity.

Name f(y) Constraints

Gaussian (standard CP loss) (x− y)2 x, y ∈ R
Bernoulli (odds link) log(1 + y)− x log(y + ε) x ∈ { 0, 1 } , y ≥ 0

Bernoulli (logit link) log(1 + ey)− xy x ∈ { 0, 1 } , y ∈ R
Poisson (identity link) y − x log(y + ε) x ∈ N, y ≥ 0

Poisson (log link) ey − xy x ∈ N, y ∈ R
Gamma (affine link) x/(y + ε) + log(y + ε) x ≥ 0, y ≥ 0

Beta divergence (β ̸∈ { 0, 1 }) yβ/β + xyβ−1/(β − 1) x, y ≥ 0

Huber (robust loss)

{
(x− y)2 if |x− y| ≤ ∆

2∆|x− y| −∆2 otherwise
x, y ∈ R

Exercise 15.13 How does handling strict positivity as described in Remark 15.2 compare
to adding ε in certain places as prescribed in Table 15.1.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

266 Chapter 15. Generalized CP (GCP) Decomposition

15.3 Optimization Formulation
We now consider the optimization formulation, which generalizes the discussion of opti-
mization for CP in Chapter 12. We cast the optimization problem in terms of minimizing
a function f(v) where v is a vector. We can convert between a vector representation and
Kruskal tensor representation using the mats2vec and vec2mats operations as dis-
cussed in Section 12.1.

15.3.1 GCP for 3-way Tensors
For a 3-way tensor X ∈ Rm×n×p, elementwise loss function fijk(yijk), and rank r, we
can formulate the GCP optimization problem as

min
v∈Rr(m+n+p)

f(v) ≡
m∑

i=1

n∑

j=1

p∑

k=1

fijk(yijk) (15.3)

where {A,B,C } = vec2mats(v) and Y =
q
A,B,C

y
.

15.3.2 GCP for d-way Tensors
For a d-way tensor X ∈ Rn1×n2×···×nd , elementwise loss function fi1,i2,...,id(yi1,i2,...,id),
and rank r, we can formulate the GCP optimization problem as

min
v∈Rr(n1+n2+···+nd)

f(v) ≡
n1∑

i1=1

n2∑

i2=1

· · ·
nd∑

id=1

fi1,i2,...,id(yi1,i2,...,id) (15.4)

where {A1,A2, . . . ,Ad } = vec2mats(v),

Y =
q
A1,A2, . . . ,Ad

y
.

15.3.3 Properties and Extensions of GCP Decompositions
Because Y is a Kruskal tensor, it is subject to scaling and permutation ambiguities. The
scaling ambiguity, in particular, may confound the optimization method. In such a situation,
regularization can be added in the same way as for standard CP; see Section 9.4.2.

We may also consider adding constraints, such as nonnegativity of the factor matrices to
ensure that Y is nonnegative; see Section 9.5.1.

15.4 GCP Gradient and First-order Optimization
For computing the GCP gradient, we assume that f is continuously differentiable, which
depends on the choice for the elementwise loss functions.

15.4.1 GCP Gradient for 3-way Tensors
Consider the optimization problem Eq. (15.3) where the function f : Rr(m+n+p) → R. To
compute the partial gradient of f with respect to vec(B), we write f = g ◦ h with and

Y = JA,B,CK, h(A,B,C) = vec(Y), and g(vec(Y)) =

m∑

i=1

n∑

j=1

p∑

k=1

fijk(yijk).

We define the elementwise derivative tensor D ∈ Rm×n×p such that

D(i, j, k) ≡ f ′ijk(yijk) for all (i, j, k) ∈ [m]⊗ [n]⊗ [p].

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

15.4. GCP Gradient and First-order Optimization 267

Then, ∇g(vec(Y)) = vec(D). Via the chain rule (Theorem B.11), using the partial Jaco-
bian of h with respect to vec(B) is given in Proposition 12.7, we have

∂f

∂B

(
vec(B)

)
=

[
dh

d vec(B)

]⊺
∇g
(
h(A,B,C)

)

=

(
P⊺

2

[
(C⊙A)⊗ In

])⊺
vec(D)

=
[
(C⊙A)⊺ ⊗ In

]
P2 vec(D)

=
[
(C⊙A)⊺ ⊗ In

]
vec
(
D(2)

)

= vec
(
D(2)(C⊙A)

)
.

The result is summarized in the following proposition. We assume there is a tensor X ∈
Rm×n×p and that fijk depends on xijk.

Proposition 15.3 (GCP Gradient, 3-way) Let the GCP objective function be given by

f(A,B,C) =

m∑

i=1

n∑

j=1

p∑

k=1

fijk(yijk) where Y = JA,B,CK.

Define the elementwise derivative tensor D ∈ Rm×n×p such that D(i, j, k) = f ′ijk(i, j, k)
for all (i, j, k) ∈ [m]⊗ [n]⊗ [p]. Then

∇f =

vec
(
D(1)(C⊙B)

)

vec
(
D(2)(C⊙A)

)

vec
(
D(3)(B⊙A)

)

 .

Equivalently, in matrix notation,

∂f

∂A
= D(1)(C⊙B),

∂f

∂B
= D(2)(C⊙A), and

∂f

∂C
= D(3)(B⊙A).

Exercise 15.14 Show that the elementwise derivative tensor is D = X−Y if fijk(yijk) =
1
2 (xijk − yijk)2.

Exercise 15.15 Finish the proof for Proposition 15.3 by proving the gradients with respect
to A and C.

Exercise 15.16 Write an algorithm for computing the 3-way GCP function and gradient.

15.4.2 GCP Gradient for d-way Tensors
The d-way gradient is analogous to the 3-way case. Consider the optimization problem
Section 15.3.2 where the function f : Rr(n1+n2+···+nd) → R. The GCP objective function
is the sum of subfunctions. Specifically, we assume there is a tensor X ∈ Rn1×n2×···×nd

and that fi depends on xi.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

268 Chapter 15. Generalized CP (GCP) Decomposition

Proposition 15.4 (d-way GCP gradient) Let the GCP objective function be given by

f(A1,A2, . . . ,Ad) =
∑

i∈I
fi(yi) where Y = JA1,A2, . . . ,AdK.

Here, i ≡ (i1, i2, . . . , id) and I = [n1]⊗ [n2]⊗ · · · ⊗ [nd]. Then for each k ∈ [d],

∂f

∂ vec(Ak)
= vec

(
D(k)

(
Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1

))
.

Here, for all k ∈ [d], D ∈ Rn1×n2×···×nd is the elementwise derivative tensor such that
D(i) ≡ f ′i(yi) for all i ∈ I. Equivalently, in matrix notation, we have

∂f

∂Ak
= D(k)

(
Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1

)
.

Proof. To compute the partial gradient of f with respect to vec(Ak), we write f = g◦h as a
composition of functions. The function h(A1,A2, . . . ,Ad) = vec

(
JA1,A2, . . . ,AdK

)
=

vec
(
Y
)
, and its partial Jacobian with respect to vec(Ak) is given in Proposition 12.11. The

function g is

g(vec(Y)) =

n1∑

i1=1

n2∑

i2=1

· · ·
nd∑

id=1

fi1i2···id(yi1i2···id).

Then,∇g(vec(Y)) = vec(D). Via the chain rule (Theorem B.11), we have

∂f

∂ vec(Ak)
=

[
dh

d vec(Ak)

]⊺
∇g
(
h(A1,A2, . . . ,Ad)

)

=
(
P⊺

k

[
(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)⊗ Ink

])⊺
vec(D)

=
[
(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)

⊺ ⊗ Ink

]
Pk vec(D)

=
[
(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)

⊺ ⊗ Ink

]
vec
(
D(k)

)

= vec
(
D(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1)

)
.

As in the case with CP-OPT, there is no specific GCP-OPT algorithm. Instead, we give
an algorithm to compute the GCP function and gradient in Algorithm 15.1 which can be
combined with any first-order optimization method. See Section 12.3 for considerations
in choosing an appropriate optimization method; we recommend limited-memory BFGS
(L-BFGS) or its bound-constrained version (L-BFGS-B).

15.5 GCP-OPT Method
Just as for CP-OPT, we have algorithms for computing the function and gradient, so we can
use any gradient-based optimization method. We refer the reader to Section 12.3 for a dis-
cussion of the options. Since many of the methods have bound constraints, we recommend
using L-BFGS-B as the default optimization method.

○ Bound-constrained limited-memory BFGS (L-BFGS) is
the recommendation for optimization in GCP-OPT.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

15.6. Example: GCP-OPT on Monkey BMI Tensor 269

Algorithm 15.1 Computing GCP Function and Gradient for d-way Tensor

Require: data tensor X ∈ Rn1×···×nd , input vector v ∈ Rr(n1+n2+···+nd)

Ensure: f =
∑n1

i1=1

∑n2

i2=1 · · ·
∑nd

id=1 fi1,i2,...,id(yi1,i2,...,id) and g = ∇f
for {A1,A2, . . . ,Ad } = vec2mats(v) and Y = JA1,A2, . . . ,AdK

1: function GCP-FG(X, v)
2: {A1,A2, . . . ,Ad } ← vec2mats(v)
3: Y← JA1,A2, . . . ,AdK ▷ Explicit full Kruskal tensor
4: f ← 0
5: for (i1, i2, . . . , id) ∈ [n1]⊗ [n2]⊗ · · · ⊗ [nd] do
6: f ← f + fi1,i2,...,id(yi1,i2,...,id)
7: D(i1, i2, . . . , id)← f ′i1,i2,...,id(yi1,i2,...,id) ▷ Elementwise derivative tensor
8: end for
9: for k = 1, . . . , d do ▷ Sequence of MTTKRPs

10: Gk ← −D(k)(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1) ▷Gk = ∂f̃
∂Ak

11: end for
12: g← mats2vec

(
G1,G2, . . . ,Gd

)

13: return {f,g}
14: end function

Several of the GCP elementwise loss functions f(y) have a requirement that y is strictly
positive, i.e., y > 0. This will not work with a method such as L-BFGS-B because it only
handles inequalities of the form y ≥ 0 (nonnegativity). In this case, it is generally sufficient
to replace y everywhere in the elementwise function with y + ε where ε is a small value,
like 10−10.

15.6 Example: GCP-OPT on Monkey BMI Tensor
We revisit the Monkey BMI tensor from Section 9.7. In this experiment, a monkey uses
a brain-machine interface to move a cursor to a target location at an angle of 0, 90, 180,
or 270 degrees relative to the starting point. After achieving the target, the monkey must
hold the cursor at the target location for 500ms. The data is normalized so that the first
half of each trial is target acquisition and the second half is holding the cursor at the target.
Data are recorded from 88 neurons over 88 trials. The number of trials for each target is
documented in Table 1.2. The resulting tensor is of size

43 neurons × 200 times steps × 88 trials.

To use GCP, we want to specify an appropriate loss function, which generally requires
some experimentation, trial, and error.

We considered different loss functions and ultimately settled on the Huber loss in Eq. (15.2)
with ∆ = 0.001. We use a small value of ∆ because the values of X are very small, ranging
between 0 and 0.187 with a median value of 0.010. Hence, using ∆ = 0.001 means that
the Huber loss acts like standard least squares if the model is within 10% of the median
value and otherwise acts like (scaled) absolute value loss.

An illustration of an 8-component GCP factorization with Huber loss is shown in Fig. 15.7.
We plot each component as a row in the image. Along each row, the first plot is a bar chart
plotting the neuron activity levels, normalized to the norm of the component. Additionally,
the neurons were sorted according to total activity across all trials, from most to least active.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

270 Chapter 15. Generalized CP (GCP) Decomposition

The middle is a plot of the time mode, scaled to norm one. The right is a scatter plot of
the different trials, scaled to norm one. Each dot in the scatter chart is colored by the target
angle. The tensor decomposition did not have access to which trial corresponded to which
target; thus, any correlations between the components and the targets are learned from only
the neural activity data.

1

Neuron Time (normalized) Trial (normalized) 0 90 180 270

2

3

4

5

6

7

0 10 20 30 40

8

0 50 100 150 0 20 40 60 80

Figure 15.7: Rank-8 GCP decomposition of Monkey BMI tensor with Huber loss (∆ =
0.001)

We make a few observations about these experimental results.

• Component 1 is active consitently across all trials, based on examining the third
factor in that component. We hypothesize that this is background brain activity.

• Component 2 separates the 90 degree (yellow) targets. This target corresponds to the
highest number of trials (see Table 1.2) and so it is not surprising that this component
has the largest magnitude of the target-specific components.

• Component 3 separates the 180 degree (purple) targets.

• Component 4 has no clear patterns of activity in terms of trials, but appears to corre-
spond to activity at the beginning of each trial based on the time profile in the second
factor of the component.

• Component 5 separates the 0 degree (red) targets, with the exception of the lowest
red marker.

• Components 6 and 7 have no clear patterns of activity in terms of trials, but appear
to correspond to activity in the second half of the trials, which is when the cursor is
being held at the target location.

• Component 8 separates the 270 degree (blue) targets. This target corresponds to the
lowest number of trials (see Table 1.2) and so it is not surprising that this component
has the smallest magnitude of the target-specific components.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

15.7. Example: GCP-OPT on Chicago Crime Tensor 271

In general, these GCP results are appealing because they separate the four trials and also
show other activities that have reasonable interpretations. For instance, components 6 and
7 seem to correspond to the holding activity in the second half of the trial.

Remark 15.5 (Optimization methodology) For GCP, we use L-BFGS-B as the optimiza-
tion method with the following settings per Zhu et al. (1997). The memory parameter (m)
is 5. The maximum number of iterations (maxIts) is 250. The convergence tolerance
depends on two values: the projected gradient tolerance (pgtol) is 1e-7 and the function
tolerance divided by machine epsilon (factr) is 1e-7/eps or 4.5e8.

Exercise 15.17 Implement GCP-OPT. Reproduce the results in Fig. 15.7. Further, cluster
the trials using k-means to produce a confusion matrix as in Table 9.1.

Exercise 15.18 Try other objective functions. How does the interpretability compare with
Huber loss?

15.7 Example: GCP-OPT on Chicago Crime Tensor
We have given an example of using GCP on the Chicago crime tensor in Section 9.8.

Exercise 15.19 Implement GCP-OPT. Using Poisson with identity link (along known as
KL divergence), run GCP-OPT at various ranks for the Chicago crime tensor, reproducing
Fig. 9.12.

Exercise 15.20 Compare the results of Poisson with identity link and Poisson with log link
for rank r = 7. Provide an interpretation of each. Which do you think is more useful?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16
CP Tensor Rank and
Special Topics

In this chapter, we consider algebraic properties of tensor rank and implications for comput-
ing CP. We cover the fact that computing the rank in NP-hard, ill-posedness, and the notion
of border rank. We explore the connection between rank, border rank, and fast matrix mul-
tiplication. We show how to algebraically compute the rank and rank decomposition of any
2× 2× 2 tensor and some more general low-rank tenors.

16.1 Tensor Rank
Recall from Section 10.1 that a rank-1 tensor is an outer product of vectors. The rank of a
tensor is the number of rank-1 tensors needed to exactly reconstruct it.

Definition 16.1: Tensor Rank, 3-way

The rank of a tensor X ∈ Rm×n×p is

rank(X) = min
{
r ∈ N

∣∣ X = JA,B,CK with A ∈ Rm×r,B ∈ Rn×r,C ∈ Rn×r
}
.

Definition 16.2: Tensor Rank, d-way

The rank of a tensor X ∈ Rn1×n2×···×nd is

rank(X) = min
{
r ∈ N

∣∣ X = JA1,A2, . . . ,AdK with Ak ∈ Rnk×r for all k ∈ [d]
}
.

The definition is analogous to matrix rank (the number of rank-1 matrices that sum to the
original matrix), but many of its properties differ. Notably, the rank of a real-valued tensor
can be different over R and C. In this book, we focus exclusively on the rank over R,
excepting Example 16.1 that illustrates a tensor with different ranks over R and C.

Example 16.1 (Different Ranks over R and C) Consider the 2× 2× 2 tensor X given by

X(:, :, 1) =

[
1 0
0 −1

]
and X(:, :, 2) =

[
0 1
1 0

]
.

We want its rank decomposition X = JA,B,CK. Over R, rank(X) = 3 with

A =

[
1 0 1
0 1 1

]
, B =

[
1 0 1
0 1 1

]
, and C =

[
1 −1 0
−1 −1 1

]
.

We will discuss how to compute the rank of X over R later in Exercise 16.27. In contrast,

273

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

274 Chapter 16. CP Tensor Rank and Special Topics

over C, rank(X) = 2 with

A =
1√
2

[
1 1
−i i

]
, B =

1√
2

[
1 1
−i i

]
, and C =

[
1 1
i −i

]
,

where here i =
√
−1.

Exercise 16.1 For both the real and complex factorizations in Example 9.1, verify that
these produce the tensor X.

○ Rank of a tensor is unchanged by permutation or TTM with nonsingular matrix.

Exercise 16.2 (Rank Unaffected by TTM with Nonsingular Matrix) Define Y = X×k U
where U is a nonsingular matrix of appropriate size. Prove rank(Y) = rank(X). (Hint:
First prove rank(Y) ≤ rank(X), and then reverse the roles of Y and X to get equality.)

Exercise 16.3 (Rank Unaffected by Permutation) Define Y = P(X, π) where π is a
permutation of the modes of X. Prove rank(Y) = rank(X). (Hint: First prove rank(Y) ≤
rank(X), and then reverse the roles of Y and X to get equality.)

16.2 Tensor Rank is NP-Hard
There are well-known methods for determining the rank of an arbitrary matrix. In contrast,
there are no methods for determining the rank for an arbitrary tensor. Hillar and Lim (2013)
have shown that computing the rank of a tensor (and most tensor problems) is NP-hard,
based on the work of Håstad (1990).

Theorem 16.3 (Tensor Rank in NP-Hard, Hillar and Lim, 2013) For any real-valued tensor
X ∈ Rm×n×p and r ∈ N, it is NP-hard to determine if rank(X) ≤ r.

In Section 16.6.3, we discuss an infamous 9× 9× 9 tensor whose rank is unknown, and so
far only bounded between 19 and 23.

For data science applications, we generally do not know or need to know the exact rank, so
we use various heuristics to choose an approximate rank. This may be thought of as finding
the best low-rank approximation. Unfortunately, de Silva and Lim (2008) have shown that
some low-rank approximation problems are ill-posed. In Section 16.5, we show an example
of a tensor of rank-3 that has no best rank-2 approximation. Although de Silva and Lim
(2008) have also shown that the set of tensors that do not have a best rank-k approximation
has positive probability over any continuous distribution on tensors, this issue is rarely
encountered in data analysis applications.

16.3 Maximum Rank
Although we cannot compute the rank of a tensor in general, we could perhaps settle for
knowing the maximum (attainable) rank of tensors of a given size. For example, in the case
of a m × n matrix, we know its maximum rank is min {m,n }. We formally define the
notion of maximum rank for a given tensor size.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16.4. Typical Rank 275

Definition 16.4 (Maximum Rank) The maximum rank for tensors of size n1×n2×· · ·×
nd is the largest attainable rank for that size, i.e.,

max–rank(n1 × n2 × · · · × nd) ≡ max { rank(X) | X ∈ Rn1×n2×···×nd } .

Unfortunately, with the exception of a few special cases, maximum ranks for most higher-
order tensors are unknown. The special cases where the maximum rank is known are listed
in Table 16.1. The first result for 2 ×m × n tensors implies that 2 × 2 × 2 has maximum
rank of 3. Thus, the tensor in Example 16.1 achieved the maximum rank (over R) for its
size.

Table 16.1: Known maximum tensor ranks. Order of dimensions does not change rank, so
sizes are sorted from smallest to largest.

Tensor Size Maximum Rank Source

2×m× n (m ≤ n) m+min {m, ⌊n/2⌋ } JáJá (1979); Kruskal (1989)
3× 3× 3 5 Kruskal (1989)
3× 7× 7 8 Atkinson and Stephens (1979)
2× 4× 4 6 ten Berge (2000)

We can derive (see Exercise 16.4) a weak upper bound on the maximal rank:

max–rank(n1 × n2 × · · · × nd) ≤ min
k

d∏

ℓ=1
ℓ ̸=k

nℓ =

∏d
k=1 nk

maxk nk
. (16.1)

In other words, the maximum rank is the product of all dimensions except the largest one.

Exercise 16.4 Prove Eq. (16.1). (Hint: This connects to matrix factorization.)

Slightly better bounds are known for m× n× p tensors where p ≤ mn− 1 (Atkinson and
Lloyd, 1983; Atkinson and Stephens, 1979). If p = mn − 1, we can bound the maximum
rank as mn− 1 versus mn in Eq. (16.1). If p ≤ mn− 2, there is only one tensor with rank
mn− 1 and the remainder have maximum rank mn− 2.

16.4 Typical Rank
Suppose we create a randomm×nmatrix by filling it with standard normal random values.
With probability 1, its rank is equal to min {m,n }. So, we might ask the same question
about a random m× n× p tensor.

Definition 16.5 (Typical Rank) The typical rank(s) for tensors of size n1×n2× · · · ×nd
is the set of all ranks that occur with probability greater than zero, for any continuous
distribution D(n1, . . . , nd) over the set of all such tensors. In other words,

typical–rank(n1 × · · · × nd) ≡ { r | Prob { rank(X) = r | X ∼ D(n1, . . . , nd) } > 0 } .

In most cases, the typical rank is unknown. The exception is for three-way tensors, where
some progress has been made. A summary of the known typical ranks is provided in
Table 16.2. It is possible that the typical is different than the maximal rank. For example,
we know from Table 16.1 that 2 × 4 × 4 tensors have a maximum rank of 6 where as
Table 16.2 shows that the typical ranks are { 4, 5 }.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

276 Chapter 16. CP Tensor Rank and Special Topics

Table 16.2: Known typical ranks over R for tensors of size m × n × p. Without loss of
generality (since the order of the modes does not impact rank), 2 ≤ m ≤ n ≤ p.

Size Typical Rank Source

2× n× n {n, n+ 1 } ten Berge and Kiers (1999)
3× 3× 3 5 ten Berge and Stegeman (2006)
3× 3× 5 { 5, 6 } ten Berge (2004)
3× 4× 8 { 8, 9 } Sumi et al. (2013)

3× 5× 9 { 9, 10 } Choulakian (2010);
ten Berge (2011)

4× 4× 12 { 12, 13 } Friedland (2012)
m× n× n(m− 1)

m > 2, n odd
n(m− 1) ten Berge (2000)

m× n× p
n(m− 1) < p < mn

p
ten Berge and Kiers (1999); ten

Berge (2000)
m× n× p
p ≥ mn

mn
ten Berge and Kiers (1999); ten

Berge (2000)

The typical ranks of 2 ×m × n tensors have been completely characterized by ten Berge
and Kiers (1999). If the size of the first mode is greater than two, then we reply primarily
on the results of ten Berge (2000). For p = n(m− 1), in contrast to the results for m = 2,
the typical rank depends on whether n is even or odd. If n is odd, the typical rank is p;
however, if n is even, we do not know what the typical rank is. It is conjectured to be
{ p, p+ 1 }. We only know for sure for the smallest cases listed in the table. See ten Berge
(2011) for further details and other results such as lower bounds, computational estimates,
rank of symmetric tensors, etc.

○ The maximum and typical ranks of tensors (over R)
are unknown except in a few special cases.

Exercise 16.5 Using Table 16.2, give the typical ranks for tensors of size (a) 2 × 2 × 3,
and (b) 2× 3× 3.

16.5 Border Rank
The best rank-k approximation may not exist (de Silva and Lim, 2008). Example 16.2
provides a famous illustration of this problem, and other examples can be found in Bini,
Capovani, et al. (1979) and Paatero (2000). To this end, Bini, Capovani, et al. (1979)
defined the important concept of border rank, which considers whether or not a tensor is a
limit point of a sequence of lower-rank tensors.

Definition 16.6 (Border Rank) The border rank of a tensor X is given by

border–rank(X) = min{ r | for any ε > 0, there exists Y
such that rank(Y) = r and ∥X− Y∥ < ε }.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16.6. Connections to Arithmetic Complexity 277

Example 16.2 (Border Rank ̸= Rank, from Paatero, 2000 and de Silva and Lim, 2008)
Let a1,a2 ∈ Rm, b1,b2 ∈ Rn, and c1, c2 ∈ Rp. Define the tensor X ∈ Rm×n×p by

X = a1 , b1 , c2 + a1 , b2 , c1 + a2 , b1 , c1.

It can be shown that rank(X) = 3. However, X can be approximated arbitrarily well by a
rank-2 tensor Y defined by

Y = α

(
a1 +

1

α
a2

)
,
(
b1 +

1

α
b2

)
,
(
c1 +

1

α
c2

)
− αa1 , b1 , c1.

If we expand out the terms of the first component of Y, we see

Y = αa1 , b1 , c1 + a1 , b1 , c2 + a1 , b2 , c1 + a2 , b1 , c1

+
1

α
a1 , b2 , c2 +

1

α
a2 , b1 , c2 +

1

α
a2 , b1 , c2 +

1

α2
a2 , b2 , c2

− αa1 , b1 , c1

= X+
1

α

(
a1 , b2 , c2 + a2 , b1 , c2 + a2 , b2 , c1 +

1

α
a2 , b2 , c2

)
.

Hence,

lim
α→+∞

∥X− Y∥ =

lim
α→+∞

1√
α

∥∥∥∥a1 , b2 , c2 + a2 , b1 , c2 + a2 , b2 , c1 +
1

α
a2 , b2 , c2

∥∥∥∥ = 0

This means that X can be approximated arbitrarily closely by a rank-2 tensor, but Y con-
verges to a rank-3 tensor,

lim
α→+∞

Y = X.

This is only possible because the norms of the components of Y diverge. The space of all
rank-2 tensors is not closed, so a sequence can converge to something outside of the space
of rank-2 tensors.

In Example 16.2, border–rank(X) = 2 even though rank(X) = 3. We revisit the border
rank in Section 16.6.

Exercise 16.6 (Border Rank ≤ Rank) Prove border–rank(X) ≤ rank(X).

16.6 Connections to Arithmetic Complexity
Tensor rank is fundamental to several deep questions in arithmetic complexity, including
the complexity of matrix-matrix multiplication. Dense matrix-matrix multiplication is a
fundamental computation in a wide variety of applications such as deep learning, computa-
tional simulation, image processing, etc. To approach the problem of reducing its arithmetic
complexity, we frame the problem in terms of evaluating bilinear forms.

Definition 16.7 (Bilinear Form) A bilinear form is a function that maps a pair of vectors
to a scalar and is linear in each of its input vectors, i.e., f : Rm × Rn → R.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

278 Chapter 16. CP Tensor Rank and Special Topics

Proposition 16.8 (Matrix Representation of Bilinear Form) If f : Rm × Rn → R is a
bilinear form, then there exists M ∈ Rm×n such that f(u,v) = u⊺Mv for all u ∈ Rm

and v ∈ Rm.

If we have a set of p bilinear forms to be evaluated on the same pair of inputs, then we have
a vector-valued function f : Rm × Rn → Rp that corresponds to a 3-way tensor X such
that the kth bilinear form is

fk(u,v) = u⊺Xkv =

m∑

i=1

n∑

j=1

xijkuivj , (16.2)

where Xk = X(:, :, k) is the kth frontal slice. In TTM notation, we have

f(u,v) = X×1 u⊺ ×2 v⊺.

In the case that the elements of the input vectors u and v are objects for which multiplica-
tion is more expensive than addition or scalar multiplication (e.g., matrices), we can reduce
the complexity of the evaluation of f(u,v) by minimizing the number of active multipli-
cations between elements of u and elements of v. Evaluating Eq. (16.2) directly requires
an active multiplication for every nonzero entry in X. We assume this cost is dominated by
the active multiplications rather than the scaling and accumulation operations. The reason
for this assumption will become clear later.

Suppose we have an exact CP decomposition of the tensor X = JA,B,CK of rank r:
X =

∑r
ℓ=1 aℓ , bℓ , cℓ. Then we can express the set of bilinear forms as

f(u,v) =

(
r∑

ℓ=1

aℓ , bℓ , cℓ

)
×1 u⊺ ×2 v⊺ =

r∑

ℓ=1

(a⊺ℓu) (b
⊺
ℓv) cℓ.

Evaluating this expression requires computing a⊺ℓu and b⊺
ℓv for each ℓ ∈ [r], but because

the elements of A and B are scalars, this amounts to taking linear combinations of elements
of u and v. The number of costly operations, the active multiplications, is exactly the rank
of the decomposition r. Scaling and summing over the vectors cℓ also corresponds to
taking linear combinations of the outputs of the active multiplications. Thus, minimizing
the complexity of the evaluation of f corresponds to finding an exact CP decomposition of
the tensor X with minimal rank.

Casting the arithmetic complexity question as a CP decomposition problem does not make
it easier to solve, since tensor rank is still NP-hard. However, we can use numerical meth-
ods to compute approximate solutions and employ heuristics like regularization to try and
find exact decompositions. This has been successful for matrix-matrix multiplication when
the matrix dimensions are small (Ballard, Ikenmeyer, et al., 2018; Benson and Ballard,
2015; Brent, 1970; Johnson and McLoughlin, 1986; Smirnov, 2013).

16.6.1 Multiplying Complex Numbers
A simple example of a set of bilinear forms is the multiplication of two complex numbers:

(u1 + u2i)(v1 + v2i) = (u1v1 − u2v2) + (u1v2 + u2v1)i ≡ w1 + w2i,

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16.6. Connections to Arithmetic Complexity 279

where i ≡
√
−1. We can represent a complex number as a vector containing the real part

and imaginary part, yielding the expression as a pair of bilinear forms
[
w1

w2

]
=

[
u1v1 − u2v2
u1v2 + u2v1

]
.

Letting Xk ≡ X(:, :, k) denote the frontal slices, the corresponding tensor representation
is

X1 =

[
1 0
0 −1

]
and X2 =

[
0 1
1 0

]
. (16.3)

We can write this in terms of 4 active multiplications (denoted m1 through m4), one per
nonzero:

[
w1

w2

]
=

[
m1 −m2

m3 +m4

]
where

m1 = u1v1,

m2 = u2v2,

m3 = u1v2,

m4 = u2v1.

(16.4)

Correspondingly, we can write X as the sum of 4 rank-one components (one per active
multiplication). In other words, we can decompose X = JA,B,CK with

A =

[
1 0 1 0
0 1 0 1

]
, B =

[
1 0 0 1
0 1 1 0

]
, and C =

[
1 −1 0 0
0 0 1 1

]
.

The way to read this is that the columns of A say which parts of the vector u = [u1
u2

] go
into each active multiplication and likewise for the columns of B and the vector v = [v1v2].
Finally, each row of the matrix C dictates the combination of the active multiplications.

However, we know from Table 16.1 that the maximum rank of a 2 × 2 × 2 tensor is 3.
In fact, this is the tensor we considered in Example 16.1, which has rank 3. The rank-3
decomposition is X = JA,B,CK with

A =

[
1 0 1
0 1 1

]
, B =

[
1 0 1
0 1 1

]
, and C =

[
1 −1 0
−1 −1 1

]
. (16.5)

Since this decomposition is rank 3, there are 3 active multiplications as follows (reading
off the combinations from the columns of A and B), and the rows of C yield the linear
combinations of the active multiplications:

[
w1

w2

]
=

[
m1 −m2

−m1 −m2 +m3

]
where

m1 = u1v1,

m2 = u2v2,

m3 = (u1 + u2)(v1 + v2).

(16.6)

Here m1,m2,m3 represent the 3 active multiplications. This method is known as the 3M
method for complex multiplication (Higham, 1992).

The standard evaluation of Eq. (16.4) requires 4 active multiplications and 2 additions/sub-
tractions, whereas the 3M method given by Eq. (16.6) requires 3 active multiplications and
5 additions/subtractions.

Exercise 16.7 Explain how X in Eq. (16.3) corresponds to multiplying complex numbers.

Exercise 16.8 Verify that Eq. (16.5) is a rank-3 decomposition of X in Eq. (16.3).

Exercise 16.9 Compute a CP decomposition of X in Eq. (16.3) using a computational
method. Why is the computed solution not the same as Eq. (16.5)?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

280 Chapter 16. CP Tensor Rank and Special Topics

16.6.2 Strassen’s 2 × 2 Matrix Multiplication
Consider the multiplication of two 2× 2 matrices: W = UV written out is

[
w11 w12

w21 w22

]
=

[
u11v11 + u12v21 u11v12 + u12v22
u21v11 + u22v21 u21v12 + u22v22

]
.

Each of the 4 elements of the output matrix is a bilinear form involving the two input ma-
trices (each considered as a vector of length 4). The set of bilinear forms corresponds to a
4× 4× 4 tensor with 8 nonzeros, analogous to the construction of the complex multiplica-
tion tensor.

In order to expose a special kind of symmetry in the tensor called cyclic symmetry, we use
column-wise (natural) linearization for the input matrices and row-wise (reverse) lineariza-
tion of the output; in other words, we use vec(U), vec(V), and vec(W⊺). The frontal
slices of the corresponding 4× 4× 4 tensor are

X1 =

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , X2 =

0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0

 , X3 =

0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0

 , X4 =

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

 , (16.7)

yielding vec(W⊺) = X×1 vec(U)
⊺×2 vec(V)

⊺. An interesting feature of this representa-
tion is that X is invariant under cyclic permutations of the indices, i.e., xijk = xkij = xjki
for all i, j, k ∈ [4].

We can see that direct evaluation performs 8 active multiplications, one for each nonzero,
and 4 additions. This equates to the computations

w11

w12

w21

w22

 =

m1 +m2

m3 +m4

m5 +m6

m7 +m8

 where

m1 = u11v11, m2 = u12v21,

m3 = u11v12, m4 = u12v22,

m5 = u21v11, m6 = u22v21,

m7 = u21v12, m8 = u22v22

Strassen (1969) showed there is a rank-7 decomposition: X = JA,B,CK with

A =

1 0 1 0 1 –1 0
0 1 0 0 0 1 0
0 0 0 0 1 0 1
1 1 0 1 0 0 –1

 , B =

1 1 0 –1 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
1 0 –1 0 1 0 1

 , C =

1 0 0 1 –1 0 1
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 –1 1 0 0 1 0

 . (16.8)

Remark 16.9 (Cyclic permutation invariance) This decomposition is invariant under
cyclic permutation, meaning X = JA,B,CK = JB,C,AK = JC,A,BK. This is a conse-
quence of the cyclic symmetry of X. All cyclic permutations of the factor matrices yield
valid decompositions: These three decompositions differ only by permutation (see Defini-
tion 10.12).

Similar to the 3M method for multiplying complex numbers, this decomposition specifies
an algorithm. The columns of A give the linear combinations of the entries of vec(U), and
the columns of B give the linear combinations of the entries of vec(V) that feed into the
active multiplications, denoted by mℓ. The rows of C provide the linear combinations of

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16.6. Connections to Arithmetic Complexity 281

active multiplications corresponding to vec(W⊺). In this way, matrix-matrix multiplication
can be performed using 7 active multiplications and 18 additions/subtractions:

w11

w12

w21

w22

 =

m1 +m4 −m5 +m7

m3 +m5

m2 +m4

m1 −m2 +m3 +m6

 where

m1 = (u11 + u22)(v11 + v22),

m2 = (u21 + u22)v11,

m3 = u11(v12 − v22),

m4 = u22(v21 − v11),

m5 = (u11 + u12)v22,

m6 = (u21 − u11)(v11 + v12),

m7 = (u12 − u22)(v21 + v22).

(16.9)

The correspondence between the factor matrices and the computations can be seen, for
example, by considering the last columns of each of the matrices, which together as a
component correspond to m7. The 7th column of A has a 1 in the 3rd row and a −1 in
the 4th row, which corresponds to the linear combination u12 − u22, as the elements of A
have been linearized in natural order. Likewise, the 7th column of B has 1’s in the 2nd
and 4th rows, which corresponds to the linear combination v21 + v22. These two linear
combinations are the inputs to the m7 multiply. The 7th column of C encodes how m7

contributes to the output elements: because there is a 1 only in the 1st row, m7 is added
only to the output element w11.

The real power of this low-rank decomposition for a tiny matrix multiplication is that it
applies to block matrices and, moreover, can be applied recursively. First, consider the
block case. If the entries of U, V, and W are n × n matrices, then each active multipli-
cation costs O(n3) (assuming direct matrix-matrix multiplication) and each addition costs
O(n2). This implies that for large N , Strassen’s method reduces computation by a factor
of approximately 8/7. Second, we gain even more savings when we consider recursive
application of the method. Matrices of dimension n×n can be partitioned into 2× 2 block
matrices with dimensions n/2 × n/2 (or close to it if n is not even), and we can perform
each of the 7 active multiplications recursively. This means that n × n multiplication can
be performed with arithmetic complexityO(nlog2 7) = O(n2.8074) rather thanO(n3). The
seemingly small improvement in the exponent is significant for large n, and it leads to im-
proved running times in practice (Benson and Ballard, 2015; Huang et al., 2016; Lipshitz
et al., 2012).

The rank of this 4 × 4 × 4 tensor for 2 × 2 matrix multiplication is 7 (Landsberg, 2006;
Winograd, 1971), so it is not possible to improve the exponent any further when considering
a 2 × 2 partitioning. It is possible to reduce the hidden constant by optimizing the base
case dimension within the recursion, reducing the number of additions/subtractions per
Winograd’s variant (Higham, 2002) and using an alternative basis to represent the matrices
as proposed by Karstadt and Schwartz (2020).

Exercise 16.10 Verify that X = JA,B,CK for X in Eq. (16.7) and the factors in Eq. (16.8).

Exercise 16.11 Compute a rank-7 factorization of X in Eq. (16.7) using a computational
method. How does the solution compare with Eq. (16.8)? How might you find a solution
with only entries in {−1, 0, 1 }?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

282 Chapter 16. CP Tensor Rank and Special Topics

16.6.3 3 × 3 Matrix Multiplication
In order to find matrix multiplication algorithms with reduced arithmetic complexity, we
can consider larger base cases (changing both the rank and the base of the logarithm in the
recursion). The multiplication of two 3 × 3 matrices corresponds to a 9 × 9 × 9 tensor
X such that every entry is zero except for 27 entries equal to 1. If we linearize the input
matrices column-wise and the output matrix row-wise, this tensor is

xijk =

{
1 (i, j, k) ∈ Ω,

0 otherwise,
where Ω =

(1, 1, 1), (5, 5, 5), (9, 9, 9),

(1, 2, 4), (2, 4, 1), (4, 1, 2),

(1, 3, 7), (3, 7, 1), (7, 1, 3),

(2, 4, 5), (4, 5, 2), (5, 2, 4),

(2, 6, 7), (6, 7, 2), (7, 2, 6),

(3, 4, 8), (4, 8, 3), (8, 3, 4),

(3, 7, 9), (7, 9, 3), (9, 3, 7),

(5, 6, 8), (6, 8, 5), (8, 5, 6),

(6, 8, 9), (8, 9, 6), (9, 6, 8)

. (16.10)

This tensor also has cyclic symmetry: xijk = xkij = xjki for all (i, j, k). There exist exact
CP decompositions with r = 23 (Laderman, 1976), including some that are invariant under
cyclic permutation (Ballard, Ikenmeyer, et al., 2018); but there is no rank decomposition.
Instead, we know only that the rank is between r = 19 (Bläser, 2003) and r = 23.

The recursive algorithm based on the r = 23 decomposition has complexityO(nlog3 23) =
O(n2.8541). If a rank r = 21 decomposition is discovered, then it will yield a matrix
multiplication algorithm with complexity O(nlog3 21) = O(n2.7713), which is better than
Strassen’s algorithm for the 2× 2 case.

Exercise 16.12 Show how the tensor in Eq. (16.10) is corresponds to 3 × 3 times 3 × 3
matrix-matrix multiplication.

Exercise 16.13 Compute a rank-23 decomposition of the X corresponding to 3× 3 matrix
multiplication.

16.6.4 General Matrix Multiplication
We are not restricted to considering only the case of square matrix multiplication. We
can consider a base case of multiplying m × n and n × p matrices for any triplet of inte-
gers ⟨m,n, p⟩. The mn × np × mp tensor representing matrix multiplication with these
dimensions is defined entrywise by

X⟨m,n,p⟩(a+ (b− 1)m, c+ (d− 1)n, e+ (f − 1)p) = δfaδbcδde

for f, a ∈ [m], b, c ∈ [n], and d, e ∈ [p], where δij is the Kronecker delta function that is
1 if i = j and 0 otherwise (Brent, 1970). The Kronecker deltas ensure that nonzero entries
in the tensor correspond to subscripts that match between pairs of matrices, as each scalar
multiplication within matrix multiplication has the form uijvjk, which contributes to wik.
The tensor can be generated using the following pseudocode:

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16.6. Connections to Arithmetic Complexity 283

Tensor for m× n and n× p Matrix-matrix Multiplication
X = 0 ▷ X ∈ Rmn×np×mp

for i = 1 to m do
for j = 1 to n do

for k = 1 to p do
X(i+ (j − 1)m, j + (k − 1)n, k + (i− 1)p) = 1

end for
end for

end for
As before, this uses natural linearization of the input matrices and reverse linearization of
the output matrix, which exposes the tensor’s cyclic symmetry when m = n = p.

If we have a rank-r decomposition of X⟨m,n,p⟩ as a base case, then we can combine it
with the corresponding cyclically permuted decompositions for ⟨p,m, n⟩ and ⟨n, p,m⟩, to
obtain a rank-r3 decomposition for ⟨mnp,mnp,mnp⟩. We can think of this combination
of algorithms as alternating recursive steps among the three recursive rules. This implies a
matrix multiplication algorithm for N ×N matrices with complexity O(N3 logmnp r).

Another transformation of a CP decomposition for ⟨m,n, p⟩ yields a CP decomposition of
⟨n,m, p⟩. This means that, along with the cyclic permutation transformation, an algorithm
for ⟨m,n, p⟩ yields algorithms for all five of the other permutations of the dimensions
(Hopcroft and Musinski, 1973). Table 16.3 lists several small base case dimension triplets
and the best known rank upper bounds, along with the exponent for the corresponding
matrix multiplication algorithm.

Table 16.3: Rank upper bounds on tensors corresponding tom×n times n×pmatrix mul-
tiplication. Without loss of generality (since the order of the modes does not impact rank of
the matrix-matrix multiplication), we assume m ≤ n ≤ p. The exponent α means that the
corresponding matrix-matrix multiply for two N ×N matrices has arithmetic complexity
O(Nα) based on recursive application of matrix-matrix multiplication.

⟨m,n,p⟩ Rank Bound Exponent (α) Citation

⟨2, 2, 2⟩ 7 2.81 Strassen (1969)
⟨2, 3, 3⟩ 15 2.81 Hopcroft and Kerr (1971)
⟨3, 3, 3⟩ 23 2.85 Laderman (1976)
⟨3, 3, 4⟩ 29 2.82 Smirnov (2013)
⟨2, 5, 5⟩ 40 2.83 Hopcroft and Kerr (1971)
⟨3, 3, 6⟩ 40 2.77 Smirnov (2013)
⟨3, 4, 5⟩ 47 2.82 Fawzi et al. (2022)
⟨4, 4, 4⟩ 49 2.81 Strassen (1969)
⟨3, 5, 5⟩ 58 2.82 Sedoglavic and Smirnov (2021)
⟨4, 4, 5⟩ 62 2.83 Kauers and Moosbauer (2023)
⟨4, 5, 5⟩ 76 2.82 Fawzi et al. (2022)
⟨5, 5, 5⟩ 97 2.84 Kauers and Moosbauer (2023)

The list is certainly not exhaustive, as progress continues to be made. Most of the exam-
ples are just upper bounds on rank given by a particular CP decomposition of that rank,
leaving gaps between the best known lower and upper bounds. Most of the algorithms
have been discovered using computer-aided search. Ballard, Ikenmeyer, et al. (2018), Ben-
son and Ballard (2015), Brent (1970), Johnson and McLoughlin (1986), Sedoglavic and

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

284 Chapter 16. CP Tensor Rank and Special Topics

Smirnov (2021), and Smirnov (2013) use variants of common algorithms for computing
CP decompositions like CP-ALS (Chapter 11) and CP-NLS (Chapter 13), and more re-
cent approaches have used deep learning (Fawzi et al., 2022) and combinatorial techniques
(Kauers and Moosbauer, 2023).

Exercise 16.14 (a) Form the tensor X⟨2,3,3⟩ corresponding to matrix-matrix multiplication
for matrices of size 2× 3 and 3× 3. (b) Compute its rank-15 factorization.

16.6.5 Arbitrary Precision Approximating Algorithms
Recall that the border rank of a tensor is the smallest r such that for any approximation
error there exists a rank-r CP approximation within that error (Definition 16.6). If the
border rank of a particular matrix multiplication tensor is smaller than its rank, it means
that we can (in infinite precision) compute an arbitrarily precise approximation of a matrix
product more cheaply than computing it exactly. These are known as Arbitrary Precision
Approximating (APA) algorithms.

The first APA algorithm was demonstrated for multiplying 2× 2 matrices where one input
matrix has a zero entry (Bini, Capovani, et al., 1979). This is used to construct an APA
algorithm for ⟨3, 2, 2⟩ based on a rank-10 CP decomposition as shown in Example 16.3.

Example 16.3 (Rank-10 APA Decomposition for ⟨3, 2, 2⟩ Matrix Multiplication from
Bini, Capovani, et al., 1979) Given the parametrized factor matrices

A(ε) =

1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 ε ε
0 0 0 ε ε 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 1 0

,

B(ε) =

ε 0 0 −ε 0 1 1 −1 1 0
0 −1 0 1 0 0 0 0 ε 0
0 0 0 0 ε 0 0 −1 0 1
1 −1 1 0 1 ε 0 0 0 −ε

 ,

C(ε) =

1/ε 1/ε −1/ε 1/ε 0 0 0 0 0 0
0 0 −1/ε 0 1/ε 0 0 0 0 0
0 0 0 1 0 1 0 0 −1 0
1 0 0 0 −1 0 0 0 0 1
0 0 0 0 0 0 −1/ε 0 1/ε 0
0 0 0 0 0 1/ε −1/ε 1/ε 0 1/ε

,

we have
lim
ε→0

JA(ε),B(ε),C(ε) K = X⟨3,2,2⟩.

The rank of X⟨3,2,2⟩ is 11 (Bläser, 2003), so the border rank and rank differ. The exponent
for the complexity of square matrix multiplication based on this algorithm is 3 log12 10 ≈
2.78, which is better than Strassen’s ⟨2, 2, 2⟩ algorithm, but it computes only an approxi-
mate matrix multiplication result.

In exact arithmetic, APA algorithms can be transformed into exact algorithms with an over-

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16.7. CP Uniqueness 285

head of a polylogarithmic factor (Bini, 1980). In finite precision, APA algorithms must nav-
igate a tradeoff between the approximation error of the algorithm and the roundoff error,
but the optimal value of the parameter ε can be computed from properties of the algorithm
(Bini, Lotti, et al., 1980).

APA algorithms enable much faster decrease in the exponent of the complexity of matrix
multiplication. Strassen’s ⟨2, 2, 2⟩ algorithm is beaten by an exact algorithm only after
the base case is enlarged to ⟨6, 3, 3⟩. APA algorithms have thus far been key to obtaining
exponents that are competitive with the current world record of 2.371552 for a theoretical
algorithm (Williams, Xu, et al., 2024). Alas, the algorithms with the best exponents are not
practical: they involve base cases of infeasible size, have large constant factors, and incur
the numerical difficulties since they are inexact.

Exercise 16.15 Verify Example 16.3.

16.7 CP Uniqueness
An important property of a tensor rank decomposition is uniqueness. When we say a tensor
decomposition is unique, we mean it is “essentially” unique up to inherent permutation
and scaling ambiguities; see Definition 10.15 and 10.18. Uniqueness means that there is
only one rank decomposition for a given tensor. It is worth remembering that low-rank
matrix decompositions are not unique, as discussed in Section 10.5. Likewise, the Tucker
decomposition is not unique; see Section 5.3. If a decomposition is unique, it improves
interpretation.

In the results below, the properties of the factor matrices can be used to determine if the fac-
torization is essentially unique. Before we explain those conditions, we need the following
definition.

Definition 16.10: k–rank (Kruskal, 1989)

The k–rank of a matrix A, denoted k–rank(A), is the maximum value of k such that any
k columns of A are linearly independent.

Exercise 16.16 Let

A =

[
1 2 4
1 2 2

]
and B =

[
2 2 4
0 2 2

]
.

What is rank(A)? What is k–rank(A)? What is rank(B)? What is k–rank(B)?

Proposition 16.11 (Upper Bounding k-rank) Kruskal, 1989] For any matrix A ∈ Rn×r,
k–rank(A) ≤ rank(A).

Exercise 16.17 Prove Proposition 16.11.

Proposition 16.12 (Full Rank Matrix k-rank) Let A ∈ Rn×r with r ≤ n. If rank(A) = r,
then k–rank(A) = r.

Exercise 16.18 Prove Proposition 16.12.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

286 Chapter 16. CP Tensor Rank and Special Topics

If A is orthonormal, then its rank and k-rank are both equal to r. Otherwise, the k-rank
is not necessarily easy to compute, but we can lower bound it by using a result from com-
pressed sensing. In compressed sensing, the spark of a matrix is defined to be the minimum
number of linearly dependent columns. Thus, spark(A) = k–rank(A) + 1, and so results
on the spark can be used for the k–rank.

Proposition 16.13 (Lower Bounding k-rank, Elad, 2010, Lemma 2.1) For any matrix
A = [a1 a2 · · ·ar] ∈ Rn×r that is not orthonormal,

k–rank(A) ≥ min

{
r,

1

µ(A)

}
where µ(A) = max

i ̸=j

a⊺i aj
∥ai∥2∥aj∥2

.

The value µ(A) is called the coherence of A.

The first uniqueness result is due to Kruskal (1977) and says that an r-component Kruskal
tensor K = JA,B,CK is essentially unique if the the k-ranks of the factor matrices sum to
2r+2. This would be satisfied, for instance, if r < min {m,n, p } and every factor matrix
is full rank.

Theorem 16.14: Kruskal Uniqueness (Kruskal, 1977)

A Kruskal tensor K = JA,B,CK with r components is essentially unique if

k–rank(A) + k–rank(B) + k–rank(C) ≥ 2r + 2. (16.11)

Equation (16.11) is a sufficient but not a necessary condition. For instance, Eq. (16.11)
cannot hold for r = 1, but the uniqueness in this case has been proved by Harshman
(1972). For r ∈ { 2, 3 }, ten Berge and Sidiriopolous (2002) showed that Eq. (16.11) is
necessary. See also Stegeman and Sidiropoulos (2007) for further discussion and details of
the proof. This result has been generalized to the d-way case as follows.

Theorem 16.15: Kruskal Uniqueness (Sidiropoulos and Bro, 2000)

A Kruskal tensor K = JA1,A2, . . . ,AdK with r components is essentially unique if

d∑

k=1

k–rank(Ak) ≥ 2r + d− 1. (16.12)

Exercise 16.19 Using Theorem 16.15, prove that the r-component Kruskal tensor K =
JA1,A2, . . . ,AdK is (essentially) unique if r ≥ 2 and k–rank(Ak) = r for all k.

Eq. (16.12) is sufficient but not necessary for uniqueness. Conversely, there are some
necessary conditions.

Theorem 16.16 (Non-uniqueness of CP, Liu and Sidiropoulos, 2001) If

min { rank(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1) | k ∈ [d] } < r

then the r-component Kruskal tensor K = JA1,A2, . . . ,AdK is not essentially unique.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16.8. Direct Computation of Rank for Certain Tensors 287

Exercise 16.20 Prove Theorem 16.16 using Proposition 10.10 and facts from Ap-
pendix A.7 to show that if

k∗ = argmin { rank(Ad ⊙ · · · ⊙Ak+1 ⊙Ak−1 ⊙ · · · ⊙A1) | k ∈ [d] } ,

then there are infinitely many Ãk∗ that satisfy

JA1,A2, . . . ,AdK = JA1, . . . ,Ak∗−1, Ãk∗ ,Ak∗+1, . . . ,AdK.

Exercise 16.21 Using Theorem 16.16 and the properties of the KRP, prove that the rank
decomposition in Example 9.1 is not unique.

16.8 Direct Computation of Rank for Certain Tensors
In general, computing the rank and the rank decomposition is NP-hard. However, there are
a few particular instances where we can compute the tensor rank or decomposition alge-
braically (by which we mean using matrix eigendecompositions). In general, these results
are not especially practical, but they have some utility in exposing what is theoretically
possible. They assume that the tensor is exact (no experimental noise or uncertainty) and
that various quantities such as matrix eigenvalues can be computed. Perhaps the most im-
portant takeaway from this section is how little is known about tensor rank, with only a
small number of situations well characterized.

As a preliminary, we consider a special identity for all 3-way tensors. If X = JA,B,CK ∈
Rm×n×p, we can write the kth frontal slice Xk ≡ X(:, :, k) as

Xk =

r∑

ℓ=1

ckℓ aℓb
⊺
ℓ = Adiag

(
C(k, :)

)
B⊺ for all k ∈ [p]. (16.13)

We will work extensively with the frontal slices and this expression in this section.

16.8.1 Rank-1 Tensors
It is always possible to determine if a tensor is exactly rank one by considering the ranks
of its mode-k unfoldings.

3-way Tensors

We can test whether or not a tensor is rank one by computing the ranks of its unfoldings.
A three-way tensor is rank one if at least two unfoldings are rank one.

Theorem 16.17 (Conditions for Rank-One Tensor, 3-way) Let X ∈ Rm×n×p. If any two
of its three mode-k unfoldings are rank one, then rank(X) = 1.

Proof. By definition, the rank of X is unchanged by any permutation of the modes. Thus,
without loss of generality, we assume that rank

(
X(1)

)
= rank

(
X(3)

)
= 1.

Let the frontal slices of X be denoted as Xk ≡ X(:, :, k) for all k ∈ [p]. Recall (see
Section 2.3.1) that the unfoldings are such that

X(1) =
[
X1 X2 · · · Xp

]
∈ Rm×np, (16.14)

X⊺
(3) =

[
vec(X1) vec(X2) · · · vec(Xp)

]
∈ Rmn×p. (16.15)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

288 Chapter 16. CP Tensor Rank and Special Topics

Since X(3) is rank one, we have

X(3) = cz⊺ for some c ∈ Rp and z ∈ Rmn.

From Eq. (16.15), this means vec(Xk) = ckz for all k ∈ [p]. Or, equivalently, Xk = ckZ
where Z = reshape(z,m× n).
Now, since X(1) is rank one, Eq. (16.14) implies each Xk is also rank one. Thus, Z must
be rank one and so can be expressed as

Z = ab⊺ for some a ∈ Rm and b ∈ Rn.

Finally, we have

X(3) = c vec(Z)⊺ = c vec(ab⊺)⊺ = c(b⊗ a)⊺ ⇒ X = a , b , c.

The last step comes from Proposition 3.7.

Exercise 16.22 Let X ∈ Rm×n×p. Prove the following: If rank(X) = 1, then
rank(X(1)) = rank(X(2)) = rank(X(3)) = 1

d-way Tensors

We can extend this idea for d-way tensors. A sufficient condition for a d-way tensor to be
rank one is that d− 1 of its unfoldings are rank one.

Theorem 16.18 (Conditions for Rank-One Tensor) Let X ∈ Rn1×n2×···×nd . If d − 1 of
its d mode-k unfolding are rank one, then rank(X) = 1.

Proof. We do a proof by induction. We know the result holds for d = 3 from Theo-
rem 16.17. So, we assume that the result holds for every d′ < d and prove it for d.

By definition, the rank of X is unchanged by any permutation of the modes. Thus, without
loss of generality, we assume rank

(
X(k)

)
= 1 for all k > 1.

Let the frontal hyperslices of X be denoted as Yj = X(:, . . . , :, j) for all j ∈ [nd]. From
Exercise 2.32, we have

X⊺
(d) =

[
vec
(
Y1

)
vec
(
Y2

)
· · · vec

(
Ynd

)]
∈ RNd×nd , (16.16)

where Nd =
∏d−1

k=1 nk.

Since rank
(
X(d)

)
= 1, we have

X(d) = bz⊺ for some b ∈ Rnd and z ∈ RNd .

From Eq. (16.16), this means vec
(
Y(j)

)
= bjz for all j ∈ [nd]. Or, equivalently, Yj = bjZ

where Z = reshape(z, n1 × n2 × · · · × nd−1) is a tensor of order d− 1.

From Exercise 2.33, we can relate the ranks of the unfoldings: Y(j)
(k) is rank one if X(k) is

rank one. We have rank
(
X(k)

)
= 1 for k ∈ 2, . . . , d− 1. Since Z is a multiple of Y(j)

for any j ∈ [d − 1], we have that d − 2 of its unfoldings have rank one. By the induction
assumption, Z has rank one.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16.8. Direct Computation of Rank for Certain Tensors 289

Thus, setting ad = b and Z = a1 , a2 , · · ·, ad−1 (since it is rank one), we have

X(d) = ad vec(Z)
⊺ = ad vec(ad−1 ⊗ · · · ⊗ a1)

⊺ ⇒ X = a1 , a2 , · · ·, ad.

The last step comes from Proposition 3.10.

Exercise 16.23 Provide an algorithm for computing the rank-1 factorization of a d-way
tensor where X(k) is rank one for k ∈ { 2, 3, . . . , d }.

16.8.2 Rank of 2 × 2 × 2 Tensors
We can compute the rank of a 2×2×2 tensor directly. From the discussion in the previous
subsection, we can easily check whether a 2× 2× 2 tensor is rank one. We consider some
special cases before our main result.

For the special case of a superdiagonal tensor, the rank is 2.

Proposition 16.19 (Superdiagonal 2 × 2 × 2 is Rank 2, ten Berge, 1991) Let X ∈
R2×2×2. If X is superdiagonal, meaning

X(:, :, 1) =
[
α 0
0 0

]
and X(:, :, 2) =

[
0 0
0 β

]
,

then rank(X) = 2.

Exercise 16.24 Prove Proposition 16.19.

The following result says that if every slice is rank one, then either the tensor is rank one
or the tensor is superdiagonal (and thus rank 2 by the prior result).

Proposition 16.20 (ten Berge, 1991) A nonzero tensor X ∈ R2×2×2 is rank one if and only
if every frontal, lateral, and horizontal slice is at most rank one and X is not superdiagonal.

Proof. One direction is left as Exercise 16.25.

For the other direction, we assume every nonzero frontal, lateral, and horizontal slice is
rank one. We will prove that either rank(X) = 1 or X is superdiagonal.

Without loss of generality, we assume the tensor has been permuted to that X(1, 1, 1) is
nonzero. We denote the frontal slices as Xk ≡ X(:, :, k) for k ∈ { 1, 2 }.
Case I: Zero slice (rank 1). First, consider the case that some slice is zero. Without loss
of generality, assume the tensor is permuted so that the frontal slice X2 is the zero slice.
Then X(1) = [X1 0] and X⊺

(3) = [vec(X1) 0] are both rank 1, so by Theorem 16.17,
rank(X) = 1.

Case II: No zero slice (rank 1). Because every slice is rank 1, the frontal slices have the
form

X1 =
[
a αa

]
=

[
a1 αa1
a2 αa2

]
and X2 =

[
βb γb

]
=

[
βb1 γb1
βb2 γb2

]
.

Here, a1 ̸= 0 because of the assumption that element X(1, 1, 1) ̸= 0. Likewise, b ̸= 0 and
either β or γ must be nonzero, but not both, because no slice is entirely zero.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

290 Chapter 16. CP Tensor Rank and Special Topics

Case IIa: b ∝ a (rank 1). First, consider the possibility that b = a (since β and γ are
arbitrary, this is just a simplification of b proportional to a). Since the horizontal slices are
nonzero, we know

X(1, :, :) =

[
a1 αa1
βb1 γb1

]
=

[
a1 αa1
βa1 γa1

]

has rank 1 and so γ = αβ. Thus, both

X(1) =
[
a αa βa γa

]
and X(2) =

[
a⊺ βa⊺

αa⊺ αβa⊺

]

are rank 1, so rank(X) = 1 by Theorem 16.17.

Case IIb: b ̸∝ a (superdiagonal). Second, assume b is not proportional to a. The rank-1
lateral slices are

X(:, 1, :) =
[
a βb

]
and X(:, 2, :) =

[
αa γb

]
.

Since these are rank one, we must have β = 0. Since β = 0, γ ̸= 0 since they cannot both
be zero. Hence, α = 0. Without loss of generality (since b is arbitrary), we assume γ = 1.
So, the rank-1 nonzero horizontal slices are

X(1, :, :) =

[
a1 0
0 b1

]
and X(2, :, :) =

[
a2 0
0 b2

]
.

Since we assume a1 ̸= 0, it must be the case that b1 = 0. Since b ̸= 0, it must be the case
that b2 = 0. Hence, a2 = 0. Thus, X is superdiagonal.

Exercise 16.25 Prove the following: if a tensor X ∈ R2×2×2 is rank one, then every
frontal, lateral, and horizontal slice is at most rank one.

By the following proposition, except for special cases we can check, we can always assume
that the first frontal slice is nonsingular.

Proposition 16.21 Let X ∈ R2×2×2. If rank(X) > 1 and X is not superdiagonal,
then there exists a mode permutation π and a 2 × 2 matrix permutation P such that
Y = P(X, π)×3 P and its first frontal slice, Y(:, :, 1), is nonsingular.

Proof. By Proposition 16.20, there must be at least one frontal, horizontal, or lateral slice
that is full rank. Choose π so that this slice is a frontal slice, i.e., after permuting the modes,
either X1 or X2 is nonsingular. If X1 is singular, then we multiply X by the permutation
matrix P = [0 1

1 0] in mode 3 to swap the slices. Hence, the claim.

The cases we have dealt with thus far (rank 1, superdiagonal) are unusual in the sense that
a real-valued tensor with entries chosen at random from a continuous distribution (e.g.,
normal or uniform) have probability zero. The main case of interest, which occurs with
probability 1, is that the first frontal slice is nonsingular.

First, we formally prove that that the maximum rank of a 2×2×2 tensor is three, following
the constructive proof from ten Berge (1991).

Theorem 16.22 (Maximum Rank of 2×2×2 is 3, JáJá, 1979; Kruskal, 1983; ten Berge,
1991) The maximum rank of a 2× 2× 2 tensor is 3.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16.8. Direct Computation of Rank for Certain Tensors 291

Proof. Let X1 and X2 denote the frontal slices of X ∈ R2×2×2. Without loss of generality,
assume rank(X) > 1 and that X1 is nonsingular. (By Proposition 16.21, there must be a
nonsingular slice, and the rank is invariant to permutation.)

Define Y = X2X
−1
1 ,

A =

[
1 0 y12
0 1 y21

]
, B = X⊺

1

[
1 0 1
0 1 1

]
, and C =

[
1 1 0

y11 − y12 y22 − y21 1

]
.

Then the first frontal slice of JA,B,CK is Adiag
(
C(1, :)

)
B⊺ per Eq. (16.13), which yields

[
1 0 y12
0 1 y21

]

1 0 0
0 1 0
0 0 0

[
1 0 1
0 1 1

]
X1 = X1,

and the second frontal slice is Adiag
(
C(2, :)

)
B⊺, which yields

[
1 0 y12
0 1 y21

]

y11 − y12 0 0

0 y22 − y21 0
0 0 1

[
1 0 1
0 1 1

]
X1 = YX1 = X2.

Hence, the maximum rank is three because we can write any X using three components,
i.e., X = JA,B,CK with A,B,C ∈ R2×3.

So, the remaining question is how to differentiate between ranks two and three for tensors
of rank greater than one and not superdiagonal. In this case, we consider the eigendecom-
position of the matrix X2X

−1
1 . If it is diagonalizable, which means we can write X2X

−1
1 =

UΛU−1 for some nonsingular matrix U and diagonal matrix Λ, then rank(X) = 2; other-
wise, rank(X) = 3.

Theorem 16.23 (ten Berge, 1991) Let X ∈ R2×2×2 with rank(X) > 1 and X1 nonsingu-
lar. Then rank(X) = 2 if and only if X2X

−1
1 is diagonalizable. Otherwise, rank(X) = 3.

Proof. Let X1 and X2 denote the frontal slices of X. By the assumption that rank(X) > 1
and Theorem 16.22, we know that rank(X) ∈ { 2, 3 }.
If rank(X) = 2, then X = JA,B,CK with A,B,C ∈ R2×2. Hence, by Eq. (16.13),

X1 = A
[
c11 0
0 c12

]
B⊺ and X2 = A

[
c21 0
0 c22

]
B⊺.

Since X1 is nonsingular, we know A and B are nonsingular and c11 and c12 are nonzero.
Thus, we can write

X2X
−1
1 = A

[
c21/c11 0

0 c22/c12

]
A−1,

so X2X
−1
1 is diagonalizable.

Conversely, if X2X
−1
1 is diagonalizable, then can write its eigenvalue decompositions as

UΛU⊺ where Λ = diag(λ1, λ2). Set A = U, B⊺ = U−1X1, and C =
[

1 1
λ1 λ2

]
. Since

X1 = UU−1X1 = Adiag
(
C(1, :)

)
B⊺ and X2 = UΛU−1X1 = Adiag

(
C(2, :)

)
B⊺,

we prove by construction that X = JA,B,CK has rank 2. If rank(X) ̸= 2, we must have
rank(X) = 3 by process of elimination.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

292 Chapter 16. CP Tensor Rank and Special Topics

Remark 16.24 (Do not use explicit inverses) To compute Y = X2X
−1
1 , do not compute

the inverse of X1 explicitly; instead, solve the system YX1 = X2 for Y.

Ten Berge (1991, relying in part on Kruskal, 1989) shows that we can use a special calcu-
lation to determine the rank. Define

∆ ≡ (x122x211 + x111x222 − x112x221 − x121x212)2
− 4(x121x112 − x111x122)(x221x212 − x211x222).

This is the discriminant of det(X2X
−1
1 − λI) = 0 where det denotes the determinant.

The roots of this polynomial are the eigenvalues of X2X
−1
1 . The value of ∆ determines the

rank as follows:

∆ > 0 ⇒ rank(X) = 2,

∆ < 0 ⇒ rank(X) = 3,

∆ = 0 ⇒ rank(X) ∈ { 0, 1, 2, 3 } .

The quantity ∆ is also known as Cayley’s hyperdeterminant of a 2 × 2 × 2 tensor (de
Silva and Lim, 2008). As discussed in Section 16.4 and derived earlier in this section, the
typical ranks of 2 × 2 × 2 tensors are { 2, 3 }. In other words, if you choose a tensor at
random, it has rank 2 or rank 3 with probability one.

The cases where ∆ = 0 occur with probability zero for tensors drawn at random, but we
can still determine the rank (de Silva and Lim, 2008). If ∆ = 0, the rank can be inferred
by additionally considering the ranks of the unfoldings:

∆ = 0 and

rank(X(1)) = rank(X(2)) = rank(X(3)) = 0 ⇒ rank(X) = 0,

rank(X(1)) = rank(X(2)) = rank(X(3)) = 1 ⇒ rank(X) = 1,

rank(X(1)) = rank(X(2)) = rank(X(3)) = 2 ⇒ rank(X) = 3,

otherwise ⇒ rank(X) = 2.

Exercise 16.26 (a) What is the rank of the tensor X whose frontal slices are

X1 =

[
1 0
0 0

]
and X2 =

[
0 0
1 0

]
?

(b) What is the rank of the tensor X whose frontal slices are

X1 =

[
1 0
0 0

]
and X2 =

[
0 1
1 0

]
?

Exercise 16.27 Prove that the rank (over R) of the tensor in Example 16.1 is 3.

Exercise 16.28 Generate 100,000 tensors of size 2×2×2 with independent random entries.
Give the breakdown by rank if the random entries are (a) normal distributed with mean 0
and standard deviation 1, (b) uniformly distributed on [−1, 1], (c) one with probability 1/2
and zero otherwise, and (d) one with probability 1/2 and negative one otherwise. Discuss
the differences in these results.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16.8. Direct Computation of Rank for Certain Tensors 293

Exercise 16.29 Construct a tensor X = JA,B,CK where A,B,C ∈ R2×3 and the entries
of each factor matrix are drawn from a standard normal distribution. Compute the 2×2×2
tensor X explicitly, and then computes its rank. Repeat this 100,000 times. What is the
breakdown of the ranks?

16.8.3 Rank of n × n × 2 Tensors
We can extend some of the analysis of the previous subsection to tensors of size n×n× 2.
As discussed in Section 16.4, the typical ranks of n × n × 2 tensors are {n, n+ 1 }. If a
tensor’s first frontal slice is nonsingular, we can check if its rank is n. Further, if the tensor
has rank n, we can construct its decomposition. The proof of the next result is adapted
from ten Berge (1991).

Theorem 16.25 (Decomposing n × n × 2 Tensors of Rank n) Let X ∈ Rn×n×2 with
frontal slices denoted X1 and X2, and let X1 be nonsingular. Then, rank(X) = n if and
only if X2X

−1
1 is diagonalizable, i.e., there exists a nonsingular U ∈ Rn×n and vector

λ ∈ Rn such that
X2X

−1
1 = U diag(λ)U−1.

In this case, X has a rank-n CP decomposition of the form

X =
r
U,
(
U−1X1

)⊺
,
(
[1n λ]

)⊺z
. (16.17)

Proof. If rank(X) = n, then X = JA,B,CK where A,B ∈ Rn×n and C ∈ R2×n. Thus,
we can write

X1 = A

c11 · · · 0

...
. . .

...
0 · · · c1n

B⊺ and X2 = A

c21 · · · 0

...
. . .

...
0 · · · c2n

B⊺.

Since we have assumed that X1 is invertible, its multiplicands are all nonsingular and the
diagonal entries c1j are all nonzero. Consequently, X2X

−1
1 is diagonalizable as

X2X
−1
1 = A

c21/c11 · · · 0

...
. . .

...
0 · · · c2n/c1n

A−1.

Conversely, assume X2X
−1
1 can be written as

X2X
−1
1 = UΛU−1 where Λ = diag(λ1, λ2, . . . , λn).

Defining A = U and B⊺ = U−1X1 , we have

X1 = UB⊺ = AB⊺ and X2 = UΛU−1X1 = AΛB⊺.

Defining

C =

[
1 1 · · · 1
λ1 λ2 · · · λn

]
,

we can see that X has rank n since X = JA,B,CK. Moreover, this is the decomposition
given in Eq. (16.17).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

294 Chapter 16. CP Tensor Rank and Special Topics

The requirement in the above result that X1 be invertible is a generic requirement. In
other words, if you choose a tensor at random with entries from a continuous distribution,
its frontal slice will be nonsingular. In practice, if we have a situation where X1 is not
invertible, we can modify X by, for instance, permuting the frontal slices.

As a consequence of the above result, we obtain the following corollary that generically
characterizes the space of all n× n× 2 tensors. See the discussion in ten Berge (1991) for
further details.

Corollary 16.26 (Generic Characterization of n × n × 2 Tensors) Let X ∈ Rn×n×2,
and let X1 and X2 denote its frontal slices. With probability 1, either (a) X2X

−1
1 exists

and is diagonalizable so that rank(X) = n, or (b) rank(X) = n+ 1.

From Corollary 16.26, we can estimate the proportion of n × n × 2 tensors with ranks n
and n + 1 via numerical experiments, and the results for n ∈ { 2, 3, . . . , 9 } are shown
in Table 16.4. Using results from random matrix theory, Bergqvist (2013) has shown that
the probability of a 2 × 2 × 2 tensor having rank 2 is exactly π/4 ≈ 0.7854 and that
the probability of a 3 × 3 × 2 tensor having rank 3 is exactly 1/2. The theory aligns
perfectly with Table 16.4. Unfortunately, these results have not been extended to larger n.
Nevertheless, the proportion of n× n× 2 tensors of rank n is decreasing as n grows.

Table 16.4: Numerical estimation of proportion of n × n × 2 tensors having ranks n and
n + 1. Data generated from 100,000 tensors with standard normal random values, using
Corollary 16.26 to determine if the rank is n.

n Tensor Size Rank = n Rank = n+1

2 2× 2× 2 78.505 % 21.495 %
3 3× 3× 2 50.043 % 49.957 %
4 4× 4× 2 26.159 % 73.841 %
5 5× 5× 2 11.067 % 88.933 %
6 6× 6× 2 3.863 % 96.137 %
7 7× 7× 2 1.163 % 98.837 %
8 8× 8× 2 0.233 % 99.767 %
9 9× 9× 2 0.057 % 99.943 %

Exercise 16.30 Recreate the computational experiments used to produce Table 16.4 and
validate the results.

16.8.4 Direct Computation of CP for Certain m × n × p Tensors
Dating back to Harshman (1972), there have been a series of papers (Domanov and De
Lathauwer, 2014; Evert et al., 2022; Leurgans et al., 1993; Sanchez and Kowalski, 1990)
on direct computation of the CP decomposition for three-way tensors X ∈ Rm×n×p when
the rank is rank(X) ≤ min {m,n } and the factors satisfy certain conditions. In general,
most tensors will not satisfy these criteria, and so this direct method has limited utility;
additionally, Beltrán et al. (2019) have shown that direct computation is numerically unsta-
ble. Nevertheless, we discuss these techniques for the sake of completeness and refer the
interested reader to Domanov and De Lathauwer (2014) for further discussion.

The basic idea relates to our discussion in the prior subsection on decomposing a tensor of
size n × n × 2. Extending those ideas, it is possible to algebraically (using matrix eigen-

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16.8. Direct Computation of Rank for Certain Tensors 295

decompositions) compute a CP decomposition of certain m × n × p tensors. Specifically,
for a tensor X ∈ Rm×n×p we require that the rank is bounded as

rank(X) = r ≤ min {m,n } . (16.18)

Further, we assume that the rank decomposition X = JA,B,CK satisfies

rank(A) = rank(B) = r and k–rank(C) = 2. (16.19)

Under these conditions, the rank decomposition is unique (Theorem 16.14), and we can
compute it as we describe below.

Reducing First Two Modes We can compute orthonormal matrices U ∈ Rm×r and
V ∈ Rn×r such that they span the mode-1 and mode-2 fibers of X, respectively. It is
typically recommended to compute U and V via the HOSVD (Evert et al., 2022). Let

X̄ = X×1 U⊺ ×2 V⊺ ∈ Rr×r×p.

Then rank(X̄) = rank(X) by Exercise 16.31.

Exercise 16.31 Let X ∈ Rn1×n2×···×nd . Prove the following. If Uk spans the column
space of X(k), then rank(X) = rank(X×k U⊺

k).

We can derive the rank decomposition of X̄ from that of X:

X̄ = JU⊺A︸ ︷︷ ︸
Ā

, V⊺B︸ ︷︷ ︸
B̄

,C K. (16.20)

Moreover, this rank decomposition is unique.

Exercise 16.32 Prove that the rank decomposition of X̄ in Eq. (16.20) is unique. (Hint:
Use Eq. (16.19).)

Decomposing Reduced Tensor From Eq. (16.20), we have that

X̄ =

r∑

ℓ=1

āℓ , b̄ℓ , cℓ.

This implies that the frontal slices of X̄ can be written as:

X̄k =

r∑

ℓ=1

ckℓāℓb̄
⊺
ℓ = Ā diag(C(k, :))B̄

⊺ for all k ∈ [p].

The idea of reducing the third mode is that we need only two frontal slices to uniquely
determine the factorization of X using the connection to the generalized eigenvalue de-
composition (GEVD) of a matrix pencil. The expressions

X̄1 = Ā

c11 · · · 0

...
. . .

...
0 · · · c1r

 B̄

⊺ and X̄2 = Ā

c21 · · · 0

...
. . .

...
0 · · · c2r

 B̄

⊺
.

give the Kronecker canonical form of the matrix pencil (X̄1, X̄2). Here Ā and B̄ are
matrices of generalized eigenvectors and the ratios c1ℓ/c2ℓ for ℓ ∈ [r] are the generalized

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

296 Chapter 16. CP Tensor Rank and Special Topics

eigenvalues (which can be infinite). Thus, by solving the generalized eigenproblem on the
first two slices of X̄, we can recover the first two CP factor matrices for the entire tensor X̄.

In fact, we can choose any two slices or, more generally, choose any orthonormal W ∈
Rp×2 and compute

X̂ = X̄×3 W⊺.

Given X̂ ∈ Rr×r×2, we compute the GEVD of the matrix pencil (X̂1, X̂2). As described
above, the generalized eigenvectors correspond to the CP factors Â and B̂ of X̂ (and X̄).

Translating to Original Tensor Finally, we have

A = UĀ = UÂ and B = VB̄ = UB̂.

We can compute the C matrix by solving the linear least squares problem directly since we
know A and B; i.e., C is the solution to

C(A⊺A∗B⊺B) = X(3)(B⊙A)

as in the CP-ALS algorithm (Chapter 11).

Discussion Several important cautionary notes on computing CP directly are in order.

• The tensor must be exactly low rank.
• Arbitrary tensors X ∈ Rm×n×p are not guaranteed to satisfy rank(X) ≤ min {m,n }.
• The rank and properties of the factor matrices must be known in advance.
• Even when the above conditions are satisfied, numerical instability can be an issue

despite the use of numerically stable methods for the matrix computations like the
GEVD (Beltrán et al., 2019).

16.9 Greedy Computation
One method that might seem natural for computing a low-rank CP approximation is a
greedy approach whereby we compute one component at a time, getting the best rank-1
approximation to the current residual. In general, this approach does not produce a best
rank-k approximation (Kolda, 2001, 2003). Exercise 16.33 walks through an example
where the best rank-1 approximation is not a component of the best rank-two approxima-
tion, illustrating why a greedy method to compute a CP factorization is ill advised.

Exercise 16.33 (Adapted from Example 4.3 of Smilde et al., 2004) Define X ∈ R2×2×2

via its frontal slices to be

X(:, :, 1) =

[
14 10
11 9

]
, X(:, :, 2) =

[
14 6
8 4

]
.

(a) Compute the best rank-1 approximation (this can be done via the methods learned
for Tucker decomposition), which we denote as Y1. What is the norm of the residual,
∥X− Y1∥?

(b) Compute the best rank-1 approximation of R1 = X − Y1, denoted as Y2. Let
Y = Y1 + Y2. What is the rank of Y? What is ∥X− Y∥?

(c) Show that Z = JA,B,CK is a rank factorization of X with

A =

[
1 2
1 1

]
, B =

[
2 3
2 1

]
, and C =

[
4 1
1 2

]
.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

16.9. Greedy Computation 297

(d) Choose the largest of the two components Z, denoted as Z1. Compute the norm of
the residual for this rank-1 approximation ∥X−Z1∥.

(e) Which rank-1 approximation is better, Y1 or Z1? Which rank-two approximation is
better, Y or Z?

(f) (Bonus) If you continue to build the best rank-1 factorization, Yk+1, to the residual
Rk = Rk−1 − Yk, how long does it take before ∥Rk∥ = 0?

○
The greedy method for computing CP, i.e., sequentially computing

the best rank-1 approximation of the current residual, does not
yield a rank decomposition nor a best rank-k decomposition.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Closin
g

Observations

Part IV

299

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

17 Closing Observations

We close with some observations. In Section 17.1, we discuss the choice of decomposition,
both matrix versus tensor and Tucker/TT versus CP. We consider the connections between
CP and Tucker, including their equivalence for orthogonally decomposable (ODECO) ten-
sors. In Section 17.2, we discuss Tucker compression to accelerate CP decomposition. In
Section 17.3, we consider symmetric tensors, including their connection to homogeneous
polynomials, symmetric versions of Tucker and CP, and tensor eigenvalues. Finally, in
Section 17.4, we briefly review a variety of other tensor decompositions: t-SVD, hierarchi-
cal tensor decomposition, tensor ring decomposition, block decompositions, and infinite
dimensional decompositions.

17.1 Comparing Matrix and Tensor Decompositions
Now that we have learned about several tensor decompositions, we can compare their utility
in various settings. At a high level, Tucker and TT decompositions are recommended for
data compression because we can control the level of accuracy and compute quasi-optimal
approximations. In contrast, CP decomposition is most useful for interpretation since it is
often identifiable (i.e., essentially unique) and its factors can be interpreted. We also include
matrix decomposition in our comparison discussion, specifically, SVD and nonnegative
matrix factorization (NMF).

We provide an overview of the properties of the decompositions in Table A.1 for d-way
tensors of size n1 × n2 × · · · × nd. The sizes of the decompositions are in big-O notation
using n = maxk nk and r = maxk rk for Tucker and TT ranks. The ranks are fundamen-
tally different for each decomposition, which is emphasized by subscript on the ranks. We
consider the SVD and NMF of a “square” unfolding of the tensor so that the maximum
dimension of the matrix is roughly proportional to O(n⌈d/2⌉).

17.1.1 Decomposition Overview
We briefly remind the reader about the decompositions being compared. Consider a d-way
tensor X ∈ Rn1×n2×···×nd . Let R and C partition the d modes, define p =

∏
k∈R nk and

q =
∏

k∈C nk, and let X ≡ X(R×C) ∈ Rp×q be an unfolding of X.

Tucker decomposition The Tucker decomposition of rank (r1, r2, . . . , rd) can be ex-
pressed as

X ≈ JG;U1,U2, . . . ,UdK.
The core tensor G is of size r1 × r2 × · · · × rd. For the purposes of the comparison
discussion, we assume rk ≤ nk for all k ∈ [d]. The factor matrices are such that Uk ∈

301

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

302 Chapter 17. Closing Observations

Table 17.1: Comparison of tensor and matrix decompositions on d-way tensor of maxi-
mum dimension n. Let r = maxk rk for Tucker and TT decomposition ranks and assume
maximum dimension of unfolding for SVD and NMF isO(n⌈d/2⌉). Ranks are not the same
for different decompositions.

Trait Tucker TT CP SVD NMF

Size (order of magnitude) rdTucker r2TT nd rCP nd rSVD n
⌈d/2⌉ rNMF n

⌈d/2⌉

Computable Rank ✓ ✓ ✗ ✓ ✗

Quasi-Optimal ✓ ✓ ✗ ✓ ✗

Orthonormal Factors ✓ ✓ ✗ ✓ ✗

Unique (Generically) ✗ ✗ ✓ ✓ ✗

Rnk×rk for all k ∈ [d]. Each factor matrix may have a different number of columns,
in contrast to the factor matrices for CP. Without loss of generality (see Section 5.4), we
assume the factor matrices are orthonormal. Using HOSVD (Algorithm 6.3) or ST-HOSVD
(Algorithm 6.5), we can always determine ranks and compute a Tucker decomposition to
achieve a specified error (including zero). The total size of the decomposition is

∏d
k=1 rk+∑d

k=1 nkrk.

TT decomposition The TT decomposition of rank (r1, r2, . . . , rd−1) can be expressed
as

X ≈ JG1,G2, . . . ,GdK,
representing a series of tensor contractions. The components of the TT decomposition are
three-way tensors Gk ∈ Rrk−1×nk×rk for all k ∈ [d], with r0 = rd = 1 so that the first
and last components are matrices. Using Algorithm 8.2, we can always determine ranks
and compute a TT decomposition to achieve a specified error (including zero). Similarly
to Tucker factor matrices, TT components (except the last) can be orthogonalized (that is,
so that one of their unfoldings is an orthonormal matrix). For TT, we may have rk > nk.
We stress that the ranks for TT are not directly comparable with the ranks for Tucker. The
total size of the decomposition is

∑d
k=1 rk−1rknk.

CP decomposition The CP decomposition of rank r can be expressed as

X ≈ JA1,A2, . . . ,AdK.

The factor matrices are Ak ∈ Rnk×r and have no special structure such as orthogonality.
Every factor matrix has the same number of columns, in contrast to Tucker. It is NP-hard
to determine the exact rank or the rank to achieve a specified error. Further, it is possible
that r > maxk nk. The rank of CP is not directly comparable to the ranks for Tucker or
TT. The total size is r

∑d
k=1 nk.

Truncated SVD The truncated rank-r SVD can be written as

X ≈ UΣV⊺.

It is always the case that r ≤ min { p, q }. Here U ∈ Rp×r is an orthonormal matrix of the
left singular vectors, V ∈ Rq×r is an orthonormal matrix of the right singular vectors, and
Σ is a diagonal matrix with the singular values on the diagonal, in decreasing order. Using
the SVD, we can also compute a truncated SVD that achieves a specified error. This is also
known as principal component analysis (PCA). The total size is r(p+ q).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

17.1. Comparing Matrix and Tensor Decompositions 303

Nonnegative matrix factorization (NMF) The rank-r nonnegative matrix factor-
ization (NMF) problem can be written as

X ≈ AB⊺

where A ∈ Rp×r and B ∈ Rq×r are nonnegative matrices. The total size is r(p + q).
NMF is a low-rank matrix factorization that shares some properties with CP, such as being
NP-hard to compute (Vavasis, 2009).

17.1.2 Decomposition Size
For simplicity, consider a tensor with n = n1 = · · · = nd.

For Tucker, we can always assume rk ≤ nk. Assuming r = r1 = · · · = rd for the Tucker
decomposition, its size isO(rd+dnr). Hence, Tucker is exponential in d and so we lament
that Tucker suffers from the curse of dimensionality. This is primarily an issue for very
high-order tensors.

For TT, the ranks satisfy only rk ≤ min { rk−1n, n
d−k }. If we assume the TT decompo-

sition also has all its ranks equal (which is not generally the case), its size is O(dnr2). As
this is not exponential in d, this is often used as an argument for the superiority of TT. The
ranks for TT are fundamentally different than those of Tucker. There are examples where,
for the same relative error, TT is larger because the TT ranks are significantly larger than
the Tucker ranks. Experimentation maybe needed to determine which decomposition is
best for any particular tensor.

The size of the CP decomposition is O(dnr), making it very compact. However, the r for
CP may be large and we do not know tight upper bounds, only that r ≤∏d

k=1 nk/maxk nk.

Matrix decompositions suffer from the curse of dimensionality because at least one dimen-
sion must be n⌈d/2⌉, so the size of at least one factor matrix is exponential. If there is
low-rank tensor structure in the data, then tensor decompositions will be smaller.

17.1.3 Computability and Quasi-Optimality
We consider whether or not optimal decompositions are computable. To start, we consider
the case for matrices. For a matrix, we can compute the SVD directly with a predictable
number of operations, yielding the matrix rank and optimal rank-k decompositions. But
matrices are not always easily factorized. If we consider the case of NMF, the problem of
determining the nonnegative rank is NP-hard (Vavasis, 2009) and computing the decompo-
sition or a best rank-k approximation is a nonconvex optimization problem.

Now, consider the case for a d-way tensor. It is always possible to find the multilinear ranks
and compute an exact Tucker decomposition. Moreover, some of the methods for comput-
ing the Tucker decomposition are guaranteed to produce a decomposition that is within

√
d

of the best possible decomposition for the specified size (see Section 7.4). Similar results
hold for TT (see Theorem 8.7).

In the case of CP, however, computing the rank is NP-hard. Further, even if we know the
rank, we have a nonconvex nonlinear program to solve (except for some special 3-way
tensors; see Section 16.8.4). Finally, the problem of computing a low-rank decomposition
may be ill-posed (see Section 16.5).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

304 Chapter 17. Closing Observations

○
We can determine the ranks for an exact or ε-approximate Tucker
decomposition. In contrast, there is no straightforward algorithm for
determining the rank for an exact or ε-accurate CP decomposition.

17.1.4 Factor Orthogonality
Tucker factor matrices can always be transformed to be orthonormal (matrix) (see Sec-
tion 5.4), as can TT cores. In contrast, CP factor matrices are generally not orthonormal.
In the matrix case, the truncated SVD produces orthonormal factor matrices, while NMF
does not.

○ CP factor matrices are not orthonormal; in contrast,
Tucker factor matrices can always be made orthonormal.

17.1.5 Uniqueness
As discussed in Section 16.7, the CP decomposition is essentially unique under mild con-
ditions on the factor matrices. In contrast, the Tucker decomposition is never unique; see
Section 5.3. This means that the factors of a Tucker model are not directly interpretable.
Instead, only the subspace spanned by columns of a factor matrix is unchanged by trans-
formations.

○ CP is (essentially) unique under mild conditions, but Tucker is never unique.

17.1.6 Interpreting CP as Tucker
It is possible to express CP in Tucker tensor format. For instance, we can express the
rank-r Kruskal tensor Jλ;A,B,CK as a rank-(r, r, r) Tucker tensor JG;A,B,CK where
G ∈ Rr×r×r with

gijk =

{
λi if i = j = k

0 otherwise.

Even though CP can be written as a Tucker tensor, the representation may not have minimal
multirank. For example, if the factor matrices are not full column rank, there is a lower-
multirank Tucker decomposition.

=
λ1

λ2
λ3

X
A B

C

Figure 17.1: CP expressed as Tucker: Rank-3 CP decomposition X = Jλ;A,B,CK of
2× 2× 2 tensor expressed as Tucker tensor with factor matrices of size 2× 3 that are not
full column rank

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

17.1. Comparing Matrix and Tensor Decompositions 305

17.1.7 Interpreting Tucker as CP
Conversely, we can express a rank-(q, r, s) Tucker tensor as a rank-(qrs) Kruskal tensor
(see exercise below). Consider a rank-(q, r, s) Tucker tensor JG;U,V,WK ∈ Rm×n×p.
We can write this as a weighted Kruskal tensor by observing

X =

q∑

α=1

r∑

β=1

s∑

γ=1

gαβγ uα , vβ , wγ .

We illustrate this in Fig. 17.2. Even though this is a Kruskal tensor, there is a lower-rank
CP decomposition since its maximum rank is max { qr, qs, rs }.

= g111 + g112 + · · ·+ gqrs

X

u1

v1

w1

u1

v1

w2

uq

vr

ws

Figure 17.2: Tucker expressed as a Kruskal tensor: X = JG;U,V,WK with core G of size
q × r × s as the sum of qrs rank-1 tensors

Exercise 17.1 (Writing a Tucker Tensor as a Kruskal Tensor) Consider a rank-(q, r, s)
Tucker tensor JG;U,V,WK ∈ Rm×n×p. Prove that we can express this as a rank-(qrs)
Kruskal tensor Jλ;A,B,CK such that

λ = vec(G), A =
(
U⊺ ⊙ 1rs×m

)⊺
,

B =
(
1q×n ⊙V⊺ ⊙ 1s×n

)⊺
, and C =

(
1qr×p ⊙W⊺)⊺.

Here 1 represents the all-ones matrix of the specified size.

17.1.8 CP and Tucker Equivalence for Orthogonally
Decomposable Tensors
The set of tensors that admit orthogonal CP decompositions are a special subclass referred
to as ODECO, short for orthogonally decomposable; see, e.g., Anandkumar et al. (2014)
and Robeva (2014). ODECO tensors are interesting for study because they have nice theo-
retical properties. In particular, they can be decomposed in a greedy fashion, one rank-one
factor at a time, subtracting that from the residual, and continuing. As a result, it is also
straightforward to determine the tensor rank. Each rank-one factor can be computed by
HOOI with multirank (1, 1, · · · , 1), for example. Unfortunately, ODECO tensors occur
with probability zero, limiting the applications (Kolda, 2001, 2003, 2015b).

17.1.9 Comparing Matrix and Tensor Decomposition
Both the Tucker and CP decompositions can be viewed as extensions of the matrix SVD,
as summarized in Table 17.2.

For Tucker, the factor matrices can be orthogonalized (similar to the SVD), but the core
tensor is allowed to be dense (dissimilar to the SVD). We can use the SVD to compute the
optimal rank-r matrix approximation of a matrix, and we can use HOSVD (Algorithm 6.3)
or ST-HOSVD (Algorithm 6.5) to compute a quasi-optimal rank-(r1, r2, . . . , rd) Tucker

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

306 Chapter 17. Closing Observations

Table 17.2: Matrix SVD Properties for Tucker and CP

SVD Property Orthogonal Factors Diagonal “Core” Optimal Low-Rank Unique

Tucker ✓ ✗ Quasi-optimal low-rank ✗

CP ✗ ✓ ✗ ✓

decomposition, meaning that the approximation is within
√
d of optimal (see Section 7.4).

The SVD is unique as long as the singular values are distinct, but this is not the case for
Tucker (see Section 5.3). The matrix SVD can be written using Tucker-like notation as
follows:

X = UΣV⊺ = Σ×1 U×2 V.

If we do not restrict Σ to be diagonal, then this matrix decomposition is not unique.

For CP, the factor matrices are generally not orthogonal (dissimilar to SVD), but we can
think of it as having a diagonal core (similar to SVD). We may not be able to compute an
optimal low-rank CP decomposition since it is a nonconvex nonlinear optimization problem
and potentially ill-posed (see Section 16.2). On the other hand, CP is unique under mild
conditions (Section 9.2.3), similar to SVD. The similarity is that we can write SVD as the
sum of rank-1 outer products:

X = UΣV⊺ =

r∑

j=1

σj uj , vj ,

similar to the outer product expression for CP.

17.2 CANDELINC: Tucker Preprocessing for CP
Tucker compression (exact or inexact) can be a helpful preprocessing step before comput-
ing CP because it may reduce the CP iteration cost.

When computing the CP decomposition for a large tensor, we can extract a reduced Tucker
core representation, compute CP for that, and then transform the result to a CP decom-
position of the original tensor, using the properties of Kruskal and Tucker tensors. In the
literature, this is has been referred to as CANDECOMP with linear constraints and abbre-
viated as CANDELINC (Bro and Andersson, 1998; Carroll, Pruzansky, et al., 1980). See
Fig. 17.3 for an illustration in the 3-way case.

Exact CANDELINC Suppose we have a tensor X ∈ Rn1×n2×···×nd with an exact Tucker
decomposition

X = JG;U1,U2, . . . ,UdK, (17.1)

where G ∈ Rm1×m2×···×md and Uk ∈ Rnk×mk are orthonormal for all k ∈ [d]. Then we
can compute a rank-r CP factorization of G, i.e.,

G ≈ JA1,A2, . . . ,AdK, (17.2)

where Ak ∈ Rmk×r for all k ∈ [d]. Then this is easily translated to a CP decomposition of
X:

X ≈ JU1A1,U2A2, . . . ,UdAdK. (17.3)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

17.2. CANDELINC: Tucker Preprocessing for CP 307

=
X

G

U

V

W

≈ + + · · ·+G

a1

b1

c1

a2

b2

c2

a3

b3

c3

≈ + + · · ·+
X

Ua1

Vb1

Wc1

Ua2

Vb2

Wc2

Ua3

Vb3

Wc3

Step 1.
Compute Tucker

decomposition of
X = JG;U,V,WK

Step 2.
Compute CP

decomposition of
G ≈ JA,B,CK

Step 3.
Combine to get CP

decomposition of
X ≈ JUA,VB,WCK

Figure 17.3: CANDELINC: Tucker preprocessing for computing CP

Additionally, the error is retained:
∥∥X− JU1A1, . . . ,UdAdK

∥∥ =
∥∥G− JA1, . . . ,AdK

∥∥. (17.4)

Exercise 17.2 Prove Eqs. (17.3) and (17.4).

○ Computing CP of the core of an exact Tucker decomposition with orthonormal
factor matrices is equivalent to computing CP on the original tensor.

Inexact CANDELINC This approach also works when the decomposition is inexact. Let
Uk ∈ Rnk×mk be orthonormal for all k ∈ [d] and

G = X×1 U⊺
1 · · · ×d U⊺

d ,

such that X ≈ JG;U1,U2, . . . ,UdK. Then compute an approximate CP decomposition of
G:

G ≈ JA1,A2, . . . ,AdK.
Then, we have

X ≈ JU1A1,U2A2, . . . ,UdAdK.
The error nicely decomposes into the sum of the Tucker approximation error plus the CP
on the core:

∥∥X− JU1A1, . . . ,UdAdK
∥∥2

≤
∥∥X− JG;U1, . . . ,UdK

∥∥2 +
∥∥JG;U1, . . . ,UdK− JU1A1, . . . ,UdAdK

∥∥2

= ∥X∥2 − ∥G∥2︸ ︷︷ ︸
Tucker error

+
∥∥G− JA1,A2, . . . ,AdK

∥∥2
︸ ︷︷ ︸

CP on core error

.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

308 Chapter 17. Closing Observations

It can be advantageous to pay the one-time cost of computing the ST-HOSVD to reduce
the per-iteration cost of CP; see Exercise 17.3. This analysis also opens the door to dimen-
sionality reduction techniques such as random projections; see, e.g., Zhou, Cichocki, et al.
(2014).

Exercise 17.3 (CANDELINC Complexity) (a) For a dense tensor X, what is the per itera-
tion computation complexity of computing CP for X directly versus CP for G? (b) What
is the computational cost of computing the Tucker decomposition of X using ST-HOSVD?
(c) What is the computational cost of converting the CP decomposition of G into a CP de-
composition of X? (d) How do the complexities of each step of CANDELINC change if X
is a sparse tensor?

17.3 Symmetric Tensors
Definition 17.1 (Symmetric Tensor) A tensor is symmetric if its entries are invariant under
all permutations of the indices.

By definition, every mode of a symmetric tensor must be the same size. For a 3-way tensor
A ∈ Rn×n×n, symmetry means that

aijk = aikj = ajik = ajki = akij = akji for all (i, j, k) ∈ [n]⊗ [n]⊗ [n].

Example 17.1 (Symmetric Tensor) The tensor A ∈ R3×3×3 whose frontal slices are
given by

A1 =

6 7 0
7 8 1
0 1 5

 , A2 =

7 8 1
8 2 9
1 9 3

 , and A3 =

0 1 5
1 9 3
5 3 4

is a symmetric tensor. It has 10 unique entries.

Exercise 17.4 Write down the unique entries and where they appear (e.g., a311 = a131 =
a311 = 0) for A in Example 17.1.

Exercise 17.5 For symmetric A ∈ Rn×n×n×n, list all the entries that are equal to aijkℓ.

Proposition 17.2 (Symmetric Tensor Unique Entries, Ballard, Kolda, and Plantenga,
2011) The number of unique entries in a d-way symmetric tensor A ∈ Rn×n×···×n is
given by the binomial coefficient

(
n+ d− 1

d

)
=
nd

d!
+O(nd−1).

Exercise 17.6 How many unique entries does a symmetric 3-way tensor of dimension
n = 4 have?

A common operation for a symmetric tensor is to compute its inner product with a sym-
metric vector outer product, defined as follows.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

17.3. Symmetric Tensors 309

Definition 17.3 (Symmetric Tensor Times Vector Outer Product) Let A be a symmetric
d-way tensor of size n× n× · · · × n and let x ∈ Rn. Then we let Ax⊗d denote

Ax⊗d ≡
〈
A,x , x , · · ·, x︸ ︷︷ ︸

d times

〉
=

n∑

i1=1

n∑

i2=1

· · ·
n∑

id=1

ai1i2···idxi1xi2 · · ·xid . (17.5)

We can consider this product as a series of contractions with the vector in each mode, as
illustrated in Fig. 17.4. We can perform this computation more efficiently by exploiting
symmetry and performing computations only with unique entries (Proposition 17.2).

A

x⊺

x
⊺

x
⊺

Ax⊗3 =

Figure 17.4: Symmetric tensor times vector Ax⊗3, i.e., A×1 x⊺ ×2 x⊺ ×3 x⊺

Symmetric tensors can be used to express homogeneous polynomials. For example, let A
be a symmetric 3-way tensor of size 3× 3× 3 and let v =

[
x
y
z

]
∈ R3. Then

Av⊗3 = a111x
3 + a222y

3 + a333z
3

+ (a112 + a121 + a211)x
2y + (a113 + a131 + a311)x

2z

+ (a122 + a212 + a221)xy
2 + (a223 + a232 + a322)y

2z

+ (a133 + a313 + a331)xz
2 + (a233 + a323 + a332)yz

2

+ (a123 + a132 + a213 + a213 + a312 + a321)xyz.

Remark 17.4 (Connection to homogeneous polynomials) The product Ax⊗d is a ho-
mogeneous polynomial of degree d in x. This relationship means that tools from algebraic
geometry for factoring polynomials can potentially be useful in decomposing symmetric
tensors (Brachat et al., 2010).

This product is similar to x⊺Ax for a symmetric n× n matrix A. This motivates a notion
of positive definiteness for tensors.

Definition 17.5 (Symmetric Positive Definite Tensor) Let A be a symmetric tensor of
order d and dimension n. We say A is positive definite if Ax⊗d > 0 for all x ∈ Rn with
x ̸= 0.

Exercise 17.7 Prove that only even-order tensors can be positive definite.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

310 Chapter 17. Closing Observations

17.3.1 Symmetric Tucker Decomposition
For a symmetric tensor, we can impose symmetry on its decomposition. If A ∈ Rn×n×n

is symmetric, then we can find a symmetric Tucker decomposition of the form

A = G×1 U×2 U×3 U,

where G ∈ Rr×r×r is symmetric and U ∈ Rn×r is orthogonal; see Fig. 17.5. The method-
ology can be extended to order d in a straightforward way. The next exercise describes a
computational method and proves that it is quasi-optimal.

=

A

G

U

U

U

Figure 17.5: Symmetric Tucker decomposition: X = JG;U,U,UK

Exercise 17.8 Suppose A ∈ Rn×n×n is symmetric. Let U denote the r leading left sin-
gular vectors of A(1), and define G = A×1 U⊺ ×2 U⊺ ×3 U⊺. (a) Prove G is symmetric.
(b) Prove JG;U,U,UK is within

√
3 of the optimal rank-(r, r, r) symmetric decomposi-

tion.

17.3.2 Symmetric CP Decomposition
Similar to the Tucker decomposition, if A is a d-way tensor of size n× n× · · · × n, then
we can find a symmetric CP decomposition of the form

A =

r∑

ℓ=1

λℓx
⊗d
ℓ .

If d is even, multiplying xℓ by −1 has no impact on the summation; therefore, explicit
weights are needed to allow for subtraction of rank-one components. The symmetric de-
composition for a 3-way tensor is illustrated in Fig. 17.6.

= λ1 + λ2 + · · ·+ λr

A

x1

x1

x1

x2

x2

x2

xr

xr

xr

Figure 17.6: Symmetric CP decomposition: A =
∑r

ℓ=1 λℓx
⊗d
ℓ

See Kolda (2015a) for discussion of numerical methods for symmetric CP decomposition
and how methods for nonsymmetric CP may also be successful (due to uniqueness proper-
ties of CP). See also Section 9.5.4.

Exercise 17.9 Define f(λ,x1, . . . ,xr) = ∥A −∑r
ℓ=1 λℓx

⊗d
ℓ ∥2. What is ∂f

∂λ? What is
∂f
∂xj

for j ∈ [r]?

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

17.3. Symmetric Tensors 311

17.3.3 Tensor Eigenproblems
The generalized symmetric matrix eigenproblem is defined as follows. For an n× n sym-
metric matrix A and a symmetric positive definite n × n matrix B, find a λ ∈ R and
x ∈ Rn such that Ax = λBx. If B = I, the n× n identity matrix, then we have the stan-
dard matrix eigenproblem: solve Ax = λx. In this subsection, we consider the extension
of the (generalized) matrix eigenproblem to symmetric tensors.

Preliminaries We define the analogue for matrix-vector multiplication. Let A be a sym-
metric d-way tensor of dimension n. For x ∈ Rn, the tensor x⊗(d−1) is a (d − 1)-way
tensor of dimension n. The contraction of these tensor is denoted as Ax⊗(d−1), results in
a vector of length n, and is defined by

[Ax⊗(d−1)]i1 ≡
n∑

i2=1

· · ·
n∑

id=1

ai1i2···idxi2 · · ·xid for all ii ∈ [n].

This is illustrated for a 3-way tensor in Fig. 17.7.

= A

x
⊺

x
⊺

Ax⊗2

Figure 17.7: Symmetric tensor operation Ax⊗2 envisioned as A×2 x⊺ ×3 x⊺

Exercise 17.10 Prove Ax⊗d = x⊺(Ax⊗(d−1)) where Ax⊗d is as defined in Eq. (17.5).

Generalized tensor eigenvalues and special cases We start with the most gen-
eral definition for tensor eigenpairs, and then present several special cases. The following
definition (with d̂ = d) was proposed by Chang et al. (2009) and later generalized by Cui
et al. (2014) (under the name B-eigenpair).

Definition 17.6: Generalized Tensor Eigenpair

Let A and B be symmetric tensors of dimension n and order d and d̂, respectively. Further,
assume B is positive definite. We say (λ,x) with λ ∈ R and x ∈ Rn\{0 } is a generalized
eigenpair if

Ax⊗(d−1) = λBx⊗(d̂−1).

Exercise 17.11 Prove that any generalized tensor eigenvalue satisfies

λ =
Ax⊗d

Bx⊗d̂
.

Now, we consider some special cases.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

312 Chapter 17. Closing Observations

Definition 17.7 (Z-eigenpair, Qi, 2005 and Lim, 2005) Let A be a symmetric tensor of
order d and dimension n. We say (λ,x) with λ ∈ R and x ∈ Rn is a Z-eigenpair if

Ax⊗(d−1) = λx and ∥x∥2 = 1.

Exercise 17.12 For what choice of d̂ and B is the Z-eigenpair a special case of the gener-
alized eigenpair?

Definition 17.8 (H-eigenpair, Qi, 2005 and Lim, 2005) Let A be a symmetric tensor of
order d and dimension n. We say (λ,x) with λ ∈ R and x ∈ Rn \ {0 } is an H-eigenpair
if

Ax⊗(d−1) = λx[d−1],

where x[d−1] denotes elementwise power.

Exercise 17.13 For d̂ = d, for what choice of B is an H-eigenpair a special case of a
generalized eigenpair?

Cartwright and Sturmfels (2013) bounds the number of Z-eigenpairs of a symmetric tensor.
Iterative power methods can be used to efficiently compute stable eigenpairs; see Kofidis
and Regalia (2002), Kolda and Mayo (2011, 2014), and Regalia and Kofidis (2003). To
compute all real eigenvalues sequentially, Cui et al. (2014) use semidefinite programming.

17.4 Other Tensor Decompositions
There are a multitude of other tensor decompositions that we do not cover in detail; instead,
we provide very brief overviews and pointers for more information.

17.4.1 Tensor SVD (t-SVD)
The Tensor SVD (t-SVD) is a special decomposition of a 3-way tensor introduced by
Kilmer and Martin (2011) and extended in subsequent works; see Kilmer, Horesh, et al.
(2021) and references therein. A key advantage of the t-SVD is that it can be used to
find an optimal low-rank approximation akin to matrix SVD. The premise of the t-SVD is
that it operates on the frontal slices of a transformed 3-way tensor. Given a tensor X ∈
Rm×n×p, the t-SVD decomposes the frontal slices of the tensor X̂ = X×3 M where M is
an invertible p× p matrix. In the original paper (Kilmer and Martin, 2011), M is a discrete
Fourier transform. The resulting decomposition has elegant mathematical properties and is
effective for compressing image data (Kilmer, Horesh, et al., 2021) and tensor completion
(Zhang and Aeron, 2017).

17.4.2 Hierarchical Tensor Decomposition
The hierarchical tensor decomposition, also known as hierarchical Tucker decomposition
(Grasedyck, 2010; Hackbusch and Kühn, 2009), successively divides a tensor into products
of smaller tensors. This decomposition is premised on the fact that any d-way tensor can
be divided into the product of two tensors of order α and β where α+ β = d+ 2. We can
successively repeat this process until every tensor is at most order three.

Consider, for example, a 5-way tensor X ∈ Rn1×···×n5 . Let X({1,2,3}×{4,5}) denote the
tensor unfolding of X of size (n1n2n3) × (n4n5). Compute a matrix factorization such
that X({1,2,3}×{4,5}) ≈ AB where A ∈ Rn1n2n3×r and B ∈ Rr×n4n4 . Finally, reshape A

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

17.4. Other Tensor Decompositions 313

into a four-way tensor A of size n1 × n2 × n3 × r, and reshape B into a three-way tensor
B of size r×n4×n5. Then X is approximated by the tensor contraction of A and B along
the mode of size r. This is shown as the first step of Fig. 17.8. We can repeat this process,
splitting the four-way tensor A into the product of two three-way tensors, as shown in the
second step of Fig. 17.8.

X A B≈ A1 A2 B≈

Original Tensor First Step Second Step

Figure 17.8: Hierarchical tensor decomposition network process: 5-way tensor X approxi-
mated by contraction of 4-way tensor A and 3-way tensor B; then A split into contraction
of 3-way tensors A1 and A2

The division of the modes in a split operation is arbitrary. In fact, hierarchical tensor
decomposition contains TT decomposition as a special case. The main challenge in hier-
archical tensor decomposition is choosing the sequence of divisions. See Grasedyck et al.
(2013) for an overview including a detailed treatment of hierarchical tensor decomposition.

17.4.3 Tensor Ring Decomposition
Like TT, the tensor ring decomposition (Zhao, Zhou, et al., 2016) also decomposes a d-
way tensor into a series of tensor contractions of three-way tensors. The difference is that
the first and last three-way tensors are also contracted.

Let X ∈ Rn1×n2×···×nd be a given tensor and let ranks (r1, r2, . . . , rd) be given. The
tensor ring decomposition finds three-way tensors Gk ∈ Rrk×nk×rk+1 for k ∈ [d− 1] and
Gd ∈ Rrd×nd×r1 such that

X(i1, i2, . . . , id) =

r1∑

α1=1

r2∑

α2=1

· · ·
rd∑

αd=1

G1(α1, i1, α2)G2(α2, i2, α3) · · ·Gd(αd, id, α1)

for all (i1, i2, . . . , id) ∈ [n1]⊗ [n2]⊗ · · · ⊗ [nd].

This is illustrated for a five-way tensor using tensor networks in Fig. 17.9.

X

G1

G2

G3

G4

G5

This edge differentiates
tensor ring and TT
decompositions

≈

Figure 17.9: Tensor ring decomposition: 5-way tensor decomposed into contraction of five
3-way tensors

Tensor ring contrasts with TT and hierarchical tensor decomposition in that there is no

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

314 Chapter 17. Closing Observations

direct algorithm for computing the tensor ring decomposition; instead, it must be computed
iteratively.

17.4.4 CP-Tucker Hybrid Block Decomposition
A CP decomposition writes a tensor as the sum of rank-1 factors; equivalently, we could the
envision the decomposition as a sum of rank-(1,1,1) factors. We can then generalize this
to consider other multiranks for the factors, writing the decomposition as a sum of Tucker
decompositions. Several researchers have proposed block CP decompositions; see Bro,
Harshman, et al. (2009), De Lathauwer (2008a,b), and De Lathauwer and Nion (2008).

Consider the 3-way case, computing a decomposition of X ∈ Rm×n×p. For a block decom-
position, we have to specify the number of blocks, b, and the size of each block, (qℓ, rℓ, sℓ)
for each ℓ ∈ [b]. Then, we find

Gℓ ∈ Rqℓ×rℓ×sℓ , Uℓ ∈ Rm×qℓ , Vℓ ∈ Rn×rℓ , and Wℓ ∈ Rp×sℓ for each ℓ ∈ [b]

such that

X ≈
b∑

ℓ=1

JGℓ;Uℓ,Vℓ,WℓK.

Elementwise, this means

xijk ≈
b∑

ℓ=1

qℓ∑

α=1

rℓ∑

β=1

sℓ∑

γ=1

Gℓ(α, β, γ)Uℓ(i, α)Vℓ(j, β)Wℓ(k, γ).

An example 3-way block decomposition is illustrated in Fig. 17.10.

= + · · ·+

X

G1
Gb

U1

V1

W
1

Ub

Vb

W
b

Figure 17.10: Hybrid CP-Tucker decomposition

If the number of blocks is 1 (b = 1), then this reduces to Tucker decomposition. At the
other extreme, if qℓ = rℓ = sℓ = 1 for all ℓ ∈ [b], this reduces to CP. One challenge of the
block tensor decomposition is choosing appropriate block sizes.

17.4.5 Infinite Dimensional Decompositions
A 3-way tensor X of size m × n × p can be viewed as an operator from the domain
[m]⊗ [n]⊗ [p] to R. The domain of X is finite, and X(i, j, k) is evaluating the operator X
at (i, j, k) and returning a real value.

Now, consider a real-valued operator f : R3 → R. The domain of f is R ⊗ R ⊗ R, and
f(x, y, z) returns a real value. This is analogous to X except that the domain of f is infinite
whereas the domain of X is finite.

Continuing from the viewpoint, we can consider an infinite dimensional analogue to CP.
Let f : R3 → R. The goal is to write the real-valued trivariate (3-variable) function f as

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

17.4. Other Tensor Decompositions 315

the sum of products of real-valued univariate (1-variable) functions. In other words, the
goal is to find r and functions

ϕℓ : R→ R, ψℓ : R→ R, and ρℓ : R→ R for all ℓ ∈ [r]

such that

f(x, y, z) ≈
r∑

ℓ=1

ϕℓ(x)ψℓ(y)ρℓ(z).

In the d-variate case, consider a function f : Rd → R. We what to find r and functions

ϕ
(k)
ℓ : R→ R for all ℓ ∈ [r] and k ∈ [d]

such that

f(x1, x2, . . . , xd) =

r∑

ℓ=1

ϕ
(1)
ℓ (x1)ϕ

(2)
ℓ (x2) · · ·ϕ(d)ℓ (xd).

Many functions have such separated representations, meaning that a multivariate function
can be written in terms of univariate functions, as illustrated in the following example.

Example 17.2 (Infinite-dimensional CP, Beylkin and Mohlenkamp, 2002) Let

f(x1, x2, . . . , xd) = sin

(
d∑

k=1

xk

)
. (17.6)

Then f has a separated representation

f(x1, x2, . . . , xd) =

d∑

ℓ=1

d∏

k=1

ϕ
(k)
ℓ (xk) (17.7a)

where

ϕ
(k)
ℓ (x) =

{
sin(x) if k = ℓ,
sin(x+αk−αj)
sin(αk−αj)

if k ̸= j,
(17.7b)

and the constants {α1, α2, . . . , αd } are any values such that sin(αk − αℓ) ̸= 0 for all
j ̸= k ∈ [d].

Exercise 17.14 Verify Example 17.2 computationally by evaluating f using both
Eq. (17.6) and Eq. (17.7) and comparing the results for different inputs.

For bivariate functions, f : R2 → R, the continuous version of the matrix SVD is called
the Karhunen–Loéve transformation.

In the realm of tensors, the earliest work is Beylkin and Mohlenkamp (2002, 2005).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Review

Materials

Part V

317

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A
Numerical Linear
Algebra Principles and
Methods

The content of this review chapter covers topics from numerical linear algebra that will be
useful later in the book, but it is far from a complete treatment. For more coverage of these
subjects, we recommend the textbooks of Demmel (1997), Golub and Van Loan (2013),
Strang (2016), and Trefethen and Bau (1997).

A.1 Complexity and Big-O Notation
Since this is a book on computational methods for tensors, we will often be concerned with
the expense of the algorithms we propose, especially when comparing different algorithms.
To compare algorithms, we compute various measures as functions of input size.

One key measure of algorithmic performance is the number of computational operations,
which we refer to as computational complexity. This is computed by counting scalar
arithmetic operations. Because the scalars are nearly always represented as floating point
numbers, we refer to these as flops, short for floating point operations.

Example A.1 (Computational Complexity) Let x be a vector of length n whose ith
entry is denoted by xi. Consider the computation:

f(x) =

√√√√
n∑

i=1

x2i

The input is length n, and we can compute f(x) this via nmultiplications, n−1 additions,
and 1 square root, for a total of 2n scalar operations.

○ The computational complexity of an algorithm is the number
of scalar operations it performs as a function of the input size.

Complexity as a function of the inputs is key to predicting the scalability of a method. For
this reason, we often use big-O notation to bound the limiting behavior of the complex-
ity as its input tends towards infinity. Loosely speaking, big-O notation strips constants
and lower-order terms. For instance, 2n2+10n = O(n2). Rigorously, big-O notation is
defined as:

f(n) = O
(
g(n)

)
if and only if f(n) ≤ Cg(n) for all n ≥ N,

319

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

320 Appendix A. Numerical Linear Algebra

for some constants C and and N .

○ Big-O notation strips constants and lower-order terms: 2n2+10n = O(n2).

The appeal of big-O notation is that it excises architecture- and implementation-specific
details. This way, we need not distinguish between the costs of different scalar operations
(e.g., addition versus multiplication versus square root), hardware-specific combinations of
operations such as multiply-add, and many nuances of implementation. Hence, the com-
putational complexity for Example A.1 is O(n), independent of architecture, the precise
method for computing the sum of n values, and so on.

Though we prefer lower complexity algorithms, big-O complexity does not solely deter-
mine the best algorithm. If one method costs 100n and another costs 2n, we likely prefer
the latter even though both methods are O(n).
Another key measure of algorithmic performance is the amount of storage required, which
we refer to as memory complexity. This is computed by evaluating the maximum storage
needed at any point in an algorithm. To get more specific, we have to consider the program-
ming language and architecture. For instance, in C, an integer uses 32 bits, a long integer
uses 64 bits, a float uses 32 bits, and a double uses 64 bits. For instance, assuming we store
all values as double precision, Example A.1 requires 64n bits to store the input, and 64 bits
to store the running sum and final square root, for a total storage complexity of 64(n + 1)
bits. As with computational complexity, we are generally only interested in asymptotic
complexity, in which case we can say more simply that the memory complexity is O(n).
This removes consideration of the differences in representation for single precision, double
precision, etc.

○ The memory complexity of an algorithm is the maximum number of
scalar values that need to be stored as a function of the input size.

A related metric is the amount of data movement required by an algorithm, which we refer
to as the I/O complexity. This is a measure of how much data needs to move between
different memory locations in the course of an algorithm. The different places could be
physically distinct machines or simply different levels of memory hierarchy. In addition to
computational complexity, this can impact that overall runtime of an algorithm.

A.2 Finite Precision and Numerical Stability
Most of the computations we consider involve real numbers that are stored in a finite pre-
cision format known as floating point. As mentioned in Appendix A.1, float is a format
that uses 32 bits for each number, and double uses 64 bits. You can think of these formats
in terms of scientific notation (with base 2): a number is represented as ± (1 + f) · 2e. In
these formats, 1 bit specifies the sign of the number, and the remaining bits are partitioned
into fractional bits that specify f and exponent bits that specify e.

Because of finite precision, we cannot store all real numbers exactly (π is an irrational
number that would require an infinite number of bits, for example), and we cannot perform
all arithmetic operations exactly. The error incurred during finite precision arithmetic is
known as roundoff error. Floating point formats like float and double ensure that roundoff
error is small relative to the sizes of the numbers involved in the arithmetic. The size of
this relative error is known as machine precision, and it is determined by the number of

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.3. Vectors and Matrices 321

fractional bits in the format. Machine precision is approximately 10−8 for float and 10−16

for double. For example, |π − π̂|/|π| ≈ 10−16, if π̂ is the finite representation of π using
double precision.

The numerical stability of solving a problem refers to how sensitive the solution is to
small changes to the input. In a stable scenario, small changes to the input lead to small
changes in the output, but small changes to the input of an unstable system can lead to
unacceptably large changes in the solution. This idea is important in the context of finite
precision because roundoff error introduces small changes that can be amplified by numer-
ical instability. When solving problems in linear algebra, numerical instability can come
from the particular input data for the problem or from the algorithm we use to solve the
problem. If the problem’s input data causes instability, we call the input ill conditioned;
otherwise it is well conditioned.

An algorithm is numerically stable if it produces a solution whose error depends only
on the conditioning of the problem. That is, a numerically stable algorithm does not add
any extra exacerbation of roundoff error. For a numerically stable algorithm and a well-
conditioned problem, the error of the final output is on the order of machine precision, so
that even if there are many arithmetic operations performed by the algorithm, each with
their own roundoff errors, that error does not accumulate in a detrimental way.

○ A numerically stable algorithm produces a solution that is as accurate as
possible, subject to the precision used and the conditioning of the input.

For many problems, there are several possible methods to use, each with its own com-
putational complexity and numerical stability. Often the fastest method is not the most
numerically stable. For well-conditioned inputs, the fastest method may produce solutions
to well-conditions inputs that are just as accurate as more stable but slower methods. On
the other hand, numerically stable algorithms do not always guarantee an accurate answer,
as ill-conditioned inputs can still produce solutions that are highly sensitive to roundoff
error. For a detailed treatment of numerical stability with a particular focus on matrix
computations, see Higham (2002).

A.3 Vectors and Matrices
Calculations with vectors and matrices are the foundation for computations with tensors,
so we review associated definitions and basic operations.

A.3.1 Definitions
A scalar is a single number. We represent these with lowercase letters, e.g., x = 1. To
specify that x is a real-valued scalar, we write x ∈ R where R denotes the set of all real
numbers.

A vector is a 1-dimensional array of scalars. We represent vectors throughout by lowercase
boldface roman letters. If x is a real-valued vector of size n, then we write x ∈ Rn. We
use the shorthand [n] ≡ { 1, . . . , n }. Entry i ∈ [n] of x is denoted as x(i) or compactly as
xi.

A matrix is a 2-dimensional array of numbers. We represent matrices throughout by up-
percase boldface Roman letters. If A is a real-valued matrix of size m × n, then we write
A ∈ Rm×n. More generally, entry (i, j) ∈ [m] ⊗ [n] of A is denoted A(i, j) or aij . The

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

322 Appendix A. Numerical Linear Algebra

notation [m]⊗ [n] is compact notation for the set { (i, j) : i ∈ [m], j ∈ [n] }. We write the
jth column of A as aj .

The vectorization of a matrix A ∈ Rm×n stacks its columns into a vector, i.e.,

vec(A) =

a1
a2
...
an

 ∈ Rmn.

Given a matrix A ∈ Rm×n, we let nnz(A) denote the number of nonzeros of the matrix. A
matrix is sparse if the vast majority of its entries are zero, i.e., nnz(A)≪ mn. Otherwise,
the matrix is dense. A dense matrix is usually stored in vectorized format as a list of mn
values, so its storage complexity is O(mn). A sparse matrix can be stored as a list of
coordinates and nonzeros, i.e.,

{ (i, j, aij) | aij ̸= 0 } .

Thus, if A is sparse, its storage complexity is O(nnz(A)).

The transpose of a matrix reverses its row and column indicies as follows. If A ∈ Rm×n

and B = A⊺, then B ∈ Rn×m and bji = aij for all (i, j) ∈ [m]⊗ [n].

A matrix A ∈ Rm×n is square if m = n.

A square matrix A ∈ Rn×n is symmetric if aij = aji for all (i, j) ∈ [n]⊗ [n].

If A ∈ Rn×n, then diag(A) =
[
a11 a22 · · · ann

]⊺ ∈ Rn is the vector of its diagonal
entries. The trace of A is the sum of its diagonal entries; i.e., trace(A) =

∑n
i=1 aii.

A matrix A ∈ Rn×n is called diagonal if aij = 0 for all i ̸= j. If x ∈ Rn is a vector, then
A = diag(x) is an n × n diagonal matrix such that aii = xi for all i ∈ [n], i.e., x is on
A’s diagonal.

The n×n identity matrix is a square diagonal matrix with ones along it diagonal, denoted
I (or In if the size is ambiguous).

A rectangular matrix A ∈ Rm×n is called upper triangular if aij = 0 for all i > j, and it
is called lower triangular if aij = 0 for all i < j.

A.3.2 Vector Inner Product and Norms
The inner product of two same-sized vectors a,b ∈ Rn produces a scalar, is denoted as
⟨a,b⟩, and defined as

⟨a,b⟩ ≡
n∑

i=1

aibi.

The computational complexity of the inner product is O(n).
Exercise A.1 For a,b ∈ Rn, show ⟨a,b⟩ = ⟨b,a⟩.

The norm of a vector a ∈ Rn is the square root of its inner product with itself, i.e.,

∥a∥2 ≡
√
⟨a,a⟩ =

√√√√
n∑

i=1

a2i .

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.3. Vectors and Matrices 323

The ℓ2-norm is denoted by ∥ · ∥2.

Exercise A.2 For a ∈ Rn, show ∥a∥2 ≥ 0. Further, show ∥a∥2 = 0 if and only if a = 0,
the all zeros vector.

Proposition A.1 (Vector Difference Norm) For a,b ∈ Rn,

∥a− b∥22 = ∥a∥22 + ∥b∥22 − 2⟨a,b⟩.

Exercise A.3 Prove Proposition A.1.

The inner product between two vectors can be used to determine how aligned they are per
the following proposition.

Proposition A.2 (Cosine and Inner Product) Let θ denote the angle between vectors
a,b ∈ Rn. Then

cos θ =
⟨a,b⟩
∥a∥2∥b∥2

.

We say two same-sized vectors are orthogonal if ⟨a,b⟩ = 0.

Exercise A.4 Prove that vectors a,b ∈ Rn are orthogonal if and only if the angle between
them is π/2 (90 degrees) or −π/2 (-90 degrees).

Exercise A.5 (Cauchy-Schwartz Inequality) For a,b ∈ Rn, show ⟨a,b⟩ ≤ ∥a∥2∥b∥2.

A.3.3 Matrix Inner Product and Norms
We can extend the inner product to matrices.

The inner product of two same-sized matrices A,B ∈ Rm×n is expressed as ⟨A,B⟩ and
defined as

⟨A,B⟩ ≡
m∑

i=1

n∑

j=1

aijbij .

Exercise A.6 Let A,B ∈ Rm×n, and show

⟨A,B⟩ =
n∑

j=1

⟨aj ,bj⟩ =
〈
vec(A), vec(B)

〉
.

For a matrix A ∈ Rm×n, its (Frobenius) norm is

∥A∥F ≡
√
⟨A,A⟩ =

√√√√
m∑

i=1

n∑

j=1

a2ij .

The Frobenius norm is denoted by ∥ · ∥F .

Exercise A.7 Let A ∈ Rm×n, and show ∥A∥2F =
∑n

j=1 ∥aj∥22 = ∥ vec(A)∥22.

Exercise A.8 Let A ∈ Rm×n, and show the complexity of computing ∥A∥F is O(nm) if
A is dense and O

(
nnz(A)

)
if A is sparse.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

324 Appendix A. Numerical Linear Algebra

A.3.4 Vector Outer Product
The inner product of two vectors creates a scalar (reductive). In contrast, the outer product
of two vectors creates a matrix (expansive).

Given two vectors a ∈ Rm,b ∈ Rn, their vector outer product is

C = a , b ∈ Rm×n where cij = aibj for all (i, j) ∈ [m]⊗ [n].

The computational complexity of the outer product is O(mn).

Remark A.3 (Outer product notation) The vector outer product is usually written as
ab⊺, but we use the notation a , b because it is easier to generalize for our forthcoming
tensor discussion.

Exercise A.9 Prove that ∥a , b∥F = ∥a∥2∥b∥2.

A.3.5 Matrix-Vector Product
Given a matrix A ∈ Rm×n and vector x ∈ Rn, matrix-vector product is

y = Ax ∈ Rm where yi =

n∑

j=1

aijxj for all i ∈ [m].

The computational complexity of the matrix-vector product is O(mn), and it can be re-
duced to O(nnz(A)) if A is sparse.

Proposition A.4 (Matrix-Vector and Inner Products) For A ∈ Rm×n, x ∈ Rn, and
y ∈ Rm,

⟨Ax,y⟩ = ⟨x,A⊺y⟩.

Proof. Using definitions of inner product and matrix-vector product, we have

⟨Ax,y⟩ =
m∑

i=1

n∑

j=1

aijxj

 yi =

n∑

j=1

xj

(
m∑

i=1

aijyi

)
= ⟨x,A⊺y⟩.

Exercise A.10 Let I be the n× n identity matrix. Prove Ix = x for any vector x ∈ Rn.

Exercise A.11 Let a ∈ Rm,b ∈ Rn, and show a , b = ab⊺.

A.3.6 Matrix-Matrix Product
Given two matrices A ∈ Rm×p,B ∈ Rp×n, their matrix product is

C = AB ∈ Rm×n where cij =

p∑

k=1

aikbkj for all (i, j) ∈ [m]⊗ [n],

and the cost to compute C is O(mnp).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.3. Vectors and Matrices 325

The matrix product has several useful properties:

right distributive: (A+B)C = AC+BC, (A.1a)
left distributive: C(A+B) = CA+CB, (A.1b)

associative: A(BC) = (AB)C, (A.1c)
transposition: (AB)⊺ = B⊺A⊺. (A.1d)

In general, matrix multiplication is not commutative, i.e., AB ̸= BA, even for square
matrices.

Exercise A.12 For a,b ∈ Rn, prove a⊺b = ⟨a,b⟩.

Exercise A.13 Given two matrices A =
[
a1 a2 · · · ar

]
∈ Rm×r and B =[

b1 b2 · · · br

]
∈ Rn×r, prove

AB⊺ =

r∑

j=1

aj , bj .

Exercise A.14 Prove Eq. (A.1d).

Exercise A.15 Prove trace(A⊺B) = ⟨A,B⟩.

A.3.7 Matrix Inverse
Given a matrix A ∈ Rn×n, if there exists a matrix B ∈ Rn×n that satisfies

AB = BA = I,

then the matrix B is denoted A−1 and called the inverse of A.

If A−1 exists, A is called invertible or nonsingular; otherwise, A is called singular. Only
a square matrix can be invertible.

If A ∈ Rn×n is invertible, then

(A⊺)−1 = (A−1)⊺.

If two matrices A,B ∈ Rn×n are both invertible, then AB is invertible and

(AB)−1 = B−1A−1.

If two matrices A,B ∈ Rn×n and C = AB is invertible, then both A and B are also
invertible.

Remark A.5 (Avoiding matrix inverse) In most cases, we want to avoid explicitly com-
puting matrix inverses. This is discussed further in the context of linear systems (Ap-
pendix A.6).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

326 Appendix A. Numerical Linear Algebra

A.3.8 Positive Definiteness
A square matrix A ∈ Rn×n is positive definite if

x⊺Ax > 0 for all x ∈ Rn such that x ̸= 0.

Any symmetric positive definite matrix is invertible. We say the matrix is positive semidef-
inite if

x⊺Ax ≥ 0 for all x ∈ Rn.

Analogous definitions apply for negative (semi-)definiteness. In the case of symmetric
matrices, positive (semi-)definiteness can also be characterized by the eigenvalues of the
matrix, as described in Appendix A.5.4.

Exercise A.16 Let A ∈ Rm×n with m ≥ n. Prove A⊺A is positive semidefinite.

A.3.9 Vector Span and Subspace Dimension
We say a set of vectors {x1,x2, . . . ,xp } ⊂ Rn is linearly dependent if there exists
nontrivial weights {αi }pi=1 such that

p∑

i=1

αixi = 0.

Otherwise, the set is said to be linearly independent.

A set of vectors {x1,x2, . . . ,xp } ⊂ Rn is called (pairwise) orthogonal if x⊺
i xj = 0 for

all i ̸= j. The set is called orthonormal if, additionally, ∥xi∥2 = 1 for all i ∈ [p].

Exercise A.17 Prove that every orthonormal set is linearly independent.

The span of a set of vectors {x1,x2, . . . ,xp } ⊂ Rn is the subspace defined by all linear
combinations of its vectors, i.e.,

span {x1,x2, . . . ,xp } =
{

p∑

i=1

αixi ∈ Rn

∣∣∣∣∣ αi ∈ R for i ∈ [p]

}
⊆ Rn.

Let X = span {x1,x2, . . . ,xp }. The dimension of X , denoted dim(X) is equal to the
minimum number of (linearly independent) vectors whose span is equal to X . That set of
vectors is called a basis for the subset. Every linear subspace has an orthonormal basis,
i.e., a basis that is orthonormal. By definition, dim(X) ≤ min {n, p }.

The orthogonal complement to X is

X⊥ = { y ∈ Rn | y⊺x = 0 for all x ∈ X } .

If dim(X) = n, then X⊥ = ∅. Further, dim(X) + dim(X⊥) = n.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.3. Vectors and Matrices 327

Example A.2 (Subspace Orthonormal Basis and Orthogonal Complement) The sub-
space

X = span

1
0
1

 ,

1
1
1

 ,

2
−1
2

has dimension less than three because the vectors are not linearly independent. Any of the
three vectors can be written as a linear combination of the other two. Moreover, dim(X) =
2 because it has an orthogonal basis given by

1
0
1

 ,

0
1
0

 .

Finally, dim(X⊥) = 1, and it can be verified that

X⊥ = span

1
0
−1

 .

Exercise A.18 Given two vectors a ∈ Rm,b ∈ Rn, and C = a , b. Prove that for any
x ∈ Rn, Cx ∈ span {a }.

A.3.10 Matrix Range and Rank
The range of a matrix A =

[
a1 · · · an

]
∈ Rm×n is the span of its columns, i.e.,

range(A) = span {a1,a2, . . . ,an }. The rank of a matrix A is the dimension of its
range. If m ≥ n = rank(A), then we say that A is full rank, i.e., the columns of A are
linearly independent. The range and rank of a matrix are specified by the singular value
decomposition of the matrix, as described in Appendix A.5.3.

Proposition A.6 (Matrix Rank Properties, Horn and Johnson, 1985) Let A ∈ Rm×n and
B ∈ Rn×p. Then we have the following useful properties of the matrix rank.

(a) rank(A) = rank(A⊺).
(b) rank(A) ≤ min {m,n }.
(c) rank(A) + rank(B)− p ≤ rank(AB) ≤ min { rank(A), rank(B) }.
(d) If n = 1, then rank(AB) = 1.
(e) If m = n and rank(A) = n, the A is invertible.
(f) If m ≥ n and rank(A) = n, then A⊺A is full rank and therefore invertible.
(g) If U ∈ Rm×m and V ∈ Rn×n are nonsingular, then rank(A) = rank(UA) =

rank(AV) = rank(UAV).

Exercise A.19 Prove Proposition A.6 (g) using Proposition A.6 (c).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

328 Appendix A. Numerical Linear Algebra

A.3.11 Orthonormal and Orthogonal Matrices
We say a matrix U ∈ Rm×n withm ≥ n is column orthonormal, or simply orthonormal,
if its columns form an orthonormal set, i.e.,

u⊺
i uj =

{
1 if i = j,

0 if i ̸= j,
for all i, j ∈ [n].

In other words, U⊺U = In, the n×n identity matrix. Conversely, a matrix whose transpose
is column orthonormal is called row orthonormal, i.e., its rows form an orthonormal set
of vectors.

If U ∈ Rm×n with m > n is orthonormal, then there exists an orthogonal complement
matrix U⊥ ∈ Rm×(m−n) such that V =

[
U U⊥] is orthogonal.

Proposition A.7 (Orthonormal Matrix Properties) If U ∈ Rm×n with m > n is (column)
orthonormal, then

U⊺U = In, (A.2a)
∥Ux∥2 = ∥x∥2 for all x ∈ Rn, (A.2b)
∥U⊺y∥2 ≤ ∥y∥2 for all y ∈ Rm, (A.2c)

∥UA∥F = ∥A∥F for all A ∈ Rn×p, (A.2d)

∥U⊺B∥F ≤ ∥B∥F for all B ∈ Rm×p. (A.2e)

Exercise A.20 Give an analogous proposition to Proposition A.7 for a row orthonormal
matrix.

A square (column and row) orthonormal matrix U ∈ Rn×n is called orthogonal. This
nomenclature is a bit confusing because an orthogonal matrix means that its columns are
not just pairwise orthogonal but also have unit norm.

○ An orthonormal matrix has columns that are unit length and pairwise
orthogonal. An orthogonal matrix is a square orthonormal matrix.

Proposition A.8 (Orthogonal Matrix Properties) If U ∈ Rn×n is orthogonal, then the
following properties hold:

U−1 = U⊺, (A.3a)
U⊺U = UU⊺ = I, (A.3b)

⟨Ux,Uy⟩ = ⟨x,y⟩ for all x,y ∈ Rn, (A.3c)
∥Ux∥2 = ∥U⊺x∥2 = ∥x∥2 for all x ∈ Rn, (A.3d)

∥UA∥F = ∥U⊺A∥F = ∥A∥F for all A ∈ Rn×p. (A.3e)

Exercise A.21 Prove Eq. (A.3e).

Orthogonal Projectors For an orthonormal matrix U ∈ Rm×n with m > n, it is not
the case that UU⊺ = In. Instead, the matrix UU⊺ is called an orthogonal projector.
An orthogonal projector should not be confused with an orthogonal matrix. The matrix
Im−UU⊺ is called the complementary orthogonal projector. We can also prove useful
properties involving orthogonal projectors, as follows.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.3. Vectors and Matrices 329

Proposition A.9 (Orthogonal Projector Properties) If U ∈ Rm×n is orthonormal and
A,B ∈ Rm×p, then

⟨UU⊺A, (I−UU⊺)B⟩ = 0, and (A.4a)

∥A∥2F = ∥UU⊺A∥2F + ∥(I−UU⊺)A∥2F . (A.4b)

Proof. From Proposition A.4 and the fact that U is orthonormal, we have

⟨UU⊺A, (I−UU⊺)B⟩ = ⟨A,UU⊺(I−UU⊺)B⟩ = ⟨A, (UU⊺ −UU⊺UU⊺)B⟩ = 0.

Then we can use this fact to see that

∥A∥2F = ∥UU⊺A+ (I−UU⊺)A∥2F
= ⟨UU⊺A+ (I−UU⊺)A,UU⊺A+ (I−UU⊺)A⟩
= ⟨UU⊺A,UU⊺A⟩+ 2⟨UU⊺A, (I−UU⊺)A⟩+ ⟨(I−UU⊺)A, (I−UU⊺)A⟩
= ∥UU⊺A∥2F + ∥(I−UU⊺)A∥2F .

A.3.12 Permutation Matrices
A permutation matrix P ∈ Rn×n is a special orthogonal matrix such that y = Px is a
rearrangement of the entries of x. A permutation matrix P is all zeros except for a single 1
in each row and in each column. For example,

P =

0 1 0
1 0 0
0 0 1

 (A.5)

is a permutation matrix, representing the permutation π = (2, 1, 3). Conversely, given a
permutation π of [n], the corresponding permutation matrix P ∈ Rn×n is defined by

pij =

{
1 if j = πi,

0 otherwise.

Exercise A.22 Let A ∈ R3×3 and let P be the permutation matrix in Eq. (A.5). How does
B = PA differ from A? How does C = AP differ from A?

Permutation matrices need not be formed explicitly. If we want to compute y = Px and
we know π, we can instead just execute the following loop:

Permutation with Explicit Matrix
for i = 1, . . . , n do

y(i)← x(πi)
end for

This has no computation, only memory movement.

Perfect Shuffle One important permutation matrix rearranges the elements of a vector-
ized matrix to correspond to its transpose.

Definition A.10 (Matrix Perfect Shuffle) A perfect shuffle matrix is a permutation matrix
P such that

P vec(A) = vec(A⊺)

for a matrix A of size m× n. This is also known as the commutation matrix.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

330 Appendix A. Numerical Linear Algebra

Proposition A.11 (Matrix Perfect Shuffle) The permutation π defined by

πk =
(
(k − 1) mod n

)
m+ ⌈k/n⌉ for all k ∈ [mn]. (A.6)

produces the (m,n)-perfect shuffle matrix.

See Magnus and Neudecker (1979) for more on commutation matrices.

A.4 Other Matrix Products
A few other matrix products come up in the context of tensor decompositions.

A.4.1 Gram Matrix
The Gram matrix of a set of vectors {x1,x2, . . . ,xn } is given by X⊺X where X is the
matrix whose columns are the vectors xj , i.e., X =

[
x1 x2 · · · xn

]
.

Proposition A.12 (Symmetric Positive Semidefinite Gram) Any Gram matrix X⊺X is
symmetric positive semidefinite.

Proof. Suppose X ∈ Rm×n. We can see that X⊺X is symmetric because

(X⊺X)⊺ = X⊺(X⊺)⊺ = X⊺X.

The first step used Eq. (A.1d). We can see that it is positive semidefinite as follows. For
any y ∈ Rn, define z = Xy. Then

y(X⊺X)y = (Xy)⊺(Xy) = z⊺z = ∥z∥22 ≥ 0.

Proposition A.13 (Gram Matrix Rank, Horn and Johnson, 1985) The rank of X⊺X
equals the dimension of the span of the columns of X, i.e., rank(X⊺X) = rank(X).
Further, the columns of X are linearly independent if and only if X⊺X is positive definite.

A.4.2 Matrix Hadamard Product
Given two same-sized matrices A,B ∈ Rm×n, their Hadamard product or elementwise
product is

C = A∗B ∈ Rm×n where cij = aijbij for all (i, j) ∈ [m]⊗ [n].

This is also known sometimes as the Schur product (Horn and Johnson, 1985).

Elementwise, the Hadamard product of matrices A,B ∈ Rm×n is

a11 · · · a1n

...
. . .

...
am1 · · · amn

b11 · · · b1n

...
. . .

...
bm1 · · · bmn

a11b11 · · · a1nb1n
...

. . .
...

am1bm1 · · · amnbmn

m m m

n n n

A B A∗B
∗ = .

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.4. Other Matrix Products 331

The Hadamard product is

commutative: A∗B = B∗A, (A.7)
distributive: A∗ (B+C) = (A∗B) + (A∗C), (A.8)
associative: (A∗B)∗C = A∗ (B∗C). (A.9)

Example A.3 (Hadamard Product) The Hadamard product has many uses in the context
of tensors and elsewhere, including masking regions of a matrix. For instance, we can mask
the lower right corner of a matrix as follows:

0.81 0.63 0.96 0.96
0.91 0.10 0.96 0.49
0.13 0.28 0.16 0.80
0.91 0.55 0.97 0.14

∗

1 1 1 1
1 1 1 1
1 1 0 0
1 1 0 0

 =

0.81 0.63 0.96 0.96
0.91 0.10 0.96 0.49
0.13 0.28 0 0
0.91 0.55 0 0

 .

Exercise A.23 Prove that if C = A∗B, then vec(C) = vec(A)∗ vec(B).

Exercise A.24 For a, c ∈ Rm and b,d ∈ Rn, prove that ab⊺ ∗ cd⊺ = (a∗ c)(b∗ d)⊺.

Exercise A.25 For a,b ∈ Rn, prove that a∗ b = diag(a)b.

Proposition A.14 (Schur Product Theorem, Horn and Johnson, 1985) Let A,B ∈
Rn×n. If A and B are symmetric positive definite, then A ∗ B is positive definite. If
A and B are symmetric positive semidefinite, then A∗B is positive semidefinite.

Proposition A.15 (Hadamard Product Rank Upper Bound, Horn and Johnson, 1991)
Let A,B ∈ Rm×n. Then

rank(A∗B) ≤ rank(A) rank(B).

Proposition A.16 (Hadamard Product Rank Lower Bound, Horn and Yang, 2020,
Corollary 5) If A,B ∈ Rn×n are symmetric positive semidefinite and have no zero di-
agonal entries, then

rank(A∗B) ≥ max { rank(A), rank(B) } .

A.4.3 Matrix Kronecker Product
The Kronecker product is, in a sense, the matrix analogue of the vector outer product. The
analogy is not quite complete because the outer product of two vectors results in a matrix;
whereas the Kronecker product of two matrices is still a matrix. We later see in Chapter 3
that a rearrangement of output of the Kronecker product of two matrices yields a four-way
tensor that is equivalent to their (tensor) outer product; and, conversely, that every tensor
product has an unfolding that can be expressed as the Kronecker product of two matrices.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

332 Appendix A. Numerical Linear Algebra

Definition A.17: Matrix Kronecker Product

Given two matrices A ∈ Rm1×n1 and B ∈ Rm2×n2 , their Kronecker product is

C = A⊗B ∈ Rm1m2×n1n2 where ckℓ = ai1j1bi2j2 , (A.10a)

and the relationship between (k, ℓ), (i1, j1), and (i2, j2) is as follows.
Given input indices (i1, j1, i2, j2) ∈ [m1]⊗ [n1]⊗ [m2]⊗ [n2],

k = (i1 − 1)m2 + i2 and ℓ = (j1 − 1)n2 + j2. (A.10b)

Conversely, given output index (k, ℓ) ∈ [m1m2]⊗ [n1n2],

i1 = ⌈k/m2⌉, j1 = ⌈ℓ/n2⌉,
i2 =

(
(k − 1) mod m2

)
+ 1, j2 =

(
(ℓ− 1) mod n2

)
+ 1.

(A.10c)

Elementwise, the Kronecker product of A ∈ Rm×n and B ∈ Rp×q is

a11 · · · a1n

...
. . .

...
am1 · · · amn

b11 · · · b1q

...
. . .

...
bp1 · · · bpq

a11b11 · · · a11b1q · · · · · · a1nb11 · · · a1nb1q
...

. . .
...

. . .
...

. . .
...

a11bp1 · · · a11bpq · · · · · · a1nbp1 · · · a1nbpq
...

......
. . .

......

...
am1b11 · · · am1b1q · · · · · · amnb11 · · · amnb1q

...
. . .

...
. . .

...
. . .

...
am1bp1 · · · am1bpq · · · · · · amnbp1 · · · amnbpq

m p mp

n q

nq

A B

A⊗B

⊗ = .

The Kronecker product is much bigger than its inputs, i.e., its total size is the product of
the total size of the inputs.

One way to express the Kronecker product is in block format as

A⊗B =

a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .

The Kronecker product has several other useful properties, including associativity, as fol-
lows.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.4. Other Matrix Products 333

Proposition A.18: Kronecker Product Properties

The following are properties of the Kronecker product:

A⊗B⊗C = (A⊗B)⊗C = A⊗ (B⊗C), (A.11a)
(A⊗B)⊺ = A⊺ ⊗B⊺, (A.11b)

(A⊗B)−1 = A−1 ⊗B−1, (A.11c)
(A⊗B)(C⊗D) = (AC)⊗ (BD), (A.11d)

vec(ACB⊺) = (B⊗A) vec(C), (A.11e)
rank(A⊗B) = rank(A) rank(B). (A.11f)

For Eq. (A.11d), it is required that the sizes are conforming, i.e., the number of rows in C is
equal to the number of columns in A and likewise for D and B. Likewise for Eq. (A.11e),
the number of columns in A is equal to the number of rows in C, and the number of
columns in B is equal to the number of columns in C.

Exercise A.26 Prove Eq. (A.11e).

Exercise A.27 Let U ∈ Rm×n with m > n and V ∈ Rp×q with p > q be orthonormal
matrices. Show U⊗V is orthonormal.

Exercise A.28 Prove ∥A⊗B∥2F = ∥A∥2F ∥B∥2F .

Example A.4 (Kronecker Product) An example Kronecker product is

[
5 3 5
4 5 5

]
⊗
[
1 4
6 6

]
=

5 20 3 12 5 20
30 30 18 18 30 30
4 16 5 20 5 20
24 24 30 30 30 30

 .

The Kronecker operator does not commute; in other words, it is not the case that A⊗B =
B ⊗A for arbitrary A,B. However, the only difference is a permutation of the rows and
columns, as elucidated in the next result.

Proposition A.19 (Kronecker-Perfect Shuffle Connection, Magnus and Neudecker,
1979) Let A ∈ Rm×p and B ∈ Rn×q . Then

A⊗B = P(B⊗A)Q⊺.

where P and Q are (m,n)- and (p, q)-perfect shuffle permutation matrices, respectively.

The vector Kronecker product is a special case of the matrix Kronecker product. We use
its properties often enough that it we deem it worthwhile to consider them specially. As
in the matrix case, the Kronecker product of two vectors combines all possible products of
the entries. If the inputs are vectors of length m and n, then the output is of length mn.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

334 Appendix A. Numerical Linear Algebra

Definition A.20: Vector Kronecker Product
For two vectors a ∈ Rm,b ∈ Rn, their Kronecker product is

v = a⊗ b ∈ Rmn ⇔ vk = aibj where k = n(i− 1) + j. (A.12)

Exercise A.29 Let v = a ⊗ b where a ∈ Rm and b ∈ Rn. Given index k ∈ [mn], what
are the i and j such that vk = aibj?

Elementwise, the Kronecker product can be written as

a1
a2
...
am

b1
b2
...
bn

a1b1
...

a1bn
......

amb1
...

ambn

m n mn⊗ =

a b

a⊗ b

.

More compactly, we have

a⊗ b =

a1b
a2b

...
amb

 .

Exercise A.30 (Connection of Vector Outer Product and Kronecker Product) Let a ∈
Rm,b ∈ Rn. Prove vec(a , b) = b⊗ a.

A.4.4 Matrix Khatri-Rao Product
The Khatri-Rao product computes the columnwise Kronecker product of its inputs. Its
utility is in working with sums of vector outer products, and we show below how a low-
rank matrix factorization can be expressed using the Khatri-Rao product. The Khatri-Rao
product has an intimate relationships with sums of rank-one tensors, which we explore in
Chapter 10.

Definition A.21: Matrix Khatri-Rao Product (KRP)

Given two matrices with the same number of columns A ∈ Rm×r and B ∈ Rn×r, their
Khatri-Rao product is

C = A⊙B ∈ Rmn×r where ckℓ = aiℓbjℓ, (A.13a)

and the relationship between (k) ∈ [mn] and (i, j) ∈ [m]⊗ [n] is

k = (i− 1)n+ j. (A.13b)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.4. Other Matrix Products 335

In terms of the columns of A and B, we have cℓ = aℓ ⊗ bℓ for all ℓ ∈ [r], i.e.,

C =

∣∣∣∣
∣∣∣∣

∣∣∣∣
a1 ⊗ b1 a2 ⊗ b2 · · · ar ⊗ br∣∣∣∣

∣∣∣∣
∣∣∣∣

.

This also means that the kth row of A⊙B is the Hadamard product of the ith row of A and
the jth row of B, where k = (i− 1)n+ j. Writing the Khatri-Rao product out completely,
we get

a11 · · · a1r

...
. . .

...
am1 · · · amr

b11 · · · b1r

...
. . .

...
bn1 · · · bnr

a11b11 a12b12 · · · a1rb1r
...

...
. . .

...
a11bn1 a12bn2 · · · a1rbnr

...
...

......
...

. . .
......

...
...

am1b11 am2b12 · · · amrb1r
...

...
. . .

...
am1bn1 am2bn2 · · · amrbnr

m n mn

r r

r

A B

A⊙B

⊙ = .

Example A.5 (Khatri-Rao product) An example Khatri-Rao product is

[
5 2 3 1
2 2 4 5

]
⊙

3 3 4 1
5 1 2 5
2 1 5 3

 =

15 6 12 1
25 2 6 5
10 2 15 3
6 6 16 5
10 2 8 25
4 2 20 15

.

Exercise A.31 Suppose X ∈ Rm×n has a factorization of the form

X = UΣV⊺ =

r∑

j=1

σiuiv
⊺
j

where U ∈ Rm×r, V ∈ Rn×r, and Σ = diag(σ) with σ ∈ Rr. Prove

vec(X) = (V ⊙U)σ.

Exercise A.32 Prove ∥A⊙B∥2F ≤ ∥A⊗B∥2F = ∥A∥2F ∥B∥2F .

Proposition A.22 (Multiplying Kronecker and Khatri-Rao Products) Given matrices A ∈
Rm×n,B ∈ Rp×q,C ∈ Rn×r,D ∈ Rq×r,

(A⊗B)(C⊙D) = (AC)⊙ (BD).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

336 Appendix A. Numerical Linear Algebra

Table A.1: Leading term of computational cost of numerically stable algorithms for matrix
factorizations of m× n matrix with m ≥ n

Decomposition Square
(m = n)

Rectangular
(m > n)

Comments

LU 2
3n

3 must be square

Cholesky 1
3n

3 must be symmetric positive definite

QR 4
3n

3 2mn2 cost doubles for explicit Q

SVD 20
3 n

3 6mn2 for computing all singular vectors

Sym. EVD 10
3 n

3 must be symmetric

Proof. We can rewrite the product as

(A⊗B)(C⊙D) = (A⊗B)
[
c1 ⊗ d1 · · · cr ⊗ dr

]

=
[
(A⊗B)(c1 ⊗ d1) · · · (A⊗B)(cr ⊗ dr)

]

=
[
Ac1 ⊗Bd1 · · · Acr ⊗Bdr

]

=
[
[AC]1 ⊗ [BD]1 · · · [AC]r ⊗ [BD]r

]

= (AC)⊙ (BD).

The product of Kronecker products is simplified in the third line using Eq. (A.11d).

Proposition A.23 (Khatri-Rao Product Gram) Given matrices A ∈ Rm×r,B ∈
Rn×r,C ∈ Rm×s,D ∈ Rn×s,

(A⊙B)⊺(C⊙D) = (A⊺C)∗ (B⊺D).

Exercise A.33 Prove Proposition A.23.

Proposition A.24 (Khatri-Rao Product Rank Bound, Jos ten Berge, 2000) Let matrices
A ∈ Rm×r,B ∈ Rn×r. If A and B have no all-zero columns, then

rank(A⊙B) ≥ max { rank(A), rank(B) } .

Exercise A.34 Prove Proposition A.24. Hint: Use Propositions A.13, A.16 and A.23.

A.5 Matrix Decompositions
We consider several different matrix decompositions: LU, Cholesky, QR, singular value de-
composition (SVD), and eigenvalue decomposition (EVD). All have the roughly the same
cost for a square n × n matrix, i.e., O(n3). However, the leading term varies from 1

3
up to 20

3 . The SVD is often the most convenient and intuitive matrix factorization in a
mathematical sense, but any other factorization will be more efficient computationally and
preferred in practice if it can serve an equivalent role. We summarize the leading term of
the computational cost for each method in Table A.1.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.5. Matrix Decompositions 337

A.5.1 LU and Cholesky Decompositions
Let A ∈ Rn×n be a nonsingular matrix. Its LU decomposition is expressed as

PA = LU,

where P is a permutation matrix, L is lower triangular, and U is upper triangular, each
with the same dimensions as A. Ignoring the permutation of A, we can visualize this as in
Fig. A.1. The most common algorithm for computing this decomposition is called Gaussian

=

A UL

Figure A.1: LU decomposition

elimination, requires 2
3n

3 flops, and performs row permutations (known as partial pivoting)
that are encoded in the matrix P.

Suppose further that A ∈ Rn×n is symmetric and positive definite (see Appendix A.3.8).
Then its Cholesky decomposition is

A = LL⊺,

where L ∈ Rn×n is lower triangular. The algorithm for computing the Cholesky decom-
position requires 1

3n
3 flops, which is half the cost of LU because the algorithm exploits

symmetry. Because of the positive definiteness, no row or column permutations are re-
quired to maintain numerical stability. The Cholesky factorization can be visualized as in
Fig. A.2.

=

A L L⊺

Figure A.2: Cholesky factorization

These two decompositions are most commonly used to solve linear systems, as described
in Appendix A.6. For more details, see Demmel, 1997, Chapter 2 or Trefethen and Bau,
1997, Part IV.

○
The LU and Cholesky decompositions are most useful for the solution

of linear systems and factors the (permuted) input matrix into the
product of a lower triangular matrix and an upper triangular matrix.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

338 Appendix A. Numerical Linear Algebra

A.5.2 QR Decomposition
Let A ∈ Rm×n with m ≥ n. Then its QR decomposition is

A = Q̄R̄ =
[
Q Q⊥]

[
R
0

]
= QR. (A.14)

Here Q̄ ∈ Rm×m is orthogonal, Q ∈ Rm×n is a matrix whose orthonormal columns span
the column space of A, and Q⊥ ∈ Rm×(m−n) is the orthogonal complement of Q. The
matrix R̄ is an upper triangular matrix of size m × n, with R of size n × n and the zero
block of size (m−n)×n. The QR decomposition exists for matrices with m < n as well,
but we ignore that case here. In computations, we generally use the economy or compact
QR decomposition given by the last term A = QR. We can visualize this as in Fig. A.3.

= =

A Q̄ R̄ Q

R

Figure A.3: QR factorization

The most common algorithm for computing the QR decomposition is called Householder
QR, which is numerically stable, costs 2mn2 − 2

3n
3 flops, and represents Q in an implicit

form. Using the implicit form, the matrix-vector products Qb and Q⊺b for b ∈ Rm are
each computed with 2mn + 2n2 flops. An explicit (compact) Q can be constructed at an
additional cost of 2mn2 − 2

3n
3 flops. The QR decomposition is often used to solve linear

least squares problems (as described in Appendix A.7) and to find an orthonormal basis for
the column space of a full-rank matrix, i.e., range(Q) = range(A).

A QR decomposition always exists and can be computed stably, even if A is not full rank.
When A is full rank, the QR decomposition is unique up to the signs of columns of Q. If
A has rank r < n, then the Householder QR algorithm can be augmented with column
pivoting (equivalent to right multiplication by a permutation matrix) in order to compute
Q ∈ Rm×r such that range(Q) = range(A).

○
The QR decomposition decomposes a matrix into an orthonormal matrix (Q) times
an upper triangular matrix (R), and it is used is the solution of least squares problem.
The Q matrix is also an orthonormal basis for the column space of the input matrix.

For more details, see Demmel (1997, Section 3.4) or Trefethen and Bau (1997, Lecture 7).

A.5.3 Singular Value Decomposition (SVD)
Let A ∈ Rm×n. Its singular value decomposition (SVD) is

A = ŪΣ̄V̄ =
[
U U⊥]

[
Σ 0
0 0

]

︸ ︷︷ ︸
Σ̄

[
V V⊥]⊺ = UΣV⊺.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.5. Matrix Decompositions 339

Here Ū ∈ Rm×m and V̄ ∈ Rn×n are orthogonal matrices. The matrix Σ̄ ∈ Rm×n is a
diagonal matrix with diagonal entries

σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n } ≥ 0.

The number of nonzero diagonal values is the matrix rank, i.e., rank(A) = r, and we let
Σ be the r × r submatrix with positive diagonal entries.

The columns of U ∈ Rm×r are an orthonormal basis for the range of A, and likewise for
V ∈ Rn×r and the range of A⊺.

Exercise A.35 Let A = UΣV⊺ be the SVD of a matrix A. Prove ∥A∥2F =
∑r

i=1 σ
2
i .

The SVD can be visualized as in Fig. A.4. Here we show the nonzero diagonal entries as
colored blocks and the zero diagonal entries as open blocks.

= =

A Ū Σ̄

V̄
⊺

U

Σ V⊺

Figure A.4: SVD

We often use the economy or compact SVD given by

A = UΣV⊺ =

r∑

k=1

σkukv
⊺
k.

Here Σ = diag(σ1, . . . , σr), and U = [u1, . . . ,ur] ∈ Rm×r, V = [v1, . . . ,vr] ∈ Rn×r

are orthonormal matrices. Each term in the SVD summation expression is a rank-1 matrix,
so it shows that A can be decomposed as the sum of r rank-1 matrices.

We refer to σk as the kth singular value, uk as the kth left singular vector, and vk as the
kth right singular vector. The singular values and vectors can be alternatively defined as
satisfying the following conditions:

A⊺uk = σkvk and Avk = σkuk.

If σk is distinct, then its left and right singular vectors are unique (up to sign). More gener-
ally, if all the singular values are distinct, then the SVD is unique, up to sign ambiguity.

The condition number of a matrix generally refers to the ratio of the largest singular value
to the smallest: σ1/σmin{m,n}. When this ratio is small (close to 1), we say the matrix is
well conditioned, and when it is large (close to the reciprocal of machine precision), we
say it is ill conditioned. If a matrix is not full rank, then its condition number is infinite.

○
The SVD decomposes a matrix into the sum of r rank-1 matrices where r is the rank
of the input matrix. The singular values can be used to determine the matrix rank
and norm. The left and right singular vectors (corresponding to nonzero singular
values) provide orthonormal bases for the column and row spaces, respectively.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

340 Appendix A. Numerical Linear Algebra

There is no closed-form solution for computing the SVD. However, the methods are such
that the dominant cost depends only on the size of matrix, i.e., there is no dependency on
the singular values, and the iterative parts have lower-order costs. The cost of computing
the SVD is O(min{mn2,m2n}). The hidden constant can vary from 1 up to almost 7
depending on the relative sizes of m and n and the algorithm used (see Appendix A.5.5).
See also Demmel (1997, Section 5.4) or Trefethen and Bau (1997, Lecture 31).

If the full SVD is not required (e.g., only the largest several singular values are desired),
then iterative methods can be more efficient than computing the full SVD, particularly when
the matrix is large and sparse. We discuss these issues in further detail in Appendix A.8.

Exercise A.36 Prove that if A ∈ Rm×n is full rank with m ≥ n, then A⊺A is full rank.
How does the condition number of A compare with that of A⊺A?

A.5.4 Symmetric Eigenvalue Decomposition
If A ∈ Rn×n is symmetric, then it has an eigenvalue decomposition (EVD) also some-
times called the eigendecomposition, given by

A = UΛU⊺ =

n∑

i=1

λiuiu
⊺
i ,

where U is an n× n orthogonal matrix and Λ = diag(λ1, λ2, . . . , λn) is a (real) diagonal
matrix. We refer to the λi values as the eigenvalues and the ui vectors as the eigenvectors.
These eigenpairs (λi,ui) satisfy

Aui = λiui for all i ∈ [n].

If λi is distinct, then ui is unique up to sign.

We can visualize the matrix eigendecomposition as in Fig. A.5. Here again, the solid blocks
in the diagonal matrix Λ denote nonzeros and the open blocks denote zeros.

=

A U Λ U⊺

Figure A.5: Eigenvalue decomposition (EVD)

○ The EVD of a symmetric matrix decomposes a
symmetric matrix into its eigenvectors and eigenvalues.

A symmetric matrix A is positive definite if and only if all its eigenvalues are positive,
i.e., λi > 0 for all i ∈ [n]. The matrix A is positive semidefinite if and only if all its
eigenvalues are nonnegative, i.e., λi ≥ 0 for all i ∈ [n]. Likewise, a negative definite
matrix has all negative eigenvalues, a negative semidefinite matrix has all nonpositive
eigenvalues. Symmetric matrices with both positive and negative eigenvalues are called
indefinite.

Algorithms for computing the symmetric eigendecomposition must be iterative. However,
the dominant costs depend only on the matrix dimensions, and the iterative parts have

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.5. Matrix Decompositions 341

lower-order costs. The cost of computing a symmetric eigendecomposition is approxi-
mately 10

3 n
3. For more details, see Demmel (1997, Section 5.3) or Trefethen and Bau

(1997, Part V).

Exercise A.37 (a) Prove that if a symmetric matrix A is positive definite then all its eigen-
values are positive. (b) Prove that if a symmetric matrix A is positive semidefinite then all
its eigenvalues are nonnegative.

A.5.5 Detailed Costs of Computing the SVD
In this section we will derive the leading constants of the cost of direct methods for com-
puting the SVD, which depends on several factors. We will assume that all singular values
are computed. Let A be m× n, and assume m ≤ n (otherwise we can apply the following
analysis to A⊺).

Square Case

In the case that A is square or nearly square (i.e., n/m ≤ 5/3) we compute the SVD
in a three-step process. This first step transforms A into a bidiagonal matrix (a matrix
that is zero except for the main diagonal and one diagonal either just above or just below
the main diagonal) using a process known as Golub-Kahan bidiagonalization. The second
step applies an iterative method to compute the SVD of the bidiagonal matrix. Finally, the
third step back-transforms to obtain the singular vectors of the original matrix. That is, for
input matrix A, the first step computes A = U0BV⊺

0 for bidiagonal B, the second step
computes B = UBΣV⊺

B, and the third step computes U = U0UB and V = VBV0 so
that

A = U0BV⊺
0 = U0UBΣV⊺

BV
⊺
0 = UΣV⊺.

Ifm = n, the first step costs 8
3n

3, the second step isO(n2), and the third step costs 2n3 for
each set of singular vectors. Thus, the cost is 20

3 n
3 for the full SVD. When not all singular

vectors are desired, the cost can be reduced. In particular, if only the first k left singular
vectors are desired, then this cost can be reduced to 8

3n
3 + 2n2k.

Rectangular Case

In the case that A is rectangular (i.e., n/m > 5/3), we consider two different methods. The
first is known as Lawson-Hanson-Chan bidiagonalization (Trefethen and Bau, 1997) and is
a cheaper variation on the method described for square matrices: (1) compute a compact
QR decomposition of A⊺, (2) compute the SVD of the square triangular factor R using the
method described above, and (3) transform the right singular vectors using the orthonormal
factor Q if desired. If we have the compact QR decomposition A⊺ = QR and the SVD
R⊺ = UΣV⊺

R, then

A = (UΣV⊺
R)Q⊺ = UΣ (QVR)

⊺
= UΣV⊺

is the SVD of A. If m ≪ n, then for the full SVD, the cost of the QR decomposition is
2m2n + O(m3), the cost of SVD of R is O(m3), and the cost of computing V = QVR

is 4m2n. Again, when not all singular vectors are desired, the cost can be reduced. If only
the first k left singular vectors are desired, then the cost is dominated by that of the QR:
2m2n.

The second method for the rectangular case relies on a connection between the SVD of a
matrix and the eigendecomposition of its Gram matrices. If A = UΣV⊺ is the compact

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

342 Appendix A. Numerical Linear Algebra

SVD of A (with square Σ), then

AA⊺ = UΣV⊺VΣ⊺U⊺ = UΣ2U⊺. (A.15)

As AA⊺ is an m ×m symmetric matrix, U is orthogonal, and Σ2 is diagonal, Eq. (A.15)
is the symmetric eigendecomposition as described in Appendix A.5.4. That is, the eigen-
vectors of AA⊺ are the left singular vectors of A, and the eigenvalues of AA⊺ are the
squares of the singular values of A. Thus, we can compute the singular values and left
singular vectors U of A by forming AA⊺, computing its eigendecomposition, and then
taking square roots of the computed eigenvalues and sorting them by their magnitudes. We
can also recover the right singular vectors V by computing V = Σ−1U⊺A, assuming
A has full rank. The cost of this approach to computing the full SVD includes m2n for
computing AA⊺,O(m3) for the symmetric eigendecomposition, and 2m2n for computing
V. If only the first k left singular vectors are required, then the cost is dominated by m2n
from forming AA⊺.

As in the case of solving linear least squares, the choice of algorithm is problem dependent.
The method based on computing the Gram matrix is computationally cheaper when the
matrix is rectangular (about half the cost when only left singular vectors are desired), but
it is also less accurate. In particular, the Gram matrix method does not compute small
singular values as accurately as the direct method when the matrix is ill conditioned. Thus,
the Gram matrix method is preferred when the accuracy of small singular values is not
required.

A.6 Solving Linear Equations
A linear system of equations in n variables, x1, . . . , xn can be expressed in matrix notation
as

Ax = b,

where A is an n×n square matrix and b is an n-vector. We can visualize this as in Fig. A.6

=

A x b

Figure A.6: Linear equation Ax = b

If A is nonsingular, then there exists a unique solution x = A−1b. Otherwise, there may
be no solution or infinitely many solutions.

We rarely compute the explicit inverse A−1 and instead focus on cheaper and more nu-
merically stable approaches to computing the solution x. A linear system can be solved
in straightforward ways when A has special structure (like being diagonal, orthogonal, or
triangular). If A does not have special structure, then direct methods are based on first
factoring A into a product of matrices that do have special structure and then solving a
sequence of linear systems with each factor.

See Demmel (1997, Chapter 2) and Trefethen and Bau (1997, Part IV) for full treatments
of methods for solving linear systems.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.6. Solving Linear Equations 343

A.6.1 Solving Diagonal Linear Equations
If A is an n × n diagonal matrix, then all the equations in Ax = b are independent and
the ith equation is simply aiixi = bi. Therefore, the solution is given by xi = bi/aii for
each 1 ≤ i ≤ n, which takes n operations to compute.

A.6.2 Solving Orthogonal Linear Equations
If A is an n × n orthogonal matrix, then we can multiply both sides of Ax = b by A⊺

and use the fact that A⊺A = I to see that x = A⊺b. This has the cost of a matrix vector
product, or 2n2 +O(n) computational operations.

A.6.3 Solving Triangular Linear Equations
Suppose A is an n × n lower triangular matrix, and we are solving Ax = b. The first
equation is a11x1 = b1, so we can compute x1 = b1/a11 directly. The second equation is
a21x1 + a22x2 = b2, and we can substitute the value we just computed for x1 to compute
x2 = (b2 − a21x1)/a22. Following in that way, for each xi we can substitute previously
computed values:

xi =
bi −

∑i−1
j=1 aijxj

aii
.

This process is called forward substitution. For upper triangular matrices, we can com-
pute the entries of x in the opposite order using a similar technique known as back substi-
tution. Either way, it requires n2 +O(n) computational operations.

A.6.4 Solving Symmetric Positive Definite Linear Equations
If A is an n×n symmetric positive definite matrix, we can use its Cholesky decomposition
to solve Ax = b, using

Ax = LL⊺x = Ly = b,

where we define y = L⊺x. Thus, we can solve Ly = b for y using forward substitution
(because L is lower triangular), and then we can solve L⊺x = y for x using backward
substitution (because L⊺ is upper triangular). The substitution process requires onlyO(n2)
flops, much less than the 1

3n
3 cost of computing the Cholesky decomposition.

Multiple right hand sides As most of the work in solving a linear system is spent com-
puting the decomposition of the coefficient matrix, we can solve multiple linear systems
with the same coefficient matrix cheaply by reusing the decomposition. In other words, if
we are solving

AX = B, (A.16)

where A is an n× n symmetric positive definite matrix and B is an n× k matrix, then the
solution matrix X of size n×k can be computed in 1

3n
3+2n2k+O(n2+nk) computational

operations.

Iterative methods for sparse or structured systems When A is large and sparse
or structured, then iterative methods may be more efficient than direct Cholesky decom-
position, particularly when full accuracy is not required. For symmetric positive definite
matrices, the (preconditioned) conjugate gradient method is commonly used. The algo-
rithm requires only a means of applying the matrix to a vector, so the matrix need not be
explicitly stored. The computation for each iteration is typically dominated by the matrix-
vector product involving A, which costs O(nnz(A)) for sparse matrices, and the rate of
convergence depends on the condition number of the matrix.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

344 Appendix A. Numerical Linear Algebra

Remark A.25 (Implicit matrices in conjugate gradients) Iterative linear solvers like
the conjugate gradient method require only a means to apply the coefficient matrix to a
vector. For sparse matrices this means that the cost per iteration is often dominated by the
O(nnz(A)) cost of a sparse matrix-vector product. It also means that the user does not
need to provide an explicit representation of the matrix, as conjugate gradients requires
only a method of applying it to a vector.

For well-conditioned problems, the conjugate gradient method can converge quickly; pre-
conditioning can help to improve convergence for ill-conditioned problems. Precondition-
ing a linear system Ax = b refers to employing a matrix M and solving the related system
M−1Ax = M−1b using the iterative method. Effective preconditioners are ones that bal-
ance the approximation M ≈ A with a cheap means of applying M−1. We want the matrix
M−1A to have favorable convergence properties, but in each iteration we must apply A
and then apply M−1, as shown in the following pseudocode for a preconditioned conjugate
method.

Preconditioned Conjugate Gradient Method

x0 = 0, r0 = b, y0 = M−1b, p1 = y0, β0 = y⊺
0r0

repeat k = 1, 2, . . .
z = Apk ▷ Application of coefficient matrix
νk = βk−1

p⊺
kz

xk = xk−1 + νkpk

rk = rk−1 − νkz
yk = M−1rk ▷ Application of preconditioner
βk = y⊺

krk
pk+1 = yk + βk

βk−1
pk

until converged

Here, in each iteration, x is the approximate solution to the linear system, r is the resid-
ual vector, and p is the search direction. Each iteration requires one application of the
coefficient matrix and one application of the preconditioner, which typically dominate the
computational cost. To employ preconditioned conjugate gradients, the user must specify
the right hand side b and the explicit matrices A and M−1, or the user can specify meth-
ods for implicitly applying one or both of A and M−1. See Demmel (1997, Chapter 6) or
Trefethen and Bau (1997, Lecture 35) for more details.

A.6.5 Solving Nonsymmetric Linear Equations
We will not generally need to solve general linear systems, but we touch upon this topic
briefly for completeness.

Consider the solution of Ax = b for a general n × n square matrix A. In this case, we
use the LU decomposition, PA = LU, where P is a permutation matrix, L is lower
triangular, and U is upper triangular. Then we can solve for x in a way similar to the sym-
metric positive definite case, with forward and back substitution involving the triangular
factors, but also permuting the final solution according to P⊺. Forward and backward sub-
stitution requires O(n2) flops, which is dominated by the 2

3n
3 cost of computing the LU

decomposition.

Iterative methods such as Generalized Minimum Residual (GMRES) are also commonly
used for solving general linear systems when A is large and sparse or structured. As with

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.7. Linear Least Squares Problems 345

the conjugate gradient method, the cost of these method is dominated by matrix-vector
products, and their rate of convergence depends on properties of the matrix and can be
improved via preconditioning. See Demmel (1997, Chapter 6) or Trefethen and Bau (1997,
Lecture 35) for more details.

Exercise A.38 Compare the costs of solving an n× n nonsymmetric linear system via the
following three decompositions: LU, QR, and SVD. Be sure to include the cost of both
computing the decomposition and using it to solve the system.

A.7 Linear Least Squares Problems
A linear least squares problem in n variables x1, . . . , xn has the form

min
x∈Rn

∥Ax− b∥2 , (A.17)

where A is an m×n matrix and b ∈ Rm. We refer to the quantity Ax−b as the residual
of the least squares problem. If m > n, we have more equations than variables and cannot
achieve a zero residual unless b ∈ range(A). Problems where m > n are referred to as
overdetermined. Such problems occur frequently in tensor decomposition and so are the
main focus of our discussion. The overdetermined least squares problem can be visualized
as in Fig. A.7.

−

A

x

b

min
x

Figure A.7: Least squares problem: minx ∥Ax− b∥2

We discuss several different solution methods in the subsections that follow. In general, the
solution to this problem is unique if A has full rank; otherwise, there are infinitely many
minimizers.

See Demmel (1997, Chapter 3) and Trefethen and Bau (1997, Part II) for full treatments of
methods for solving linear least squares problems.

Exercise A.39 Prove that if A is not full rank, then there are infinitely many solutions of
Eq. (A.17).

A.7.1 Solving Least Squares via Normal Equations
The simplest method for minimizing a linear least squares problem is solving the associated
normal equations, which form a linear system of equations. For Eq. (A.17), the normal
equations are

A⊺Ax = A⊺b, (A.18)

This expression can be derived by computing the gradient of the objective function and
setting it equal to zero (see Example B.2). That is, an x that solves Eq. (A.18) is a sta-

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

346 Appendix A. Numerical Linear Algebra

tionary point of Eq. (A.17), and because the optimization problem is convex, it is a global
minimizer (see Theorem B.24).

Exercise A.40 Prove that if A is full rank, A⊺A is symmetric and positive definite.

The cost of the normal equations method includes the cost of forming the n×n coefficient
matrix A⊺A and the right hand side A⊺b ∈ Rn and that of solving the linear system. When
A is m × n with m > n, nearly all of the computation occurs in computing A⊺A, which
costs mn2 + O(n2) flops. Forming A⊺b requires 2mn + O(n) flops. As explained in
Appendix A.6.4, solving the n × n symmetric positive definite linear system costs 1

3n
3 +

O(n2) flops.

A.7.2 Solving Least Squares via QR
The QR decompositioncan be used to solve the linear least squares problem in Eq. (A.17)
as follows. Let A = Q̄R̄ be the (full) QR decomposition with the partitioning specified

by Eq. (A.14) so that Q̄ =
[
Q Q⊥] is an m×m orthogonal matrix and R̄ =

[
R
0

]
is an

m× n upper triangular matrix. Then

∥Ax− b∥22 =
∥∥Q̄R̄x− b

∥∥2
2

=
∥∥Q̄⊺

(Q̄R̄x− b)
∥∥2
2

=
∥∥R̄x− Q̄

⊺
b
∥∥2
2

=

∥∥∥∥
[
R
0

]
x−

[
Q⊺

(Q⊥)⊺

]
b

∥∥∥∥
2

2

=

∥∥∥∥
[
Rx−Q⊺b
−(Q⊥)⊺b

]∥∥∥∥
2

2

=
∥∥∥Rx−Q⊺b

∥∥∥
2

2
+
∥∥∥(Q⊥)⊺b

∥∥∥
2

2
.

This formulation divides b into the component that is in the range of A and the component
that is not. Because the second term is independent of x, a minimizer of ∥Rx−Q⊺b∥2 is
a minimizer of ∥Ax− b∥2. Here, R is an n× n upper triangular matrix. If A is full rank,
then R is nonsingular, so we can solve the linear system Rx = Q⊺b for the minimizing x
using back substitution. In other words, the solution to Eq. (A.17) is

x∗ = R−1Q⊺b with (minimal) residual
∥∥Ax∗ − b

∥∥
2
=
∥∥(Q⊥)⊺b

∥∥
2
.

We only need the economy QR decomposition to compute this solution. We discuss the
case where A is not full rank in the next subsection.

The computational cost of the QR solution for least squares are the costs of

• computing the economy QR decomposition A = QR, 2mn2 +O(n3);
• computing the right hand side Q⊺b, 2mn+O(n2); and

• solving the triangular linear system, n2 +O(n).

○
The QR decomposition is a numerically stable method for solving

least squares problems, and the cost for solving a problem with an
m × n matrix A of full rank is O(mn2) computational operations.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.7. Linear Least Squares Problems 347

A.7.3 Solving Least Squares via SVD
We can pursue an analogous solution using the SVD. Assume we have the (full) SVD of A
such that

A = ŪΣ̄V̄
⊺
=
[
U U⊥]

[
Σ 0
0 0

]

︸ ︷︷ ︸
Σ̄

[
V V⊥]⊺ = UΣV⊺.

If r = rank(A), then U ∈ Rm×r, V ∈ Rn×r are orthonormal matrices, Ū and V̄ are
square orthogonal matrices, and Σ ∈ Rr×r is a nonsingular diagonal matrix.

Using reasoning analogous to the solution with QR, we can rewrite the least squares prob-
lem using the SVD, but here we need not assume that A is full rank. We have

∥Ax− b∥22 =
∥∥Σ̄V̄

⊺
x− Ū

⊺
b
∥∥2
2

=
∥∥∥ΣV⊺x−U⊺b

∥∥∥
2

2
+
∥∥∥(Ū⊥

)⊺b
∥∥∥
2

2
.

We can find x∗ such that ΣV⊺x = U⊺b, so the solution is thus

x∗ = VΣ−1U⊺b with (minimal) residual
∥∥Ax− b

∥∥2
2
=
∥∥(Ū⊥

)⊺b
∥∥2
2
,

which is the unique solution if A is full rank and the minimum norm solution if A is not
full rank. The matrix A† ≡ VΣ−1U⊺ is called the Moore-Penrose pseudoinverse. Like
the matrix inverse for linear systems, the pseudoinverse lets us express the solution of linear
least squares problems mathematically as x = A†b but is rarely computed explicitly.

Exercise A.41 Consider the least squares problem in Eq. (A.17) where A is not full rank,
i.e., r < n. Prove that x∗ = VΣ−1U⊺b is the minimum norm solution. In other words,
consider the set of all possible solutions,

S =
{
y
∣∣∣
∥∥Ay − b

∥∥
2
=
∥∥(Ū⊥

)⊺b
∥∥2
2

}
,

and show ∥x∥2 ≤ ∥y∥2 for all y ∈ S.

Exercise A.42 Using the SVD, show that the solution of the normal equations Eq. (A.18)
is that same as the solution of Eq. (A.17) using the SVD, i.e.,

x∗ = VΣ−1U⊺b.

A.7.4 Choice of Least Squares Solver
The choice of method, for solving linear least squares problems is problem dependent.
When m > n, the normal equations method is about half the cost of the QR decomposition
method: the dominating costs are forming A⊺A and computing the QR decomposition,
which costmn2 and 2mn2 flops, respectively, assuming a single right hand side. However,
the normal equations method is less numerically stable than using QR. That is, when A is
nearly low rank or ill conditioned, then the computed solution from the normal equations
is more sensitive to the floating point errors that occur during the computation. For well-
conditioned problems, both methods produce accurate solutions and the normal equations
method is typically preferred because of its efficiency.

If the coefficient matrix A is low rank (or very ill conditioned), then other slightly more ex-
pensive methods should be used. In this case, the solution is not unique, and the computed

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

348 Appendix A. Numerical Linear Algebra

solution can be very sensitive to floating point error. The SVD of A can be used to compute
the minimum-norm solution among all minimizers, or the QR decomposition algorithm can
be extended to use column pivoting to find the solution with the fewest nonzeros among all
minimizers.

If A is large and sparse or structured, then iterative methods may be more efficient for solv-
ing the least squares problem. One approach is to solve the normal equations iteratively,
using the Preconditioned Conjugate Gradient method for example. Because the precondi-
tioned conjugate gradient method relies only on the matrix-vector product (A⊺Ay in this
case), the method can avoid forming A⊺A explicitly and compute the result by first multi-
plying by A⊺ and then multiplying by A. Another approach is to apply an iterative method
such as LSQR (Paige and Saunders, 1982), which also involves matrix-vector products
with A and A⊺. LSQR is more robust than the conjugate gradient method applied to the
normal equations for ill-conditioned problems.

A.7.5 Multiple Right-Hand-Sides Version of Least Squares
As in the case of linear systems, we can efficiently solve the matrix version of this problem
written as

min
X∈Rn×k

∥AX−B∥F , (A.19)

where A ∈ Rm×n and B ∈ Rn×k. The normal equations for this problem are

A⊺AX = A⊺B,

which is a linear system with multiple right hand sides that can solved using a single
Cholesky decomposition with total cost mn2 + 2mnk+O(n3) computational operations.
Likewise, given the compact QR decomposition A = QR, we can solve

RX = Q⊺B

with a cost of 2mn2 + 4mnk +O(n3) operations (by applying the implicit form of Q⊺ to
B) or 4mn2 + 2mnnk +O(n3) operations (by forming and multiplying B by an explicit
Q’). These costs imply that when k is small relative to n, the normal equation approach
are about half the cost of using QR. When k is large relative to n, then the two methods
have roughly the same arithmetic cost.

A.8 Low-Rank Matrix Approximation
Let X ∈ Rm×n. The goal of low-rank matrix approximation is to find a matrix X̂ ≈ X
with rank(X̂) = k ≪ min {m,n }. We measure the approximation error using the norm
of the residual matrix: ∥X− X̂∥F . In some cases we seek the best possible approximation
subject to a fixed rank k (Appendix A.8.1), and in other cases we seek the lowest-rank
approximation that satisfies a given error threshold (Appendix A.8.2). We can visualize a
rank-k factorization as Fig. A.8 where A ∈ Rm×k and B ∈ Rn×k.

The matrix low-rank approximation problem is an optimization problem, but it is special in
that it has a closed-form solution. In particular, we can solve this problem using the SVD
as elucidated in one of the key theorems of linear algebra.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.8. Low-Rank Matrix Approximation 349

≈X A

B⊺

Figure A.8: Low-rank approximate matrix factorization

Theorem A.26 (SVD and Matrix Approximation, Eckhart and Young, 1936) Let X ∈
Rm×n with r = rank(X). Denote its compact SVD by X = UΣV⊺ =

∑r
i=1 σiuiv

⊺
i . For

k < r, the best rank-k approximation to X is the rank-k truncated SVD

Xk = UkΣkV
⊺
k = UkU

⊺
kX = XVkV

⊺
k =

k∑

i=1

σiuiv
⊺
i

where Uk and Vk are the first k columns of U and V, Σk = diag(σ1, . . . , σk), and

∥∥X−Xk

∥∥2
F
=

r∑

i=k+1

σ2
i .

○ The best rank-k approximation is achieved using the rank-k truncated SVD.

Computing the rank-k truncated SVD can be done using a direct method for the full SVD.
Some computation can be saved when only the leading k singular values and vectors are de-
sired, but direct methods still requireO(min{mn2,m2n}) as described in Appendix A.5.3
(recall that “direct” methods for the SVD include a cheap iterative component). If X is large
and sparse and k ≪ min{m,n}, then iterative methods such as Golub-Kahan-Lanczos
bidiagonalization can be much more efficient than computing the full SVD (Golub and Ka-
han, 1965; Gu, 2015). The algorithms require applying X and X⊺ to vectors or blocks of
vectors at each iteration, and convergence depends on the singular values of X.

Exercise A.43 Let X = UΣV⊺ and Xk = UkΣkV
⊺
k . Prove

∥∥X−Xk

∥∥2
F
=

r∑

i=k+1

σ2
i .

A.8.1 Specified Rank
Because a matrix of rank no more than k can be written as a product of two rectangular
matrices, we can express this problem as

min
A,B
∥X−AB⊺∥F subject to A ∈ Rm×k,B ∈ Rn×k. (A.20)

The low-rank approximation problem Eq. (A.20) does not have a unique solution for the
following reason. If we let M be any k × k nonsingular matrix besides the identity and
define Â = AM ̸= A and B̂ = BM−⊺ ̸= B, then ÂB̂

⊺
= AB⊺. Hence, there are

infinitely many equivalent solutions.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

350 Appendix A. Numerical Linear Algebra

We can exploit this nonuniquess to simplify the problem. Without loss of generality, we
can restrict the first factor to be orthonormal, i.e.,

min
W,B
∥X−WB⊺∥F subject to W ∈ Om×k,B ∈ Rn×k, (A.21)

where Om×k denotes the set of orthonormal m × k matrices, also known as the Stiefel
manifold. Equation (A.21) is sometimes known as the orthogonal Procrustes problem. The
advantage of this restriction is that we can easily eliminate B from the problem: given an
orthonormal matrix W, the optimal B is given by B = X⊺W, as can be derived from the
associated linear least squares problem. Thus, we can rewrite Eq. (A.20) as a minimization
problem over a single variable matrix:

min
W
∥(I−WW⊺)X∥F subject to W ∈ Om×k. (A.22)

The restriction to orthonormal matrices is not enough to obtain uniqueness: if we let Q
be any k × k orthogonal matrix besides the identity and define Ŵ = WQ ̸= W, then
ŴŴ

⊺
X = WW⊺X. The intuition for this nonuniqueness is that for this problem, the

optimal solution corresponds to a subspace rather than a particular matrix. The matrix we
wish to compute is an orthonormal basis of the subspace, but it is not unique.

Given the formulation of Eq. (A.22), we can apply Theorem A.26 to solve the problem.
With the kth truncated SVD Xk = UkΣkV

⊺
k , we let W = Uk, and we see that U⊺

kX =
ΣkV

⊺
k so that WW⊺X = Xk. Thus, the first k left singular vectors of X form a basis of

the optimal subspace.

We can simplify the notation further by observing that I−WW⊺ is an orthogonal projector
and applying Propositions A.7 and A.8. We have that

∥(I−WW⊺)X∥2F = ∥X∥2F − ∥WW⊺X∥2F = ∥X∥2F − ∥W⊺X∥2F .
Thus, a solution to Eq. (A.22) is also a solution of

max
W
∥W⊺X∥F subject to W ∈ Om×k. (A.23)

The leading k left singular vectors of X, or any k vectors that span that subspace, form the
solution to Eq. (A.23).

A.8.2 Specified Error
Another formulation of the low-rank matrix approximation problem is to minimize the
rank of the approximation subject to a relative error threshold. That is, given ε > 0, we can
reformulate Eq. (A.22) to

min k subject to W ∈ Om×k and ∥(I−WW⊺)X∥F ≤ ε ∥X∥F . (A.24)

As Theorem A.26 applies to every value of k, we can solve this formulation by considering
only the truncated SVDs. Thus, we choose the smallest k such that

∥X−Xk∥F = ∥(I−UkU
⊺
k)X∥F ≤ ε ∥X∥F ,

where Xk is the rank-k truncated SVD, or equivalently,

k = min

 k̃ ∈ [n]

∣∣∣∣∣∣

n∑

i=k̃+1

σ2
i ≤ ε2

n∑

i=1

σ2
i

 , (A.25)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.9. Software Libraries for Linear Algebra 351

where σi is the ith singular value of X.

Evaluating Eq. (A.25) directly requires first computing all singular values, which costs
O(min{mn2,m2n}). Iterative methods can be employed for this formulation, in which
case the left hand side of the inequality is approximated as

n∑

i=k̃+1

σ2
i ≈ ∥X∥2F −

k̃∑

i=1

σ̂2
i ,

where σ̂i is the approximately computed ith singular value.

The rank-constrained maximization problem in Eq. (A.23) has the following error-constrained
formulation:

min k subject to W ∈ Om×k and ∥W⊺X∥F ≥
√

1− ε2 ∥X∥F . (A.26)

Exercise A.44 Prove that Eq. (A.24) and Eq. (A.26) have equivalent solutions.

A.8.3 Extensions of Low-Rank Matrix Approximation
Other than by their dimensions, the variable matrices in Eq. (A.20) are not constrained.
In many cases, imposing additional constraints on A and B can uncover more relevant
structure in the data matrix. For example, nonnegative matrix factorization (Lee and Seung,
1999; Paatero and Tapper, 1994) imposes nonnegativity on A and B, which can improve
interpretability when X is nonnegative. Another complication occurs when some entries
of X are unknown (i.e., there is missing data). In these cases, the SVD no longer provides
a guaranteed solution, and more general optimization techniques must be employed.

A.9 Software Libraries for Linear Algebra
In general, we should rely on matrix software libraries rather than coding our own imple-
mentations because the software libraries have been tuned to achieve high performance.

The standard libraries are BLAS and LAPACK. BLAS stands for Basic Linear Algebra
Subroutines and includes functions for performing operations on matrices and vectors. LA-
PACK stands for Linear Algebra PACKage and includes functions for computing matrix
decompositions and solving the fundamental problems of numerical linear algebra, includ-
ing linear systems, least squares problems, and eigenvalue and singular value problems.
These two libraries have high-performance implementations on most architectures, includ-
ing multi-core CPUs, GPUs, and clusters of processors. Examples include OpenBLAS,
BLIS, Intel’s Math Kernel Library, NVIDIA’s cuBLAS, and the AMD Core Math Library.

User-friendly interfaces have been provided so that code written in high-level languages
like MATLAB and Python can benefit from the high performance of BLAS and LAPACK
implementations.

A.9.1 Representing Matrices in Memory
Matrices are stored in contiguous arrays in memory. The BLAS and LAPACK interfaces
require that matrices are internally ordered either in column- or row-major order. Column-
major order is the natural ordering as defined in Section 2.1 where each column is contigu-
ous within the array. Row-major order is the reverse ordering where each row is contiguous.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

352 Appendix A. Numerical Linear Algebra

See Fig. A.9 for an illustration. If a matrix is stored in column major, its transpose is stored
by the same array but in row major. The interfaces are flexible enough to handle matrix
transposes without any re-ordering, so it is rarely necessary to store a separate explicit
matrix transpose in memory.

3 9 1
8 2 1
4 3 9

(a) Column major

3 9 1
8 2 1
4 3 9

(b) Row major

Figure A.9: Comparing column- and row-major orderings

In order to utilize the subroutines provided by BLAS and LAPACK, the input matrices
must be in either column- or row-major. If they are not, the matrices need to be re-ordered
in memory, which can be a slow process. This cost of re-ordering is often worth paying in
order to benefit from the high performance of the libraries. A better alternative is to follow
the convention of column and row major as much as possible, which is what MATLAB and
Python do.

A.9.2 BLAS Hierarchy
BLAS functions are partitioned into three “levels” according to their computational com-
plexity. Level-1 BLAS functions perform vector-vector operations such as dot products and
vector norms. For vectors of dimension n, the computational complexity is O(n). Level-
2 BLAS functions perform matrix-vector operations like matrix-vector multiplication and
vector outer product (whose output is a matrix). The complexity of BLAS-2 functions
is O(n2). Level-3 BLAS covers matrix-matrix operations including matrix-matrix multi-
plication and triangular solve with multiple right hand sides, operations with complexity
O(n3). For more details on BLAS, see Blackford et al. (2002).

Not all levels of the BLAS achieve high performance. The ratio of computation to data of
a particular operation is known as its arithmetic intensity. Level-1 BLAS performs O(n)
computation on O(n) data, and Level-2 BLAS performs O(n2) computation on O(n2)
data, so they both have an arithmetic intensity of O(1) (a constant). Level-3 BLAS per-
forms O(n3) computations on O(n2) data, so those routines have an arithmetic intensity
of O(n).
Higher arithmetic intensity allows for more re-use of data in cache, particularly as n gets
large, which translates to higher performance. That is, while Level-3 BLAS involves more
computation than Level-1 and Level-2 routines, they run faster. Matrix-matrix multiplica-
tion is one of the most efficient computations that can be performed on most computers,
often running at over 90% of the peak speed of the processing units. Level-1 and Level-2
BLAS are bottlenecked by the speed of memory access, which is much slower than proces-
sor speeds.

Thus, when casting computation into calls to BLAS, using Level-3 routines is crucial in or-
der to achieve high performance. LAPACK routines, which implement higher level matrix
computations, generally cast the bulk of their computations using the Level-3 BLAS. This
is the key to the high performance of those routines. For more on LAPACK, see Anderson
et al. (1999).

In some cases, multiple related calls to BLAS routines can be “batched” together to im-

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

A.9. Software Libraries for Linear Algebra 353

prove performance. Often the operations involve the same computation with the same
(often small) dimensions but on different data. Because of the regularity of the computa-
tion and independence across data access, low-level optimizations and multiple levels of
parallelization can yield large performance improvements. The interface for this type of
operation has been standardized into the Batched BLAS (Abdelfattah et al., 2021).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

B
Optimization Principles
and Methods

The goal of this chapter is to give the reader a few basic tools to use and choose optimiza-
tion methods for fitting tensor decompositions. We briefly survey matrix calculus so that
we have tools for differentiation that we need for tensor decompositions. We also aim to
familiarize the reader with basic optimization concepts (e.g., definition of a minimizer), the
computations needed for calling an optimization (e.g., computing the gradient), and a quick
guide to useful optimization methods available in various optimization software packages.
We direct the reader to, e.g., Brookes (2020) for more on matrix calculus and to Nocedal
and Wright (2006) and Wright and Recht (2022) for more on numerical optimization.

B.1 Multivariable Calculus
B.1.1 First Derivatives
We begin derivatives of real-valued multivariate functions, f : Rn → R. The objective
functions of optimization problems are scalar valued; that is, they take as input a vector of
n variables and output a scalar value.

Definition B.1 (Gradient) For a continuously differentiable multivariate function,

f : Rn → R,

its first derivative is called the gradient, denoted∇f : Rn → Rn and defined as

∇f =

∂f
∂x1

∂f
∂x2

...
∂f
∂xn

,

where ∂f
∂xi

denotes the partial derivative of f with respect to xi.

We use the convention that the gradient is oriented as a column vector, matching size of the
input vector. The next propositions can be verified by applying the definition directly.

355

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

356 Appendix B. Optimization Principles and Methods

Proposition B.2 (Gradient of Norm Squared) If f(x) = 1
2∥x∥22, then ∇f(x) = x.

Proof. To verify, we compute the partial derivative to see that

[∇f(x)]i =
∂f

∂xi
(x) =

∂

∂xi

1
2

n∑

j=1

x2j

 =

1

2

n∑

j=1

∂

∂xi

[
x2j
]
= xi

for all i ∈ [n].

Proposition B.3 (Gradient of Dot Product) If f(x) = y⊺x for y ∈ Rn, then∇f(x) = y.

Multivariate functions can be expressed as functions of multiple sets of variables, taking
as input two or more vectors. For example, a function f : Rm+n → R may be expressed
as f(x,y) with x ∈ Rm and y ∈ Rn, which is equivalent to f(v) with v ∈ Rm+n a
concatenation of x and y. We can express the gradient of such a function by partitioning
the entries conformally and using partial derivative notation.

Definition B.4 (Partial Gradient) The partial gradient of f : Rn → R is the gradient of
f with respect to a subset x ∈ Rp of the inputs and denoted as ∂f

∂x ∈ Rp.

For a function f : Rp+q → R expressed as f(x,y) with x ∈ Rp and y ∈ Rq , the (full)
gradient is the assembly of the partial gradients:

∇f(v) =

∂f
∂x (v)

∂f
∂y (v)

 with v =

[
x
y

]
.

We may also write the gradient using partial gradient notation so that the differentiation
variable is clear. For instance, in the example we just gave, we could write ∂f

∂v (v) instead
of∇f(v).
Next, we consider derivatives of vector-valued multivariate functions, f : Rn → Rm. We
think of this as m real-valued functions organized into a column vector.

Definition B.5 (Jacobian) For a continuously differentiable vector-valued multivariate
function

f(x) =

f1(x)

...
fm(x)

 ∈ Rm.

its first derivative is called the Jacobian, denoted Df : Rn → Rm×n and defined as

Df =

(∇f1)⊺

(∇f2)⊺
...

(∇fm)⊺

=

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

,

where ∂fi
∂xj

denotes the partial derivative of fi with respect to xj .

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

B.1. Multivariable Calculus 357

For a scalar-valued function (m = 1), the gradient is the transpose of the Jacobian.

Remark B.6 (For scalar-valued function, gradient is transpose of Jacobian) For a
function f : Rn → R, we have Df ∈ R1×n (a row vector) and ∇f ∈ Rn (a column
vector). The gradient is the transpose of the Jacobian; in other words,∇f = [Df]⊺

The following examples can be verified by direct application of the definition.

Example B.1 (Jacobian) The Jacobian of

f(x, y) =

x+ y
x2y
y3

 is Df(x, y) =

1 1
2xy x2

0 3y2

 .

Proposition B.7 (Jacobian of Linear Function) If f(x) = Ax − b for A ∈ Rm×n and
b ∈ Rm, then Df(x) = A.

Proof. To verify, we compute the partial derivative of an arbitrary component function with
respect to an arbitrary element:

[Df(x)]ij =
∂fi
∂xj

(x) =
∂

∂xj

[
n∑

k=1

aikxk − bi
]
=

n∑

k=1

∂

∂xj
[aikxk] = aij .

Just as we have partial gradients, we can also have partial Jacobians.

Definition B.8 (Partial Jacobian) The partial Jacobian of f : Rn → Rm is the Jacobian
of f with respect to a subset x ∈ Rp of the inputs and denoted as df

dx ∈ Rm×p.

For a function f : Rp+q → Rm expressed as f(x,y) with x ∈ Rp and y ∈ Rq , we have

Df =
[
df
dx

df
dy

]

where df
dx is m× p and df

dy is m× q and the partial Jacobians.

Properties of derivatives generalize nicely from single-variable functions to multivariate
functions. For example, it is straightforward to verify that gradients and Jacobians are
linear.

Proposition B.9 (Linearity of Jacobian) Let h(x) = αf(x) + βg(x) where α, β ∈ R and
f ,g : Rn → Rm. Then

Dh(x) = αDf(x) + βDg(x).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

358 Appendix B. Optimization Principles and Methods

The product rule for single-variable functions generalizes to the dot product rule.

Proposition B.10 (Dot Product Rule) Let f ,g : Rn → Rm. Then

∇
(
f(x)⊺g(x)

)
= Df(x)⊺g(x) +Dg(x)⊺f(x).

Proof. Define h(x) = f(x)⊺g(x) =
∑m

i=1 fi(x)gi(x). Then

∂h

∂xj
(x) =

m∑

i=1

∂

∂xj
[fi(x)gi(x)]

=

m∑

i=1

∂fi
∂xj

(x)gi(x) +
∂gi
∂xj

(x)fi(x)

=

m∑

i=1

[Df(x)]ij gi(x) + [Dg(x)]ij fi(x).

Exercise B.1 Let f(x) = x⊺Ax. Use Proposition B.10 to show ∇f(x) = (A+A⊺)x.

The chain rule also generalizes; see, e.g., Colley (2006, Theorem 5.3) for details of the
proof.

Theorem B.11 (Multivariate Chain Rule) Let f = g ◦ h where f : Rm → Rp, g : Rn →
Rp, and h : Rm → Rn. Then

Df(x) = Dg
(
h(x)

)
︸ ︷︷ ︸

p×n

Dh(x)︸ ︷︷ ︸
n×m

∈ Rp×m.

If p = 1, this specializes to

∇f(x) = [Dh(x)]⊺︸ ︷︷ ︸
m×n

∇g
(
h(x)

)
︸ ︷︷ ︸

n×1

∈ Rm×1.

Example B.2 (Linear Least Squares Gradient) If f(x) = 1
2∥Ax−b∥22 for A ∈ Rm×n,

b ∈ Rm, then
∇f(x) = A⊺Ax−A⊺b.

To verify, observe that f = g ◦ h with g(y) = 1
2∥y∥22 and h(x) = Ax− b, and apply the

multivariate chain rule and results of Propositions B.2 and B.7. Setting the gradient equal
to zero yields the normal equations associated with minimizing the linear least squares
function f (see Appendix A.7.1).

B.1.2 Second Derivatives
The second derivative of a multivariate function is the first derivative of the gradient. For
a scalar-valued multivariate function f : Rn → R, its gradient ∇f : Rn → Rn is vector-
valued, so the derivative of the gradient is a square Jacobian matrix called the Hessian.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

B.1. Multivariable Calculus 359

Definition B.12 (Hessian) The Hessian of a twice continuously differentiable f : Rn → R
is denoted as∇2f : Rn → Rn×n and defined as the symmetric matrix

∇2f =

∂2f
∂x1∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂x1∂xn

∂2f
∂xn∂x2

· · · ∂2f
∂xn∂xn

,

where ∂2f
∂xi∂xj

denotes the partial derivative of ∂f
∂xj

with respect to xi and has the property

of symmetry, i.e., ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

.

Example B.3 (Linear Least Squares Hessian) If f(x) = 1
2∥Ax − b∥22 for A ∈ Rm×n,

b∈Rm, then ∇2f(x) = A⊺A.

Second derivatives of vector-valued multivariate functions and other higher derivatives can
also be defined (they are tensors!) but we will not need them in this book.

Exercise B.2 Compute the gradient and Hessian of the function

f(x, y) = c(y − x2)2 + (1− x)2.

B.1.3 Matrix Calculus
An important class of functions for our purposes are scalar-valued functions of a ma-
trix, such as f(A) = 1

2∥A∥2F . For the rules of differentiation discussed above to ap-
ply, functions need to be described in terms of vector inputs and outputs. Thus, a func-
tion f : Rm×n → R is better approached as a function f : Rmn → R. In other
words, a function f(A) must be differentiated as a function of f(vec(A)), in which case
∇f : Rmn → Rmn. However, we can express its gradient colloquially in matrix notation,
i.e., ∇f : Rm×n → Rm×n, by reshaping the vector ∂f

∂ vec(A) into a matrix ∂f
∂A with the

same dimensions as A; in other words,

∂f

∂ vec(A)
= vec

(
∂f

∂A

)
⇔ ∂f

∂A
= reshape

(
∂f

∂ vec(A)
,m× n

)
.

Either expression is acceptable as∇f and equivalent so long as the context is understood.

Example B.4 (Gradient of Frobenius Norm Squared) Let f(A) = 1
2∥A∥2F for A ∈

Rm×n. To compute the gradient of f with respect to A, we can consider f as a function
from Rmn to R, i.e., f(vec(A)) = 1

2∥A∥2F = 1
2∥ vec(A)∥22. From Proposition B.2, we

know ∂f
∂ vec(A) (vec(A)) = vec(A). Equivalently, we can write

∇f(A) = A.

To express a function of a matrix A in terms of vec(A), the following property of the
Kronecker product from Eq. (A.11e) is often key:

vec(BAC⊺) = (C⊗B) vec(A).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

360 Appendix B. Optimization Principles and Methods

Example B.5 (Using Kronecker Product Identity to Compute Gradient) Let f(A) =
x⊺Ay where A ∈ Rm×n, x ∈ Rm and y ∈ Rn. To compute the gradient of f in terms of
A, applying Eq. (A.11e) yields

f
(
vec(A)

)
= vec(x⊺Ay) = (y⊺ ⊗ x⊺) vec(A).

If we consider f as a function on vec(A) ∈ Rmn, then by Proposition B.3,

∇f(vec(A)) = y ⊗ x.

Finally, to convert to matrix notation, we use the fact that vec(xy⊺) = y ⊗ x to write

∇f(A) = xy⊺ ∈ Rm×n.

In the case of matrix-valued functions of matrices, such as F(B) = X −AB⊺, both the
input and the output are matrices. In this case, we still vectorize both input and output in
order to express the first derivative (the Jacobian). Unlike the gradient, the Jacobian does
not have the same size as the input.

Recall from Definition A.10 that them×n perfect shuffle permutation matrix P ∈ Rmn×mn

is such that for any m× n matrix A,

P vec(A) = vec(A⊺) and vec(A) = P⊺ vec(A⊺).

Example B.6 (Perfect Shuffle in Gradient Computation) Let F : Rn×r → Rm×n be
defined as F(B) = X − AB⊺ with X ∈ Rm×n, A ∈ Rm×r and B ∈ Rn×r. Let
f ≡ vec(F) : Rnr → Rmn be the vectorized function with respect to a vectorized input
so that by Definition A.10 and Eq. (A.11e),

f(vec(B)) = vec(X−AB⊺)

= vec(X)−P⊺ vec(BA⊺)

= vec(X)−P⊺(A⊗ In) vec(B),

where P is them×n perfect shuffle permutation matrix. Applying Proposition B.7 yields

Df(vec(B)) = −P⊺(A⊗ In) ∈ Rmn×nr.

We now combine matrix calculus and the chain rule to derive the gradient for the matrix
low-rank approximation problem (see Appendix A.8). While the unconstrained version of
the problem is solved via the SVD, we derive the gradient here because it is useful when
the variable matrices are constrained and because it is a simpler version of the tensor CP
problem addressed in Part III. First, consider the low-rank matrix approximation objective
function as a optimization problem in only one factor matrix.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

B.2. Principles of Unconstrained Optimization 361

Example B.7 (Gradient for Low-Rank Matrix Approximation) Let f(B) = 1
2∥X −

AB⊺∥2F where X ∈ Rm×n, A ∈ Rm×r and B ∈ Rn×r. So that we can apply the
chain rule, we rewrite f = g ◦ h with

g(v) =
1

2
∥v∥22 and h(vec(B)) = vec(X−AB⊺).

Applying the chain rule (Theorem B.11) and the result of Example B.6 where P is the
m× n perfect shuffle permutation matrix, we have

∇f(vec(B)) =
[
−P⊺(A⊗ In)

]⊺
vec(X−AB⊺)

= (A⊺ ⊗ In)P vec(AB⊺ −X)

= (A⊺ ⊗ In) vec(BA⊺ −X⊺)

= vec((BA⊺ −X⊺)A).

Finally, reshaping to matrix form, we have

∇f(B) = (AB⊺ −X)⊺A.

Exercise B.3 Let f(A) = 1
2∥X−AB⊺∥2F and prove that ∇f(A) = (AB⊺ −X)B.

More generally, we can consider the low-rank matrix approximation problem’s objective
function as a function of both factor matrices:

f(A,B) =
1

2
∥X−AB⊺∥2F .

In this case, we can denote the gradient of f to have the same shape as the inputs (a pair of
matrices) using partial derivative notation (see Definition B.4). From Example B.7 and Ex-
ercise B.3, we have

∇f
([

vec(A)
vec(B)

])
=

[
∂f

∂ vec(A)
∂f

∂ vec(B)

]
=

[
vec ((AB⊺ −X)B)
vec ((AB⊺ −X)⊺A)

]
.

We summarize key results in Table B.1. For more information on matrix calculus, see, e.g.,
Brookes (2020).

B.2 Principles of Unconstrained Optimization
A minimization problem has the form

min
x∈Rn

f(x) where f : Rn → R. (B.1)

The function f measures, for example, how well a model that depends on the input x
fits some observed data with f(x) = 0 indicating a perfect match. We usually want to
find the vector x that best fits the data and yields the smallest value for f(x). If f is
twice continuously differentiable, then we have a variety of methods to solve this problem,
including gradient descent (Appendix B.3.2), Newton’s method (Appendix B.3.3), quasi-
Newton methods (Appendices B.3.4 and B.3.5), and block coordinate descent (also known
as alternating optimization, see Appendix B.3.7).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

362 Appendix B. Optimization Principles and Methods

Table B.1: First derivatives for vector- and matrix-valued functions

Function Derivative

f(x) = 1
2
∥x∥22 ∇f(x) = x

f(x) = y⊺x ∇f(x) = y

f(x) = x⊺Ax ∇f(x) = (A+A⊺)x

f(x) = Ax Df(x) = A

f(x) = 1
2
∥Ax− b∥22 ∇f(x) = A⊺Ax−A⊺b

f(A) = x⊺Ay ∇f(A) = xy⊺

f(A) = 1
2
∥A∥2F ∇f(A) = A

f(A,B) = 1
2
∥X−AB⊺∥2F ∂f

∂A
(A,B) = (AB⊺ −X)B

f(A,B) = 1
2
∥X−AB⊺∥2F ∂f

∂B
(A,B) = (AB⊺ −X)⊺A

Most of our problems are a special case of minimization known as nonlinear least squares
and are of the form

min
x∈Rn

f(x) ≡ 1

2

m∑

i=1

(
ϕi(x)

)2
where ϕi : Rn → R for all i ∈ [m]. (B.2)

These problems have structure that allows for additional optimization approaches. For
example, we have already discussed the case where the ϕi’s are linear in Appendix A.7.
The Gauss-Newton method for nonlinear least squares is presented in Appendix B.3.6.

We say that these formulations are unconstrained because x can be any vector in Rn. We
discussed constrained optimization in Appendix B.5.

We focus here on minimization, but the definitions can be “flipped” for maximization prob-
lems, i.e., maximizing f(x) is the same as minimizing −f(x).

Before getting into the details of solution methods, we want to cover the basics. Our goal
is to find the point x∗ that yields the smallest value of f .

Definition B.13 (Global Minimizer) We say a point x∗ ∈ Rn is a global minimizer of
f : Rn → R if f(x∗) ≤ f(x) for all x ∈ Rn.

Generally, we can only guarantee that the point is a minimizer in a local region, rather than
globally.

Definition B.14 (Local Minimizer) We say a point x∗ ∈ Rn is a local minimizer of f :
Rn → R if there exists ε > 0 such that f(x∗) ≤ f(x) for all x ∈ Rn such that ∥x−x∗∥2 <
ε.

Every global minimizer is also a local minimizer.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

B.2. Principles of Unconstrained Optimization 363

Example B.8 (Local and Global Minimizers and Maximizers) In Fig. B.1, we graph the
function

f(x) = 10(x31 + x52)e
−(x2

1+x2
2). (B.3)

We can see visually that it has a global minimizer, a local minimizer, a global maximizer,
and a local maximizer. We give more rigorous ways to verify this below.

In the discussion the follows, we describe how to find these minimizers mathematically.

local max

global max

saddle point

local min

global min

saddle point

indeterminate point

Figure B.1: Two-variable function 10(x31+x
5
2)e

−(x2
1+x2

2) has exactly seven stationary points

B.2.1 Gradients and Stationary Points
For minimizing continuously differentiable functions, we make extensive use of the first
derivative, or gradient (Definition B.1), as it indicates how the function is changing locally.

Example B.9 (Gradient of 2-Dimensional Function) The gradient for f(x) = 10(x31 +

x52)e
−(x2

1+x2
2), as shown in Fig. B.1, is given by

∇f(x) = 10e−(x2
1+x2

2)

[
3x21 − 2x1(x

3
1 + x52)

5x42 − 2x2(x
3
1 + x52)

]
.

The negative gradient is important because it indicates which way is “downhill.” Any
direction that is within 90◦ of the negative gradient also points downhill.

Definition B.15 (Descent Direction) For a continuously differentiable function f : Rn →
R, we say d is a descent direction at the point x if

〈
d,∇f(x)

〉
< 0.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

364 Appendix B. Optimization Principles and Methods

For any continuously differentiable function, moving along a descent direction yields de-
crease, at least for a sufficiently short step. In other words, if∇f(x) ̸= 0 and d is such that〈
d,∇f(x)

〉
< 0. Then, there exists α > 0 such that f(x + αd) < f(x). More formally,

we have the following proposition.

Proposition B.16 (Descent Step Existence) Let f : Rn → R be a continuously differen-
tiable function. Let x ∈ Rn be given and d be a descent direction at x. Then there exists
ᾱ > 0 such that

f(x+ αd) < f(x) for all α ∈ (0, ᾱ).

The rate of initial decrease is fastest in the direction of the negative gradient, and for this
reason it is often called the direction of steepest descent.

Definition B.17 (Direction of Steepest Descent) For a continuously differentiable func-
tion f : Rn → R, d = −∇f(x) is the direction of steepest descent at the point x.

Example B.10 (Decrease in Steepest Descent Direction) Let f(x) be as defined in
Example B.9. Let x0 = [−1 1]⊺. Then its gradient is ∇f(x0) = [4.0601 6.7668]⊺. We
plot f(x0 + αd) where d = −∇f(x0) is the direction of steepest descent. The point
at α = 0 corresponds to f(x0). As α increases, the function value initially decreases at
the rate predicted by the linear model. As α increases further, the linear model becomes
increasingly inaccurate, and the function value eventually increases again. So long as f is
continuously differentiable, we are guaranteed that the function decreases for small enough
values of α.

0 0.1 0.2 0.3
−4

−3

−2

−1

0

α

function of step length: f(x+ αd)

linear model: f(x)− α∇f(x)⊺d

Exercise B.4 Let f(x) be defined as in Example B.9. Let x0 = [−1 1]⊺. Prove that
d = [−1 − 1] is a descent direction. Plot f(x0 + αd) for values of α ranging from 0 to 1.
What is its behavior?

Whenever the gradient is nonzero, we can always move along a descent direction to find a
point with a lower function value. Therefore, any minimizer must have a zero gradient.

Definition B.18 (Stationary Point) A point x is a stationary point of f if ∇f(x) = 0.

Theorem B.19 (First-order Necessary Conditions for Unconstrained Local Minimizer)
If f is continuously differentiable and x∗ is a local minimizer of f , then ∇f(x∗) = 0.

The converse is not true. A point can have a zero gradient and not be a minimizer. Finding a
point with a zero gradient a necessary but not a sufficient condition for finding a minimizer.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

B.2. Principles of Unconstrained Optimization 365

Example B.11 (Necessary Condition is Not Sufficient for Local Minimizer) There are
seven points that have zero gradient in Example B.9. They can be calculated by finding
all the roots of ∇f(x) = 0, which we can reduce to finding all roots of this polynomial
system:

3x21 − 2x1(x
3
1 + x52) = 0

5x42 − 2x2(x
3
1 + x52) = 0.

This function is simple enough that we can use techniques of abstract algebra to find all the
roots (e.g., using the Symbolic Toolbox of MATLAB). There are seven real-valued roots,
as follows:

(0, 0), (0,±
√
5/2), (±

√
3/2, 0), (1.0316, 0.8522), (−1.0316,−0.8522).

The last two roots are of the form (53α
3, α) where α is one of the two real roots of z6 +

27
125z

2 − 27
50 = 0. We see that only some of the stationary points correspond to minima.

B.2.2 Hessians and Optimality Conditions
For a function that is twice continuously differentiable, its Hessian is the matrix of second
derivatives and describes the local curvature of the function. This can sometimes be useful
in determining whether or not a stationary point is a local minimum. It cannot differentiate
between a local or global minimum.

Example B.12 (Hessian of 2-Dimensional Function) The Hessian of the function f from
Example B.9 is

∇2f(x) = 20e−x2
1−x2

2

[
(2x21 − 1)(x31 − 3x1 + x52) 2x31 − 3x1 + 2x52 − 5x32
2x31 − 3x1 + 2x52 − 5x32 2x31x

2
2 − x31 + 2x72 − 11x52 + 10x32

]
.

Though this can be computed by hand, we recommend using the Symbolic Toolbox of
MATLAB for this example.

Any minimizer must have a Hessian that is at least positive semidefinite. This means that
if we move in any direction from the current point, the function locally stays flat or goes
uphill.

Theorem B.20 (Second-order Necessary Conditions for Unconstrained Local Mini-
mizer) If f is twice continuously differentiable and x∗ is a local minimizer of f , then
∇2f(x∗) is positive semidefinite.

Unfortunately, having a positive semidefinite Hessian does not ensure that the point is a
local minimizer. It might be, but it might not be as we see in the next example.

Example B.13 (Necessary Condition is Not Sufficient for Local Minimizer) Let f(x) as
in Example B.12 and consider the point x = [0 0]⊺. Its Hessian is the all-zero matrix,
i.e., ∇2f(x) = [0 0

0 0] . Although ∇2f(x) is positive semidefinite, the point x is not a local
minimizer, as we can see in Fig. B.1. Some directions lead uphill and others downhill.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

366 Appendix B. Optimization Principles and Methods

The only way we can guarantee that a stationary point x is a local minimizer is if all its
Hessian’s eigenvalues are positive. This means that every direction away from x points
uphill.

Theorem B.21 (Second-order Sufficient Conditions for Unconstrained Local Minimzer)
If f is twice continuously differentiable and∇2f(x∗) is positive definite, then x∗ is a strict
local minimizer.

Conversely, if ∇2f(x) is negative definite, then x is a local maximum. If ∇2f(x) has
both positive and negative eigenvalues, then locally there are some directions that go uphill
and some that go downhill, which means that x is a saddle point. If the Hessian has
zero eigenvalues, the stationary point cannot be conclusively classified as a minimizer or
maximizer.

Exercise B.5 Consider the stationary points of f(x) as in Example B.11. Compute the
eigenvalues of the Hessian for each stationary point. Which stationary points can be defini-
tively characterized using their Hessian information? Which cannot?

B.2.3 Convex Functions
Convex functions are a class of function that have only a single minimizer, which is thus
the global minimizer.

Definition B.22 (Convex Function) We say a function f : Rn → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all λ ∈ (0, 1) and any points x,y in the domain of f . If f is continuously differentiable,
an equivalent condition is that

f(x) ≥ f(y) +∇f(y)⊺(x− y)

for all x,y in the domain of f .

Proposition B.23 (Convex Function Characterization) If f is twice continuously differ-
entiable and∇2f is positive semidefinite on the domain of f , then f is convex.

Example B.14 (Linear Least Squares is Convex) The function f(x) = 1
2∥Ax − b∥22

is convex. From Example B.3, ∇2f(x) = A⊺A, which is positive semidefinite from
Exercise A.16.

Exercise B.6 Let f : R2 → R be defined as

f(x) = 9x21 + x1x2 + 6x22.

Derive the gradient and Hessian of f . Prove that f is convex.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

B.3. Unconstrained Optimization Methods 367

Theorem B.24 (Sufficient Conditions for Unconstrained Global Minimizer) Any local
minimizer of a convex function f : Rn → R is a global minimizer. If f is differentiable,
then any stationary point is a global minimizer.

Most of the functions we encounter in tensor decompositions are nonconvex. This means
we may have no guarantee that a stationary point is a local or global minimizer. Con-
vex functions are still important in tensor decomposition, however, because certain tensor
methods have convex optimization subproblems (see Chapter 11).

B.3 Unconstrained Optimization Methods
It is unusual that we can find stationary points directly. Hence, most optimization meth-
ods are iterative, meaning they generate a sequence of iterates, {xk } that should ideally
converge to a local minimizer. We usually require downhill progress at each step, i.e.,

f(xk+1) < f(xk).

For the optimization methods we consider, the iterates are of the form

xk+1 = xk + αkdk,

where αk > 0 is called the step length and dk is called the search direction. Different
methods make different choices for dk.

B.3.1 Using Optimization Methods
Before we get into specific methods, we talk about some general notions. For the methods
we discuss, there is never any guarantee of finding a global minimizer unless the function
is convex. At best, we can hope to find a local minimizer. In general, if we require downhill
progress at each step, we have a good chance of finding a minimizer. But any of the methods
we discuss can get “stuck” at a stationary point that is not a local minimizer. When this
happens, the iterates have usually converged to a saddle point, which looks like a local
minimizer in some directions. The main technique to combat these potential pitfalls is to
rerun the optimization method with different starting points.

Choosing the Step Length

Whatever method we use, we have to choose a step length, αk > 0, at each iteration.
Ideally, αk is such that the function value at the new iterate is less than that of the prior
iterate, i.e.,

f(xk+1) < f(xk) where xk+1 = xk + αkdk. (B.4)

If the step length αk is fixed across iterates, it may be referred to as the learning rate.
The difficulty with using a fixed learning rate is longer steps may not yield decrease in the
objective value but small steps mean it takes a long time to converge.

Assuming dk is a descent direction, there always exists αk > 0 that yields decrease per
Proposition B.16. We could find this point by solving a 1-dimensional optimization prob-
lem, i.e.,

αk = argmin
α>0

f(xk + αdk).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

368 Appendix B. Optimization Principles and Methods

However, solving this problem exactly can be expensive. Instead, we determine αk via a
line search such as the following:

Backtracking Line Search
Choose initial αk > 0, τ > 0
while f(xk + αkdk) ≥ f(xk) + τα∇f(xk)

⊺
dk do

αk ← αk/2
end while

The backtracking linear search starts with an initial guess and decreases the step until it
satisfies a sufficient decrease condition, i.e., obtains a decrease in the objective value that
is as good as a fraction (τ) of the decrease predicted by a linear model. See, e.g., Nocedal
and Wright (2006) for further details.

Convergence

We focus on line-search based methods that yield a sequence of optimization iterates that
satisfy

f(xk+1) ≤ f(xk) for all k = 1, 2,

If f is unbounded below, then it is possible that f(xk)→ −∞. Otherwise, if f is bounded
below, {f(xk)} is a decreasing sequence that is bounded below and therefore must con-
verge to some f∗. By itself, this is not enough to ensure convergence to a stationary point.
However, an appropriate line search ensures that an optimization method is globally con-
vergent, meaning that it converges to a stationary point from any initial iterate x0. Global
convergence should not be confused with convergence to a global minimum, which is not
guaranteed by any of the methods we discuss here.

Rate of Convergence

When comparing methods, a natural question is how fast the method converges. Suppose
that an optimization method produces a sequence of iterates {xk } that converges to x∗.
We say that the method is linearly convergent if

∥xk+1 − x∗∥2 ≤ β∥xk − x∗∥2 (B.5)

for some constant 0 < β < 1 and all k sufficiently large. We say that the method is
superlinearly convergent if

lim
k→∞

∥xk+1 − x∗∥2
∥xk − x∗∥2

= 0.

We say that the method is quadratically convergent if

∥xk+1 − x∗∥2 ≤ β∥xk − x∗∥22 (B.6)

for some constant β > 0 and all k sufficiently large. These rates of convergence are
asymptotic, so they only “kick in” when the iterates gets sufficiently close to the minimizer.

Methods with a higher rate of convergence are not always faster because the cost per itera-
tion is higher. There is some balance to be achieved between the cost per iteration and the
progress per iteration, and this may be problem specific.

B.3.2 Gradient Descent
Gradient descent, also known as steepest descent, chooses its search direction as

dk = −∇f(xk). (B.7)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

B.3. Unconstrained Optimization Methods 369

Using this direction, the local linear approximation of the function given by the 1st-order
Taylor polynomial is

f(xk + dk) ≈ f(xk) +∇f(xk)
⊺(dk).

Minimizing the linear approximation suggests setting dk to be the negative of the gradient
(Eq. (B.7)) and αk to be as large as possible. However, since the linear approximation is
only accurate near xk, we should take a small step. A common approach is to use a line
search to ensure decrease in the function value. With exact line search, gradient descent is
linearly convergent.

The main advantage of steepest descent is its simplicity, requiring the computation of only
the gradient. However, the linear convergence can be prohibitively slow. The preferred
alternative to gradient descent is L-BFGS, discussed in Appendix B.3.5, which has the
same asymptotic computational complexity, memory complexity, and rate of convergence
while generally performing better in practice.

The are many versions of gradient descent that use a fixed learning rate, which may be
appropriate with sufficient information about the properties of function; see, e.g., Wu et al.
(2018). Related methods include Nesterov’s method (Nesterov, 2012), stochastic gradient
descent (SGD) (Robbins and Monro, 1951), and variants of SGD such as ADAM (Kingma
and Ba, 2015).

B.3.3 Newton’s Method
Newton’s method incorporates curvature information into the search direction by using the
Hessian. It sets the search direction to be the solution to Newton’s equation, i.e.,

∇2f(xk)dk = −∇f(xk). (B.8)

The premise is that we can estimate the function using a second-order Taylor polynomial
of the form

f(xk + dk) ≈ f(xk) +∇f(xk)
⊺dk +

1

2
d⊺
k∇2f(xk)dk.

This quadratic approximation is minimized by the dk that solves Eq. (B.8). As with the
linear approximation used by gradient descent, the approximation is accurate only locally,
so we require a line search or other method to determine an appropriate step.

Additionally, if the Hessian is not positive definite, the solution to Newton’s equation is not
guaranteed to be a descent direction. One method to obtain a descent direction is to add a
multiple of the identity to the Hessian, solving

(
∇2f(xk) + λkI

)
dk = −∇f(xk)

for λk chosen large enough to make the coefficient matrix positive definite, but determining
an appropriate λk can be expensive.

The fast convergence of Newton’s method is only observed once the iterates are near
enough to the solution. If the iterates are sufficiently close to a local minimizer with a
positive definite Hessian, then taking a pure Newton step ensures a quadratic rate of con-
vergence to the minimizer. In other words, no line search is needed (just set α = 1) and the
convergence rate is very fast. Further away, a line search is required.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

370 Appendix B. Optimization Principles and Methods

The main disadvantage of Newton’s method is the expense of computing the Hessian and
solving the linear system to compute the search direction, requiring O(n3) operations per
iteration in general. One option is to use truncated Newton (Dembo and Steihaug, 1983)
whereby the Newton equation is solved approximately using a iterative method such as
preconditioned conjugate gradients, which can greatly reduce the cost by taking advantage
of problem-specific structure in the Hessian such as sparsity.

B.3.4 BFGS Optimization Method
Since the Hessian in Newton’s method is expensive to compute and may not even be pos-
itive definite, an alternative is to use an approximation. The class of methods known as
quasi-Newton methods use a quasi-Newton matrix that satisfies the secant condition:

Bk+1sk = yk where
sk = xk+1 − xk,

yk = ∇f(xk+1)−∇f(xk).
(B.9)

Using this Hessian approximation, the search direction at step k is the solution to

Bkdk = −∇f(xk).

There are a family of different methods for picking Bk, but the most notable one is the
BFGS method which uses

Bk+1 = Bk −
Bksks

⊺
kBk

s⊺kBksk
+

yky
⊺
k

y⊺
ksk

.

The initial choice of B0 is up to the user and can be simply the n× n identity matrix. The
BFGS matrices are guaranteed to be positive definite if an appropriate line search is used.
Moreover, the inverses can be updated directly according to

B−1
k+1 = (I− ρksky⊺

k)B
−1
k (I− ρkyks

⊺
k) + ρksks

⊺
k

where ρk =
1

y⊺
ksk

,

which can be implemented using the symmetric rank-two update

B−1
k+1 = B−1

k − skw
⊺
k −wks

⊺
k

where
wk = ρk

(
zk − 1

2 (1 + ρky
⊺
kzk)sk

)
,

zk = B−1
k yk.

In this way the update requires only O(n2) operations per iteration, and applying the ex-
plicit inverse to compute the search direction

dk = −B−1
k ∇f(xk) (B.10)

via a matrix-vector product also costs O(n2) operations.

The name BFGS refers to the last names of its inventors (Broyden-Fletcher-Goldfarb-
Shanno). The main advantage of BFGS is that it is superlinearly convergent with a step
length of one near the minimizer, assuming it converges to a strict local minimizer. As with
Newton’s method, it also requires a line search to get into the neighborhood of the local
minimizer. It still has the disadvantage of requiringO(n2) storage to store the approximate
Hessian and O(n2) work per iteration.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

B.3. Unconstrained Optimization Methods 371

B.3.5 L-BFGS Optimization Method
The limited-memory BFGS (L-BFGS), introduced by Nocedal (1980), overcomes the
memory and computation disadvantages of BFGS by computing an update that incorporates
only themmost-recent sk and yk vectors in such a way that it never actually forms or stores
the quasi-Newton matrix explicitly. Instead, applying the implicitly stored approximation
to B−1

k to the gradient can be done by unrolling the recursive definition. Assuming the m
updates are applied to the identity matrix, the L-BFGS two-loop recursion for computing

dk = −B̃−1

k ∇f(xk), (B.11)

where B̃k is the L-BFGS matrix, is as follows.

L-BFGS 2-loop Recursion
dk = −∇f(xk)
for i = k − 1 down to k −m do

αi ← ρis
⊺
i dk

dk ← dk − αiyi

end for
for i = k −m to k − 1 do

β ← ρiy
⊺
i dk

dk ← dk + (αi − β)si
end for

This reduces the memory requirements to O(mn) and the computational complexity to
O(mn) per iteration, where m is typically chosen to be a small constant such as 5 or
20. Although it drops back to a linear rate of convergence, it is highly competitive with
BFGS because each iteration is very fast. Because of the use of approximate 2nd-order
information, the linear convergence rate (β) is typically much faster than Gradient Descent
as well.

○
L-BFGS is a popular optimization method because the cost per
iteration is so low that it is often competitive with methods that

have a faster rate of convergence (BFGS and Newton’s method).

B.3.6 Damped Gauss-Newton for Least Squares Problems
An alternative approximation of the Hessian can be used in the special case of nonlinear
least squares problems, i.e., a sum of squares form. These problems have the form in
Eq. (B.2), i.e., f(x) = 1

2∥ϕ(x)∥22 where ϕ : Rn → Rm. If each function ϕi is affine, of
the form ϕi(x) = a⊺i x + bi, then the problem is a linear least squares problem, so it can
be solved using linear algebra as described in Appendix A.7. For nonlinear functions ϕ,
the Gauss-Newton method computes a search direction using the linear approximation of
ϕ given by the 1st-order Taylor series:

ϕ(xk + dk) ≈ ϕ(xk) + J(xk)dk

where J = Dϕ is the Jacobian operator as defined in Definition B.5.

Finding the xk+1 that minimizes this approximation of f(xk+1) =
1
2∥ϕ(xk+1)∥22 is equiv-

alent to finding the search direction dk (with αk = 1) that solves

min
dk

1
2∥ϕ(xk) + J(xk)dk∥22,

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

372 Appendix B. Optimization Principles and Methods

which is a linear least squares problem. Using the normal equations to solve this problem
(see Appendix A.7.1) yields

J(xk)
⊺J(xk)dk = −J(xk)

⊺ϕ(xk). (B.12)

The right-hand side of Eq. (B.12) is the negative gradient, i.e., ∇f(x) = J(x)⊺ϕ(x). We
can see this by observing that f = g ◦ϕ with g(y) = 1

2∥y∥22 and applying the multivariate
chain rule (Theorem B.11).

Because the Jacobian can be rank deficient or ill conditioned, we often add a small value
times the identity to the Gramian of the Jacobian. This ensures that the linear system is
positive definite, and it plays the role of damping the size of the search direction. This
damped Gauss-Newton search direction is the solution to the following system:

[
J(xk)

⊺J(xk) + λkI
]
dk = −∇f(xk). (B.13)

If λk is very large, the coefficient matrix tends towards a scaled identity matrix, and so
the computed direction dk tends towards the gradient descent search direction. Thus, the
damping parameter represents a compromise between pure Gauss-Newton and gradient
descent.

The matrix in Eq. (B.13) is an approximation to the Hessian, with an addition of λkI to
ensure the system is positive definite. The Hessian of f is given by

∇2f(x) = J(x)⊺J(x) +
m∑

i=1

ϕi(x)∇2ϕi(x).

The Gauss-Newton method drops the second term, so it is accurate when that term is small.
This can happen near the solution x∗ if f(x∗) = 0, which implies ϕ(x) ≈ 0 when x ≈ x∗,
or if the functions {ϕi} are nearly linear with small second derivatives. For this reason,
Gauss-Newton is a popular method for numerically solving systems of nonlinear equations.

The main advantage of Gauss-Newton is that the approximate Hessian, J(xk)
⊺
J(xk),

can be computed from the Jacobian, which involves no second derivatives. Additionally,
Eq. (B.12) can often be solved efficiently via an iterative method such as the conjugate
gradient method (see Appendix A.6.4), similar to Truncated Newton. The last advantage is
that when the second term of the true Hessian is small, the convergence of Gauss-Newton
can still be quadratic.

As with Newton’s method, we may need to choose λk to ensure the resulting approximate
Hessian is positive definite, but an advantage of Gauss-Newton is that the approximate Hes-
sian is guaranteed to be semidefinite. Many strategies exist for tuning λk at each iteration,
including the Levenberg-Marquardt method.

Exercise B.7 Derive the Jacobian J = Dϕ, and compute J⊺J for

ϕ(x, y, z) =

xyz − a
x− b
y − c
z − d

 .

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

B.4. Example: 2-Dimensional Optimization 373

B.3.7 Block Coordinate Descent
The optimization methods described in Appendices B.3.2 to B.3.6 update the entire vector
x in each iteration. An alternative approach, known as block coordinate descent or block
nonlinear Gauss-Seidel, is to update a block of elements of x at a time, holding all other
blocks fixed. In this case, each iteration is performed via sub-iterations, each of which is a
smaller optimization problem.

The advantage of this approach is that the subproblems are often much simpler to solve;
for example, the function may be convex even if it is nonconvex over the entire vector.
The disadvantage is that convergence can be slow, as the optimization considers blocks of
elements in isolation rather than all together.

Consider the example

min
x∈Rn, y∈Rp

f(x,y) where f : Rn+p → R.

An optimization method like Newton’s would concatenate vectors x and y and compute
the search direction to update all n + p elements at once. In a Block Coordinate Descent
method that partitions the elements into separate blocks x and y, the kth iteration performs
the following subiterations:

xk+1 = argmin
x∈Rn

f(x,yk)

yk+1 = argmin
y∈Rp

f(xk+1,y).

The update for y in the second subiteration uses the most up-to-date values for x that are
computed in the first subiteration. More generally, if a vector x is partitioned into d blocks
{x(i)} with x(i) ∈ Rni and

∑
i ni = n, then the subiteration to update the ith block takes

the form
x
(i)
k+1 = argmin

x(i)∈Rni

f
(
x
(1)
k+1, . . . ,x

(i−1)
k+1 ,x(i),x

(i+1)
k , . . . ,x

(d)
k

)
. (B.14)

Block Coordinate Descent methods need not solve each subproblem exactly, but their main
advantage is when the subproblems are convex and have a closed form solution. If there
is a unique solution to each subproblem, and the method computes it exactly, then Block
Coordinate Descent is guaranteed to converge to a stationary point. For more details on the
convergence guarantees, see Bertsekas (2016, Section 3.7) and Gillis (2021, Section 8.1.4).

Exercise B.8 Consider the optimization problem

min
x∈Rm, y∈Rm

1

2
∥A− xy⊺∥2F .

Devise a BCD method for solving it by specifying a partition of the variables and the update
rule for solving each subproblem.

B.4 Example: 2-Dimensional Optimization
To illustrate the application of the optimization methods described in Appendices B.3.2
to B.3.4, B.3.6 and B.3.7 and compare their convergence properties, we consider the fol-
lowing optimization problem.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

374 Appendix B. Optimization Principles and Methods

Example B.15 (2-dimensional Optimization Problem for Comparison of Methods)
Consider the 2-dimensional optimization problem min

x,y
f(x, y) where:

f(x, y) ≡ 1

2

[
(x− 1)2 + (y − 1)2 + (xy)2

]
(B.15)

In order to apply Gradient Descent or a Quasi-Newton method such as BFGS, we compute
the gradient of Eq. (B.15):

∇f(x, y) =
[
x− 1 + xy2

y − 1 + x2y

]
. (B.16)

To apply Newton’s method, we need the gradient from Eq. (B.16) as well as the Hessian:

∇2f(x, y) =

[
1 + y2 2xy
2xy 1 + x2

]
.

Noting that Example B.15 takes the form of a nonlinear least squares problem where

ϕ(x, y) =

x− 1
y − 1
xy

 ,

we can also apply the Gauss-Newton method. To this end, we compute the Jacobian of ϕ
and its Gram matrix:

J(x, y) =

1 0
0 1
y x

 and J⊺J(x, y) =

[
1 + y2 xy
xy 1 + x2

]
.

The Gauss-Netwon matrix J⊺J differs from the Hessian∇2f in the off-diagonal entries.

We can also apply a (Block) Coordinate Descent method, where the only possible partition-
ing of the variables is into the two individual variables x and y. When y is fixed, Eq. (B.15)
is a quadratic function of x. Its unique minimum is attained at x = 1

1+y2 . Likewise, f is a
quadratic function of y when x is fixed, and its unique minimum is attained at y = 1

1+x2 .

Although memory and computational cost are not an issue with this problem, we also apply
L-BFGS with m = 2 using only the gradient to illustrate the difference in convergence
behavior with BFGS.

The convergence behavior of all six methods is illustrated in Fig. B.2 and Table B.2, and
we use abbreviations GD for gradient descent, GN for Gauss-Newton, and CD for coordi-
nate descent. In this experiment, all methods start from the point (x0, y0) = (12 ,

1
4). We

use backtracking line search as described in Appendix B.3.1, though for this problem, we
observe function value increase and require backtracking only for the Gradient Descent
method (and the first step of BFGS/L-BFGS). The convergence criterion we use is to test if
the absolute change in objective function value is sufficiently small: |f(xk−1)− f(xk)| <
10−14.

We make several observations from this simple example that are representative of the con-
vergence behavior for these methods:

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

B.4. Example: 2-Dimensional Optimization 375

• Gradient Descent requires the most iterations, and we observe linear convergence
with a ratio of β ≈ 0.5 (see Eq. (B.5));

• Gauss-Newton converges more slowly than BFGS, as the error in the approximate
Hessian is not small for this problem (e.g., the minimum function value is not close
to 0); and

• Coordinate Descent requires fewer iterations than Gradient Descent, as we observe
linear convergence with a ratio of β ≈ 0.4 (see Eq. (B.5)), but it requires more
iterations than the methods with superlinear convergence.

• L-BFGS (with m = 2) behaves similarly to BFGS in early iterations but requires
more iterations overall because it loses superlinear convergence near the solution;

• BFGS exhibits superlinear convergence, requiring many fewer iterations than Gradi-
ent Descent but more than Newton’s method;

• Newton’s method requires the fewest iterations, and we observe quadratic conver-
gence (see Eq. (B.6));

We emphasize that the number of iterations is not the only factor that contributes to the
time to convergence for realistic problems, as the cost per iteration of these methods varies
widely for large n. Recall that the iterations of Newton’s Method are the most expensive,
as they require evaluating the Hessian of size O(n2) and solving a linear system with cost
O(n3), assuming a direct method like the Cholesky decomposition is used. The Quasi-
Newton method BFGS requires evaluating the gradient and storing an approximate Hessian
of size O(n2) but allows for a linear system solve with only O(n2) cost. Gradient Descent
and L-BFGS are generally the cheapest gradient-based methods, as they involve onlyO(n)
computation. We demonstrate only the basic versions of these methods in this example,
variants such as Truncated Newton, Gauss-Newton using the conjugate gradient method
for the linear solve, and Block Coordinate Descent all trade off the cost per iteration with
speed of convergence, and the most efficient method overall is typically problem dependent.

0.4 0.6 0.8 1
0.2

0.4

0.6

0.8
GD

GN

CD

L-BFGS

BFGS

Newton

Figure B.2: Convergence of optimization methods for Example B.15

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

376 Appendix B. Optimization Principles and Methods

Table B.2: Convergence behavior as measured by ∥xk − x∗∥2 on Example B.15

k GD GN CD L-BFGS BFGS Newton

0 4.7 · 10−1 4.7 · 10−1 4.7 · 10−1 4.7 · 10−1 4.7 · 10−1 4.7 · 10−1

1 1.0 · 10−1 2.1 · 10−1 3.0 · 10−1 1.0 · 10−1 1.0 · 10−1 1.5 · 10−1

2 5.9 · 10−2 4.6 · 10−2 1.2 · 10−1 4.6 · 10−2 4.6 · 10−2 2.5 · 10−2

3 3.4 · 10−2 1.8 · 10−2 4.6 · 10−2 7.9 · 10−3 7.9 · 10−3 3.8 · 10−4

4 1.9 · 10−2 7.8 · 10−3 1.9 · 10−2 1.3 · 10−4 1.3 · 10−4 4.8 · 10−8

5 1.1 · 10−2 3.6 · 10−3 7.5 · 10−3 5.2 · 10−5 2.0 · 10−6 1.9 · 10−15

6 6.2 · 10−3 1.7 · 10−3 3.0 · 10−3 3.0 · 10−5 9.6 · 10−8

7 3.8 · 10−3 7.7 · 10−4 1.2 · 10−3 1.2 · 10−6 6.8 · 10−12

8 2.0 · 10−3 3.6 · 10−4 4.9 · 10−4 9.2 · 10−8

9 1.3 · 10−3 1.7 · 10−4 2.0 · 10−4 1.5 · 10−8

10 6.5 · 10−4 7.7 · 10−5 8.0 · 10−5

11 4.4 · 10−4 3.6 · 10−5 3.2 · 10−5

12 2.2 · 10−4 1.7 · 10−5 1.3 · 10−5

13 1.4 · 10−4 7.8 · 10−6 5.3 · 10−6

14 7.2 · 10−5 3.6 · 10−6 2.1 · 10−6

15 4.4 · 10−5 1.7 · 10−6 8.6 · 10−7

16 2.4 · 10−5 7.9 · 10−7 3.5 · 10−7

17 1.4 · 10−5 3.7 · 10−7 1.4 · 10−7

18 8.2 · 10−6 1.7 · 10−7

19 4.4 · 10−6 8.0 · 10−8

20 2.8 · 10−6

21 1.4 · 10−6

22 9.4 · 10−7

23 4.7 · 10−7

24 3.2 · 10−7

Exercise B.9 Consider the function given in Exercise B.2:
f(x, y) = c(y − x2)2 + (1− x)2.

(a) Implement Gradient Descent, Newton’s Method, and Gauss-Newton to test them
minimizing f for c = 100. Use backtracking line search for all methods.

(b) Report the convergence behavior as measured by ∥xk − x∗∥2 for x∗ = 1 in a table.
(c) Find instances of linear and quadratic convergence in your results. Are they where

you expected to find them?
(d) Adjust the parameter c to 1000 and to 1 and analyze the effects of that change on the

behavior of the methods.

B.5 Constrained Optimization
We omit here a general discussion of constrained optimization and instead refer readers to
Nocedal and Wright (2006, Chp. 12). We just discuss a few of the simpler ideas that may
be useful in our discussions.

The constrained multivariate optimization problem has the form

min
x∈Rn

f(x), f : Rn → R,

subject to c(x) ≥ 0, c : Rn → Rm.
(B.17)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

B.5. Constrained Optimization 377

The constraints c(x) ≥ 0 are inequality constraints. In general, bound constraints (e.g.,
ℓ ≤ x ≤ u) are the simplest to handle, then linear constraints (e.g., ℓ ≤ Ax ≤ u), and
finally nonlinear constraints. A popular method for handling bound constraints is bound
constrained L-BFGS (L-BFGS-B, Byrd et al., 1995). Nonlinear constraints are often han-
dled by a penalty term, an interior point method, or something like the Alternating Direction
Method of Multipliers (ADMM). For more information, see, e.g., Chapter 7 of Wright and
Recht (2022).

Optimality Conditions for Nonnegativity Constraints

In the unconstrained case, any minimizer must satisfy the necessary condition that∇f(x∗) =
0. However, in the case of nonnegativity constraints, i.e., x ≥ 0, the necessary conditions
are

[∇f(x∗)]i ≥ 0 if x∗i = 0,

[∇f(x∗)]i = 0 if x∗i > 0,

per the following result.

Proposition B.25 (First-Order Necessary Conditions for Nonnegative Local Minimizer,
Chen and Plemmons, 2009) Any solution x∗ ∈ Rn of

min
x∈Rn

f(x) subject to x ≥ 0 where f : Rn → R, (B.18)

must satisfy
∇f(x∗) ≥ 0 and ∇f(x∗)⊺x∗ = 0.

In the unconstrained case, optimization methods seek a solution x that satisfies the first-
order necessary condition ∇f(x) = 0 (Theorem B.19). Thus, the norm of the gradient
serves as a metric for how far from satisfying this necessary condition an iterate is, and
it can be used as a stopping criterion. For problems with nonnegativity constraints, the
projected gradient, also known as the reduced gradient, can be used to measure how
far from satisfying the necessary conditions of Proposition B.25 an iterate is (Kim et al.,
2014). In this case, the projected gradient∇projf ∈ Rn has entries given by

[∇projf(x)]i =

{
0 if xi = 0 and [∇f(x)]i ≥ 0

[∇f(x)]i otherwise.

Checking that the norm of the projected gradient ∥∇projf(x)∥ is sufficiently small can be
used as a stopping criterion. The projected gradient for general bound-constrained opti-
mization problems is used by L-BFGS-B (Byrd et al., 1995).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

C
Some Statistics and
Probability

This review chapter covers some essentials of statistics and probability. We cover basics of
random variables in Appendix C.1, maximum likelihood estimators in Appendix C.2, and
useful random variable distributions such as Gaussian and Poisson in Appendix C.3. These
topics are needed for our discussion of GCP tensor decomposition in Chapter 15. We also
review principal component analysis (PCA) in Appendix C.4, which is a data analysis tool
based on matrix decomposition that is useful for understanding tensor decompositions.

C.1 Random Variables
Random variables are unknowns that do not have a fixed value but instead represents a
distribution of possible values. Before we discuss distributions, we start with some basics.

A scalar random variables is generally denoted with a capital letter, e.g., X . Its realizations
are then typically denoted with lower case letters as x1, x2, . . . , etc. As we are dealing
with vectors, matrices, and tensors, we usually do not use different notation for random
variables and observations, leaving the distinctions to context. We do use the capital letter
notation in our introduction, however.

C.1.1 Discrete Random Variables
A discrete random variableX has only a finite number of possible values. Let { v1, v2, . . . , vn }
be the possible values of X .

The probability mass function (pmf) is a mapping from the set of possible values to the
associated probabilities, i.e.,

p : { v1, v2, . . . , vn } → [0, 1] such that p(x) ≥ 0 and
n∑

i=1

p(vi) = 1.

Thus, p(vi) = Prob
{
X = vi

}
. Then the mean or expected value of a discrete random

value X with pmf p is

E[X] =

n∑

i=1

vi p(vi).

The variance is

Var[X] =

n∑

i=1

(
vi − E[X]

)2
p(vi).

379

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

380 Appendix C. Some Statistics and Probability

C.1.2 Continuous Random Variables
A continuous random variable X can take on any value within a range. The probability
density function (pdf) is a mapping such that its integral yields the probability of X being
in a range, i.e.,

p : R→ R+ such that
∫ +∞

−∞
p(x)dx = 1.

Thus, the probability that X ∈ [a, b] is given as the following integral:

Prob
{
a ≤ X ≤ b

}
=

∫ b

a

p(x)dx.

The mean of the continuous random variable X is

E[X] =

∫ +∞

−∞
x p(x) dx.

Its variance is

Var[X] =

∫ +∞

−∞

(
x− E[X]

)2
p(x) dx.

C.2 Maximum Likelihood Estimator (MLE)
The idea of maximum likelihood estimation in statistics is to choose the parameters of a
statistical model such that the probability of the observed data is maximized.

Consider the situation where we have some model whose pdf (or pmf) is given by p(x|θ)
where θ is one or more parameters to be optimized. If we have n observed instances of
the random variable X , denoted x1, x2, . . . , xn, then maximizing the likelihood equates to
solving

max
θ

n∏

i=1

p(xi | θ).

We typically work instead with a transformed version of the problem based on taking the
logarithm (which is a monotonic function):

max
θ

n∑

i=1

log p(xi | θ). (C.1)

The optimum value of θ is called the maximum likelihood estimate. Many optimization
methods prefer to do minimization, and the optimizer of Eq. (C.1) is equivalent to the
optimizer of

min
θ

n∑

i=1

− log p(xi | θ). (C.2)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

C.3. Useful Distributions 381

C.3 Useful Distributions
C.3.1 Gaussian Distribution and Sum of Squared Errors
The Gaussian distribution, also known as the normal distribution, of a random variable
X ∈ R is defined by the pdf

p(x|µ, σ) = e−(x−µ)2/(2σ2)

√
2πσ2

(C.3)

The negative log-likelihood function is

− log p(x|µ, σ) = (x− µ)2
2σ2

− log(
√
πσ2) (C.4)

We denote that X is normally distributed as X ∼ N (µ, σ). In this case,

E[X] = µ and Var[X] = σ2.

Thus, the parameter µ is in fact the mean of the distribution and σ is the standard deviation
(the square root of the variance). The pdfs for different means and standard deviations are
shown in Fig. C.1.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

x

p
(x
|µ

,σ
)

N (0, 0.5)

N (0, 1)

N (0, 2)

N (−2, 0.7)

Figure C.1: Normal distributions N (µ, σ) with mean µ and standard deviation σ

C.3.2 Bernoulli Distribution and Logistic Regression for Binary
Data
The Bernoulli distribution of a binary random variable X ∈ { 0, 1 } is defined by a pa-
rameter ρ ∈ [0, 1] that defines that probability of a 1. Hence, the pmf is

p(x | ρ) =
{
ρ if x = 1

(1− ρ) if x = 0.

This is usually written in the more compact form:

p(x | ρ) = ρx(1− ρ)1−x for x ∈ { 0, 1 } . (C.5)

The negative log-likelihood is

− log p(x | ρ) = log

(
1 +

ρ

1− ρ

)
− x log

(
ρ

1− ρ

)
. (C.6)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

382 Appendix C. Some Statistics and Probability

The notation is X ∼ Bernoulli(ρ). In this case,

E[X] = ρ and Var[X] = ρ(1− ρ).

Exercise C.1 Prove Eq. (C.6).

C.3.3 Poisson Distribution and KL Divergence for Count Data
The Poisson distribution of an integer random variable X ∈ { 0, 1, 2, . . . } is defined by a
parameter λ > 0 that is the mean. The pmf is

p(x |λ) = λxe−λ

x!
for x ∈ { 0, 1, 2, . . . } . (C.7)

The negative log likelihood is

− log p(x |λ) = λ− x log λ+ log x! . (C.8)

The notation is X ∼ Poisson(λ), and

E[X] = Var[X] = λ.

Examples of the discrete Poisson distribution are shown in Fig. C.1 with different values of
λ. For low values of λ, the Poisson distribution is very different than a normal distribution
with the same mean. However, for higher values of λ, the Poisson distribution is something
like a discrete version of a normal distribution. For instance, see Fig. C.3 and notice how
the Poisson and the normal distributions with means of 0.5 are very different whereas the
versions with means of 5 are starting to look very similar.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

x

p
(x
|λ

)

Poisson(0.5)
Poisson(2.5)
Poisson(5.0)

Figure C.2: Poisson distributions, Poisson(λ), with different means, λ

C.3.4 Gamma Distribution for Continuous Nonnegative Data
The gamma distribution is for strictly positive continuous data with a pdf given by

p(x | k, θ) = xk−1

Γ(k)θk
e−x/θ for x > 0. (C.9)

The parameters are the shape k > 0 and scale θ > 0. For k = 1, this is the exponential
distribution, and for k = 2, it is the chi-squared distribution. The negative log likelihood is

− log p(x | k, θ) = log Γ(k) + k log θ + k log x+
x

θ
. (C.10)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

C.4. Principal Component Analysis (PCA) 383

−2 0 2 4 6 8 10
0

0.2

0.4

0.6

x

p
(x
)

Poisson(0.5)
N (0.5, 0.82)

Poisson(2.5)
N (2.5, 1.63)

Poisson(5.0)
N (5.0, 2.27)

Figure C.3: Poisson versus normal distributions. Means are identical, i.e., λ = µ. For
standard deviation of normal distribution, Gaussian pdf is equal to Poisson pmf at mean,
using the x! ≈ Γ(x + 1) to approximate x! for non-integral values. In other words, σ2 =
Γ(µ+ 1)/(

√
2π µµ e−µ).

The mean and variance are

E[X] = kθ and Var[X] = kθ2.

Some example Gamma distributions are shown in Fig. C.4.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8
Gamma(2.0,0.5)
Gamma(2.0,1.0)
Gamma(2.0,2.0)

Figure C.4: Gamma distributions, Gamma(k, θ), with different values of θ.

The gamma distribution is sometimes parameterized instead by α = k and β = 1/θ.

C.4 Principal Component Analysis (PCA)
Principal component analysis (PCA) is a popular multivariate statistical technique. The
goals of PCA include separating important information from noise, reducing the size of
the data, identifying latent patterns, and analyzing the structure of the observations and the
variables. This section provides a brief introduction to PCA. For more information, see
Abdi and Williams (2010) and Jolliffe (2002).

The input to PCA is data matrix X ∈ Rm×n corresponding to m objects and n features.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

384 Appendix C. Some Statistics and Probability

The PCA decomposition is X = SV⊺

X = SV⊺ =
∑

k

skv
⊺
k,

as shown in Fig. C.5. We let k denote the number of principal components. The orthonor-
mal matrix V ∈ Rn×k is referred to as the loadings. It is also know as the principal axes
because its columns define the directions in feature space along which the variance of the
data is maximized. The matrix S ∈ Rm×k is referred to as the scores or, more explicitly,
the principal component scores. It represents the objects in the lower dimensional space
defined by the principal axes.

X

features

o
b

je
c

ts

≈ S

V⊺

preprocessed data scores loadings

Figure C.5: PCA

The orthogonal columns of V form a basis for a reduced k-dimensional space. The rows
of S are representations of the objects in this new space. In other words, X(i, :) represents
object i in the original n-dimensional feature space and S(i, :) represents object i in the
reduced k-dimensional feature space. PCA scores are used for visualizing data, spectral
clustering, etc.

Remark C.1 (Preprocessing the data matrix for PCA) In PCA, it is customary to assume
that the data matrix is centered. Centering means that we subtract the average value in each
column. After centering, each column has mean zero.

C.4.1 Computing PCA
In statistics, the way to compute PCA is as follows. The loading matrix V is the k principal
eigenvectors of the covariance matrix C ≡ X⊺X ∈ Rn×n. Recall from Appendix A.5.4
that the eigenvectors are orthonormal. The scores are then are computed as S = XV.
Alternatively, we get the same scores and loadings from the SVD; see Appendix A.5.3. If
the truncated rank-k SVD of X is X ≈ UΣV⊺, then the loadings are V and the scores
are S = UΣ. This viewpoint reveals that PCA is an optimal rank-k approximation; see
Theorem A.26. By considering only the first k principal components, we reduce the di-
mensionality and mitigate noise in the data.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

C.4. Principal Component Analysis (PCA) 385

C.4.2 Example of PCA
We illustrate PCA on decathlon data from the 1988 Summer Olympics (Ballard, 2024). A
decathlon comprises ten track and field events: 100-meter dash, 110-meter hurdles, 400-
meter run, 1500-meter run, long jump, high jump, pole vault, shot put, discus throw, and
javelin throw. The raw times (for running events) and distances (for jumping and throwing
events) are converted to point values using event-specific formulae, and the total scores
determines the rankings. This dataset consists of scores for 33 athletes who competed and
finished in the 1988 Olympics. The centered data is shown in Table C.1 and ranges from a
low of −223 to a maximum 297.

Table C.1: Centered decathlon data

id 100m 110h 400m 1500 long high pole shot disc jave

1 −12 −14 17 49 71 271 −16 94 142 28
2 72 68 74 22 75 −14 106 63 41 34
3 3 25 46 87 73 −14 137 16 26 71
4 129 36 9 −55 58 41 45 66 50 69
5 81 103 44 15 118 125 45 −22 14 −109
6 38 76 87 132 71 −14 137 −63 −24 −30
7 3 77 −4 −92 −21 69 297 11 −14 32
8 32 81 50 69 −45 13 14 86 −22 53
9 9 43 5 44 −5 41 45 35 0 105

10 −8 31 31 −98 34 −14 137 80 116 0
11 56 94 −32 −119 103 −14 14 86 −11 108
12 3 −12 11 131 49 −41 −16 33 2 96
13 38 6 49 123 36 69 75 −63 −58 −40
14 45 38 68 48 56 −14 −133 −21 31 107
15 36 −51 20 58 75 −14 −16 16 −14 68
16 23 28 −29 51 −14 41 45 35 17 −34
17 −57 −122 −92 −157 −92 13 14 131 171 202
18 −80 −3 −27 −60 −33 −41 45 102 88 11
19 27 64 62 92 −24 −41 14 −33 −41 −119
20 67 9 −20 −181 −17 −171 45 116 60 15
21 −70 −74 −34 65 53 −41 −45 −1 −72 114
22 −63 −25 −62 95 −29 41 −16 −9 −67 22
23 −40 5 −45 24 −14 13 −104 22 81 −57
24 −23 −44 −33 −9 −40 154 −45 −44 −74 −77
25 43 6 −22 −57 22 41 −75 −49 −88 −100
26 −29 −45 42 41 −73 69 −45 −141 −99 −61
27 20 −14 30 96 −38 −120 −16 −77 −88 −149
28 −68 −20 −87 −161 −31 −41 −45 14 71 −48
29 −14 −71 49 28 −57 −94 −104 −94 −89 −102
30 −65 −65 0 −107 −12 −146 −75 −61 −1 −89
31 −51 −102 −91 −114 −212 −67 −45 2 78 −25
32 −59 2 −48 −107 −165 −41 −218 −99 −74 −33
33 −80 −138 −67 42 12 −67 −190 −223 −162 −68

After centering, we apply PCA to the matrix X ∈ R33×10 representing the athlete ×
event score data. We consider the first two principal components, so the decomposition
is X ≈ SV⊺ where the scores are S ∈ R33×2 and the loadings are V ∈ R10×2. The first
component explains 34% of the variance, and the first two components together explain
59% of the variance, meaning that ∥S∥2F /∥X∥2F = 0.59.

The scores for each athlete and loadings for each event are plotted in Fig. C.6. Figure C.6a
plots the scores for each of the 33 athletes, with the x value corresponding to the first prin-
ciple direction and the y value corresponding to the second principle direction. The points

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

386 Appendix C. Some Statistics and Probability

are color coded by the final ranking (1 to 33) and the top three finished are explicitly la-
beled. Figure C.6a shows the loadings of each event with respect to the principal directions.
The events are color coded by type (run, jump, and throw).

−0.1 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

0.2

0.4

0.6

100m
110m hurdle

400m

1500m

longhigh

pole vault

shot put
disc

javelin

run
jump
throw

(a) Scatter plot of first two PCA coefficients for each decathlon event. The x and y axes represents
the event’s weights in the first and second principal directions, respectively.

1st
2nd

3rd

−300 −200 −100 100 200

−200

200

5

10

15

20

25

30

ranking

(a) Scatter plot of principal components scores for the athletes, color coded by ranking. The x axis
represents the first principal direction, and the y axis represents the second principal direction.

Figure C.6: PCA scores and loadings for decathlon data

The first principal component describes 33% of the variance. In Fig. C.6a, we can examine
what events contribute to this component. At one extreme are the pole vault and shot put,
and the only negatively-weighted event is the 1500m dash. The pole vault incorporates
abilities related to all events: running, jumping, and throwing, so perhaps it is not surpris-
ing that the it is at an extreme. Indeed, the top three pole vaulters finished 7th, 3rd, and 6th
overall, respectively. The second principal component is orthogonal to the first and cap-
tures an additional 26% of the variance. It has throwing events (shot put, disc, javelin) at
one extreme and again the 1500m race at the other extreme, which are at opposite ends of
the endurance versus power spectrum. We can interpret this component as differentiating
among the types of athlete, and it seems to differentiate faster runners from powerful throw-
ers. Overall, we can see that throwing events are clustered in the lower right quadrant. The
short distance running events, along with the jumping events that are related to sprinting
ability, are also clustered together in the upper right quadrant. The long distance running
(1500m) and the pole vault are more unique events and are separated from the others.

In Fig. C.6a, we see the plots of the athletes with respect to their PCA scores. The first
component divides the top-ranked athletes (positive values) and lowest ranked (negative
values). The very top ranked athletes have positive values in both the first and second
components, and so are clustered together.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

C.4. Principal Component Analysis (PCA) 387

Exercise C.2 Perform principal component analysis on the raw data from 1988 Summer
Olympics Decathlon using existing software for PCA or SVD. Your solution should provide
(a) a discussion and justification of the preprocessing performed, (b) scatter plots of the
first two PCA scores for each athlete and first two PCA coefficients for each event, (c) an
interpretation of the first two principal components based on the values in the coefficient
matrix, and (d) a comparison of the PCA results using points data with PCA results using
raw data. (Hint: the raw data has units of seconds and meters, which means the winner of
each track event has the smallest value (shortest time) while the winner of each field event
has the largest value (greatest distance). Be sure to take these differences into account in
your interpretation.)

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Bibliography

Abdelfattah, A., Costa, T., Dongarra, J., Gates, M., Haidar, A., Hammarling, S., Higham, N. J.,
Kurzak, J., Luszczek, P., Tomov, S., and Zounon, M. (2021). A set of batched basic linear al-
gebra subprograms and LAPACK routines. ACM Transactions on Mathematical Software 47(3),
Article No. 21. DOI: 10.1145/3431921.

Abdi, H. and Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics
2(4), 433–459. DOI: 10.1002/wics.101.

Acar, E., Dunlavy, D. M., and Kolda, T. G. (2011). A scalable optimization approach for fitting canon-
ical tensor decompositions. Journal of Chemometrics 25(2), 67–86. DOI: 10.1002/cem.
1335.

Acar, E., Dunlavy, D. M., Kolda, T. G., and Mørup, M. (2010). Scalable tensor factorizations with
missing data. In Proceedings of the 2010 SIAM International Conference on Data Mining (SDM’10),
701–712. DOI: 10.1137/1.9781611972801.61.

Acar, E., Dunlavy, D. M., Kolda, T. G., and Mørup, M. (2011). Scalable tensor factorizations for
incomplete data. Chemometrics and Intelligent Laboratory Systems 106(1), 41–56. DOI: 10.
1016/j.chemolab.2010.08.004.

Acar, E., Papalexakis, E. E., Gürdeniz, G., Rasmussen, M. A., Lawaetz, A. J., Nilsson, M., and Bro,
R. (2014). Structure-revealing data fusion. BMC Bioinformatics 15(1). DOI: 10.1186/1471-
2105-15-239.

Ahmadi-Asl, S., Abukhovich, S., Asante-Mensah, M. G., Cichocki, A., Phan, A. H., Tanaka, T.,
and Oseledets, I. (2021). Randomized algorithms for computation of Tucker decomposition and
higher order SVD (HOSVD). IEEE Access 9, 28684–28706. DOI: 10.1109/access.2021.
3058103.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky, M. (2014). Tensor decompositions
for learning latent variable models. Journal of Machine Learning Research 15(1), 2773–2832.
Available at http://jmlr.org/papers/v15/anandkumar14b.html.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J. D., Greenbaum,
A., Hammarling, S., McKenney, A., and D.Sorensen, (1999). LAPACK Users’ Guide. 3rd ed.
Philadelphia: SIAM. DOI: 10.1137/1.9780898719604.

Atkinson, M. D. and Lloyd, S. (1983). The ranks of m × n × (mn − 2) tensors. SIAM Journal on
Computing 12(4), 611–615. DOI: 10.1137/0212041.

Atkinson, M. D. and Stephens, N. M. (1979). On the maximal multiplicative complexity of a family
of bilinear forms. Linear Algebra and Applications 27, 1–8. DOI: 10.1016/0024-3795(79)
90026-0.

Austin, W., Ballard, G., and Kolda, T. G. (2016). Parallel tensor compression for large-scale scien-
tific data. In Proceedings of the 30th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’16), 912–922. DOI: 10.1109/IPDPS.2016.67.

Bader, B. W. and Kolda, T. G. (2007). Efficient MATLAB computations with sparse and factored
tensors. SIAM Journal on Scientific Computing 30(1), 205–231. DOI: 10.1137/060676489.

Bader, B. W., Kolda, T. G., et al. (2023). MATLAB Tensor Toolbox, Version 3.6. Available at https:
//www.tensortoolbox.org (accessed July 29, 2024).

Ballard, G., Kolda, T. G., and Lindstrom, P. (2022). Miranda Turbulent Flow Dataset. Available at
https://gitlab.com/tensors/tensor_data_miranda_sim (accessed July 29,
2024).

Ballard, G. (2024). Decathlon Matrix Data. Available at https://gitlab.com/tensors/
matrix_data_decathlon (accessed July 29, 2024).

389

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science
by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://doi.org/10.1145/3431921
https://doi.org/10.1002/wics.101
https://doi.org/10.1002/cem.1335
https://doi.org/10.1002/cem.1335
https://doi.org/10.1137/1.9781611972801.61
https://doi.org/10.1016/j.chemolab.2010.08.004
https://doi.org/10.1016/j.chemolab.2010.08.004
https://doi.org/10.1186/1471-2105-15-239
https://doi.org/10.1186/1471-2105-15-239
https://doi.org/10.1109/access.2021.3058103
https://doi.org/10.1109/access.2021.3058103
http://jmlr.org/papers/v15/anandkumar14b.html
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1137/0212041
https://doi.org/10.1016/0024-3795(79)90026-0
https://doi.org/10.1016/0024-3795(79)90026-0
https://doi.org/10.1109/IPDPS.2016.67
https://doi.org/10.1137/060676489
https://www.tensortoolbox.org
https://www.tensortoolbox.org
https://gitlab.com/tensors/tensor_data_miranda_sim
https://gitlab.com/tensors/matrix_data_decathlon
https://gitlab.com/tensors/matrix_data_decathlon

390 Bibliography

Ballard, G., Ikenmeyer, C., Landsberg, J. M., and Ryder, N. (2018). The geometry of rank decompo-
sitions of matrix multiplication II: 3 × 3 matrices. Journal of Pure and Applied Algebra 223(8),
3205–3224. DOI: 10.1016/j.jpaa.2018.10.014.

Ballard, G., Klinvex, A., and Kolda, T. G. (2020). TuckerMPI: a parallel C++/MPI software package
for large-scale data compression via the Tucker tensor decomposition. ACM Transactions on
Mathematical Software 46(2), Article No. 13. DOI: 10.1145/3378445.

Ballard, G., Kolda, T. G., and Plantenga, T. (2011). Efficiently computing tensor eigenvalues on a
GPU. In Proceedings of the 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum (IPDPSW’11), 1340–1348. DOI: 10.1109/IPDPS.
2011.287.

Basu, A., Harris, I. R., Hjort, N. L., and Jones, M. C. (1998). Robust and efficient estimation by min-
imising a density power divergence. Biometrika 85(3), 549–559. DOI: 10.1093/biomet/85.
3.549.

Battaglino, C., Ballard, G., and Kolda, T. G. (2018). A practical randomized CP tensor decomposition.
SIAM Journal on Matrix Analysis and Applications 39(2), 876–901. DOI: 10.1137/17M1112
303.

Beltrán, C., Breiding, P., and Vannieuwenhoven, N. (2019). Pencil-based algorithms for tensor rank
decomposition are not stable. SIAM Journal on Matrix Analysis and Applications 40(2), 739–
773. DOI: 10.1137/18m1200531.

Benson, A. R. and Ballard, G. (2015). A framework for practical parallel fast matrix multiplication.
In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’15). PPoPP 2015, 42–53. DOI: 10.1145/2688500.2688513.

Bergqvist, G. (2013). Exact probabilities for typical ranks of 2× 2× 2 and 3× 3× 2 tensors. Linear
Algebra and its Applications 438(2), 663–667. DOI: 10.1016/j.laa.2011.02.041.

Bertsekas, D. P. (2016). Nonlinear Programming. 3rd ed. Belmont, MA: Athena Scientific.
Beylkin, G. and Mohlenkamp, M. J. (2002). Numerical operator calculus in higher dimensions. Pro-

ceedings of the National Academy of Sciences 99(16), 10246–10251. DOI: 10.1073/pnas.
112329799.

Beylkin, G. and Mohlenkamp, M. J. (2005). Algorithms for numerical analysis in high dimensions.
SIAM Journal on Scientific Computing 26(6), 2133–2159. DOI: 10.1137/040604959.

Bini, D. (1980). Relations between exact and approximate bilinear algorithms. applications. CAL-
COLO 17(1), 87–97. DOI: 10.1007/BF02575865.

Bini, D., Capovani, M., Lotti, G., and Romani, F. (1979). O(n2.7799) complexity for n × n approx-
imate matrix multiplication. Information Processing Letters 8(5), 234–235. DOI: 10.1016/
0020-0190(79)90113-3.

Bini, D., Lotti, G., and Romani, F. (1980). Approximate solutions for the bilinear form computational
problem. SIAM Journal on Computing 9(4), 692–697. DOI: 10.1137/0209053.

Blackford, L. S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M., Kauf-
man, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., and Whaley, R. C. (2002). An
updated set of Basic Linear Algebra Subroutines (BLAS). ACM Transactions on Mathematical
Software 28(2). DOI: 10.1145/567806.567807.

Bläser, M. (2003). On the complexity of the multiplication of matrices in small formats. Journal of
Complexity 19(1), 43–60. DOI: 10.1016/S0885-064X(02)00007-9.

Brachat, J., Comon, P., Mourrain, B., and Tsigaridas, E. (2010). Symmetric tensor decomposition.
Linear Algebra and its Applications 433(11-12), 1851–1872. DOI: 10.1016/j.laa.2010.
06.046.

Brent, R. P. (1970). Algorithms for Matrix Multiplication. Tech. rep. STAN-CS-70-157. Stanford Uni-
versity, Department of Computer Science. Available at http://i.stanford.edu/pub/
cstr/reports/cs/tr/70/157/CS-TR-70-157.pdf (accessed July 29, 2024).

Bro, R., Acar, E., and Kolda, T. G. (2008). Resolving the sign ambiguity in the singular value decom-
position. Journal of Chemometrics 22(2), 135–140. DOI: 10.1002/cem.1122.

Bro, R. and Andersson, C. A. (1998). Improving the speed of multi-way algorithms: Part II. Com-
pression. Chemometrics and Intelligent Laboratory Systems 42(1–2), 105–113. DOI: 10.1016/
S0169-7439(98)00011-2.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science
by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://doi.org/10.1016/j.jpaa.2018.10.014
https://doi.org/10.1145/3378445
https://doi.org/10.1109/IPDPS.2011.287
https://doi.org/10.1109/IPDPS.2011.287
https://doi.org/10.1093/biomet/85.3.549
https://doi.org/10.1093/biomet/85.3.549
https://doi.org/10.1137/17M1112303
https://doi.org/10.1137/17M1112303
https://doi.org/10.1137/18m1200531
https://doi.org/10.1145/2688500.2688513
https://doi.org/10.1016/j.laa.2011.02.041
https://doi.org/10.1073/pnas.112329799
https://doi.org/10.1073/pnas.112329799
https://doi.org/10.1137/040604959
https://doi.org/10.1007/BF02575865
https://doi.org/10.1016/0020-0190(79)90113-3
https://doi.org/10.1016/0020-0190(79)90113-3
https://doi.org/10.1137/0209053
https://doi.org/10.1145/567806.567807
https://doi.org/10.1016/S0885-064X(02)00007-9
https://doi.org/10.1016/j.laa.2010.06.046
https://doi.org/10.1016/j.laa.2010.06.046
http://i.stanford.edu/pub/cstr/reports/cs/tr/70/157/CS-TR-70-157.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/70/157/CS-TR-70-157.pdf
https://doi.org/10.1002/cem.1122
https://doi.org/10.1016/S0169-7439(98)00011-2
https://doi.org/10.1016/S0169-7439(98)00011-2

Bibliography 391

Bro, R. and De Jong, S. (1997). A fast non-negativity-constrained least squares algorithm. Journal
of Chemometrics 11(5), 393–401. DOI: 10.1002/(SICI)1099-128X(199709/10)11:
5<393::AID-CEM483>3.0.CO;2-L.

Bro, R., Harshman, R. A., Sidiropoulos, N. D., and Lundy, M. E. (2009). Modeling multi-way data
with linearly dependent loadings. Journal of Chemometrics 23(7–8), 324–340. DOI: 10.1002/
cem.1206.

Bro, R. and Kiers, H. A. L. (2003). A new efficient method for determining the number of components
in PARAFAC models. Journal of Chemometrics 17(5), 274–286. DOI: 10.1002/cem.801.

Bro, R., Leardi, R., and Johnsen, L. G. (2013). Solving the sign indeterminacy for multiway models.
Journal of Chemometrics 27(3-4), 70–75. DOI: 10.1002/cem.2493.

Brookes, M. (2020). The Matrix Reference Manual, Calculus Section. online. Available at http:
//www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html (accessed July 29,
2024).

Buluç, A. and Gilbert, J. R. (2008). On the representation and multiplication of hypersparse matrices.
In IEEE International Symposium on Parallel and Distributed Processing (IPDPS’08). DOI: 10.
1109/ipdps.2008.4536313.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm for bound con-
strained optimization. SIAM Journal on Scientific Computing 16(5), 1190–1208. DOI: 10.1137
/0916069.

Cabot, W. H. and Cook, A. W. (2006). Reynolds number effects on Rayleigh–Taylor instability with
possible implications for type Ia supernovae. Nature Physics 2(8), 562–568. DOI: 10.1038/
nphys361.

Carroll, J. D. and Chang, J. J. (1970). Analysis of individual differences in multidimensional scal-
ing via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35, 283–319.
DOI: 10.1007/BF02310791.

Carroll, J. D., Pruzansky, S., and Kruskal, J. B. (1980). CANDELINC: a general approach to multi-
dimensional analysis of many-way arrays with linear constraints on parameters. Psychometrika
45(1), 3–24. DOI: 10.1007/BF02293596.

Cartwright, D. and Sturmfels, B. (2013). The number of eigenvalues of a tensor. Linear Algebra and
its Applications 438(2), 942–952. DOI: 10.1016/j.laa.2011.05.040.

Cattell, R. B. (1944). Parallel proportional profiles and other principles for determining the choice of
factors by rotation. Psychometrika 9(4), 267–283. DOI: 10.1007/BF02288739.

Cattell, R. B. (1952). The three basic factor-analytic research designs — their interrelations and
derivatives. Psychological Bulletin 49, 499–452.

Chang, K. C., Pearson, K., and Zhang, T. (2009). On eigenvalue problems of real symmetric tensors.
Journal of Mathematical Analysis and Applications 350(1), 416–422. DOI: 10.1016/j.jmaa
.2008.09.067.

Chen, D. and Plemmons, R. J. (2009). Nonnegativity constraints in numerical analysis. In The Birth of
Numerical Analysis. World Scientific, pp. 109–139. DOI: 10.1142/9789812836267_0008.

Cheng, D., Peng, R., Perros, I., and Liu, Y. (2016). SPALS: fast alternating least squares via implicit
leverage scores sampling. In Advances in Neural Information Processing Systems (NeurIPS’16).
Available at https://proceedings.neurips.cc/paper_files/paper/2016/
file/f4f6dce2f3a0f9dada0c2b5b66452017-Paper.pdf.

Chi, E. C. and Kolda, T. G. (2012). On tensors, sparsity, and nonnegative factorizations. SIAM Journal
on Matrix Analysis and Applications 33(4), 1272–1299. DOI: 10.1137/110859063.

Choulakian, V. (2010). Some numerical results on the rank of generic three-way arrays over R. SIAM
Journal on Matrix Analysis and Applications 31(4), 1541–1551. DOI: 10.1137/08073531X.

Cichocki, A. and Amari, S.-i. (2010). Families of alpha- beta- and gamma- divergences: flexible and
robust measures of similarities. Entropy 12(6), 1532–1568. DOI: 10.3390/e12061532.

Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., and Amari, S.-I. (2007). Non-negative tensor
factorization using alpha and beta divergences. In Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing (ICASSP’07). DOI: 10.1109/ICASSP.2007.
367106.

Colley, S. J. (2006). Vector Calculus. 3rd. Prentice Hall.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science
by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
https://doi.org/10.1002/cem.1206
https://doi.org/10.1002/cem.1206
https://doi.org/10.1002/cem.801
https://doi.org/10.1002/cem.2493
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html
https://doi.org/10.1109/ipdps.2008.4536313
https://doi.org/10.1109/ipdps.2008.4536313
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1038/nphys361
https://doi.org/10.1038/nphys361
https://doi.org/10.1007/BF02310791
https://doi.org/10.1007/BF02293596
https://doi.org/10.1016/j.laa.2011.05.040
https://doi.org/10.1007/BF02288739
https://doi.org/10.1016/j.jmaa.2008.09.067
https://doi.org/10.1016/j.jmaa.2008.09.067
https://doi.org/10.1142/9789812836267_0008
https://proceedings.neurips.cc/paper_files/paper/2016/file/f4f6dce2f3a0f9dada0c2b5b66452017-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/f4f6dce2f3a0f9dada0c2b5b66452017-Paper.pdf
https://doi.org/10.1137/110859063
https://doi.org/10.1137/08073531X
https://doi.org/10.3390/e12061532
https://doi.org/10.1109/ICASSP.2007.367106
https://doi.org/10.1109/ICASSP.2007.367106

392 Bibliography

Cui, C.-F., Dai, Y.-H., and Nie, J. (2014). All real eigenvalues of symmetric tensors. SIAM Journal
on Matrix Analysis and Applications 35(4), 1582–1601. DOI: 10.1137/140962292.

De Lathauwer, L. (2008a). Decompositions of a higher-order tensor in block terms—part I: lemmas
for partitioned matrices. SIAM Journal on Matrix Analysis and Applications 30(3), 1022–1032.
DOI: 10.1137/060661685.

De Lathauwer, L. (2008b). Decompositions of a higher-order tensor in block terms—part II: defi-
nitions and uniqueness. SIAM Journal on Matrix Analysis and Applications 30(3), 1033–1066.
DOI: 10.1137/070690729.

De Lathauwer, L., De Moor, B., and Vandewalle, J. (2000a). A multilinear singular value decompo-
sition. SIAM Journal on Matrix Analysis and Applications 21(4), 1253–1278. DOI: 10.1137/
S0895479896305696.

De Lathauwer, L., De Moor, B., and Vandewalle, J. (2000b). On the best rank-1 and rank-(R1, R2,
. . . , RN) approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applica-
tions 21(4), 1324–1342. DOI: 10.1137/S0895479898346995.

De Lathauwer, L. and Nion, D. (2008). Decompositions of a higher-order tensor in block terms—
part III: alternating least squares algorithms. SIAM Journal on Matrix Analysis and Applications
30(3), 1067–1083. DOI: 10.1137/070690730.

de Silva, V. and Lim, L.-H. (2008). Tensor rank and the ill-posedness of the best low-rank approx-
imation problem. SIAM Journal on Matrix Analysis and Applications 30(3), 1084–1127. DOI:
10.1137/06066518X.

Dembo, R. S. and Steihaug, T. (1983). Truncated-Newton algorithms for large-scale unconstrained
optimization. Mathematical Programming 26(2), 190–212. DOI: 10.1007/BF02592055.

Demmel, J. (1997). Applied Numerical Linear Algebra. Philadelphia: SIAM.
Domanov, I. and De Lathauwer, L. (2014). Canonical polyadic decomposition of third-order ten-

sors: reduction to generalized eigenvalue decomposition. SIAM Journal on Matrix Analysis and
Applications 35(2), 636–660. DOI: 10.1137/130916084.

Dunlavy, D. M., Johnson, N., et al. (2022). pyttb: Python Tensor Toolbox. Available at https:
//github.com/sandialabs/pyttb (accessed June 22, 2023).

Eckhart, C. and Young, G. (1936). The approximation of one matrix by another of lower rank. Psy-
chometrika 1(3), 211–218. DOI: 10.1007/BF02288367.

Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network
flow problems. Journal of the ACM 19(2), 248–264. DOI: 10.1145/321694.321699.

Elad, M. (2010). Sparse and Redundant Representations. New York: Springer.
Eldén, L. and Savas, B. (2009). A Newton–Grassmann method for computing the best multilinear

rank-(r1, r2, r3) approximation of a tensor. SIAM Journal on Matrix Analysis and Applications
31(2), 248–271. DOI: 10.1137/070688316.

Eswar, S., Hayashi, K., Ballard, G., Kannan, R., Matheson, M. A., and Park, H. (2021). PLANC: par-
allel low-rank approximation with nonnegativity constraints. ACM Transactions on Mathematical
Software 47(3). DOI: 10.1145/3432185.

Evert, E., Vandecappelle, M., and De Lathauwer, L. (2022). Canonical polyadic decomposition via
the generalized Schur decomposition. IEEE Signal Processing Letters 29, 937–941. DOI: 10.
1109/lsp.2022.3156870.

Fackler, P. L. (2019). Algorithm 993: efficient computation with Kronecker products. ACM Transac-
tions on Mathematical Software 45(2), Article No. 22. DOI: 10.1145/3291041.

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-Paredes, B., Barekatain, M., Novikov, A., Ruiz,
F. J. R., Schrittwieser, J., Swirszcz, G., Silver, D., Hassabis, D., and Kohli, P. (2022). Discovering
faster matrix multiplication algorithms with reinforcement learning. Nature 610, 47–53. DOI:
10.1038/s41586-022-05172-4.

Févotte, C. and Idier, J. (2011). Algorithms for nonnegative matrix factorization with the β-divergence.
Neural Computation 23(9), 2421–2456. DOI: 10.1162/NECO_a_00168.

Friedland, S. (2012). On the generic and typical ranks of 3-tensors. Linear Algebra and Applications
436(3), 478–497. DOI: 10.1016/j.laa.2011.05.008.

Friedlander, M. P. and Hatz, K. (2008). Computing nonnegative tensor factorizations. Computational
Optimization and Applications 23(4), 631–647. DOI: 10.1080/10556780801996244.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science
by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://doi.org/10.1137/140962292
https://doi.org/10.1137/060661685
https://doi.org/10.1137/070690729
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479898346995
https://doi.org/10.1137/070690730
https://doi.org/10.1137/06066518X
https://doi.org/10.1007/BF02592055
https://doi.org/10.1137/130916084
https://github.com/sandialabs/pyttb
https://github.com/sandialabs/pyttb
https://doi.org/10.1007/BF02288367
https://doi.org/10.1145/321694.321699
https://doi.org/10.1137/070688316
https://doi.org/10.1145/3432185
https://doi.org/10.1109/lsp.2022.3156870
https://doi.org/10.1109/lsp.2022.3156870
https://doi.org/10.1145/3291041
https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1162/NECO_a_00168
https://doi.org/10.1016/j.laa.2011.05.008
https://doi.org/10.1080/10556780801996244

Bibliography 393

Gillis, N. (2021). Nonnegative Matrix Factorization. Philadelphia: SIAM. DOI: 10.1137/1.9781
611976410.

Golub, G. H. and Van Loan, C. F. (2013). Matrix Computations. 4th ed. Baltimore: Johns Hopkins
University Press.

Golub, G. and Kahan, W. (1965). Calculating the singular values and pseudo-inverse of a matrix.
Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis 2(2),
205–224. DOI: 10.1137/0702016.

Grasedyck, L. (2010). Hierarchical singular value decomposition of tensors. SIAM Journal on Matrix
Analysis and Applications 31(4), 2029–2054. DOI: 10.1137/090764189.

Grasedyck, L., Kressner, D., and Tobler, C. (2013). A literature survey of low-rank tensor approxi-
mation techniques. GAMM-Mitteilungen 36(1), 53–78. DOI: 10.1002/gamm.201310004.

Gu, M. (2015). Subspace iteration randomization and singular value problems. SIAM Journal on
Scientific Computing 37(3), A1139–A1173. DOI: 10.1137/130938700.

Hackbusch, W. and Kühn, S. (2009). A new scheme for the tensor representation. J Fourier Anal Appl
15(5), 706–722. DOI: 10.1007/s00041-009-9094-9.

Hackbusch, W. (2014). Numerical tensor calculus. Acta Numerica 23, 651–742. DOI: 10.1017/
S0962492914000087.

Hackbusch, W. (2019). Tensor Spaces and Numerical Tensor Calculus. 2nd ed. Springer Cham. DOI:
10.1007/978-3-030-35554-8.

Halko, N., Martinsson, P. G., and Tropp, J. A. (2011). Finding structure with randomness: probabilis-
tic algorithms for constructing approximate matrix decompositions. SIAM Review 53(2), 217–
288. DOI: 10.1137/090771806.

Hansen, S., Plantenga, T., and Kolda, T. G. (2015). Newton-based optimization for Kullback-Leibler
nonnegative tensor factorizations. Optimization Methods and Software 30(5), 1002–1029. DOI:
10.1080/10556788.2015.1009977.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: models and conditions for an
“explanatory" multi-modal factor analysis. UCLA Working Papers in Phonetics 16. Available
at, 1–84. Available at http://www.psychology.uwo.ca/faculty/harshman/
wpppfac0.pdf (accessed July 29, 2024).

Harshman, R. A. (1972). Determination and proof of minimum uniqueness conditions for PARAFAC1.
UCLA working papers in phonetics 22, 111–117. Available at https://www.psychology.
uwo.ca/faculty/harshman/wpppfac1.pdf (accessed July 29, 2024).

Håstad, J. (1990). Tensor rank is NP-complete. Journal of Algorithms 11(4), 644–654. DOI: 10.
1016/0196-6774(90)90014-6.

Hastie, T., Tibshrirani, R., and Friedman, J. (2009). The Elements of Statistical Learning. 2nd ed.
Springer. DOI: 10.1007/978-0-387-84858-7.

Helal, A. E., Laukemann, J., Checconi, F., Tithi, J. J., Ranadive, T., Petrini, F., and Choi, J. (2021).
ALTO: adaptive linearized storage of sparse tensors. In Proceedings of the 35th ACM Interna-
tional Conference on Supercomputing (ICS’21), 404–416. DOI: 10.1145/3447818.34617
03.

Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms. 2nd ed. Philadelphia: SIAM.
Higham, N. J. (1992). Stability of a method for multiplying complex matrices with three real matrix

multiplications. SIAM Journal on Matrix Analysis and Applications 13(3), 681–687. DOI: 10.
1137/0613043.

Hillar, C. J. and Lim, L.-H. (2013). Most tensor problems are NP-hard. Journal of the ACM 60(6),
1–39. DOI: 10.1145/2512329.

Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics 6(1), 164–189. DOI: 10.1002/sapm192761164.

Hong, D., Kolda, T. G., and Duersch, J. A. (2020). Generalized canonical polyadic tensor decompo-
sition. SIAM Review 62(1), 133–163. DOI: 10.1137/18M1203626.

Hopcroft, J. and Musinski, J. (1973). Duality applied to the complexity of matrix multiplication and
other bilinear forms. SIAM Journal on Computing 2(3), 159–173. DOI: 10.1137/0202013.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science
by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://doi.org/10.1137/1.9781611976410
https://doi.org/10.1137/1.9781611976410
https://doi.org/10.1137/0702016
https://doi.org/10.1137/090764189
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1137/130938700
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1017/S0962492914000087
https://doi.org/10.1017/S0962492914000087
https://doi.org/10.1007/978-3-030-35554-8
https://doi.org/10.1137/090771806
https://doi.org/10.1080/10556788.2015.1009977
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
https://www.psychology.uwo.ca/faculty/harshman/wpppfac1.pdf
https://www.psychology.uwo.ca/faculty/harshman/wpppfac1.pdf
https://doi.org/10.1016/0196-6774(90)90014-6
https://doi.org/10.1016/0196-6774(90)90014-6
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1145/3447818.3461703
https://doi.org/10.1145/3447818.3461703
https://doi.org/10.1137/0613043
https://doi.org/10.1137/0613043
https://doi.org/10.1145/2512329
https://doi.org/10.1002/sapm192761164
https://doi.org/10.1137/18M1203626
https://doi.org/10.1137/0202013

394 Bibliography

Hopcroft, J. E. and Kerr, L. R. (1971). On minimizing the number of multiplications necessary for
matrix multiplication. SIAM Journal on Applied Mathematics 20(1), 30–36. DOI: 10.1137/
0120004.

Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge University Press.
Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis. Cambridge University Press.
Horn, R. A. and Yang, Z. (2020). Rank of a Hadamard product. Linear Algebra and its Applications

591, 87–98. DOI: 10.1016/j.laa.2020.01.005.
Huang, J., Smith, T. M., Henry, G. M., and van de Geijn, R. A. (2016). Strassen’s algorithm reloaded.

In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’16). DOI: 10.5555/3014904.3014983.

Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Statistics 53(1), 73–101.
DOI: 10.1214/aoms/1177703732.

JáJá, J. (1979). Optimal evaluation of pairs of bilinear forms. SIAM Journal on Computing 8(3), 443–
462. DOI: 10.1137/0208037.

Jin, R., Kolda, T. G., and Ward, R. (2020). Faster Johnson-Lindenstrauss transforms via Kronecker
products. Information and Inference: A Journal of the IMA. DOI: 10.1093/imaiai/iaaa02
8. eprint: 1909.04801.

Johnson, R. W. and McLoughlin, A. M. (1986). Noncommutative bilinear algorithms for 3×3 matrix
multiplication. SIAM Journal on Computing 15(2), 595–603. DOI: 10.1137/0215043.

Jolliffe, I. T. (2002). Principal Component Analysis. 2nd ed. Springer-Verlag. DOI: 10.1007/b98
835.

Jos ten Berge, (2000). “The k-rank of a Khatri-Rao product”. Unpublished Note, Heijmans Institute
of Psychological Research, University of Groningen, The Netherlands.

Kapteyn, A., Neudecker, H., and Wansbeek, T. (1986). An approach to n-mode components analysis.
Psychometrika 51(2), 269–275. DOI: 10.1007/BF02293984.

Karstadt, E. and Schwartz, O. (2020). Matrix multiplication, a little faster. Journal of the ACM 67(1).
DOI: 10.1145/3364504.

Kauers, M. and Moosbauer, J. (2023). Flip graphs for matrix multiplication. In Proceedings of the
2023 International Symposium on Symbolic and Algebraic Computation. ISSAC 2023. ACM.
DOI: 10.1145/3597066.3597120.

Kaya, O. and Robert, Y. (2019). Computing dense tensor decompositions with optimal dimension
trees. Algorithmica 81, 2092–2121. DOI: 10.1007/s00453-018-0525-3.

Kaya, O. and Uçar, B. (2015). Scalable sparse tensor decompositions in distributed memory systems.
In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’15). DOI: 10.1145/2807591.2807624.

Kaya, O. and Uçar, B. (2016). High-performance parallel algorithms for the Tucker decomposition of
higher order sparse tensors. In 45th International Conference on Parallel Processing (ICPP’16).
DOI: 10.1109/ICPP.2016.19.

Kiers, H. A. L. (1997). Weighted least squares fitting using ordinary least squares algorithms. Psy-
chometrika 62(2), 215–266. DOI: 10.1007/BF02295279.

Kiers, H. A. L. (2000). Towards a standardized notation and terminology in multiway analysis. Jour-
nal of Chemometrics 14(3), 105–122. DOI: 10.1002/1099- 128X(200005/06)14:
3<105::AID-CEM582>3.0.CO;2-I.

Kilmer, M. E., Horesh, L., Avron, H., and Newman, E. (2021). Tensor-tensor algebra for optimal rep-
resentation and compression of multiway data. Proceedings of the National Academy of Sciences
118(28), e2015851118. DOI: 10.1073/pnas.2015851118.

Kilmer, M. E. and Martin, C. D. (2011). Factorization strategies for third-order tensors. Linear Alge-
bra and its Applications 435(3), 641–658. DOI: 10.1016/j.laa.2010.09.020.

Kim, J., He, Y., and Park, H. (2014). Algorithms for nonnegative matrix and tensor factorizations:
a unified view based on block coordinate descent framework. Journal of Global Optimization
58(2), 285–319. DOI: 10.1007/s10898-013-0035-4.

Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. Published as a confer-
ence paper at the 3rd International Conference for Learning Representations, San Diego, 2015.
arXiv: 1412.6980v9.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science
by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://doi.org/10.1137/0120004
https://doi.org/10.1137/0120004
https://doi.org/10.1016/j.laa.2020.01.005
https://doi.org/10.5555/3014904.3014983
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1137/0208037
https://doi.org/10.1093/imaiai/iaaa028
https://doi.org/10.1093/imaiai/iaaa028
1909.04801
https://doi.org/10.1137/0215043
https://doi.org/10.1007/b98835
https://doi.org/10.1007/b98835
https://doi.org/10.1007/BF02293984
https://doi.org/10.1145/3364504
https://doi.org/10.1145/3597066.3597120
https://doi.org/10.1007/s00453-018-0525-3
https://doi.org/10.1145/2807591.2807624
https://doi.org/10.1109/ICPP.2016.19
https://doi.org/10.1007/BF02295279
https://doi.org/10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
https://doi.org/10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
https://doi.org/10.1073/pnas.2015851118
https://doi.org/10.1016/j.laa.2010.09.020
https://doi.org/10.1007/s10898-013-0035-4
https://arxiv.org/abs/1412.6980v9

Bibliography 395

Kofidis, E. and Regalia, P. A. (2002). On the best rank-1 approximation of higher-order supersym-
metric tensors. SIAM Journal on Matrix Analysis and Applications 23(3), 863–884. DOI: 10.
1137/S0895479801387413.

Kolda, T. G. (2021a). EEM Tensor Data. Available at https://gitlab.com/tensors/
tensor_data_eem (accessed July 29, 2024).

Kolda, T. G. (2022a). Monkey BMI Tensor Dataset. Available at https://gitlab.com/tenso
rs/tensor_data_monkey_bmi (accessed July 29, 2024).

Kolda, T. G. (2022b). New Chicago Crime Tensor Dataset. Available at https://gitlab.com/
tensors/tensor_data_miranda_sim (accessed July 29, 2024).

Kolda, T. and Duersch, J. (2017). Sparse Versus Scarce. Available at https://www.mathsci.
ai/post/sparse-versus-scarce/ (accessed July 29, 2024).

Kolda, T. G. (2001). Orthogonal tensor decompositions. SIAM Journal on Matrix Analysis and Ap-
plications 23(1), 243–255. DOI: 10.1137/S0895479800368354.

Kolda, T. G. (2003). A counterexample to the possibility of an extension of the Eckart-Young low-
rank approximation theorem for the orthogonal rank tensor decomposition. SIAM Journal on
Matrix Analysis and Applications 24(3), 762–767. DOI: 10.1137/S0895479801394465.

Kolda, T. G. (2015a). Numerical optimization for symmetric tensor decomposition. Mathematical
Programming B 151(1), 225–248. DOI: 10.1007/s10107-015-0895-0.

Kolda, T. G. (2015b). Symmetric Orthogonal Tensor Decomposition Is Trivial. arXiv: 1503.01375.
Kolda, T. G. (2021b). Will the Real Jennrich’s Algorithm Please Stand Up? Available at https:

//www.mathsci.ai/post/jennrich/ (accessed July 29, 2024).
Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review 51(3),

455–500. DOI: 10.1137/07070111X.
Kolda, T. G., Bader, B. W., and Kenny, J. P. (2005). Higher-order web link analysis using multilinear

algebra. In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM’05),
242–249. DOI: 10.1109/ICDM.2005.77.

Kolda, T. G. and Mayo, J. R. (2011). Shifted power method for computing tensor eigenpairs. SIAM
Journal on Matrix Analysis and Applications 32(4), 1095–1124. DOI: 10.1137/100801482.

Kolda, T. G. and Mayo, J. R. (2014). An adaptive shifted power method for computing generalized
tensor eigenpairs. SIAM Journal on Matrix Analysis and Applications 35(4), 1563–1581. DOI:
10.1137/140951758.

Kolda, T. G. and Sun, J. (2008). Scalable tensor decompositions for multi-aspect data mining. In
Proceedings of the 8th IEEE International Conference on Data Mining (ICDM’08), 363–372.
DOI: 10.1109/ICDM.2008.89.

Kroonenberg, P. M. and De Leeuw, J. (1980). Principal component analysis of three-mode data by
means of alternating least squares algorithms. Psychometrika 45(1), 69–97. DOI: 10.1007/
BF02293599.

Kruskal, J. B. (1989). Rank, decomposition, and uniqueness for 3-way and N -way arrays. In Mul-
tiway Data Analysis. Ed. by R. Coppi and S. Bolasco. Amsterdam: North-Holland, pp. 7–18.
Available at https://psychology.uwo.ca/faculty/harshman/jbkrank.pdf
(accessed July 29, 2024).

Kruskal, J. B. (1977). Three-way arrays: rank and uniqueness of trilinear decompositions, with appli-
cation to arithmetic complexity and statistics. Linear Algebra and its Applications 18(2), 95–138.
DOI: 10.1016/0024-3795(77)90069-6.

Kruskal, J. B. (1983). “Statement of some current results about three-way arrays”. Unpublished
manuscript, AT&T Bell Laboratories, Murray Hill, NJ. Available at http://three-mode.
leidenuniv.nl/pdf/k/kruskal1983.pdf.

Laderman, J. D. (1976). A noncommutative algorithm for multiplying 3 × 3 matrices using 23 mul-
tiplications. Bulletin of the American Mathematical Society 82(1), 126–128. Available at http:
//www.ams.org/bull/1976-82-01/S0002-9904-1976-13988-2/S0002-
9904-1976-13988-2.pdf (accessed July 29, 2024).

Landsberg, J. M. (2006). The border rank of the multiplication of 2 × 2 matrices is seven. Journal
of the American Mathematical Society 19, 447–459. DOI: 10.1090/S0894- 0347- 05-
00506-0.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science
by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://doi.org/10.1137/S0895479801387413
https://doi.org/10.1137/S0895479801387413
https://gitlab.com/tensors/tensor_data_eem
https://gitlab.com/tensors/tensor_data_eem
https://gitlab.com/tensors/tensor_data_monkey_bmi
https://gitlab.com/tensors/tensor_data_monkey_bmi
https://gitlab.com/tensors/tensor_data_miranda_sim
https://gitlab.com/tensors/tensor_data_miranda_sim
https://www.mathsci.ai/post/sparse-versus-scarce/
https://www.mathsci.ai/post/sparse-versus-scarce/
https://doi.org/10.1137/S0895479800368354
https://doi.org/10.1137/S0895479801394465
https://doi.org/10.1007/s10107-015-0895-0
https://arxiv.org/abs/1503.01375
https://www.mathsci.ai/post/jennrich/
https://www.mathsci.ai/post/jennrich/
https://doi.org/10.1137/07070111X
https://doi.org/10.1109/ICDM.2005.77
https://doi.org/10.1137/100801482
https://doi.org/10.1137/140951758
https://doi.org/10.1109/ICDM.2008.89
https://doi.org/10.1007/BF02293599
https://doi.org/10.1007/BF02293599
https://psychology.uwo.ca/faculty/harshman/jbkrank.pdf
https://doi.org/10.1016/0024-3795(77)90069-6
http://three-mode.leidenuniv.nl/pdf/k/kruskal1983.pdf
http://three-mode.leidenuniv.nl/pdf/k/kruskal1983.pdf
http://www.ams.org/bull/1976-82-01/S0002-9904-1976-13988-2/S0002-9904-1976-13988-2.pdf
http://www.ams.org/bull/1976-82-01/S0002-9904-1976-13988-2/S0002-9904-1976-13988-2.pdf
http://www.ams.org/bull/1976-82-01/S0002-9904-1976-13988-2/S0002-9904-1976-13988-2.pdf
https://doi.org/10.1090/S0894-0347-05-00506-0
https://doi.org/10.1090/S0894-0347-05-00506-0

396 Bibliography

Larsen, B. W. and Kolda, T. G. (2022). Practical leverage-based sampling for low-rank tensor decom-
position. SIAM Journal on Matrix Analysis and Applications 43(3), 1488–1517. DOI: 10.1137/
21m1441754.

Lawson, C. L. and Hanson, R. J. (1974). Solving Least Squares Problems. Prentice-Hall.
Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization.

Nature 401, 788–791. DOI: 10.1038/44565.
Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Advances

in Neural Information Processing Systems (NIPS’00). Vol. 13, 556–562. Available at https:
//proceedings.neurips.cc/paper_files/paper/2000/file/f9d1152547c
0bde01830b7e8bd60024c-Paper.pdf (accessed July 29, 2024).

Leurgans, S. E., Ross, R. T., and Abel, R. B. (1993). A decomposition for three-way arrays. SIAM
Journal on Matrix Analysis and Applications 14(4), 1064–1083. DOI: 10.1137/0614071.

Li, J., Battaglino, C., Perros, I., Sun, J., and Vuduc, R. (2015). An input-adaptive and in-place ap-
proach to dense tensor-times-matrix multiply. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC’15). DOI: 10.1145/
2807591.2807671.

Li, J., Choi, J., Perros, I., Sun, J., and Vuduc, R. (2017). Model-driven sparse CP decomposition
for higher-order tensors. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS’17), 1048–1057. DOI: 10.1109/ipdps.2017.80.

Li, J., Sun, J., and Vuduc, R. (2018). HiCOO: hierarchical storage of sparse tensors. In International
Conference for High Performance Computing, Networking, Storage and Analysis (SC’18), 238–
252. DOI: 10.1109/SC.2018.00022.

Lim, L.-H. (2005). Singular values and eigenvalues of tensors: a variational approach. In Proceed-
ings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP’05), 129–132. DOI: 10.1109/CAMAP.2005.1574201.

Lipshitz, B., Ballard, G., Demmel, J., and Schwartz, O. (2012). Communication-avoiding parallel
Strassen: implementation and performance. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’12). DOI: 10.1109/sc.2012.33.

Liu, X. and Sidiropoulos, N. D. (2001). Cramér-Rao lower bounds for low-rank decomposition of
multidimensional arrays. IEEE Transactions on Signal Processing 49(9), 2074–2086. DOI: 10.
1109/78.942635.

Magnus, J. R. and Neudecker, H. (1979). The Commutation Matrix: Some Properties and Applica-
tions. The Annals of Statistics 7(2), 381–394. DOI: 10.1214/aos/1176344621.

Malik, O. A. and Becker, S. (2018). Low-rank Tucker decomposition of large tensors using Ten-
sorSketch. In Advances in Neural Information Processing Systems (NeurIPS’18), 10116–10126.
Available at https://proceedings.neurips.cc/paper_files/paper/2018/
file/45a766fa266ea2ebeb6680fa139d2a3d-Paper.pdf (accessed July 29, 2024).

Malik, O. A. and Becker, S. (2020). Guarantees for the Kronecker fast Johnson–Lindenstrauss trans-
form using a coherence and sampling argument. Linear Algebra and its Applications 602, 120–
137. DOI: 10.1016/j.laa.2020.05.004.

Mihoko, M. and Eguchi, S. (2002). Robust blind source separation by beta divergence. Neural Com-
putation 14(8), 1859–1886. DOI: 10.1162/089976602760128045.

Minster, R., Li, Z., and Ballard, G. (2024). Parallel randomized Tucker decomposition algorithms.
SIAM Journal on Scientific Computing 46(2), A1186–A1213. DOI: 10.1137/22m1540363.

Minster, R., Viviano, I., Liu, X., and Ballard, G. (2023). CP decomposition for tensors via alternating
least squares with QR decomposition. Numerical Linear Algebra with Applications, e2511. DOI:
10.1002/nla.2511.

Möcks, J. (1988). Topographic components model for event-related potentials and some biophysical
considerations. IEEE Transactions on Biomedical Engineering 35(6), 482–484. DOI: 10.1109/
10.2119.

Mørup, M., Hansen, L. K., and Arnfred, S. M. (2008). Algorithms for sparse nonnegative Tucker
decompositions. Neural Computation 20(8), 2112–2131. DOI: 10.1162/neco.2008.11-
06-407.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science
by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://doi.org/10.1137/21m1441754
https://doi.org/10.1137/21m1441754
https://doi.org/10.1038/44565
https://proceedings.neurips.cc/paper_files/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://doi.org/10.1137/0614071
https://doi.org/10.1145/2807591.2807671
https://doi.org/10.1145/2807591.2807671
https://doi.org/10.1109/ipdps.2017.80
https://doi.org/10.1109/SC.2018.00022
https://doi.org/10.1109/CAMAP.2005.1574201
https://doi.org/10.1109/sc.2012.33
https://doi.org/10.1109/78.942635
https://doi.org/10.1109/78.942635
https://doi.org/10.1214/aos/1176344621
https://proceedings.neurips.cc/paper_files/paper/2018/file/45a766fa266ea2ebeb6680fa139d2a3d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/45a766fa266ea2ebeb6680fa139d2a3d-Paper.pdf
https://doi.org/10.1016/j.laa.2020.05.004
https://doi.org/10.1162/089976602760128045
https://doi.org/10.1137/22m1540363
https://doi.org/10.1002/nla.2511
https://doi.org/10.1109/10.2119
https://doi.org/10.1109/10.2119
https://doi.org/10.1162/neco.2008.11-06-407
https://doi.org/10.1162/neco.2008.11-06-407

Bibliography 397

Nesterov, Y. (2012). Gradient methods for minimizing composite functions. Mathematical Program-
ming 140(1), 125–161. DOI: 10.1007/s10107-012-0629-5.

Nocedal, J. (1980). Updating quasi-Newton matrices with limited storage. Mathematics of Computa-
tion 35(151), 773–782. DOI: 10.2307/2006193.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. 2nd ed. Springer. DOI: 10.1007/
978-0-387-40065-5.

Oseledets, I. V. (2011). Tensor-train decomposition. SIAM Journal on Scientific Computing 33(5),
2295–2317. DOI: 10.1137/090752286.

Oseledets, I. V. and Tyrtyshnikov, E. E. (2009). Breaking the curse of dimensionality, or how to use
SVD in many dimensions. SIAM Journal on Scientific Computing 31(5), 3744–3759. DOI: 10.
1137/090748330.

Oseledets, I. and Tyrtyshnikov, E. (2010). TT-cross approximation for multidimensional arrays. Lin-
ear Algebra and its Applications 432(1), 70–88. DOI: 10.1016/j.laa.2009.07.024.

Paatero, P. (1997). A weighted non-negative least squares algorithm for three-way “PARAFAC” fac-
tor analysis. Chemometrics and Intelligent Laboratory Systems 38(2), 223–242. DOI: 10.1016/
S0169-7439(97)00031-2.

Paatero, P. (1999). The multilinear engine: a table-driven, least squares program for solving multilin-
ear problems, including the n-way parallel factor analysis model. Journal of Computational and
Graphical Statistics 8(4), 854–888. DOI: 10.1080/10618600.1999.10474853.

Paatero, P. (2000). Construction and analysis of degenerate PARAFAC models. Journal of Chemo-
metrics 14(3), 285–299. DOI: 10.1002/1099-128X(200005/06)14:3<285::AID-
CEM584>3.0.CO;2-1.

Paatero, P. and Tapper, U. (1994). Positive matrix factorization: a non-negative factor model with
optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126. DOI: 10.
1002/env.3170050203.

Paige, C. C. and Saunders, M. A. (1982). LSQR: an algorithm for sparse linear equations and sparse
least squares. ACM Transactions on Mathematical Software 8(1), 43–71. DOI: 10.1145/3559
84.355989.

Phan, A. H. and Cichocki, A. (2008). Fast and efficient algorithms for nonnegative Tucker decomposi-
tion. In Advances in Neural Networks (ISNN’08). Vol. 5264. Lecture Notes in Computer Science.
Springer, 772–782. DOI: 10.1007/978-3-540-87734-9_88.

Phan, A. H. and Cichocki, A. (2011). Extended HALS algorithm for nonnegative Tucker decomposi-
tion and its applications for multiway analysis and classification. Neurocomputing 74(11), 1956–
1969. DOI: 10.1016/j.neucom.2010.06.031.

Phan, A. H., Tichavský, P., and Cichocki, A. (2011). Fast damped Gauss-Newton algorithm for sparse
and nonnegative tensor factorization. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP’11), 1988–1991. DOI: 10.1109/ICASSP.
2011.5946900.

Phan, A.-H., Tichavsky, P., and Cichocki, A. (2013). Fast alternating LS algorithms for high or-
der CANDECOMP/PARAFAC tensor factorizations. IEEE Transactions on Signal Processing
61(19), 4834–4846. DOI: 10.1109/TSP.2013.2269903.

Phan, A.-H., Tichavský, P., and Cichocki, A. (2013). Low complexity damped Gauss–Newton algo-
rithms for CANDECOMP/PARAFAC. SIAM Journal on Matrix Analysis and Applications 34(1),
126–147. DOI: 10.1137/100808034.

Phipps, E. and Kolda, T. G. (2019). Software for sparse tensor decomposition on emerging computing
architectures. SIAM Journal on Scientific Computing 41(3), C269–C290. DOI: 10.1137/18M1
210691.

Qi, L. (2005). Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Computation 40,
1302–1324. DOI: 10.1016/j.jsc.2005.05.007.

Regalia, P. A. and Kofidis, E. (2003). Monotonic convergence of fixed-point algorithms for ICA. IEEE
Transactions on Neural Networks 14(4), 943–949. DOI: 10.1109/TNN.2003.813843.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical
Statistics 22(3), 400–407. Available at http://www.jstor.org/stable/2236626
(accessed July 29, 2024).

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science
by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://doi.org/10.1007/s10107-012-0629-5
https://doi.org/10.2307/2006193
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090748330
https://doi.org/10.1137/090748330
https://doi.org/10.1016/j.laa.2009.07.024
https://doi.org/10.1016/S0169-7439(97)00031-2
https://doi.org/10.1016/S0169-7439(97)00031-2
https://doi.org/10.1080/10618600.1999.10474853
https://doi.org/10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
https://doi.org/10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
https://doi.org/10.1002/env.3170050203
https://doi.org/10.1002/env.3170050203
https://doi.org/10.1145/355984.355989
https://doi.org/10.1145/355984.355989
https://doi.org/10.1007/978-3-540-87734-9_88
https://doi.org/10.1016/j.neucom.2010.06.031
https://doi.org/10.1109/ICASSP.2011.5946900
https://doi.org/10.1109/ICASSP.2011.5946900
https://doi.org/10.1109/TSP.2013.2269903
https://doi.org/10.1137/100808034
https://doi.org/10.1137/18M1210691
https://doi.org/10.1137/18M1210691
https://doi.org/10.1016/j.jsc.2005.05.007
https://doi.org/10.1109/TNN.2003.813843
http://www.jstor.org/stable/2236626

398 Bibliography

Robeva, E. (2014). Orthogonal Decomposition of Symmetric Tensors. eprint: 1409.6685.
Royer, J.-P., Thirion-Moreau, N., and Comon, P. (2011). Computing the polyadic decomposition

of nonnegative third order tensors. Signal Processing 91(9), 2159–2171. DOI: 10.1016/j.
sigpro.2011.03.006.

Sanchez, E. and Kowalski, B. R. (1990). Tensorial resolution: a direct trilinear decomposition. Jour-
nal of Chemometrics 4(1), 29–45. DOI: 10.1002/cem.1180040105.

Sedoglavic, A. and Smirnov, A. V. (2021). The tensor rank of 5×5 matrices multiplication is bounded
by 98 and its border rank by 89. DOI: 10.1145/3452143.3465537.

Shashua, A. and Hazan, T. (2005). Non-negative tensor factorization with applications to statistics
and computer vision. In Proceedings of the 22nd International Conference on Machine Learning
(ICML’05), 792–799. DOI: 10.1145/1102351.1102451.

Sherman, S. and Kolda, T. G. (2020). Estimating higher-order moments using symmetric tensor de-
composition. SIAM Journal on Matrix Analysis and Applications 41(3), 1369–1387. DOI: 10.
1137/19m1299633.

Sidiropoulos, N. D. and Bro, R. (2000). On the uniqueness of multilinear decomposition of N-way
arrays. Journal of Chemometrics 14(3), 229–239. DOI: 10.1002/1099-128X(200005/
06)14:3<229::AID-CEM587>3.0.CO;2-N.

Sidiropoulos, N. D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E. E., and Faloutsos, C.
(2017). Tensor decomposition for signal processing and machine learning. IEEE Transactions
on Signal Processing 65(13), 3551–3582. DOI: 10.1109/tsp.2017.2690524.

Smilde, A., Bro, R., and Geladi, P. (2004). Multi-Way Analysis: Applications in the Chemical Sci-
ences. West Sussex, England: Wiley.

Smirnov, A. V. (2013). The bilinear complexity and practical algorithms for matrix multiplication.
English. Computational Mathematics and Mathematical Physics 53(12), 1781–1795. DOI: 10.
1134/S0965542513120129.

Smith, S. and Karypis, G. (2015). Tensor-matrix products with a compressed sparse tensor. In Pro-
ceedings of the 5th Workshop on Irregular Applications: Architectures and Algorithms (IA3’15).
DOI: 10.1145/2833179.2833183.

Sorber, L., Van Barel, M., and De Lathauwer, L. (2013). Optimization-based algorithms for tensor
decompositions: canonical polyadic decomposition, decomposition in rank-(Lr,Lr,1) terms, and
a new generalization. SIAM Journal on Optimization 23(2), 695–720. DOI: 10.1137/120868
323.

Sorensen, M. and De Lathauwer, L. (2010). New simultaneous generalized Schur decomposition
methods for the computation of the canonical polyadic decomposition. In 2010 Conference Record
of the Forty Fourth Asilomar Conference on Signals, Systems and Computers. DOI: 10.1109/
ACSSC.2010.5757456.

Springer, P., Hammond, J. R., and Bientinesi, P. (2017). TTC: a high-performance compiler for tensor
transpositions. ACM Transactions on Mathematical Software 44(2), 1–21. DOI: 10.1145/310
4988.

Stegeman, A. and Sidiropoulos, N. D. (2007). On Kruskal’s uniqueness condition for the CANDE-
COMP/PARAFAC decomposition. Linear Algebra and its Applications 420(2–3), 540–552. DOI:
10.1016/j.laa.2006.08.010.

Strang, G. (2016). Introduction to Linear Algebra. 5th ed. Wellesley-Cambridge Press.
Strassen, V. (1969). Gaussian elimination is not optimal. Numerische Mathematik 13(4), 354–356.

DOI: 10.1007/BF02165411.
Sumi, T., Sakata, T., and Miyazaki, M. (2013). Typical ranks for m × n × (m − 1)n tensors with

m ≤ n. Linear Algebra and its Applications 438(2), 953–958. DOI: 10.1016/j.laa.2011.
08.009.

Sun, Y., Guo, Y., Luo, C., Tropp, J., and Udell, M. (2020). Low-rank Tucker approximation of a
tensor from streaming data. SIAM Journal on Mathematics of Data Science 2(4), 1123–1150.
DOI: 10.1137/19m1257718.

ten Berge, J. M. F. and Sidiriopolous, N. D. (2002). On uniqueness in CANDECOMP/PARAFAC.
Psychometrika 67(3), 399–409. DOI: 10.1007/BF02294992.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science
by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

1409.6685
https://doi.org/10.1016/j.sigpro.2011.03.006
https://doi.org/10.1016/j.sigpro.2011.03.006
https://doi.org/10.1002/cem.1180040105
https://doi.org/10.1145/3452143.3465537
https://doi.org/10.1145/1102351.1102451
https://doi.org/10.1137/19m1299633
https://doi.org/10.1137/19m1299633
https://doi.org/10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
https://doi.org/10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
https://doi.org/10.1109/tsp.2017.2690524
https://doi.org/10.1134/S0965542513120129
https://doi.org/10.1134/S0965542513120129
https://doi.org/10.1145/2833179.2833183
https://doi.org/10.1137/120868323
https://doi.org/10.1137/120868323
https://doi.org/10.1109/ACSSC.2010.5757456
https://doi.org/10.1109/ACSSC.2010.5757456
https://doi.org/10.1145/3104988
https://doi.org/10.1145/3104988
https://doi.org/10.1016/j.laa.2006.08.010
https://doi.org/10.1007/BF02165411
https://doi.org/10.1016/j.laa.2011.08.009
https://doi.org/10.1016/j.laa.2011.08.009
https://doi.org/10.1137/19m1257718
https://doi.org/10.1007/BF02294992

Bibliography 399

ten Berge, J. M. F. (1991). Kruskal’s polynomial for 2×2×2 arrays and a generalization to 2×n×n
arrays. Psychometrika 56(4), 631–636. DOI: 10.1007/BF02294495.

ten Berge, J. M. F. (2000). The typical rank of tall three-way arrays. Psychometrika 65(4), 525–532.
DOI: 10.1007/BF02296342.

ten Berge, J. M. F. (2004). Partial uniqueness in CANDECOMP/PARAFAC. Journal of Chemomet-
rics 18(1), 12–16. DOI: 10.1002/cem.839.

ten Berge, J. M. F. (2011). Simplicity and typical rank results for three-way arrays. Psychometrika
76(1), 3–12. DOI: 10.1007/S11336-010-9193-1.

ten Berge, J. M. F. and Kiers, H. A. L. (1999). Simplicity of core arrays in three-way principal com-
ponent analysis and the typical rank of p × q × 2 arrays. Linear Algebra and its Applications
294(1–3), 169–179. DOI: 10.1016/S0024-3795(99)00057-9.

ten Berge, J. M. F., Kiers, H. A. L., and de Leeuw, J. (1988). Explicit CANDECOMP/PARAFAC
solutions for a contrived 2 × 2 × 2 array of rank three. Psychometrika 53(4), 579–583. DOI:
10.1007/BF02294409.

ten Berge, J. M. F., Sidiropoulos, N. D., and Rocci, R. (2004). Typical rank and INDSCAL dimen-
sionality for symmetric three-way arrays of order I × 2× 2 or I × 3× 3. Linear Algebra and
its Applications 388, 363–377. DOI: 10.1016/j.laa.2004.03.009.

ten Berge, J. M. F. and Stegeman, A. (2006). Symmetry transformations for square sliced three-way
arrays, with applications to their typical rank. Linear Algebra and Applications 418(1), 215–224.
DOI: 10.1016/j.laa.2006.02.002.

ten Berge, J. M. F. and Tendeiro, J. N. (2009). The link between sufficient conditions by Harshman
and by Kruskal for uniqueness in Candecomp/Parafac. Journal of Chemometrics 23(7–8), 321–
323. DOI: 10.1002/cem.1204.

TensorFlow Team, (2022). Working with Sparse Tensors. TensorFlow Guide. Available at https:
//www.tensorflow.org/guide/sparse_tensor (accessed July 29, 2024).

Tobler, C. (2012). “Low-rank tensor methods for linear systems and eigenvalue problems”. PhD the-
sis. ETH Zurich. Available at http://sma.epfl.ch/~anchpcommon/students/
tobler.pdf (accessed July 29, 2024).

Tomasi, G. and Bro, R. (2005). PARAFAC and missing values. Chemometrics and Intelligent Labo-
ratory Systems 75(2), 163–180. DOI: 10.1016/j.chemolab.2004.07.003.

Tomasi, G. and Bro, R. (2006). A comparison of algorithms for fitting the PARAFAC model. Com-
putational Statistics & Data Analysis 50(7), 1700–1734. DOI: 10.1016/j.csda.2004.11.
013.

Trefethen, L. N. and Bau, D. (1997). Numerical Linear Algebra. Philadelphia: SIAM. DOI: 10.
1137/1.9780898719574.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika 31,
279–311. DOI: 10.1007/BF02289464.

Uschmajew, A. (2010). Well-posedness of convex maximization problems on Stiefel manifolds and
orthogonal tensor product approximations. Numerische Mathematik 115(2), 309–331. DOI: 10.
1007/s00211-009-0276-9.

Uschmajew, A. (2012). Local convergence of the alternating least squares algorithm for canonical
tensor approximation. SIAM Journal on Matrix Analysis and Applications 33(2), 639–652. DOI:
10.1137/110843587.

Vandecappelle, M., Vervliet, N., and De Lathauwer, L. (2020). A second-order method for fitting
the canonical polyadic decomposition with non-least-squares cost. IEEE Transactions on Signal
Processing 68, 4454–4465. DOI: 10.1109/tsp.2020.3010719.

Vannieuwenhoven, N., Vandebril, R., and Meerbergen, K. (2012). A new truncation strategy for the
higher-order singular value decomposition. SIAM Journal on Scientific Computing 34(2), A1027–
A1052. DOI: 10.1137/110836067.

Vavasis, S. A. (2009). On the complexity of nonnegative matrix factorization. SIAM Journal on Opti-
mization 20(3), 1364–1377. DOI: 10.1137/070709967.

Vervliet, N. and De Lathauwer, L. (2019). Numerical optimization-based algorithms for data fusion.
In Data Handling in Science and Technology. Vol. 31. Elsevier. Chap. 4, pp. 81–128. DOI: 10.
1016/b978-0-444-63984-4.00004-1.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science
by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://doi.org/10.1007/BF02294495
https://doi.org/10.1007/BF02296342
https://doi.org/10.1002/cem.839
https://doi.org/10.1007/S11336-010-9193-1
https://doi.org/10.1016/S0024-3795(99)00057-9
https://doi.org/10.1007/BF02294409
https://doi.org/10.1016/j.laa.2004.03.009
https://doi.org/10.1016/j.laa.2006.02.002
https://doi.org/10.1002/cem.1204
https://www.tensorflow.org/guide/sparse_tensor
https://www.tensorflow.org/guide/sparse_tensor
http://sma.epfl.ch/~anchpcommon/students/tobler.pdf
http://sma.epfl.ch/~anchpcommon/students/tobler.pdf
https://doi.org/10.1016/j.chemolab.2004.07.003
https://doi.org/10.1016/j.csda.2004.11.013
https://doi.org/10.1016/j.csda.2004.11.013
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1007/BF02289464
https://doi.org/10.1007/s00211-009-0276-9
https://doi.org/10.1007/s00211-009-0276-9
https://doi.org/10.1137/110843587
https://doi.org/10.1109/tsp.2020.3010719
https://doi.org/10.1137/110836067
https://doi.org/10.1137/070709967
https://doi.org/10.1016/b978-0-444-63984-4.00004-1
https://doi.org/10.1016/b978-0-444-63984-4.00004-1

400 Bibliography

Vervliet, N. and De Lathauwer, L. (2016). A randomized block sampling approach to canonical
polyadic decomposition of large-scale tensors. IEEE Journal of Selected Topics in Signal Pro-
cessing 10(2), 284–295. DOI: 10.1109/JSTSP.2015.2503260.

Vervliet, N., Debals, O., Sorber, L., Van Barel, M., and De Lathauwer, L. (2017). Datasets: Dense,
Incomplete, Sparse and Structured. TensorLab User Manual. Available at https://www.
tensorlab.net/doc/data.html#sparse-tensors (accessed July 29, 2024).

Vyas, S., Even-Chen, N., Stavisky, S. D., Ryu, S. I., Nuyujukian, P., and Shenoy, K. V. (2018). Neural
population dynamics underlying motor learning transfer. Neuron 97(5). DOI: 10.1016/j.
neuron.2018.01.040.

Vyas, S., O’Shea, D. J., Ryu, S. I., and Shenoy, K. V. (2020). Causal role of motor preparation during
error-driven learning. Neuron 106(2). DOI: 10.1016/j.neuron.2020.01.019.

Welling, M. and Weber, M. (2001). Positive tensor factorization. Pattern Recognition Letters 22(12),
1255–1261. DOI: 10.1016/S0167-8655(01)00070-8.

Williams, A. H., Kim, T. H., Wang, F., Vyas, S., Ryu, S. I., Shenoy, K. V., Schnitzer, M., Kolda, T. G.,
and Ganguli, S. (2018). Unsupervised discovery of demixed, low-dimensional neural dynamics
across multiple timescales through tensor components analysis. Neuron 98(6), 1099–1115. DOI:
10.1016/j.neuron.2018.05.015.

Williams, V. V., Xu, Y., Xu, Z., and Zhou, R. (2024). New bounds for matrix multiplication: from al-
pha to omega. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM, 3792–3835. DOI: 10.1137/1.9781611977912.134.

Winograd, S. (1971). On multiplication of 2× 2 matrices. Linear Algebra and its Applications 4(4),
381–388. DOI: 10.1016/0024-3795(71)90009-7.

Wright, S. J. and Recht, B. (2022). Optimization for Data Analysis. Cambridge University Press. DOI:
10.1017/9781009004282.

Wu, X., Ward, R., and Bottou, L. (2018). WNGrad: Learn the Learning Rate in Gradient Descent.
arXiv: 1803.02865v1.

Zhang, Z. and Aeron, S. (2017). Exact tensor completion using t-SVD. IEEE Transactions on Signal
Processing 65(6), 1511–1526. DOI: 10.1109/tsp.2016.2639466.

Zhao, K., Di, S., Lian, X., Li, S., Tao, D., Bessac, J., Chen, Z., and Cappello, F. (2020). SDRBench:
scientific data reduction benchmark for lossy compressors. In 2020 IEEE International Confer-
ence on Big Data. DOI: 10.1109/bigdata50022.2020.9378449.

Zhao, Q., Zhou, G., Xie, S., Zhang, L., and Cichocki, A. (2016). Tensor Ring Decomposition. arXiv:
1606.05535.

Zhou, G., Cichocki, A., and Xie, S. (2014). Decomposition of Big Tensors with Low Multilinear Rank.
arXiv: 1412.1885.

Zhou, S., Vinh, N. X., Bailey, J., Jia, Y., and Davidson, I. (2016). Accelerating online CP decompo-
sitions for higher order tensors. In Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD’16). DOI: 10.1145/2939672.
2939763.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. (1997). Algorithm 778: L-BFGS-B: fortran subroutines
for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software
23(4), 550–560. DOI: 10.1145/279232.279236.

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

https://doi.org/10.1109/JSTSP.2015.2503260
https://www.tensorlab.net/doc/data.html#sparse-tensors
https://www.tensorlab.net/doc/data.html#sparse-tensors
https://doi.org/10.1016/j.neuron.2018.01.040
https://doi.org/10.1016/j.neuron.2018.01.040
https://doi.org/10.1016/j.neuron.2020.01.019
https://doi.org/10.1016/S0167-8655(01)00070-8
https://doi.org/10.1016/j.neuron.2018.05.015
https://doi.org/10.1137/1.9781611977912.134
https://doi.org/10.1016/0024-3795(71)90009-7
https://doi.org/10.1017/9781009004282
https://arxiv.org/abs/1803.02865v1
https://doi.org/10.1109/tsp.2016.2639466
https://doi.org/10.1109/bigdata50022.2020.9378449
https://arxiv.org/abs/1606.05535
https://arxiv.org/abs/1412.1885
https://doi.org/10.1145/2939672.2939763
https://doi.org/10.1145/2939672.2939763
https://doi.org/10.1145/279232.279236

Index

∗, see Hadamard product
⊙, see Khatri-Rao product
⊗, see Kronecker product
L, see linear/tuple index conversion
T, see linear/tuple index conversion
O, see big-O notation
,, see outer product
×k , see TTM

Bernoulli distribution, 259–261, 381–382
beta divergence, 263–264
BFGS (optimization method), 229, 370
big-O notation, 319
bilinear form, 277–278
BLAS (basic linear algebra subroutines), 351–353
block coordinate descent, 128, 205, 253, 373
border rank, 276–277
bound constrained L-BFGS, see L-BFGS-B

CANDECOMP, 157, 180,
see also CP decomposition

CANDELINC (linearly-constrained CP), 306–308
canonical polyadic, 157, 180,

see also CP decomposition
Cauchy-Schwartz inequality, 323
chain rule (multivariate), 358
Chicago crime tensor, 16

CP-ALS, 213–217
GCP-OPT, 177–180, 271

Cholesky decomposition (matrix), 206, 207, 210,
337, 343

column-major (matrix order), 351–352
computational complexity, 319
congruence, see Kruskal tensor, similarity
conjugate gradient method, 235, 343–344
convex function, 366
COO format, see sparse tensor, coordinate format
CP decomposition, 19, 157–180, 302,

see also Kruskal tensor
alternating least squares, see CP-ALS
block, 314
choosing the rank, 165–166
component, 19, 157
component weight, 160, 172
expectation maximization, see CP-EM
factor, 157
factor matrix, 157
gradient, 222–228
greedy computation, 296–297
incomplete data, 169–170, 245–256
infinite dimensional, 314–315
initialization, 166–167

Jacobian, 234–235
name origin, 180
nonlinear least squares, see CP-NLS
nonnegative, 169, 174–176, 230–232
optimization, see CP-OPT
postprocessing, 167–168
preprocessing, 167
symmetric tensor, 171, 310
Tucker connection, 304
Tucker preprocessing, see CANDELINC
uniqueness, see Kruskal tensor, uniqueness
weighted alternating least squares, see CP-WALS
weighted optimization, see CP-WOPT

CP-ALS (alternating least squares), 163–164,
171–174, 205–217, 225

CP-EM (expectation maximization), 170
CP-NLS (nonlinear least squares), 164, 233–244
CP-OPT (optimization), 164, 176, 219–232
CP-WALS (weighted alternating least squares), 170,

253–254
CP-WOPT (weighted optimization), 170, 249–252,

254–256
cubical, 4
curse of dimensionality, 141, 303

damped Gauss-Newton, 164, 233, 371–372
descent direction, 363
diagonal (matrix), 322
dimension tree, see memoization

Eckhart-Young theorem, 349
EEM tensor, 13–14

CP-ALS, 171–174
CP-OPT, 230–232
CP-WOPT, 254–256

eigendecomposition (matrix), 121, 340–341
eigenproblem, 311–312
Einstein notation, 88
elementwise product, see Hadamard product
essentially unique, 161–162, 191–193, 304

fast complex multiplication, 278–279
fast matrix multiplication, 161, 280–285
fiber, 8–10
frontal slice, 6–7
full rank (matrix), 327
full reconstruction

Kruskal tensor, 193–195
Tucker tensor, 110

gamma distribution, 262–263, 382–383
Gaussian distribution, 259, 381

401

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science by Grey
Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

402 Index

GCP decomposition, 170–171, 216, 257–271
gradient, 266–268
loss functions, 257–265
optimization, see GCP-OPT

GCP-OPT (optimization), 180, 266–271
generalized CP, see GCP decomposition
global minimizer, 362

sufficient conditions, 367
gradient, 164, 355

CP decomposition, 222–228, 249–251
GCP decomposition, 266–268

gradient descent, 164, 228, 368
Gram matrix, 212, 228, 330

H-eigenpair, 312
Hadamard product, 88, 212, 228, 248, 330–331
Hessian, 359, 365–366, 369–370, 374
higher order, 4
higher-order orthogonal iteration, see HOOI
higher-order SVD, see HOSVD
HOOI (higher-order orthogonal iteration), 72,

98–99, 128–131
horizontal slice, 6
HOSVD (higher-order SVD), 96–97, 122–125, 167

approximation error, 134–136
quasi-optimality, 137–138

Huber loss, 264–265, 269
hyperslice, 7

identity matrix, 322
incomplete tensor, 245
indefinite (matrix), 340
indexing, 4–5, 21, see also linear/tuple index

conversion
Cartesian versus tensor, 11

inner product, 47–48
Kruskal tensor, 197
Tucker tensor, 113–114

inner product (matrix), 323
inner product (vector), 322
inverse matrix, 325, see also linear system

Jacobian, 356–357, 371–372
CP decomposition, 164, 234–235
Kruskal tensor, 223, 226

k–rank, 285–286
Khatri-Rao product, 186, 193–195, 206, 334–336,

see also MTTKRP
linear indexing, 27, 29

KL (Kullback-Leibler) divergence, 261–262
Kronecker product, 49–54, 106–108, 331–334, 359

linear indexing, 26–28, 29
Kruskal tensor, 181–204, see also CP decomposition

approximation error, 198–200
component, 182, 184
component weight, 184–186
factor, 182, 184
factor matrix, 182, 184
format, 182–186
full construction, 193–195
Jacobian, 223, 226

masked construction, 195–196
rank, 182, 184
renormalization, 186
similarity, 202–204
uniqueness, 285–287
weight vector, 185

L-BFGS (limited-memory BFGS), 164, 229, 251,
268, 371

L-BFGS-B (bound-constrained L-BFGS), 169, 176,
180, 229, 230, 268, 271, 377

LAPACK (linear algebra software), 351–353
lateral slice, 6
leading left singular vectors, see LLSV
limited-memory BFGS, see L-BFGS
line search, 368
linear independent (vectors), 326
linear index, 21, see also linear/tuple index

conversion
linear least squares, 345–348

choice of solver, 347–348
CP-ALS, 206–207, 209
gradient, 358
multiple right-hand-sides, 348
normal equations, 345–346
QR decomposition, 346
Tucker core, 117–118
via QR decomposition, 346
via SVD, 347

linear system, 342–345
CP-ALS, 207
iterative methods, 343
multiple right hand sides, 343
nonsymmetric, 344
symmetric positive definite, 343

linear/tuple index conversion, 21–31
composition of linearization, 24, 25
general ordering, 29–31
general/natural conversion, 30
natural ordering, 22–25
reverse ordering, 25–29
reverse/natural conversion, 28
strides, 21

link function, 258
LLSV (leading left singular vectors), 95–96,

120–122
HOOI, 128–131
HOSVD, 122–124, 135
ST-HOSVD, 125–128, 137
TT decomposition, 145–146, 149–152
via eigendecomposition, 121
via SVD, 120

local minimizer, 362
necessary conditions, 364–365
necessary conditions with nonnegativity

constraint, 377
sufficient conditions, 366

logistic regression, 259–261
low-rank matrix approximation, 301–306, 348–351
LU decomposition (matrix), 337, 344

matricization, see unfolding

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science by Grey
Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

Index 403

matricized-tensor times Khatri-Rao product,
see MTTKRP

matrix, 4, 321
matrix product, 324–325
matrix product states (MPS), 141
matrix trace, 325
matrix-vector product, 324
mats2vec, 220, 221
maximum likelihood estimate, 258, 380
maximum rank, 274–275
mean, 379–380
memoization, 72–78, 131, 211, 228, 241
memory complexity, 5, 320
memory layout, 33

mode-k unfolding, 40–41
memory layout (matrix), 351–352
minimization, see optimization
Miranda simulation tensor, 11–13

ST-HOSVD, 101–102
missing data, see CP decomposition, incomplete

data
mode, 4
monkey BMI tensor, 15–16

CP decomposition, 174–177
GCP-OPT, 269–271

MTTKRP (matricized tensor times Khatri-Rao
product), 66–71, 206–212, 223–228,
250–252, 267–268

Kruskal tensor, 200–201
sequence, 75–78, 225, 251
sparse tensor, 82–84
Tucker tensor, 115–116

multi-index notation, 258
multi-TTM, 61–66, 100, 103–104, 112, 114, 115,

123–124
mode ordering, 64–66
sequence, 72–74, 129
unfolding, 62, 64

multilinear rank, see multirank
multirank, 91–92, 95

Newton’s method, 369–370
nnz (number of nonzeros), 79
nonlinear least squares, 362

CP decomposition, see CP-NLS
nonnegative matrix factorization (NMF), 303
nonnegativity constraint, 169, 230–231, 255, 377
nonsingular (matrix), 325
norm, 48

Kruskal tensor, 198
sparse tensor, 82
Tucker tensor, 114–115

norm (matrix Frobenius), 323
norm (vector), 322
normal distribution, see Gaussian distribution
normal equations, 345–346

CP-ALS, 206

ODECO (orthogonally decomposable), 169, 305
optimization, 361–376

constrained, 376–377
order, 4

orthogonal (matrix), 328
orthogonal (vectors), 323, 326
orthogonal projector (matrix), 328
orthonormal (matrix), 328

factor matrix, 108–109, 304, see also ODECO
orthonormal (vectors), 326
outer product, 49–54, 159, 324
overdetermined (least squares), 345

PARAFAC, 157, 180, see also CP decomposition
partial gradient, 356
partial Jacobian, 357
PCA (principal component analysis), 383–387
perfect shuffle

for matrix, 329, 333, 360
for tensor, 43–44, 223, 234

permutation (of tensor modes), 41–45
permutation ambiguity, 161, 190
permutation matrix, 329
Poisson distribution, 261, 382
positive (semi-)definite (matrix), 326, 340
positive definite, 309
preconditioned conjugate gradient method,

see conjugate gradient method
principal component analysis, see PCA
probability density function, 380
probability mass function, 379
projected gradient, 230, 377
pseudoinverse, 347

QR decomposition, 338
orthonormalization, 109
solving least squares, 207, 346
SVD computation, 341

quasi-Newton method, 164, 228, 370
quasi-optimality, 137–140

HOSVD, 96
ST-HOSVD, 98, 140
TT-SVD, 152

random variable, 379–380
range (matrix), 327
rank, 158–159, 273

maximum, 274–275
NP-hardness, 274
of 2× 2× 2 tensor, 289–293
of n× n× 2 tensor, 293–294
typical, 275–276

rank (matrix), 327
rank-1 tensor, 49, 51, 181–182, 287–289
regularization, 166, 227

CP-ALS, 207
reshape, 33
row-major (matrix order), 351–352

saddle point, 366
scaling ambiguity, 161, 191
scarce tensor, 169, 245
Schur product, see Hadamard product
score, see Kruskal tensor, similarity
sequentially truncated HOSVD, see ST-HOSVD
sign ambiguity, 191

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for Data Science by Grey
Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

404 Index

simultaneous diagonalization, 165, 294–296
singular (matrix), 325
singular value decomposition, see SVD
slice, 5–7
span (of vectors), 326
sparse matrix, 322
sparse tensor, 17, 79–84, 212–213

coordinate format, 80, 81
ST-HOSVD (sequentially truncated HOSVD),

97–98, 125–128
approximation error, 136–137
quasi-optimality, 139–140

stationary point, 364
steepest descent direction, 364,

see also gradient descent
Strassen’s algorithm, 280–281
SVD (singular value decomposition), 302, 305,

338–340
computational cost, 341–342
LLSV, 95
matrix approximation, 349
solving least squares, 347

symmetric matrix, 322
symmetric tensor, 308–312

t-SVD (tensor SVD), 312
tensor, 4
tensor completion, 169
tensor contraction, 84–88

batched, 87
tensor network diagram, 86–87
tensor ring decomposition, 313
tensor train decomposition, see TT decomposition
Tensor Train SVD, see TT-SVD
tensor-times-matrix, see TTM
trace (matrix), 322
transpose (matrix), 322
TT (tensor train) decomposition, 141–154, 302

formulation, 142–145
TT-SVD, 145–153
TTM (tensor times matrix), 54–61, 96,

see also multi-TTM

Kruskal tensor, 201–202
Tucker tensor, 115

Tucker decomposition, 19, 91–102, 301,
see also Tucker tensor

approximation error, 94, 101, 133–140
compression ratio, 94, 101
core tensor, 19, 91
CP connection, 305
error decomposition, 133–134
exact, 95
factor matrices, 91
formulation, 92–94
full reconstruction, 99–100
optimization problem, 117–120
partial reconstruction, 100
symmetric tensor, 310

Tucker tensor, 103–116, see also Tucker
decomposition

core tensor, 103, 104
factor matrix, 103, 104
format, 103–105
full reconstruction, 110
non-uniqueness, 108
orthonormal factors, 108–109
partial reconstruction, 111
rank, 103, 104

tuple index, 21, see also linear/tuple index
conversion

unfolding, 10–11, 33–41
Kruskal tensor, 189
Tucker tensor, 106–107

variance, 379–380
vec2mats, 220, 221
vector, 4, 321
vectorization, 31–33

Kruskal tensor, 188
Tucker tensor, 106–107

vectorization (matrix), 322

Z-eigenpair, 312

Draft: October 17, 2024

Draft: October 17, 2024. Notice: This material will be published by Cambridge University Press as Tensor Decompositions for
Data Science by Grey Ballard and Tamara G. Kolda. This pre-publication version is free to view and download for personal
use only. Not for re-distribution, re-sale, or use in derivative works. © Grey Ballard and Tamara G. Kolda, 2024.

	Cover
	Front Matter
	Contents
	Preface

	I Tensor Basics
	1 Tensors and Their Subparts
	1.1 What is a Tensor?
	1.2 Slices and Hyperslices
	1.3 Tensor Fibers
	1.4 Tensor Mode-k Unfolding
	1.5 Example Tensors
	1.5.1 Miranda Scientific Simulation Data
	1.5.2 EEM Fluorescence Spectroscopy Data
	1.5.3 Monkey BMI Neuronal Spike Data
	1.5.4 Chicago Crime Count Data

	1.6 A First Look at Tensor Decompositions
	1.6.1 A First Look at Tucker Decomposition
	1.6.2 A First Look at CP Decomposition

	2 Indexing and Reshaping Tensors
	2.1 Linear Indexing
	2.1.1 Natural Order Linear Indexing
	2.1.2 Reverse Ordering Linear Indexing
	2.1.3 General Ordering

	2.2 Vectorization
	2.2.1 Vectorizing 3-way Tensors
	2.2.2 Vectorizing d-way Tensors
	2.2.3 Representing Tensors in Computer Memory

	2.3 Unfolding or Matricization of a Tensor
	2.3.1 Unfolding 3-way Tensors
	2.3.2 Unfolding d-way Tensors
	2.3.3 Structure of Mode-k Unfoldings

	2.4 Permuting a Tensor
	2.4.1 Permutations and Unfoldings
	2.4.2 Tensor Perfect Shuffle Matrix
	2.4.3 Linear Indexing and Permutations

	3 Tensor Operations
	3.1 Inner Products
	3.1.1 Inner Products for 3-way Tensors
	3.1.2 Inner Products for d-way Tensors

	3.2 Outer Products
	3.2.1 Outer Product of 3 Vectors
	3.2.2 Outer Product of d Vectors
	3.2.3 General Outer Products
	3.2.4 Tensor-Tensor Outer Products

	3.3 Tensor-Times-Matrix (TTM) Products
	3.3.1 TTM for 3-way Tensors
	3.3.2 TTM for d-way Tensors

	3.4 TTM in Multiple Modes (Multi-TTM)
	3.4.1 Multi-TTM for 3-way Tensors
	3.4.2 TTM with Multiple Matrices (Multi-TTM) for d-way Tensors
	3.4.3 Efficient Multi-TTM Computation

	3.5 Matricized Tensor Times Khatri-Rao Product (MTTKRP)
	3.5.1 MTTKRP for 3-way Tensors
	3.5.2 MTTKRP for d-way Tensors

	3.6 Sequences of Multi-TTM and MTTKRP Operations
	3.6.1 Multi-TTM Sequence
	3.6.2 MTTKRP Sequence

	3.7 Sparse Tensors and Operation Efficiencies
	3.7.1 Coordinate Format for Sparse Tensors
	3.7.2 Norm of a Sparse Tensor
	3.7.3 MTTKRP for 3-way Sparse Tensors
	3.7.4 MTTKRP for d-way Sparse Tensors
	3.7.5 Other Data Structures for Sparse Tensors

	3.8 Tensor Contraction
	3.8.1 Tensor Contraction for 3-way Tensors
	3.8.2 Tensor Contraction for d-way Tensors
	3.8.3 Tensor Network Diagrams
	3.8.4 Batched Tensor Contractions
	3.8.5 Einstein Notation

	II Tucker Decomposition
	4 Tucker Decomposition
	4.1 Formulation of Tucker Decomposition
	4.1.1 Tucker Decomposition for 3-way Tensors
	4.1.2 Tucker Decomposition for d-way Tensors

	4.2 Choosing the Tucker Decomposition Rank
	4.2.1 Specified Multirank
	4.2.2 Specified Accuracy

	4.3 Methods for Computing Tucker Decomposition
	4.3.1 Higher-Order SVD (HOSVD)
	4.3.2 Sequentially Truncated HOSVD (ST-HOSVD)
	4.3.3 Higher-order Orthogonal Iteration (HOOI)
	4.3.4 Choice of Method

	4.4 Reconstruction from Tucker Decomposition
	4.4.1 Full Reconstruction
	4.4.2 Partial Reconstruction

	4.5 Example: Tucker Compression of Miranda Scientific Simulation Tensor

	5 Tucker Tensor Structure
	5.1 Tucker Tensor Format
	5.1.1 Tucker Format for 3-way Tensors
	5.1.2 Tucker Format for d-way Tensors

	5.2 Unfolding a Tucker Tensor
	5.2.1 Vectorizing or Unfolding 3-way Tucker Tensors
	5.2.2 Vectorizing or Unfolding d-way Tucker Tensors

	5.3 Non-uniqueness
	5.4 Imposing Orthonormal Factor Matrices
	5.5 Full Reconstruction
	5.5.1 Full Reconstruction for 3-way Tucker Tensors
	5.5.2 Full Reconstruction for d-way Tucker Tensors

	5.6 Partial Reconstruction
	5.6.1 Partial Reconstruction of 3-way Tucker Tensors
	5.6.2 Partial Reconstruction of d-way Tucker Tensors

	5.7 Operations on Tucker Tensors
	5.7.1 Inner Products and Norms of Tucker Tensors
	5.7.2 TTM for Tucker Tensors
	5.7.3 MTTKRP with Tucker Tensors

	6 Tucker Algorithms
	6.1 Optimization Formulation
	6.1.1 Tucker Optimization Problem for 3-way Tensors
	6.1.2 Tucker Optimization Problem for d-way Tensors
	6.1.3 Mode-Wise Optimization

	6.2 Higher-Order SVD (HOSVD)
	6.2.1 HOSVD for 3-way Tensors
	6.2.2 HOSVD for d-way Tensors

	6.3 Sequentially Truncated HOSVD (ST-HOSVD)
	6.3.1 ST-HOSVD for 3-way Tensors
	6.3.2 ST-HOSVD for d-way Tensors

	6.4 Higher-order Orthogonal Iteration (HOOI)
	6.4.1 HOOI for 3-way Tensors
	6.4.2 HOOI for d-way Tensor

	6.5 Other Methods

	7 Tucker Approximation Error
	7.1 Decomposing the Approximation Error
	7.2 HOSVD Error
	7.2.1 HOSVD Error for 3-way Tensors
	7.2.2 HOSVD Error for d-way Tensors

	7.3 ST-HOSVD Error
	7.3.1 ST-HOSVD Error for 3-way Tensors
	7.3.2 ST-HOSVD Error for d-way Tensors

	7.4 Quasi-Optimality

	8 Tensor Train Decomposition
	8.1 Formulation of the TT Decomposition
	8.1.1 TT Decomposition of 3-way Tensors
	8.1.2 TT Decomposition of 4-way Tensors
	8.1.3 TT Decomposition of d-way Tensors

	8.2 Algorithm and Error Analysis
	8.2.1 TT-SVD Decomposition for 4-way Tensor
	8.2.2 TT-SVD for d-way Tensor

	8.3 Example: TT of Discretized Function Tensor

	III CP Decomposition
	9 Canonical Polyadic (CP) Decomposition
	9.1 Formulation of CP Decomposition
	9.1.1 CP Decomposition for 3-way Tensors
	9.1.2 CP Decomposition for d-way Tensors
	9.1.3 Connection to Matrix Low-Rank Approximation

	9.2 Properties of CP Decompositions
	9.2.1 Inherent Ambiguities
	9.2.2 Fundamental Challenges
	9.2.3 Uniqueness

	9.3 Overview of Methods for Computing CP
	9.3.1 Alternating Least Squares (CP-ALS)
	9.3.2 All-at-once Optimization (CP-OPT and CP-NLS)
	9.3.3 Direct Computation via Simultaneous Diagonalization

	9.4 Practical Considerations
	9.4.1 Choosing the CP Rank
	9.4.2 Regularization
	9.4.3 Initialization and Multiple Runs
	9.4.4 Preprocessing
	9.4.5 Postprocessing
	9.4.6 Comparison of Methods

	9.5 Extensions of CP
	9.5.1 Nonnegativity and Other Constraints
	9.5.2 Methods for Incomplete Data (EM and CP-WOPT)
	9.5.3 Other Loss Functions with Generalized CP (GCP)
	9.5.4 Methods for Symmetric Tensors

	9.6 Example: CP on EEM Tensor
	9.6.1 Comparing to EEM Ground Truth
	9.6.2 Interpreting CP Factors for EEM Tensor

	9.7 Example: CP on Monkey BMI Tensor
	9.7.1 Nonnegative CP on Monkey BMI Tensor
	9.7.2 Clustering Monkey BMI Trials

	9.8 Example: GCP on Chicago 2019 Crime Tensor
	9.8.1 Choosing the Objective Function
	9.8.2 Choosing the Model Rank
	9.8.3 Interpretting the Decomposition

	9.9 Origins of the Name "CP"

	10 Kruskal Tensor Structure
	10.1 Rank-1 Tensors
	10.1.1 Rank-1 3-way Tensors
	10.1.2 Rank-1 d-way Tensors

	10.2 Kruskal Tensor Format
	10.2.1 Kruskal 3-way Tensor Format
	10.2.2 Kruskal d-way Tensor Format
	10.2.3 Kruskal 3-way Tensor Format with Component Weights
	10.2.4 Kruskal d-way Tensor Format with Component Weights

	10.3 Unfolding a Kruskal Tensor
	10.3.1 Vectorizing or Unfolding a 3-way Kruskal Tensor
	10.3.2 Vectorizing or Unfolding a d-way Kruskal Tensor

	10.4 Kruskal Tensor Ambiguities
	10.4.1 Permutation Ambiguity
	10.4.2 Scaling Ambiguity

	10.5 Kruskal Tensor Uniqueness
	10.6 Full Construction from Kruskal Tensors
	10.6.1 Full Construction from 3-way Kruskal Tensors
	10.6.2 Full Construction from d-way Kruskal Tensors
	10.6.3 Masked Full Construction from a Kruskal Tensor

	10.7 Operations with Kruskal Tensors
	10.7.1 Inner Products and Norms of Kruskal Tensors
	10.7.2 Approximation Error
	10.7.3 MTTKRP with Kruskal Tensors
	10.7.4 TTM with Kruskal Tensors

	10.8 Measuring Similarity of Kruskal Tensors
	10.8.1 Measuring Similarity of 3-way Kruskal Tensors
	10.8.2 Measuring Similarity of d-way Kruskal Tensors

	11 CP Alternating Least Squares (CP-ALS) Optimization
	11.1 CP-ALS for 3-way Tensors
	11.1.1 Least Squares Subproblem for 3-way Tensors
	11.1.2 CP-ALS Algorithm for 3-way Tensors

	11.2 CP-ALS for d-way Tensors
	11.2.1 Least Squares Subproblem for d-way Tensors
	11.2.2 CP-ALS Algorithm for d-way Tensors
	11.2.3 Complexity Analysis for CP-ALS
	11.2.4 CP-ALS with Sparse and Structured Tensors

	11.3 Further Notes on CP-ALS
	11.4 CP-ALS on Data Tensors

	12 CP Gradient-Based Optimization (CP-OPT)
	12.1 CP Optimization Problem
	12.1.1 CP Optimization Formulation for 3-way CP
	12.1.2 CP Optimization Formulation for d-way CP

	12.2 Gradients for CP
	12.2.1 Preliminaries for Computing CP Gradients
	12.2.2 CP Gradient for 3-way Tensors
	12.2.3 CP Gradient for d-way Tensors
	12.2.4 Complexity Analysis for Computing CP Gradient

	12.3 CP-OPT Method
	12.4 CP-OPT on Data Tensors

	13 CP Nonlinear Least Squares (CP-NLS) Optimization
	13.1 CP Nonlinear Least Squares Problem
	13.1.1 CP Jacobian for 3-way Tensors
	13.1.2 CP Jacobian for d-way Tensors

	13.2 Solving the Gauss-Newton Linear System
	13.2.1 Applying Approximate CP Hessian for 3-way Tensors
	13.2.2 Preconditioning in Approximate Gauss-Newton for 3-way Tensors
	13.2.3 Applying Approximate CP Hessian for d-way Tensors
	13.2.4 Preconditioning in Approximate Gauss-Newton for d-way Tensors

	13.3 CP-NLS on Data Tensors

	14 CP Algorithms for Incomplete or Scarce Data
	14.1 Representing Incomplete or Scarce Data
	14.1.1 Known Value Indicator Set
	14.1.2 Known Value Selection Matrix
	14.1.3 Known Value Weight Tensor

	14.2 Missing Data CP Function and Gradient
	14.2.1 Missing Data CP Function and Gradient: 3-way
	14.2.2 Missing Data CP Function and Gradient: d-way

	14.3 Weighted All-at-once Optimization (CP-WOPT)
	14.3.1 CP-WOPT Method
	14.3.2 Special Handling of Scarce Tensors

	14.4 Weighted Alternating Optimization (CP-WALS)
	14.5 Example: CP-WOPT on EEM Tensor
	14.5.1 Computing CP on EEM with Missing Data
	14.5.2 EEM Tensor with Even More Missing Data

	15 Generalized CP (GCP) Decomposition
	15.1 Generalized Loss Functions
	15.2 Choices for Loss Functions
	15.2.1 Sum of Squared Errors (Normal-Distributed Data)
	15.2.2 Logistic Regression (Binary Data)
	15.2.3 KL Divergence (Count Data)
	15.2.4 Loss Functions for Nonnegative Data
	15.2.5 Robust Loss Functions
	15.2.6 Summary of Loss Functions

	15.3 Optimization Formulation
	15.3.1 GCP for 3-way Tensors
	15.3.2 GCP for d-way Tensors
	15.3.3 Properties and Extensions of GCP Decompositions

	15.4 GCP Gradient and First-order Optimization
	15.4.1 GCP Gradient for 3-way Tensors
	15.4.2 GCP Gradient for d-way Tensors

	15.5 GCP-OPT Method
	15.6 Example: GCP-OPT on Monkey BMI Tensor
	15.7 Example: GCP-OPT on Chicago Crime Tensor

	16 CP Tensor Rank and Special Topics
	16.1 Tensor Rank
	16.2 Tensor Rank is NP-Hard
	16.3 Maximum Rank
	16.4 Typical Rank
	16.5 Border Rank
	16.6 Connections to Arithmetic Complexity
	16.6.1 Multiplying Complex Numbers
	16.6.2 Strassen's 2 x 2 Matrix Multiplication
	16.6.3 3 x 3 Matrix Multiplication
	16.6.4 General Matrix Multiplication
	16.6.5 Arbitrary Precision Approximating Algorithms

	16.7 CP Uniqueness
	16.8 Direct Computation of Rank for Certain Tensors
	16.8.1 Rank-1 Tensors
	16.8.2 Rank of 2 x 2 x 2 Tensors
	16.8.3 Rank of n x n x 2 Tensors
	16.8.4 Direct Computation of CP for Certain m x n x p Tensors

	16.9 Greedy Computation

	IV Closing Observations
	17 Closing Observations
	17.1 Comparing Matrix and Tensor Decompositions
	17.1.1 Decomposition Overview
	17.1.2 Decomposition Size
	17.1.3 Computability and Quasi-Optimality
	17.1.4 Factor Orthogonality
	17.1.5 Uniqueness
	17.1.6 Interpreting CP as Tucker
	17.1.7 Interpreting Tucker as CP
	17.1.8 CP and Tucker Equivalence for Orthogonally Decomposable Tensors
	17.1.9 Comparing Matrix and Tensor Decomposition

	17.2 CANDELINC: Tucker Preprocessing for CP
	17.3 Symmetric Tensors
	17.3.1 Symmetric Tucker Decomposition
	17.3.2 Symmetric CP Decomposition
	17.3.3 Tensor Eigenproblems

	17.4 Other Tensor Decompositions
	17.4.1 Tensor SVD (t-SVD)
	17.4.2 Hierarchical Tensor Decomposition
	17.4.3 Tensor Ring Decomposition
	17.4.4 CP-Tucker Hybrid Block Decomposition
	17.4.5 Infinite Dimensional Decompositions

	V Review Materials
	A Numerical Linear Algebra
	A.1 Complexity and Big-O Notation
	A.2 Finite Precision and Numerical Stability
	A.3 Vectors and Matrices
	A.3.1 Definitions
	A.3.2 Vector Inner Product and Norms
	A.3.3 Matrix Inner Product and Norms
	A.3.4 Vector Outer Product
	A.3.5 Matrix-Vector Product
	A.3.6 Matrix-Matrix Product
	A.3.7 Matrix Inverse
	A.3.8 Positive Definiteness
	A.3.9 Vector Span and Subspace Dimension
	A.3.10 Matrix Range and Rank
	A.3.11 Orthonormal and Orthogonal Matrices
	A.3.12 Permutation Matrices

	A.4 Other Matrix Products
	A.4.1 Gram Matrix
	A.4.2 Matrix Hadamard Product
	A.4.3 Matrix Kronecker Product
	A.4.4 Matrix Khatri-Rao Product

	A.5 Matrix Decompositions
	A.5.1 LU and Cholesky Decompositions
	A.5.2 QR Decomposition
	A.5.3 Singular Value Decomposition (SVD)
	A.5.4 Symmetric Eigenvalue Decomposition
	A.5.5 Detailed Costs of Computing the SVD

	A.6 Solving Linear Equations
	A.6.1 Solving Diagonal Linear Equations
	A.6.2 Solving Orthogonal Linear Equations
	A.6.3 Solving Triangular Linear Equations
	A.6.4 Solving Symmetric Positive Definite Linear Equations
	A.6.5 Solving Nonsymmetric Linear Equations

	A.7 Linear Least Squares Problems
	A.7.1 Solving Least Squares via Normal Equations
	A.7.2 Solving Least Squares via QR
	A.7.3 Solving Least Squares via SVD
	A.7.4 Choice of Least Squares Solver
	A.7.5 Multiple Right-Hand-Sides Version of Least Squares

	A.8 Low-Rank Matrix Approximation
	A.8.1 Specified Rank
	A.8.2 Specified Error
	A.8.3 Extensions of Low-Rank Matrix Approximation

	A.9 Software Libraries for Linear Algebra
	A.9.1 Representing Matrices in Memory
	A.9.2 BLAS Hierarchy

	B Optimization Principles and Methods
	B.1 Multivariable Calculus
	B.1.1 First Derivatives
	B.1.2 Second Derivatives
	B.1.3 Matrix Calculus

	B.2 Principles of Unconstrained Optimization
	B.2.1 Gradients and Stationary Points
	B.2.2 Hessians and Optimality Conditions
	B.2.3 Convex Functions

	B.3 Unconstrained Optimization Methods
	B.3.1 Using Optimization Methods
	B.3.2 Gradient Descent
	B.3.3 Newton's Method
	B.3.4 BFGS Optimization Method
	B.3.5 L-BFGS Optimization Method
	B.3.6 Damped Gauss-Newton for Least Squares Problems
	B.3.7 Block Coordinate Descent

	B.4 Example: 2-Dimensional Optimization
	B.5 Constrained Optimization

	C Some Statistics and Probability
	C.1 Random Variables
	C.1.1 Discrete Random Variables
	C.1.2 Continuous Random Variables

	C.2 Maximum Likelihood Estimator (MLE)
	C.3 Useful Distributions
	C.3.1 Gaussian Distribution and Sum of Squared Errors
	C.3.2 Bernoulli Distribution and Logistic Regression for Binary Data
	C.3.3 Poisson Distribution and KL Divergence for Count Data
	C.3.4 Gamma Distribution for Continuous Nonnegative Data

	C.4 Principal Component Analysis (PCA)
	C.4.1 Computing PCA
	C.4.2 Example of PCA

	Back Matter
	Bibliography
	Index

