Review - Analog

Ch. 1

1. Resistive Circuits

a) Kirchhoff's Laws: i) Loop Thrm: \(\sum V_i = 0 \)

 (ii) Branch Thrm: \(\sum I_{\text{in}} = I_{\text{out}} \)

b) Ohm's Law: \(V = I R \)

c) \(R_{out}, R_{out}, R_{in}, R_{in} \)

d) Thevenin model: To find \(V_{Tm}, R_{Tm} \)

 i) \(V_{Tm} = V \) (open circuit) = \(V_{oc} \)

 ii) \(R_{Tm} = \frac{V \text{ (open circuit)}}{I \text{ (short circuit)}} = \frac{V_{oc}}{I_{sc}} = \text{put wire across output} \)

\(V_{out} = V_{in} \frac{R_2}{R_1 + R_2} \)

f) Power: \(P = IV \)

g) Problem w/ Source Loading - need \(R_2 >> R_5 \) to prevent loading.
RC Circuits

\[Q = CV \quad V = IZ \]

\[2c = \frac{1}{j\omega C} \]

a) General

 i) time domain vs. frequency domain

 ii) step response vs. sine response

 iii) I leads V by 90° ECI the ICEman.

b) Important RC Circuits

 i) integrator (low-pass)

 \[v_{out} = \frac{1}{\omega C} \int v_{in}(t) dt \]

 differentiator (high-pass)

 \[v_{out} = \frac{1}{C} \frac{dv_{in}}{dt} \]

ii) Filters

 1. \(f_{3dB} \) \((w_{3dB})\)

 \[\text{dB: } 10 \log \frac{P_2}{P_1} \quad 20 \log \frac{V_2}{V_1} \]

 2. phase-shift

 \[3 \text{dB} \Rightarrow v_{out} = \frac{v_{in}}{\sqrt{2}} \]

1) High-pass Filter:

\[\frac{v_{out}}{v_{in}} \]

2) Low-pass Filter:

\[\frac{v_{out}}{v_{in}} \]
2. phase-shift - need complex analysis
- ac circuits

Generalized Voltage Divider

\[V_{in} \]
\[\frac{1}{\sqrt{Z_1}} = \frac{1}{\sqrt{Z_2}} \]
\[\frac{|V_{in}|}{|V_{out}|} = \frac{1}{Z_1 + Z_2} \]

Magnitude + Phase

\[V_{in} = V_{in} e^{j\omega t} \]
\[V_{in} = I \frac{Z_{tot}}{} \Rightarrow I = \frac{V_{in}}{Z_{tot}} \]

\[V_{out} = I \frac{Z_2}{Z_2} = V_{in} e^{j\omega t} \frac{Z_{tot}}{1} \frac{Z_2}{Z_2} \]

Complex Numbers:

\[r = \sqrt{x^2 + y^2} \]
\[\tan \theta = \frac{y}{x} \]
\[z = x + jy = r e^{j\theta} \]
\[e^{j\theta} = \cos \theta + j \sin \theta \]
Transformer: \(\frac{V_p}{N_p} = \frac{V_s}{N_s} \)

3. Diode Circuit

a) Rectifiers

b) Clamp

c) Zener voltage reference

d) Power-supply - ripple - add low pass filter

Choose \(C \) such that \(RC \gg \frac{1}{F} \)

4. LC Circuits

LC resonant circuit

\[w_0 = \frac{1}{\sqrt{LC}} \]

\[f_0 = \frac{1}{2\pi \sqrt{LC}} \]

5. Bandpass Filter - Homework; chain HP + LP

Together w/ correct selection of \(w_0 \) for each to match bandpass range
Power Supply - Diode Rectifier + Low-Pass Filter

\[V = \frac{\Delta V}{V_{ac}} = \frac{1}{R C R_{load}} \]

So pick capacitor large enough to give desired ripple factor for a given load (at frequency).

Essential Concept: Chosen capacitor is discharging between cycles through \(R_{load} \).
Chapter 2

Transistors

1. General

 a) Ground Rules
 i) $V_{ce} > 0$
 ii) BE + BC act like diodes
 iii) I_c, I_d, V_{ce} have maxima

 b) Two models

 i) Current amplifier
 \[I_c = h_{FE} I_B = \beta I_0 \]
 \[\beta \approx 100 \]

 ii) Voltage amp (Ebers-Moll)
 \[I_c = I_s e^{V_{be}/N_t} \]
 \[V_t = 25.3 mV = h_T \frac{V}{e} \]
 (Typhon)

 c) Biasing - design rule - set voltage at base,
 not current.
2. Important Circuits

a) Switch

Here, with transistor saturated, usual β rule does not apply: $I_c = $ typically about 10 I_b.

\[V_b \approx V_c + 0.6V \]

b)Emitter Follower

- Impedance changing: here is one of the few cases where you need to use β in your calculation (but a worst-case β).

- A variation is the push pull which can swing both way

\[V_{se} = V_b - 0.6V \]

\[V_{in} = h_{fe} R_E \text{ (looking into base)} \]
c. Common-emitter amplifier

- degenerated emitter resistor (placing of resistor b/w emitter and ground (or other negative supply) in common emitter amp. Source of term: gain is reduced or "degenerated" (performance is much improved however!)

- distortion vs. speed for gain

\[
R_{out} = \frac{R_2}{b_{re} + 1}
\]

(we ignore \(R_5 \) in parallel w/ \(R_{out} \))
3. General Problems

- swing on ac input in both directions on output
 solution: bias the base - use a voltage divider

- temperature effects

\[\text{drift of } I_C \text{ (i.e.: of } V_{out} \text{) with } T \text{ since} \]
\[V_{BE} = -2.1 \text{mV} / I_C \]
(Edward Miller) \[I_C = I_T e^{V_{BE}/V_T} \]
this will cause gain to significantly
very small signal will distort the signal

i) Solution: use \(R_C \) as feedback - degenerated
emitter common-emitter amplifier

This reduces voltage gain: \(G = -\frac{R_C}{R_E} \)

Solution - bypass emitter (put \(C \) in parallel to \(R_E \))
+ add small \(R \) in \(C \) (es)

\[R_E = \frac{25}{I_C (\text{mA})} \]

ii) Solution to temp problem - compensation - see differential amp.

- Miller effect - problem with capacitance

solution - differential amp.
Worked Example - Bypass Common-Emitter Amp

1. Choose I_C. Note that at signal freq., $R_{in} \approx R_m(bias) \approx \frac{1}{\beta} \frac{1}{h_{fe}(r_e + r_f)}$.
 $\approx 20 \Omega \approx 100 \times 200$
 $= 10 \Omega$
 $\Rightarrow C_1 = \frac{1}{2\pi f_c 10 \Omega}$
 $= 0.33 \mu F$

2. To center V_{out} for $I_C = 0.5 \text{mA}$, $R_e = 20 \Omega$

3. Put $V_e = 1\text{V}$, for temp. stab.
 $\Rightarrow R_e = 2 \Omega$

4. Find R_1, R_2 ratio.
 Input $V_b \approx 1.6V$:
 $1.6V = \frac{R_2}{R_1}$
 $\Rightarrow R_2 = 11.5R_1$

 Set $R_{m(bias)} < C R_{m(base)}$:
 $R_{m(base)} = h_{fe} R_e = 200\Omega$
 $\Rightarrow R_{m(bias)} \leq 20\Omega$
 Let $R_1 = 20\Omega$, since
 $R_2 >> R_1 \Rightarrow R_{m(bias)} \approx R_2$

5. Choose R_3 for req'd gain.
 $G = \frac{R_e}{R_e + (R_3 + r_f)}$
 $re = 50\Omega$ & $I_C = 0.5 \text{mA}$.
 $\Rightarrow R_3 = \frac{20\Omega}{\frac{50\Omega}{r_f} + R_3}$
 (note effect of R_e negligible)

6. Choose C_e.
 Circuit $f_{3dB} = 100kHz$ $\Rightarrow R_{c(e)}$
 $f_{3dB} = 50kHz$. Relevant "$r"; R_3 + r_e$
 $\Rightarrow C_e = \frac{1}{2\pi f_{3dB}} (R_3 + r_e) = 16\mu F$
 Use $20\mu F$ (or $22\mu F$)