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Chapter 1. Galois Representations of
Elliptic Curves

1.1 Introduction

An elliptic curve E is a smooth projective curve of genus 1 with a specified base point, O. We
may assume that E lies in P2 and corresponds to the equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

Here, O = [0 : 1 : 0], and this is the only point on E with Z = 0. If ai ∈ k with char(k) 6= 2, 3,
then after a change of variables the equation can be simplified to

Y 2 = X3 +AXZ2 +BZ3.

As above, if Z = 0, we have only the point O = [0 : 1 : 0]. Otherwise we may scale Z = 1 to obtain
the affine equation

y2 = x3 +Ax+B.

An equation of this form corresponds to a smooth curve if and only if ∆ = −16(4A3 + 27B2) 6= 0,
and it is an elliptic curve whenever this holds. See [64, III. Prop. 1.4].

(a) The real points of the elliptic curve y2 =
x3 − 2x+ 2 with ∆ = −1216.

(b) The real points of y2 = x3−3x+2 with
∆ = 0. This is not an elliptic curve.
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Adding Points

Suppose we want to add points P and Q on
an elliptic curve E. By Bézout’s Theorem:

1. The line
←→
PQ intersects E in a third

point, R.

2. The line
←→
RO intersects E in a third

point, P +Q.

If P = Q, we take
←→
PQ to be the tangent line

to E at P .

With this operation, the points of E form an abelian group with identity O; see [64, III. Prop. 2.2].

1.2 Rational points of elliptic curves

Theorem 1 (Mordell [52], Weil [71]). Let E be an elliptic curve over a number field k. Then E(k)
is a finitely generated abelian group. That is, E(k) ∼= E(k)tors × Zr.

Here, E(k)tors is a finite abelian group called the torsion subgroup and r is a nonnegative
integer called the rank of E/k. In these notes, we’ll be focusing on the torsion subgroup. We have
the complete classification of torsion subgroups for elliptic curves over Q.

Theorem 2 (Mazur [47]). If E/Q is an elliptic curve, then E(Q)tors is isomorphic to one of

Z/mZ, with 1 ≤ m ≤ 10 or m = 12,

Z/2Z× Z/2mZ, with 1 ≤ m ≤ 4.

Moreover, each occurs as the torsion subgroup for infinitely many non-isomorphic E/Q.

In fact, there are only finitely many groups that occur as torsion subgroups for all elliptic
curves defined over all number fields of a fixed degree. This is a consequence of Merel’s uniform
boundedness theorem:

Theorem 3 (Merel [50]). For all elliptic curves E/k with k of degree d,

#E(k)tors ≤ B(d),

where B(d) is some constant depending only on d.

The list of torsion subgroups is known for d ≤ 4; see [47, 35, 38, 36, 24, 25]. For some d > 2,
there are examples of torsion subgroups which arise for only finitely many isomorphism classes
of elliptic curves. These correspond to isolated points on modular curves, which we’ll discuss in
Chapter 3. Our lack of understanding of isolated points is the main obstruction to extending the
classification to d > 4. In fact, Derickx and Najman [25] ask whether there exist torsion subgroups
associated to isolated points for all number fields of degree d > 4. As they explain, such groups are
known to occur for d = 3 and also for each 5 ≤ d ≤ 13.
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1.3 The mod N Galois representation

Let E/k be the elliptic curve defined by y2 = x3 +Ax+B and let Galk := Gal(k/k). Elements of
Galk act naturally on the points of E. Indeed, suppose σ ∈ Galk and P = (x0, y0) ∈ E. Then

σ(y20) = σ(x30 +Ax0 +B)

[σ(y0)]
2 = [σ(x0)]

3 +Aσ(x0) +B,

and so σ(P ) := (σ(x0), σ(y0)) ∈ E. In fact this action is compatible with our group law: if P ∈ E
is of order N , then σ(P ) ∈ E is of order N . Any element of Galk acts as an automorphism of the
group of N -torsion points,

E[N ] := {P ∈ E |N · P = O} ∼= Z/NZ× Z/NZ,

where the isomorphism is [64, III. Cor. 6.4]. The mod N Galois representation associated to
E/k is given by this action:

ρE,N : Galk → Aut(E[N ]) ∼= GL2(Z/NZ).

The kernel of ρE,N is Gal(k/k(E[N ])), so we have an injection

ρE,N : Gal(k(E[N ])/k) ↪→ GL2(Z/NZ).

In particular, im ρE,N ∼= Gal(k(E[N ])/k).

Example 1. Let E : y2 = x3 + 1. Then P1 = (−1, 0), P2 =
(
1+
√
−3

2 , 0
)
, P3 =

(
1−
√
−3

2 , 0
)

are the nontrivial points of E[2]. Note P1 + P2 = P3, so we may take {P1, P2} to be a basis
for E[2]. If σ′ ∈ Gal(Q(E[2])/Q) is complex conjugation, σ′(P1) = P1 and σ′(P2) = P3.
Thus

ρE,2(σ
′) =

[
1 1
0 1

]
.

The mod N Galois representation generally has “large” image, provided E does not have com-
plex multiplication (CM). Recall E/k has CM if Endk(E) is strictly larger than Z.1 For example:

Theorem 4 (Serre [59]). Let E/k be a non-CM elliptic curve. Then ρE,` is surjective for all
sufficiently large primes `.

It has been conjectured by both Zywina [73, Conj. 1.12] and Sutherland [67, Conj. 1.1] that for
all non-CM elliptic curves over Q, the mod ` Galois representation is surjective for primes ` > 37;
whether such a uniform constant might exist was first posed as a question by Serre [59]. This is
generally referred to “Serre’s Uniformity Problem” or “Serre’s Uniformity Conjecture.”

If ρE,` is not surjective, its image is contained in a maximal subgroup: exceptional, Borel, or
normalizer of a (split or nonsplit) Cartan subgroup. See [59, §2]. We know the specific subgroups
that can occur for im ρE,`, up to conjugacy, if ` ≤ 13; this is work of Zywina [73] for ` ≤ 11 and
Balakrishnan, Dogra, Müller, Tuitman, and Vonk [3] for ` = 13. These are listed on the next page.

1We follow [59] and [64] in our CM definition. Other sources distinguish between CM and potential CM, with the
latter occurring when the “extra” automorphisms are not defined over k.
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group index generators −1 t d0 d1 d curve N

2Cs 6 yes 1 1 1 1 [1, 1, 1, −10, −10] 3151

2B 3 ( 1 1
0 1 ) yes 1 1 1 2 [1, 0, 1, 4, −6] 2171

2Cn 2 ( 0 1
1 1 ) yes 1 3 3 3 [0, −1, 0, −2, 1] 2272

3Cs.1.1 24 ( 1 0
0 2 ) no 2 1 1 2 [1, 0, 1, 4, −6] 2171

3Cs 12 ( 2 0
0 2 ) , ( 1 0

0 2 ) yes 2 1 2 4 [1, 1, 0, 220, 2192] 2172

{
3B.1.1 8 ( 1 0

0 2 ) , ( 1 1
0 1 ) no 3 1 1 6 [1, 0, 1, −1, 0] 2171

3B.1.2 8 ( 2 0
0 1 ) , ( 1 1

0 1 ) no 3 1 2 6 [1, 0, 1, −171, −874] 2171

3Ns 6 ( 2 0
0 2 ) , ( 0 2

1 0 ) , ( 1 0
0 2 ) yes 1 2 4 8 [1, 1, 1, 3, −5] 21132

3B 4 ( 2 0
0 2 ) , ( 1 0

0 2 ) , ( 1 1
0 1 ) yes 3 1 2 12 [1, 1, 1, −3, 1] 2152

3Nn 3 ( 1 0
0 2 ) , ( 2 1

2 2 ) yes 1 4 8 16 [0, 0, 1, −7, 12] 5172

5Cs.1.1 120 ( 1 0
0 2 ) no 3 1 1 4 [0, −1, 1, −10, −20] 111

5Cs.1.3 120 ( 3 0
0 4 ) no 3 1 2 4 [0, 1, 1, −258, −2981] 52111

5Cs.4.1 60 ( 4 0
0 4 ) , ( 1 0

0 2 ) yes 3 1 2 8 [0, 0, 1, −93, 625] 32111

5Ns.2.1 30 ( 2 0
0 3 ) , ( 0 1

3 0 ) yes 1 2 8 16 [0, 0, 1, −2850, −58179] 3252311

5Cs 30 ( 2 0
0 3 ) , ( 1 0

0 2 ) yes 1 1 4 16 [0, 1, 0, −4319, −100435] 28711

{
5B.1.1 24 ( 1 0

0 2 ) , ( 1 1
0 1 ) no 3 1 1 20 [0, −1, 1, 0, 0] 111

5B.1.2 24 ( 2 0
0 1 ) , ( 1 1

0 1 ) no 3 1 4 20 [0, −1, 1, −7820, −263580] 111

{
5B.1.4 24 ( 4 0

0 3 ) , ( 1 1
0 1 ) no 3 1 2 20 [1, 0, 1, −76, 298] 2152

5B.1.3 24 ( 3 0
0 4 ) , ( 1 1

0 1 ) no 3 1 4 20 [1, 0, 1, −1, −2] 2152

5Ns 15 ( 0 4
1 0 ) , ( 2 0

0 3 ) , ( 1 0
0 2 ) yes 1 2 8 32 [0, 0, 0, −56, 4848] 25191

{
5B.4.1 12 ( 4 0

0 4 ) , ( 1 0
0 2 ) , ( 1 1

0 1 ) yes 3 1 2 40 [0, 0, 1, −3, −5] 32111

5B.4.2 12 ( 4 0
0 4 ) , ( 2 0

0 1 ) , ( 1 1
0 1 ) yes 3 1 4 40 [0, 0, 1, −70383, 7187035] 32111

5Nn 10 ( 1 0
0 4 ) , ( 2 3

4 2 ) yes 1 6 24 48 [1, −1, 1, −5, 2] 3352

5B 6 ( 2 0
0 3 ) , ( 1 0

0 2 ) , ( 1 1
0 1 ) yes 1 1 4 80 [1, 1, 0, 504, −13112] 21132

5S4 5 ( 0 3
3 4 ) , ( 2 0

0 2 ) , ( 3 0
4 4 ) yes 1 6 24 96 [0, 0, 0, 9, −18] 2234

7Ns.2.1 112 ( 2 0
0 4 ) , ( 0 1

4 0 ) no 2 2 6 18 [1, −1, 1, −2680, −50053] 215272

7Ns.3.1 56 ( 3 0
0 5 ) , ( 0 1

4 0 ) yes 2 2 12 36 [1, −1, 0, −107, −379] 215272

{
7B.1.1 48 ( 1 0

0 3 ) , ( 1 1
0 1 ) no 3 1 1 42 [1, −1, 1, −3, 3] 21131

7B.1.3 48 ( 3 0
0 1 ) , ( 1 1

0 1 ) no 3 1 6 42 [1, −1, 1, −213, −1257] 21131

{
7B.1.2 48 ( 2 0

0 5 ) , ( 1 1
0 1 ) no 3 1 3 42 [1, −1, 0, −107, 454] 72131

7B.1.5 48 ( 5 0
0 2 ) , ( 1 1

0 1 ) no 3 1 6 42 [1, −1, 0, 628, −17823] 72131

{
7B.1.6 48 ( 6 0

0 4 ) , ( 1 1
0 1 ) no 3 1 2 42 [1, 1, 1, −6910, −232261] 213172

7B.1.4 48 ( 4 0
0 6 ) , ( 1 1

0 1 ) no 3 1 3 42 [1, 1, 1, −50, 293] 213172

7Ns 28 ( 0 6
1 0 ) , ( 3 0

0 5 ) , ( 1 0
0 3 ) yes 1 2 12 72 [0, 0, 1, 2580, 549326] 3252411

{
7B.6.1 24 ( 6 0

0 6 ) , ( 1 0
0 3 ) , ( 1 1

0 1 ) yes 3 1 2 84 [0, 0, 0, −43, −166] 24131

7B.6.3 24 ( 6 0
0 6 ) , ( 3 0

0 1 ) , ( 1 1
0 1 ) yes 3 1 6 84 [0, 0, 0, −3403, 83834] 24131

7B.6.2 24 ( 6 0
0 6 ) , ( 2 0

0 5 ) , ( 1 1
0 1 ) yes 3 1 6 84 [1, −1, 1, −965, −11294] 3272131

7Nn 21 ( 1 0
0 6 ) , ( 2 5

4 2 ) yes 1 8 48 96 [0, −1, 1, −10158, 804091] 232291

{
7B.2.1 16 ( 2 0

0 4 ) , ( 1 0
0 3 ) , ( 1 1

0 1 ) no 3 1 3 126 [1, −1, 1, −5, 5] 2134

7B.2.3 16 ( 2 0
0 4 ) , ( 3 0

0 1 ) , ( 1 1
0 1 ) no 3 1 6 126 [1, −1, 1, −95, −697] 2134

7B 8 ( 3 0
0 5 ) , ( 1 0

0 3 ) , ( 1 1
0 1 ) yes 3 1 6 252 [1, −1, 0, 3, −1] 2134

{
11B.1.4 120 ( 4 0

0 6 ) , ( 1 1
0 1 ) no 3 1 5 110 [1, 1, 1, −305, 7888] 112

11B.1.6 120 ( 6 0
0 4 ) , ( 1 1

0 1 ) no 3 1 10 110 [1, 1, 1, −30, −76] 112

{
11B.1.5 120 ( 5 0

0 7 ) , ( 1 1
0 1 ) no 3 1 5 110 [1, 1, 0, −3632, 82757] 112

11B.1.7 120 ( 7 0
0 5 ) , ( 1 1

0 1 ) no 3 1 10 110 [1, 1, 0, −2, −7] 112

{
11B.10.4 60 ( 10 0

0 10 ) , ( 4 0
0 6 ) , ( 1 1

0 1 ) yes 3 1 10 220 [1, −1, 0, −2745, −215726] 32112

11B.10.5 60 ( 10 0
0 10 ) , ( 5 0

0 7 ) , ( 1 1
0 1 ) yes 3 1 10 220 [1, −1, 0, −270, 1777] 32112

11Nn 55 ( 1 0
0 10 ) , ( 3 5

8 3 ) yes 1 12 120 240 [0, 0, 0, −6682520, 39157150032] 25132431

Table 3. Exceptional GE(!) for non-CM elliptic curves E/Q (! ≤ 11).
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group index generators −1 t d0 d1 d curve N

13S4 91 ( 3 0
12 9 ) , ( 2 0

0 2 ) , ( 9 5
0 6 ) yes 1 6 72 288 [0, 1, 0, −4788, 109188] 223152132

{
13B.3.1 56 ( 3 0

0 9 ) , ( 1 0
0 2 ) , ( 1 1

0 1 ) no 3 1 3 468 [0, 1, 1, −114, 473] 3172

13B.3.2 56 ( 3 0
0 9 ) , ( 2 0

0 1 ) , ( 1 1
0 1 ) no 3 1 12 468 [0, 1, 1, −44704, −3655907] 3172

{
13B.3.4 56 ( 3 0

0 9 ) , ( 4 0
0 7 ) , ( 1 1

0 1 ) no 3 1 6 468 [0, 1, 1, −19322, 1116938] 3172132

13B.3.7 56 ( 3 0
0 9 ) , ( 7 0

0 4 ) , ( 1 1
0 1 ) no 3 1 12 468 [0, 1, 1, −7555032, −8001807082] 3172132

{
13B.5.1 42 ( 5 0

0 8 ) , ( 1 0
0 2 ) , ( 1 1

0 1 ) yes 1 1 4 624 [1, −1, 0, −139, 965] 2151172

13B.5.2 42 ( 5 0
0 8 ) , ( 2 0

0 1 ) , ( 1 1
0 1 ) yes 1 1 12 624 [1, −1, 0, −126109, −17206537] 2151172

13B.5.4 42 ( 5 0
0 8 ) , ( 4 0

0 7 ) , ( 1 1
0 1 ) yes 1 1 12 624 [0, 0, 0, −338, 2392] 2851132

{
13B.4.1 28 ( 4 0

0 10 ) , ( 1 0
0 2 ) , ( 1 1

0 1 ) yes 3 1 6 936 [0, −1, 1, −2, −1] 3172

13B.4.2 28 ( 4 0
0 10 ) , ( 2 0

0 1 ) , ( 1 1
0 1 ) yes 3 1 12 936 [0, −1, 1, −912, 10919] 3172

13B 14 ( 2 0
0 7 ) , ( 1 0

0 2 ) , ( 1 1
0 1 ) yes 1 1 12 1872 [1, −1, 0, −2, 6] 215272

{
17B.4.2 72 ( 4 0

0 13 ) , ( 2 0
0 10 ) , ( 1 1

0 1 ) yes 1 1 8 1088 [1, 1, 0, −660, −7600] 2152172

17B.4.6 72 ( 4 0
0 13 ) , ( 6 0

0 9 ) , ( 1 1
0 1 ) yes 1 1 16 1088 [1, 1, 0, −878710, 316677750] 2152172

{
37B.8.1 114 ( 8 0

0 14 ) , ( 1 0
0 2 ) , ( 1 1

0 1 ) yes 1 1 12 15984 [1, 1, 1, −8, 6] 5272

37B.8.2 114 ( 8 0
0 14 ) , ( 2 0

0 1 ) , ( 1 1
0 1 ) yes 1 1 36 15984 [1, 1, 1, −208083, −36621194] 5272

Table 4. Known exceptional GE(!) for non-CM elliptic curves E/Q (! > 11).

group index generators −1 t d0 d1 d curve D

3Cn 6 ( 1 2
1 1 ) yes 1 4 8 8 [0, 0, 1, −7, 12] −7

5Cn.0.1 60 ( 0 2
1 0 ) yes 1 2 8 8 [0, 0, 1, −2850, −58179] −3

5Cn 20 ( 3 2
1 3 ) yes 1 6 24 24 [1, −1, 1, −5, 2] −15

5Nn.1.1.1 20 ( 1 4
3 4 ) , ( 1 2

1 1 ) yes 1 6 24 24 [1, −1, 1, −5, 2] −3

7Cs 56 ( 3 0
0 5 ) , ( 1 0

0 3 ) yes 2 1 6 36 [0, 0, 1, 2580, 549326] −3

7Cn 42 ( 6 4
6 6 ) yes 1 8 48 48 [0, −1, 1, −10158, 804091] −23

7Nn.1.3 42 ( 1 0
0 6 ) , ( 1 2

3 1 ) yes 1 4 24 48 [0, −1, 1, −10158, 804091] 161

11Cn 110 ( 10 1
6 10 ) yes 1 12 120 120 [0, 0, 0, −6682520, 39157150032] −4

11Nn.1.3 110 ( 1 0
0 10 ) , ( 1 6

3 1 ) yes 1 6 60 120 [0, 0, 0, −6682520, 39157150032] 44

{
13B.12.1 84 ( 12 0

0 12 ) , ( 1 0
0 2 ) , ( 1 1

0 1 ) yes 3 1 2 312 [1, −1, 0, −139, 965] 17

13B.12.2 84 ( 12 0
0 12 ) , ( 2 0

0 1 ) , ( 1 1
0 1 ) yes 3 1 12 312 [1, −1, 0, −126109, −17206537] 17

{
13B.12.5 84 ( 12 0

0 12 ) , ( 5 0
0 3 ) , ( 1 1

0 1 ) yes 3 1 4 312 [1, −1, 0, −139, 965] 221

13B.12.3 84 ( 12 0
0 12 ) , ( 3 0

0 5 ) , ( 1 1
0 1 ) yes 3 1 6 312 [1, −1, 0, −126109, −17206537] 221

{
13B.12.4 84 ( 12 0

0 12 ) , ( 4 0
0 7 ) , ( 1 1

0 1 ) yes 3 1 6 312 [0, 0, 0, −338, 2392] 8

13B.12.6 84 ( 12 0
0 12 ) , ( 6 0

0 9 ) , ( 1 1
0 1 ) yes 3 1 12 312 [0, 0, 0, −12818, −745992] 8

{
17B.16.2 144 ( 16 0

0 16 ) , ( 2 0
0 10 ) , ( 1 1

0 1 ) yes 3 1 8 544 [1, 1, 0, −660, −7600] 5

17B.16.7 144 ( 16 0
0 16 ) , ( 7 0

0 15 ) , ( 1 1
0 1 ) yes 3 1 16 544 [1, 1, 0, −878710, 316677750] 5

{
17B.16.8 144 ( 16 0

0 16 ) , ( 8 0
0 11 ) , ( 1 1

0 1 ) yes 3 1 8 544 [1, 1, 0, −660, −7600] 85

17B.16.6 144 ( 16 0
0 16 ) , ( 6 0

0 9 ) , ( 1 1
0 1 ) yes 3 1 16 544 [1, 1, 0, −878710, 316677750] 85

{
37B.11.1 228 ( 11 0

0 27 ) , ( 1 0
0 2 ) , ( 1 1

0 1 ) yes 3 1 6 7992 [1, 1, 1, −8, 6] 5

37B.11.2 228 ( 11 0
0 27 ) , ( 2 0

0 1 ) , ( 1 1
0 1 ) yes 3 1 36 7992 [1, 1, 1, −208083, −36621194] 5

{
37B.11.6 228 ( 11 0

0 27 ) , ( 6 0
0 25 ) , ( 1 1

0 1 ) yes 3 1 12 7992 [1, 1, 1, −8, 6] 185

37B.11.9 228 ( 11 0
0 27 ) , ( 9 0

0 29 ) , ( 1 1
0 1 ) yes 3 1 18 7992 [1, 1, 1, −208083, −36621194] 185

Table 5. Known exceptional GE(!) with surjective determinant for base changes of non-

CM elliptic curves E/Q to quadratic fields Q(
√

D).

38

Table 1: All proper subgroups of GL2(Z/`Z) that occur as im ρE,` for E/Q with ` ≤ 13 and all
known examples for ` > 13; taken from [67, Tables 3 & 4].
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The following theorem summarizes what is currently known for larger primes.

Theorem 5 (Mazur [48], Serre [60], Bilu, Parent, and Rebolledo [7], Furio, Lombardo [32]). Suppose
E/Q is a non-CM elliptic curve and ` ≥ 17 is prime. If im ρE,` is not equal to GL2(Z/`Z) and not
conjugate to a group in Table 1, then im ρE,` is conjugate to C+

ns(`), the normalizer of a non-split
Cartan subgroup of GL2(Z/`Z).

1.4 Other Galois representations

Let E/k be an elliptic curve, and let ` be a prime number. Choose the following:

• {P1, Q1}: basis for E[`]

• {P2, Q2}: basis for E[`2] with `P2 = P1 and `Q2 = Q1

• {P3, Q3}: basis for E[`3] with `P3 = P2 and `Q3 = Q2

• {P4, Q4}: basis for E[`4] with `P4 = P3 and `Q4 = Q3

• etc.

Continuing in this way, we obtain a basis for the `-adic Tate module of E,

T`(E) := lim
←
E[`n].

This is a free Z`-module of rank 2, and it comes equipped with a natural action of Galk. This is
recorded in the `-adic Galois representation associated to E/k,

ρE,`∞ : Galk → Aut(T`(E)) ∼= GL2(Z`).

Theorem 6 (Serre [59]). Suppose E/k is non-CM. Then im ρE,`∞ is open in GL2(Z`).

In other words, Theorem 6 implies [GL2(Z`) : im ρE,`∞ ] is finite. A useful consequence of this
result is that there exists d ∈ Z≥0 such that

im ρE,`∞ = π−1(im ρE,`d)

where
π : GL2(Z`)→ GL2(Z/`Z)

is the natural reduction map. The smallest `d for which this holds is called the level.

A version of uniformity: If we fix the degree of k, there is a uniform bound on the level
of the `-adic Galois representation associated to all non-CM elliptic curves over k.

• Arai [2]: Proved the existence of a uniform bound depending on k.

• Cadoret/Tamagawa [18]: Proved the existence of a uniform bound depending on [k : Q].

Unfortunately this bound is not explicit. See [21] for a more detailed discussion.
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The groups which occur as im ρE,`∞ for non-CM elliptic curves over Q are known for ` = 2, 3;
see [58, 57, 4]. (The CM case is treated in [46].) For larger primes, we know the groups which arise
infinitely often, among others. See [57] for details.

More generally, we can define the adelic Galois representation associated to E/k:

ρE : Galk → Aut(Etors) ∼= GL2(Ẑ).

If E is non-CM, then Serre [59] proves im ρE is open in GL2(Ẑ) if E is non-CM. (By [61, Main
Lemma, IV-19], this is roughly a consequence of Theorems 4 and 6.) Thus for non-CM elliptic
curves we may define the level of im ρE to be the smallest integer M such that

im ρE = π−1(im ρE,M ),

where π denotes the natural reduction map. Recently, Zywina [72] has developed a efficient algo-
rithm to compute im ρE for a non-CM elliptic curve E/Q.

1.5 L-functions and modular forms database (LMFDB)

The L-functions and modular forms database (LMFDB) [22] contains complete information on
ρE,N , ρE,`∞ , and ρE for over 3.8 million elliptic curves over Q. Check out https://www.lmfdb.org/.
You can search the database for specific elliptic curves or for specific Galois images, among many
other options. Note that when you are on the homepage for a particular elliptic curve, you can
select the options to show commands for Magma, Oscar, PariGP, or SageMath. This provides a
convenient way to explore relevant data in your program of choice.

The LMFDB Galois representation data for the elliptic curve 11.a2.
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Chapter 2. Modular Curves

2.1 Introduction

In Chapter 1, we saw the following theorem:

Theorem 7 (Mazur [47]). If E/Q be an elliptic curve, then E(Q)tors is isomorphic to one of:

Z/mZ, with 1 ≤ m ≤ 10 or m = 12,

Z/2Z× Z/2mZ, with 1 ≤ m ≤ 4.

Moreover, each occurs as the torsion subgroup for infinitely many non-isomorphic E/Q.

This is proven by studying modular curves. For example, there exists an elliptic curve E/Q
with P ∈ E(Q) of order N if and only if the modular curve X1(N) has a non-cuspidal rational
point. This tie to geometry gives a nice explanation for the values of N appearing in the first line
of the classification: X1(N) has genus 0 if and only if 1 ≤ N ≤ 10 or N = 12. The curve X1(11)
has genus 1, but the only rational points are cusps (which do not correspond to elliptic curves).

2.2 The modular curve X1(N)

Theorem 8 (Uniformization Theorem). Let E/C be an elliptic curve. There exists a lattice Λ ⊂ C
and a complex analytic isomorphism

C/Λ→ E(C)

that induces an isomorphism of abelian groups C/Λ ∼= E(C).

Proof. See, for example, [64, VI. Cor. 5.1.1].

With this, we can construct X1(N) as a Riemann surface. Define

H := {τ ∈ C : Im(τ) > 0},
Γ1(n) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod n), a ≡ d ≡ 1 (mod n)

}
.

The group Γ1(n) acts on H via linear fractional transformations.

γ =
(
a b
c d

)
:H→ H
τ 7→ aτ+b

cτ+d
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The points of the Riemann surface H/Γ1(n) correspond to C-isomorphism classes of elliptic curves
with a distinguished point of order n; see [64, Appendix C.13]. This correspondence is given by

τ ∈ H/Γ1(n)←→ E := C/(Z + Zτ), P :=
1

N
∈ E.

By adding finitely many points to H/Γ1(n) called cusps we obtain a compact Riemann surface.
Concretely:

H∗/Γ1(n) where H∗ := H ∪ P1(Q).

Here, γ ∈ Γ1(n) acts on P1(Q) by γ([x : y]) = [ax+ by : cx+ dy].

Theorem 9. There exists a smooth projective curve X1(N)/Q and a complex analytic isomorphism

H∗/Γ1(n)→ X1(N)(C).

Proof. See [63, §6.7].

If E/k is an elliptic curve and P ∈ E(k) has order N , then (E,P )k induces a point in X1(N)(k).
If N ≥ 4, a stronger statement is true: non-cuspidal points in X1(N)(k) correspond to pairs
(E,P )k where E/k is an elliptic curve and P ∈ E(k) of order N , up to k-isomorphism. That is,
(E1, P1)/k and (E2, P2)/k give the same point inX1(N)(k) if and only if there exists an isomorphism
ϕ : E1 → E2 defined over k with ϕ(P1) = P2. We say X1(N) is a fine moduli space for N ≥ 4;
this is [26, Theorem 8.2.1], which includes a streamlined exposition on the relevant objects as well
as references to the proofs elsewhere in the literature.

Example 2. The curve X1(11) can be defined by y2 + (x2 + 1)y + x = 0. Let

r := xy + 1,

s := −x+ 1.

Then for (x0, y0) ∈ X1(11), we can construct

E := [s− rx+ 1, rs− r2s, rs− r2s, 0, 0] with P = (0, 0).

Here, the notation E := [a1, a2, a3, a4, a6] means E is given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Provided E defines an elliptic curve (i.e., has nonzero discriminant), the point P ∈ E has
order 11. For example, the point (3,−5

√
22) ∈ X1(11) gives

E : y2 + (−29 + 6
√

22)xy + (816− 174
√

22)y = x3 + (816− 174
√

22)x2,

and one can check P = (0, 0) has order 11.a

aThis particular example was taken from the master’s thesis of Hailey Maxwell.

We can find defining equations for X1(N)/Q using the Kubert-Tate normal form.
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Theorem 10 (Kubert [41]). Let E/k be an elliptic curve and P ∈ E(k) of order N ≥ 4. Then E
has an equation of the form

y2 + (1− c)xy − by = x3 − bx2

for some b, b ∈ k and P = (0, 0).

For E in this form and P = (0, 0), we see

NP = O ⇐⇒ x(dN+1
2 eP ) = x(bN−12 cP ).

This follows from the fact that if m + n = N , then mP = −nP . If m 6= n, this implies x(mP ) =
x(nP ). This equality gives fN (b, c) ∈ Q[b, c], and a defining equation for X1(N) appears as an
irreducible factor. Sutherland has computed optimized equations for X1(N) for N ≤ 100; these are
available at https://math.mit.edu/~drew/X1_optcurves.html.

Example 3. We will illustrate how to find an equation for X1(6). Suppose E is an elliptic
curve given by y2 + (1− c)xy− by = x3− bx2 and P = (0, 0) on E. The discriminant of E is

b3(16b2 − 8bc2 − 20bc+ b+ c(c− 1)3),

so E nonsingular implies b 6= 0. Recall 6P = O if and only if x(4P ) = x(2P ). Thus

f6(b, c) = x(2P )− x(4P ) = b− b(b− c)
c2

,

where the latter equality comes from applying the group law to P . The point (0, 0) never
has order less than 4, so P has order 6 if and only if f6(b, c) = 0. We may remove the factor
of b since b 6= 0. Clearing denominators then shows X1(6) can be defined by

c2 − (b− c) = 0.

This is referred to as the “raw form” for X1(6). An optimized equation would define a
birationally equivalent curve, but with a goal of minimizing the degree of the variables, the
number of terms, and the size of the coefficients. See work of Sutherland [66] for details.

2.3 Degrees of points on X1(N)

Consider E : y2 = x3 − 43x − 166 with P = (5, 16
√
−1) ∈ E(Q) of order 7. Then (E,P ) gives a

point on X1(7). What is its degree? Most people would guess 2. However, the Kubert-Tate normal
form of E is

y2 − xy − 4y = x3 − 4x2,

and P corresponds to (0, 0). In particular, both the Kubert-Tate normal form and (0, 0) are defined
over Q. Since the defining equation for X1(7) can be obtained from the general Kubert-Tate normal
form, should the degree be 1?

Really, the curve X := X1(N) is a scheme over Q. The point x ∈ X is closed if it is a scheme-
theoretic point whose Zariski closure is itself, and we define the degree of x to be the degree of
its residue field, Q(x). The closed points on X are precisely the points with [Q(x) : Q] finite [55,
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Proposition 2.4.3], so it really only makes sense to talk about the degree of closed points. Closed
points can be identified with GalQ-orbits of points in X(Q), and the degree is the size of this Galois
orbit. See [55, Proposition 2.4.6].

Example 4. Let C : x2 + y2 = 6, viewed as a curve over Q. Then

{(1 +
√

2, 1−
√

2), (1−
√

2, 1 +
√

2)}

corresponds to a closed point on Spec Q[x, y]/(x2 + y2 − 6) of degree 2.

When we say the degree of the point associated to (E,P ) in X1(N), we always mean the
degree of residue field of the associated closed point. We will denote the closed point by [E,P ].
Returning to the example E : y2 = x3 − 43x − 166 with P = (5, 16

√
−1) ∈ E of order 7, we

have (E,P ) ∈ X1(7)(Q) by the moduli interpretation. An element of GalQ could sent (E,P )
to (E,−P ), but these correspond to the same point on X1(7)(Q) since −1 ∈ Aut(E) gives the
necessary isomorphism. Thus the GalQ-orbit has length 1, and [E,P ] ∈ X1(7) has degree 1.

A remark on k-valued points of a scheme. It is true that E : y2 = x3 − 43x − 166
with the point P = (5, 16

√
−1) ∈ E induces a Q(

√
−1)-valued point on X1(7), i.e., a point

in X1(7)(Q(
√
−1)). But in general k-valued points of a scheme X over Q correspond to

morphisms of Q-schemes,
f : Spec k → X.

Spec k consists of a single point, and its image in X is the associated closed point. See [44,
§3.2.3] for details.

Luckily, we have a concrete way of describing the residue field of closed points on X1(N). Recall
that given any elliptic curve E/k, there exists E′/Q(j(E)) with j(E′) = j(E); see [64, Prop. III.
1.4]. Since E is isomorphic to E′ over Q by [64, Prop. III. 1.4] and closed points are GalQ-orbits of
points in X1(N)(Q), it suffices to describe the residue field for elliptic curves defined over Q(j(E)).

Proposition 11. Let E/Q(j(E)) be a non-CM elliptic curve, and let P = (x0, y0) ∈ E be a point
of order N . Then the residue field of the closed point [E,P ] ∈ X1(N) is

Q(x) ∼= Q(j(E), x0).

Proof. See, for example, [14, Lemma 2.5].

So if E/Q is non-CM with P = (x0, y0) of order N , we can compute the degree of [E,P ] ∈ X1(N)
by determining [Q(x0) : Q]. This can be obtained by factoring n-division polynomials; see [64,
Exercise III.3.6].

Facts: Let x = [E,P ] ∈ X1(N) be a closed point.

1. If (E′, P ′) ∈ X1(N)(k) induces the same closed point x, then there exists a Q-algebra homo-
morphism Q(x)→ k. See [44, §3.2.3].
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2. There exists E0/Q(x) with P0 ∈ E0(Q(x)) such that ϕ : E → E0 is an isomorphism sending
P to P0. Roughly, given

σ ∈ GalQ(x0),

we have σ(P ) = ζP for some ζ ∈ Aut(E) = {±1}. This defines a quadratic character χ, and
we can take E0 to be the twist Eχ

−1
.

2.4 The modular curve X0(N)

Let E be an elliptic curve over a number field k and let C ⊂ E(Q) be a subgroup. Then C uniquely
defines an isogeny to another elliptic curve, which is a map locally defined by polynomials that’s
also a group homomorphism.1 Precisely, there exists an isogeny ϕ : E → E′ to another elliptic
curve E′ with ker(ϕ) = C; see [64, Prop. III.4.12]. We say C is k-rational if it is Galk-invariant,
meaning σ(P ) ∈ C for all P ∈ C and σ ∈ Galk. The map ϕ is defined over k if and only if C is
k-rational [64, Remark 4.13.2].

The smooth projective curve X0(N)/Q has non-cuspidal points which parameterize pairs (E,C)
where E is an elliptic curve and C ⊂ E is cyclic of order N . Define

Γ0(n) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod n)

}
.

Then X0(N)(C) corresponds to H∗/Γ0(N), and

τ ∈ H/Γ0(n)←→ E := C/(Z + Zτ), C :=

〈
1

N

〉
∈ E.

See [63, §6.7] for details. If E/k is an elliptic curve and C ⊂ E is k-rational, then (E,P ) gives a
point on X0(N)(k). However, X0(N) is not a fine moduli space: (E1, C1)k and (E2, C2)k may give
the same k-rational point without being isomorphic over k (though they will be isomorphic over
k); see [26, §8.1] for additional discussion on this.

Proposition 12. Let E/Q(j(E)) be a non-CM elliptic curve, and let C ⊂ E be cyclic of order N .
Then the residue field of the closed point [E,C] ∈ X1(N) is

Q(x) ∼= Q(j(E), C).

Proof. This is implied by results in [19, §3.3], along with standard results on isogenies [64, Prop.
III.4.12 & Remark 4.13.2].

2.5 L-functions and modular forms database (LMFDB)

The beta version of the LMFDB [22] has a database of modular curves; see https://beta.lmfdb.

org. It contains over 16 million modular curves, including many of the form X0(N) and X1(N).

1Some authors require isogenies to be nonconstant, but we will follow [64] in allowing the zero isogeny.
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Some LMFDB data for the modular curve X1(21).
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Chapter 3. Isolated Points

3.1 Isolated and parameterized points

Let k be a number field, and let C/k be a nice curve (i.e., smooth, projective, and geometrically
integral).1 We say a closed point x ∈ C has degree d if its residue field, k(x), is a degree d
extension of k. If we identify x with a Galk-orbit of points in C(k), then the degree of x is the size
of this Galois orbit [55, Proposition 2.4.6]. Closed points of degree 1 correspond to points in C(k).

Question: When does C/k have infinitely many degree 1 closed points?

• Genus(C) = 0: If C(k) 6= ∅, then C ∼= P1
k and C(k) is infinite.

• Genus(C) = 1: If C(k) 6= ∅, then C is an elliptic curve and C(k) is a finitely generated abelian
group by the Mordell-Weil Theorem [52, 71].

• Genus(C) ≥ 2: The set C(k) is finite by Faltings’ Theorem [29].

Question: When does C/k have infinitely many degree d closed points?

• We will show there exist infinitely many closed points of degree d if and only if there exists an
infinitely family of degree d points parameterized by P1 or a positive rank abelian subvariety
of the Jacobian of C.

What to know about Jac(C)

Let C/k be a curve of genus g with C(k) 6= ∅. There exists an abelian variety Jac(C) of
dimension g called the Jacobian of C that has the following key property: Jac(C)(k) is in
bijection with Pic0(C); see [51]. Recall Pic0(C) consists of the degree 0 elements of

Pic(C) = Div(C)/{principal divisors}.

There are several ways to define maps from C to Jac(C). A common one in the study of degree
d points is actually from the d-th symmetric power of C, denoted C(d), which is the quotient of the
cartesian product Cd by the natural action of the symmetric group Sd. Points of C(d) correspond

1If you’d like, you can take C = X1(N) or X0(N) and k = Q.
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to effective divisors of degree d. For simplicity, assume there exists P0 ∈ C(k). Then we define

Φd :C(d) → Jac(C)

D 7→ [D − dP0].

This map is useful because a degree d point x will give a k-rational point on C(d), and hence
Φd(x) ∈ Jac(C)(k).

Suppose C has infinitely many closed points of degree d. Then we are in one of two cases:

Case 1: There exists distinct x, y of degree d such that Φd(x) = Φd(y). Since x and y
have distinct support, this implies there exists f ∈ k(C)× such that div(f) = x − y. Then
f : C → P1 is a dominant morphism of degree d, and f−1(P1(k)) contains infinitely many
degree d points by Hilbert’s irreducibility theorem [62, Ch.9]. This gives an infinite family of
degree d points “parameterized by P1.”

Case 2: The map Φd is injective on the set of degree d points. By Faltings’ Theorem [30],
there exist a finite number of k-rational points xi ∈ im Φd such that

(im Φd)(k) =
n⋃
i=1

[xi +Ai(k)],

where Ai ⊂ Jac(C) are abelian subvarieties. Thus one of the Ai has positive rank, and this
gives an infinite family of degree d points “parameterized by Ai.”

This inspires the following definitions. Here, C denotes a curve defined over a number field k
and x ∈ C is a closed point of degree d.

1. The point x is P1-parameterized if there exists x′ ∈ C(d)(k) with x′ 6= x such that Φd(x) =
Φd(x

′). Otherwise, we say x is P1-isolated.

2. The point x is AV-parameterized if there exists a positive rank abelian subvariety A/k
with A ⊂ Jac(C) such that Φd(x) +A ⊂ im(Φd). Otherwise, we say x is AV-isolated.

3. The point x ∈ C is isolated if it is both P1-isolated and AV-isolated.

Example 5. The modular curve X0(48) can be defined by the equation y2 = x8 + 14x4 + 1.
We can define a map f : X0(48) → P1 which sends (x, y) 7→ x. For any x ∈ Q, we obtain
a point on X0(48) of degree at most 2. This gives a P1-parameterized family of degree 2
points. However, there are other isolated points of degree 2 which are not explained by this
map: (±

√
−1, 4), (±

√
−1,−4). This is the complete set of isolated points of degree 2 by

Bruin and Najman [17].

Other examples of isolated points are sporadic points. A closed point x ∈ C is sporadic if
there exist only finitely many points of degree at most deg(x).
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A hypothetical curve of genus 7 with points of degree d.

Example 6. If n ≥ 7, the Fermat curves

Fn : Xn + Y n = Zn

viewed as curves over Q have only finitely many points of degree ≤ n−2 by work of Debarre
and Klassen [23], and thus any point of degree ≤ n− 2 is sporadic (and hence isolated).

For any closed point x ∈ C of degree d with d > g := genus(C), the Riemann-Roch space
associated x has dimension at least 2 and the point is P1-parameterized; see, for example, [12,
Lemma 14]. Thus any isolated point on C has degree at most g. We can then use Faltings’
Theorem [30] to obtain the following result:

Theorem 13 (B./Ejder/Liu/Odumodu/Viray [11]). The curve C/k has only finitely many isolated
points of any degree.

If C/k has genus(C) ≥ 2, we have

{C(k)} ⊂ {sporadic points of C} ⊂ {isolated points of C},

and all sets are finite. Thus one can view the study of isolated points as a natural generalization
of the study of rational points.

Question: (Viray, Vogt [70]) Is the number of isolated points on C/k bounded by a constant
depending only on the genus of C?

See [70, §6] for a discussion and partial progress (and much more on isolated points!).
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3.2 Isolated points on modular curves

Our failure to understand isolated points on modular curves is the essential obstruction to extending
the classification of torsion subgroups of elliptic curves beyond number fields of degree 4; see Section
3.4 for further discussion other other applications. This motivates the need for a more systematic
study of isolated points on modular curves. Here, we will focus on the modular curve X1(N), but
see for example [49, 68] for analogous work on isolated points on more general classes of modular
curves. We say j ∈ X1(1) ∼= P1

j is isolated if it is the image of an isolated point on X1(N) for
some n ∈ Z+ under the natural map j : X1(N)→ X1(1) sending [E,P ] 7→ j(E).

Warning: We are not saying j is an isolated point of the curve P1
j — this curve itself has

no isolated points — but only that it is the j-invariant of an elliptic curve giving rise to an
isolated point x ∈ X1(N) for some n ∈ Z+.

Degree d points on X1(21)/Q. Here, j(E) = −140625/8 is an isolated j-invariant.

Known isolated j-invariants in Q:

• −140625/8: Comes from two sporadic points of degree 3 on X1(21); see Najman [53].

• −9317: Comes from three sporadic points of degree 6 on X1(37); see van Hoeij [69].

• 351/4: Comes from a degree 9 isolated point on X1(28); see [12, Theorem 2].

• −162677523113838677: Comes from a degree 18 isolated point on X1(37); see [13, Appendix].

• Any of the 13 CM j-invariants in Q; see [11, Theorem 7.1].

Question: How many isolated j-invariants exist in Q? It’s conjectured to be a finite set!

Theorem 14 (B., Ejder, Liu, Odumodu, Viray [11]). Suppose Serre’s Uniformity Conjecture holds.
Then there are only finitely many isolated j-invariants in Q. More precisely, if I is the set of all
isolated points on X1(N) for all N ∈ Z+, then j(I) ∩Q is finite.
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This is saying that, up to Q-isomorphism, there are only finitely many elliptic curves E with
j(E) ∈ Q that give rise to an isolated point of any degree on X1(N), even as N ranges over all
positive integers. The list of 17 j-invariants given above has been conjectured to be complete in [13],
where they show these are the only isolated j-invariants among all elliptic curves in the LMFDB
[22] or the Stein-Watkins Database [65]. Together, these databases contain over 36 million distinct
non-CM j-invariants in Q. See also [13, Remark 5] for further motivation for this conjecture.

Progress: We have finiteness of isolated j-invariants in Q in the following cases:

• Isolated points of odd degree: In [12], the authors show the only non-CM j-invariants in Q
which correspond to isolated points x ∈ X1(N) of odd degree are −140625/8 and 351/4.

• Curves of the form X1(`
n) for prime `: This is [27] and [15].

• Restrictions on the mod ` image: Serre’s Uniformity Conjecture holds for the class of non-
CM elliptic curves E/Q admitting a rational cyclic isogeny or with im ρE,` contained in the
normalizer of a split Cartan subgroup [42, 43]. Thus finiteness follows from [11].

Question: Can we extend the list of unconditional results?

3.3 Proof sketch of Theorem 14

Suppose x ∈ X1(n) is isolated with j(x) ∈ Q. Since there are only 13 CM j-invariants in Q, we
may assume j(x) is non-CM. Fix E/Q with j(E) = j(x) and let

n =
∏
`i≤37

`aii ·
∏
`j>37

`
aj
j = n1 · n2.

Suppose Serre’s Uniformity Conjecture holds. That is, suppose that for all `j > 37 we have
im ρE,`j = GL2(Z/`Z). Then:

1. Let f : X1(n) → X1(n1) be the natural map sending [E,P ] 7→ [E,n2P ]. Then deg(x) =
deg(f) · deg(f(x)) by [11, Proposition 5.7].

2. By [11, Theorem 4.3], it follows that f(x) ∈ X1(n1) is isolated.

3. Let m :=
∏
`≤37 `. Then by [11, Proposition 6.1] there exists M ∈ Z+ such that for all

non-CM elliptic curves E/Q, we have

im ρE,m∞ = π−1(im ρE,M ),

where π : GL2(Zm)→ GL2(Z/MZ) denotes the natural reduction map.

4. Let g : X1(n1)→ X1(gcd(n1,M)) be the natural map. Applying [11, Corollary 5.3], we have
that g(f(x)) ∈ X1(gcd(n1,M)) is isolated.

5. Since M does not depend on j(x) ∈ Q, we see that all isolated points in ∪∞n=1X1(n) associated
to elliptic curves with rational j-invariant map (under natural projection) to isolated points
on a finite number of modular curves. Namely, those of the form X1(d) for d |M . Since any
one of these curves has only finitely many isolated points [11, Theorem 4.2], there are only
finitely many isolated j-invariants in Q.

See [11] for additional details.
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3.4 Connection with other open problems

Here we discuss how isolated points on modular curves relate to other open problems in the field.

3.4.1 Classifying torsion subgroups

As we saw in Chapter 1, the list of groups that occur as E(k)tors for all elliptic curves E defined
over all number fields k of degree d is known for d ≤ 4; see [47, 35, 38, 36, 24, 25]. A key obstruction
to extending this classification for d > 4 is our lack of understanding of isolated points on X1(N).
For example, in the d = 3 classification, there is exactly one elliptic curve over a cubic field with a
21-torsion point; see [24, Theorem A]. This corresponds to the degree 3 sporadic points on X1(21)
mentioned above. In fact, Derickx and Najman [25] ask whether there is a degree d sporadic point
on X1(N) for all d > 4. Such points are known to occur for 5 ≤ d ≤ 13, as a consequence of van
Hoeij’s results [69].

3.4.2 Serre Uniformity

As we’ve mentioned, the following is a conjecture of Zywina [73, Conj. 1.12] and Sutherland [67,
Conj. 1.1], but it was originally a question of Serre [59].

Conjecture (Serre Uniformity). There exists a constant C such that for all non-CM elliptic curves
E/Q, the mod ` Galois representation associated to E is surjective for ` > C.

Though this is a uniformity question about non-CM rational points on a more general family
of modular curves, we will show this conjecture can be reframed as one about isolated points on
X1(N), following [14, §3].

1. Suppose E/Q with im ρE,` = C+
ns(`), the normalizer of a nonsplit Cartan subgroup. As we

saw in Chapter 1, showing this does not occur for any prime ` > 37 would prove Serre’s
Uniformity Conjecture.

2. There exists an extension F/Q of degree ` + 1 for which ρE,`(GalF ) consists of diagonal
matrices. That is, the curve E/F has two independent F -rational cyclic `-isogenies.

E1
ϕ1←− E ϕ2−→ E2.

3. The curve E1/F has an F -rational cyclic `2-isogeny: ϕ2 ◦ ϕ̂1, where ϕ̂1 denotes the dual
isogeny [64, §III.6].

4. A twist of E1 gives a point on X1(`
2) of degree at most `(`2−1)

2 ; see, for example, [10, Theorem
5.5]. This will be sporadic for ` sufficiently large. Indeed,

`(`2 − 1)

2
<

1

2
gonQX1(`

2)

for sufficiently large primes using gonality bounds of Abramovich [1]. Here, gonQX1(`
2)

denotes the Q-gonality of X1(`
2), which is the least degree of a nonconstant rational map

f : X1(`
2)→ P1. Such a point is sporadic by work of Frey [31].
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In this argument, E1 is a Q-curve, which means it is isogenous (over Q) to its Galois conju-
gates.2 Thus we obtain the following result.

Theorem 15 (B./Najman [14]). Suppose there are only finitely many isolated j-invariants associ-
ated to non-CM Q-curves. Then Serre’s Uniformity Conjecture holds.

We’ve seen in Theorem 14 that Serre’s Uniformity Conjecture implies the set of isolated j-
invariants in Q is finite. Theorem 15 provides a kind of converse, provided we expand the class of
j-invariants under consideration.

3.4.3 Uniformity of degree d points on X0(N)

Recall Merel [50] showed that for all elliptic curves E/k with [k : Q] = d, we have

#E(k)tors ≤ C(d),

where C(d) is a constant depending only on d. This means that for N sufficiently large, X1(N) has
no non-cuspidal degree d points.

Question: Can we obtain an analogous result for X0(N)?

For d = 1, the answer is yes: X0(N) has no non-cuspidal rational points for n > 163.

Theorem 16 (Mazur [48], Kenku [37], and others; see Section 9 of [45]). If E/Q is an elliptic curve
possessing a Q-rational cyclic subgroup of order N , then N ≤ 19 or N ∈ {21, 25, 27, 37, 43, 67, 163}.

However, we run into problems when trying to extend our classification to d = 2. For example,
suppose E is a CM elliptic curve with geometric endomorphism ring isomorphic to the full ring of
integers in K, an imaginary quadratic field of class number 1. Then for any prime ` which is split
in K and any n ∈ Z+, we have a degree 2 point x ∈ X1(`

n) with j(x) = j(E). This is a consequence
of classical CM theory; see, for example [8]. In particular, there is no upper bound on the size of
a k-rational cyclic subgroup as we range over all quadratic fields. That such a bound might exist
if we omit these CM points is a recent conjecture of Balakrishnan and Mazur.

Conjecture (Balakrishnan, Mazur [5]). For N sufficiently large, there are no quadratic points on
X0(N) corresponding to non-CM elliptic curves.

For N > 131, any quadratic point is sporadic by work of Harris and Silverman [34], Ogg [54],
and Bars [6]. So this is a conjecture which seeks to control non-CM sporadic points on X0(N).
Some sporadic quadratic points on X0(`) arise from unexpected rational points on X+

0 (`), which
is the quotient of X0(`) by the Atkin-Lehner involution sending an isogeny ϕ : E → E′ of degree `
to its dual ϕ̂ : E′ → E. Elkies [28] had conjectured that unexpected (i.e., non-cuspidal, non-CM)
rational points on X+

0 (`) could arise only in the case where X+
0 (`) is hyperelliptic. In this case, the

hyperelliptic involution can send rational cusps or rational CM points to new unexpected points.
(This type of construction explains the unexpected rational points on X0(37), for example. See
[16, §5] for more details.) However, the conjecture of Elkies was disproven by Galbraith [33], who
found exceptional rational points on X+

0 (137) and X+
0 (311).

Question: Why do these exceptional rational points on X+
0 (137) and X+

0 (311) exist?

2Example of Q-curves include CM elliptic curves, elliptic curves E with j(E) ∈ Q, and elliptic curves isogenous
to E with j(E) ∈ Q. These are precisely the elliptic curves over number fields that are modular [56, 39, 40].
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3.4.4 Existence of sporadic points

There are several additional lines of investigation which focus on the existence of certain sporadic
points. For example, in [25, Appendix A], we find a kind of compliment to the conjecture of
Balakrishnan and Mazur discussed in Section 3.4.3.

Conjecture (Derickx, Najman [25]). For every positive integer d there exists an n such that there
exists a sporadic point of degree d on X0(N).

Other lines of inquiry focus on CM sporadic points. In [20, Theorem 8.2], Clark, Genao,
Pollack, and Saia show that for N ≥ 721, the modular curves X0(N) and X1(N) have sporadic
points associated to CM elliptic curves. However, there are 106 values of N for which it is unknown
whether X0(N) has a sporadic CM point, and there are 67 values of N for which is unknown whether
X1(N) has a sporadic CM point. See [20, Tables 3 & 4]. In each case, complete information about
the degree d and the residue field is known (see [9, 20, 19]).

Question: Can one determine whether there exist sporadic CM points on X0(N) or X1(N) for
the remaining values of N?
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