E1 := EllipticCurveWithjInvariant(1792);
Factorization(DivisionPolynomial(E1,4) div DivisionPolynomial(E1,2));
//This show that E1 corresponds to a single point on X_0(4) which has degree 6.
K:=Subfields(CyclotomicField(7),3)[1,1];
//K is the field over which E1 attains full 2-torsion.
E:=ChangeRing(E1,K);
E2:=IsogenyFromKernel(E,Factorization(DivisionPolynomial(E,2))[1,1]);
//E2 is an elliptic curve which is 2-isogenous to E over K.
f2:=DivisionPolynomial(E2,2);
f4:=DivisionPolynomial(E2,4);
h4:=f4 div f2;
f3:=DivisionPolynomial(E2,3);
f6:=DivisionPolynomial(E2,6);
h6:=f6 div (f2*f3);
f12:=DivisionPolynomial(E2,12);
h12:=f12 div (h6*h4*f3*f2);
Factorization(h12);
//Any point on X_1(12) associated to E2 will have even degree. Similarly, we find the same is true for any other elliptic curve 2-isogenous to E.