
Parallel Sorting Algorithms

Copyright © 2015 Samuel S. Cho

CSC 391/691: GPU Programming Fall 2015

Sorting Algorithms Review

• Bubble Sort: O(n
2
)

• Insertion Sort: O(n
2
)

• Quick Sort: O(n log n)

• Heap Sort: O(n log n)

• Merge Sort: O(n log n)

• The best we can expect from a sequential sorting algorithm
using p processors (if distributed evenly among the n
elements to be sorted) is O(n log n) / p ~ O(log n).

Compare and Exchange Sorting Algorithms

• Form the basis of several, if not most, classical
sequential sorting algorithms.

• Two numbers, say A and B, are compared between P0
and P1.

A

MIN

B

MAX

P0 P1

Bubble Sort

• Generic example of a “bad” sorting
algorithm.

• Algorithm:

• Compare neighboring elements.

• Swap if neighbor is out of order.

• Two nested loops.

• Stop when a whole pass
completes without any swaps.

• Performance:

• Worst: O(n
2
)

• Average: O(n
2
)

• Best: O(n)

0 1 2 3 4 5

3 8 0 6 51start:

0 1 2 3 4 5

3 0 6 5 81after pass 1:

0 1 2 3 4 5

0 3 5 6 81after pass 2:

0 1 2 3 4 5

1 3 5 6 80after pass 3:

0 1 2 3 4 5

1 3 5 6 80after pass 4:

fin.
"The bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some
interesting theoretical problems."

- Donald Knuth, The Art of Computer Programming

Odd-Even Transposition Sort (also Brick Sort)

• Simple sorting algorithm that was introduced in
1972 by Nico Habermann who originally
developed it for parallel architectures (“Parallel
Neighbor-Sort”).

• A comparison sorting algorithm that is related
to bubble sort because it shares a similar
approach.

• It compares all (odd-even) indexed pairs of
adjacent elements in a list and switches them if
they are out of order. The next step repeats
this process for (even-odd) indexed pairs and
continues alternating until the list is sorted.

• The odd-even transposition sort makes use of a
pipelining technique to ultimately run many
phases of the bubble sort in parallel.

• The running time of this algorithm is O(n
2

)/p ~
O(n)

MergeSort

• Divide and conquer approach

• Characterized by dividing the problem into sub-problems of same form as larger
problem. Further divisions into still smaller sub-problems, usually done by recursion.

• Recursive divide-and-conquer amenable to parallelization because separate processes
can be used for divided parts. Also usually data is naturally localized.

• Divide the n values to be sorted into two halves

• Recursively sort each half using MergeSort

• Base case n=1 no sorting required

• Merge the two halves (fundamental operation)

• O(n) operation

MergeSort

D
iv

id
e

C
onquer

Merge Operation

1 6 5 6 80 0 < 5

0

1 6 5 6 80 1 < 5

0 1

1 6 5 7 80 6 > 5

0 1 5

1 6 5 7 80 6 < 7

0 1 5 6

1 6 5 7 80 6 < 7

0 1 5 6 7 8

fin.

Now, do rest of second array..

O(n) running time because each element
is considered (n-1 comparisons)

Parallel MergeSort

• Note: sorting two sub-arrays can be done in
parallel. Therefore two recursive calls can be
called in parallel.

• The first division phase is essentially
scattering the array across the processors.

• The second merge phase can be done in
parallel with each processor using a
sequential merge operation.

• The overall running time is O(n log n) / (log
p) ~ O(n) but the unbalanced processor
load and communication makes this
algorithm inefficient than expected in
practice.

Bitonic MergeSort

• Bitonic Mergesort was introduced by K.E. Batcher in 1968.

• A monotonic sequence is a list that is increasing in value.

• a0, a1, a2, ... an-2, an-1 where a0 < a1 < a2 < ... an-2 < an-1

• A bitonic sequence is defined as a list with two sequences, one increasing and
another decreasing; no more than one local minimum and one local maximum.
(endpoints (i.e., wraparound) must be considered):

• a0 < a1 < a2 < ... ai-1 < ai > ai+1 ... > an-2 > an-1

Binary Split

• Divide the bitonic list into two equal halves.

• Compare-Exchange each item on the first half (ai) with
the corresponding item in the second half (ai+n/2).

• Result: Two bitonic sequences where the numbers in
one sequence are all less than the numbers in the
other sequence.

Sorting a Bitonic Sequence
via Bitonic Splits

• Compare-and-exchange
moves smaller numbers of
each pair to left and larger
numbers of pair to right.

• Given a bitonic sequence,
recursively performing binary
splits will sort the list.

• Q: How many binary splits
does it takes to sort a list?  
A: log n

Sorting an Arbitrary Sequence
via Bitonic Splits

• To sort an arbitrary sequence, A) generate
a bitonic sequence, then B) sort it using a
series of bitonic splits.

• To generate a bitonic sequence:

• The unsorted sequences are merged
into larger bitonic sequences, starting
with pairs of adjacent numbers (Step
1).

• By a compare-and-exchange operation,
pairs of adjacent numbers formed into
increasing sequences and decreasing
sequences. Pairs form a bitonic
sequence of twice the size of each
original sequences. By repeating this
process, bitonic sequences of larger
and larger lengths obtained (Steps 2-3).

• Finally, a single bitonic sequence is sorted
into a single increasing sequence (Steps
4-6).

Unsorted Sequence

Sorted Sequence

Step No.

1

2

3

4

5

6

Processor No.

000 001 010 011 100 101 110 111

L H H L L H H L

L L H H H H L L

L H L H H L H L

L L L L H H H H

L L H H L L H H

L H L H L H L H

Phase 1: (1)

Phase 2: (2-3)

Phase 3: (4-6)

Bitonic Sort Example
P0

000
P1

001
P2

010
P3

011
P4

100
P5

101
P6

110
P7

111

8 3 4 7 9 2 1 5

3 8 7 4 2 9 5 1

3 4 7 8 5 9 2 1

Step 1:

Step 2:

3 4 7 8 9 5 2 1Step 3:

Step 4: 3 4 2 1 9 5 7 8

2 1 3 4 7 5 9 8Step 5:

1 2 3 4 5 7 8 9Step 6:

Bitonic Sort Analysis

• In order to form a sorted sequence of length n from two
sorted sequences of length n/2, there are log(n) phases
required (e.g. the 3 = log(8) phase to form a monotonic
sequence i from two bitonic sequences j and j'). The number
of phases T(n) of the entire sorting network is given by:

• T(n) = log(n) + T(n/2)

• The solution of this recurrence equation is:

• Therefore, the overall run time of the algorithm is O(log(n)
2
).

T (n) = k
i=1

k

∑ =
k k +1()
2

=
log(n) log(n) +1()

2

Rank Sort

• Number of elements that are smaller than each selected
element is counted. This count provides the position of the
selected number, its “rank” in the sorted list.

• First a[0] is read and compared with each of the other
numbers, a[1] … a[n-1], recording the number of elements
less than a[0].

• Suppose this number is x. This is the index of a[0] in the final
sorted list.

• The number a[0] is copied into the final sorted list b[0] …
b[n-1], at location b[x]. Actions repeated with the other
numbers.

• Overall sequential time complexity of rank sort: T(n)= O(n
2

)

// Serial Rank Sort

for (i = 0; i < n; i++) { /* for each number */
 x = 0;
 for (j = 0; j < n; j++)
 /* count number less than it */
 if (a[i] > a[j])
 x++;
 /* copy number into correct place */  
 b[x] = a[i];
}

// *This code needs to be fixed if  
// duplicates exist in the sequence.

Parallel Rank Sort (P=n)

• One number is assigned to each processor.

• Pi finds the final index of a[i] in O(n) steps.

• Parallel time complexity, O(n), but that’s not all!

__global__ void ranksort (int* a, int *b, int n) {
 int i = blockIdx.x * blockDim.x + threadIdx.x

 if (i < n) {
 int x = 0;
 /* count number less than it */
 for (int j = 0; j < n; j++)
 if (a[i] > a[j])
 x++;
 /* copy no. into correct place */
 b[x] = a[i];
 }
 }
}

Parallel Rank Sort (P=n2)

• Use n processors to find the rank of one element.
The final count, i.e. rank of a[i] can be obtained using
a global sum operation (e.g., reduction).

• Time complexity (for P=n2): O(log n)

Bucket Sort

• For an array of N numbers, create
M buckets (or bins) for the range
of numbers in the array.

• Note in the example that there
are two “2”s and two “1”s.

• Each of the elements are put into
one of the M buckets.

• This is a stable sorting algorithm.

2 1 3 1 2

1

2

3

Bucket Sort

• For an array of N numbers, create
M buckets (or bins) for the range
of numbers in the array.

• Note in the example that there
are two “2”s and two “1”s.

• Each of the elements are put into
one of the M buckets.

• This is a stable sorting algorithm.

2 1 3 1 2

1

2

3

1

2

3

1

2

Bucket Sort

• For an array of N numbers, create
M buckets (or bins) for the range
of numbers in the array.

• Note in the example that there
are two “2”s and two “1”s.

• Each of the elements are put into
one of the M buckets.

• This is a stable sorting algorithm.

2 1 3 1 2

1

2

3

1

2

3

1

2

1 1 2 2 3

Bucket Sort

• Sequential sorting time complexity: O(n + m) for n numbers divided into m parts.

• Placing into buckets is O(n).

• Moving from buckets to sorted list is O(n + m).

• Works well if the original numbers uniformly distributed across a known interval,
say 0 to a-1.

• Simple approach to parallelization: assign one processor for each bucket.

Radix Sort
• A radix is the number taken to be the base (or root) of

a system of numbers. For example, for the binary
system, the radix is 2, and for the decimal system, the
radix is 10.

• Radix Sort is an integer sorting algorithm that uses
bucket sort for each digit of an integer (keys) for a
sequence of n integers starting from the least significant
digit (LSD) to the most significant digit (MSD). The
algorithm dates back to a patent in 1887 by Herman
Hollerinth on tabulating machines.

• Consider a sequence of n b-bit integers: x = xb-1...x1x0

• For a set of binary numbers, we represent each element
as a b-tuple of integers in the range [0,1] and apply radix
sort with n=2.

• Serial running time: O(kn
2

) where k is the number of
digits.

• Parallel running time: O(kn
2

)/p ~ O(kn)

Radix Sort Example 1

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

Radix Sort Example 2

170

45

75

90

802

24

2

66

170

90

802

2

24

45

75

66

802

2

24

45

66

75

170

90

2

24

45

66

75

90

170

802

Radix Sort Parallel Implementation

• Two approaches:

• 1) Bucket sort each of the keys.

• 2) Rank sort each of the keys.

Review

• Odd-Even Transposition Sort

• Merge Sort

• Bitonic Sort

• Rank Sort

• Bucket Sort

• Radix Sort

