Parallel Sorting Algorithms

Sorting Algorithms Review

- Bubble Sort: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Insertion Sort: $O\left(n^{2}\right)$
- Quick Sort: O(n log n)
- Heap Sort: O(n log n)
- Merge Sort: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

- The best we can expect from a sequential sorting algorithm using P processors (if distributed evenly among the n elements to be sorted) is $O(n \log n) / p \sim O(\log n)$.

Compare and Exchange Sorting Algorithms

- Form the basis of several, if not most, classical sequential sorting algorithms.
- Two numbers, say A and B, are compared between P_{0} and P_{1}.

Bubble Sort

- Generic example of a "bad" sorting algorithm.
- Algorithm:
- Compare neighboring elements.
- Swap if neighbor is out of order.
- Two nested loops.
- Stop when a whole pass completes without any swaps.
- Performance:
- Worst: $O\left(n^{2}\right)$
- Average: $\mathrm{O}(\mathrm{n})$
- Best: O(n)

Odd-Even Transposition Sort (also Brick Sort)

- Simple sorting algorithm that was introduced in 1972 by Nico Habermann who originally developed it for parallel architectures ("Parallel Neighbor-Sort").
- A comparison sorting algorithm that is related to bubble sort because it shares a similar approach.
- It compares all (odd-even) indexed pairs of adjacent elements in a list and switches them if they are out of order. The next step repeats this process for (even-odd) indexed pairs and continues alternating until the list is sorted.

- The odd-even transposition sort makes use of a pipelining technique to ultimately run many phases of the bubble sort in parallel.
- The running time of this algorithm is $\mathrm{O}(\mathrm{n}) / \mathrm{p} \sim$ O(n)

MergeSort

- Divide and conquer approach
- Characterized by dividing the problem into sub-problems of same form as larger problem. Further divisions into still smaller sub-problems, usually done by recursion.
- Recursive divide-and-conquer amenable to parallelization because separate processes can be used for divided parts. Also usually data is naturally localized.
- Divide the n values to be sorted into two halves
- Recursively sort each half using MergeSort
- Base case $\mathrm{n}=\mathrm{I}$ no sorting required
- Merge the two halves (fundamental operation)
- $O(n)$ operation

MergeSort

Merge Operation

Now, do rest of second array..

$\mathrm{O}(\mathrm{n})$ running time because each element is considered (n -I comparisons)

Parallel MergeSort

- Note: sorting two sub-arrays can be done in parallel. Therefore two recursive calls can be called in parallel.
- The first division phase is essentially scattering the array across the processors.
- The second merge phase can be done in parallel with each processor using a sequential merge operation.
- The overall running time is $\mathrm{O}(\mathrm{n} \log \mathrm{n}) /(\log$ $\mathrm{p}) \sim \mathrm{O}(\mathrm{n})$ but the unbalanced processor load and communication makes this

Sorted list

Process allocation algorithm inefficient than expected in practice.

Bitonic MergeSort

- Bitonic Mergesort was introduced by K.E. Batcher in 1968.
- A monotonic sequence is a list that is increasing in value.
- $a_{0}, a_{1}, a_{2}, \ldots a_{n-2}, a_{n-1}$ where $a_{0}<a_{1}<a_{2}<\ldots a_{n-2}<a_{n-1}$
- A bitonic sequence is defined as a list with two sequences, one increasing and another decreasing; no more than one local minimum and one local maximum. (endpoints (i.e., wraparound) must be considered):
- $\mathrm{a}_{0}<\mathrm{a}_{1}<\mathrm{a}_{2}<\ldots \mathrm{a}_{\mathrm{i}-1}<\mathrm{a}_{\mathrm{i}}>\mathrm{a}_{\mathrm{i}+1} \ldots>\mathrm{a}_{\mathrm{n}-2}>\mathrm{a}_{\mathrm{n}-1}$

(a) Single maximum

(b) Single maximum and single minimum

Binary Split

- Divide the bitonic list into two equal halves.
- Compare-Exchange each item on the first half $\left(a_{i}\right)$ with the corresponding item in the second half $\left(a_{i+n / 2}\right)$.

- Result:Two bitonic sequences where the numbers in one sequence are all less than the numbers in the other sequence.

Sorting a Bitonic Sequence via Bitonic Splits

- Compare-and-exchange moves smaller numbers of each pair to left and larger numbers of pair to right.
- Given a bitonic sequence, recursively performing binary splits will sort the list.
- Q: How many binary splits does it takes to sort a list?
 A: $\log n$

Sorting an Arbitrary Sequence via Bitonic Splits

- To sort an arbitrary sequence, A) generate a bitonic sequence, then B) sort it using a series of bitonic splits.
- To generate a bitonic sequence:
- The unsorted sequences are merged into larger bitonic sequences, starting with pairs of adjacent numbers (Step I).
- By a compare-and-exchange operation, pairs of adjacent numbers formed into increasing sequences and decreasing sequences. Pairs form a bitonic sequence of twice the size of each original sequences. By repeating this process, bitonic sequences of larger and larger lengths obtained (Steps 2-3).
- Finally, a single bitonic sequence is sorted into a single increasing sequence (Steps 4-6).

Sorted Sequence

Bitonic Sort Example

Bitonic Sort Analysis

- In order to form a sorted sequence of length n from two sorted sequences of length $n / 2$, there are $\log (n)$ phases required (e.g. the $3=\log (8)$ phase to form a monotonic sequence i from two bitonic sequences j and j '). The number of phases $T(n)$ of the entire sorting network is given by:
- $T(n)=\log (n)+T(n / 2)$
- The solution of this recurrence equation is:

$$
T(n)=\sum_{i=1}^{k} k=\frac{k(k+1)}{2}=\frac{\log (n)(\log (n)+1)}{2}
$$

- Therefore, the overall run time of the algorithm is $\mathrm{O}\left(\log (\mathrm{n})^{2}\right)$.

Rank Sort

- Number of elements that are smaller than each selected element is counted. This count provides the position of the selected number, its "rank" in the sorted list.
- First a[0] is read and compared with each of the other numbers, $\mathrm{a}[\mathrm{I}] \ldots \mathrm{a}[\mathrm{n}-\mathrm{I}]$, recording the number of elements less than $\mathrm{a}[0]$.
- Suppose this number is x. This is the index of $a[0]$ in the final sorted list.

```
// Serial Rank Sort
for (i = 0; i < n; i++) { /* for each number */
    x = 0;
    for (j = 0; j < n; j++)
    /* count number less than it */
    if (a[i] > a[j])
        x++;
    /* copy number into correct place */
    b[x] = a[i];
}
// *This code needs to be fixed if
// duplicates exist in the sequence.
```

- The number $a[0]$ is copied into the final sorted list $b[0] \ldots$ $\mathrm{b}[\mathrm{n}-\mathrm{I}]$, at location $\mathrm{b}[\mathrm{x}]$. Actions repeated with the other numbers.
- Overall sequential time complexity of rank sort: $T(n)=O(n)$

Parallel Rank Sort ($\mathrm{P}=\mathrm{n}$)

- One number is assigned to each processor.
- P_{i} finds the final index of $a[i]$ in $O(n)$ steps.

```
__global__ void ranksort (int* a, int *b, int n) {
    int i = blockIdx.x * blockDim.x + threadIdx.x
    if (i< n) {
    int x = 0;
    /* count number less than it */
    for (int j = 0; j < n; j++)
        if (a[i] > a[j])
            x++;
            /* copy no. into correct place */
            b[x] = a[i];
    }
    }
}
```

- Parallel time complexity, $O(n)$, but that's not all!

Parallel Rank Sort ($\mathrm{P}=\mathrm{n}^{2}$)

- Use n processors to find the rank of one element. The final count, i.e. rank of a[i] can be obtained using a global sum operation (e.g., reduction).
- Time complexity (for $\left.\mathrm{P}=\mathrm{n}^{2}\right): \mathrm{O}(\log \mathrm{n})$

Bucket Sort

- For an array of N numbers, create M buckets (or bins) for the range
 of numbers in the array.
- Note in the example that there are two " 2 "s and two "I"s.
- Each of the elements are put into one of the M buckets.

- This is a stable sorting algorithm.

Bucket Sort

- For an array of N numbers, create M buckets (or bins) for the range
 of numbers in the array.
- Note in the example that there are two " 2 "s and two "I"s.
- Each of the elements are put into one of the M buckets.

- This is a stable sorting algorithm.

Bucket Sort

- For an array of N numbers, create M buckets (or bins) for the range
 of numbers in the array.
- Note in the example that there are two " 2 "s and two "I"s.
- Each of the elements are put into one of the M buckets.

- This is a stable sorting algorithm.

1	1	2	2	3

Bucket Sort

- Sequential sorting time complexity: $\mathrm{O}(\mathrm{n}+\mathrm{m})$ for n numbers divided into m parts.
- Placing into buckets is $\mathrm{O}(\mathrm{n})$.
- Moving from buckets to sorted list is $\mathrm{O}(\mathrm{n}+\mathrm{m})$.
- Works well if the original numbers uniformly distributed across a known interval, say 0 to a-I.
- Simple approach to parallelization: assign one processor for each bucket.

Radix Sort

- A radix is the number taken to be the base (or root) of a system of numbers. For example, for the binary system, the radix is 2 , and for the decimal system, the radix is 10 .
- Radix Sort is an integer sorting algorithm that uses bucket sort for each digit of an integer (keys) for a sequence of n integers starting from the least significant digit (LSD) to the most significant digit (MSD). The algorithm dates back to a patent in 1887 by Herman Hollerinth on tabulating machines.
- Consider a sequence of $n b-b i t$ integers: $x=x_{b-1} \ldots x_{\mid} x_{0}$
- For a set of binary numbers, we represent each element as a b-tuple of integers in the range [0,1 I] and apply radix sort with $\mathrm{n}=2$.

2

- Serial running time: $O(k n)$ where k is the number of digits.
- Parallel running time: $\mathrm{O}(\mathrm{kn}) / \mathrm{p} \sim \mathrm{O}(\mathrm{kn})$

Radix Sort Example I

Radix Sort Example 2

Radix Sort Parallel Implementation

- Two approaches:
- I) Bucket sort each of the keys.
- 2) Rank sort each of the keys.

Review

- Odd-Even Transposition Sort
- Merge Sort
- Bitonic Sort
- Rank Sort
- Bucket Sort
- Radix Sort

