Parallel Sorting Algorithms
Sorting Algorithms Review

- Bubble Sort: $O(n^2)$
- Insertion Sort: $O(n^2)$
- Quick Sort: $O(n \log n)$
- Heap Sort: $O(n \log n)$
- Merge Sort: $O(n \log n)$

- The best we can expect from a sequential sorting algorithm using p processors (if distributed evenly among the n elements to be sorted) is $O(n \log n) / p \sim O(\log n)$.
Compare and Exchange Sorting Algorithms

- Form the basis of several, if not most, classical sequential sorting algorithms.

- Two numbers, say A and B, are compared between P_0 and P_1.
Bubble Sort

- Generic example of a “bad” sorting algorithm.

- Algorithm:
 - Compare neighboring elements.
 - Swap if neighbor is out of order.
 - Two nested loops.
 - Stop when a whole pass completes without any swaps.

- Performance:
 - Worst: \(O(n^2) \)
 - Average: \(O(n^2) \)
 - Best: \(O(n) \)

\[
\begin{align*}
\text{start:} & \quad \begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & 3 & 8 & 0 & 6 & 5
\end{array} \\
\text{after pass 1:} & \quad \begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & 3 & 0 & 6 & 5 & 8
\end{array} \\
\text{after pass 2:} & \quad \begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & 0 & 3 & 5 & 6 & 8
\end{array} \\
\text{after pass 3:} & \quad \begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 1 & 3 & 5 & 6 & 8
\end{array} \\
\text{after pass 4:} & \quad \begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 1 & 3 & 5 & 6 & 8
\end{array}
\end{align*}
\]

fin.

"The bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems."

- Donald Knuth, The Art of Computer Programming
Odd-Even Transposition Sort (also Brick Sort)

- Simple sorting algorithm that was introduced in 1972 by Nico Habermann who originally developed it for parallel architectures (“Parallel Neighbor-Sort”).

- A comparison sorting algorithm that is related to bubble sort because it shares a similar approach.

- It compares all (odd-even) indexed pairs of adjacent elements in a list and switches them if they are out of order. The next step repeats this process for (even-odd) indexed pairs and continues alternating until the list is sorted.

- The odd-even transposition sort makes use of a pipelining technique to ultimately run many phases of the bubble sort in parallel.

- The running time of this algorithm is $O(n/p) \sim O(n)$
MergeSort

- Divide and conquer approach
 - Characterized by dividing the problem into sub-problems of same form as larger problem. Further divisions into still smaller sub-problems, usually done by recursion.
 - Recursive divide-and-conquer amenable to parallelization because separate processes can be used for divided parts. Also usually data is naturally localized.

- Divide the n values to be sorted into two halves

- Recursively sort each half using MergeSort
 - Base case n=1 no sorting required

- Merge the two halves (fundamental operation)
 - \(O(n)\) operation
MergeSort

sorted sequence

1 2 2 3 4 5 6 6

merge

2 4 5 6

merge

2 5

merge

1 2 3 6

merge

1 3

MergeSort

Divide

Conquer

initial sequence

5 2

merge

4 6

merge

1 3

merge

2 6
Merge Operation

Now, do rest of second array.

0 1 6 6 < 7 5 7 8
0 1 5 6 7 8

fin.

O(n) running time because each element is considered (n-1 comparisons)
Parallel MergeSort

- Note: sorting two sub-arrays can be done in parallel. Therefore two recursive calls can be called in parallel.

- The first division phase is essentially scattering the array across the processors.

- The second merge phase can be done in parallel with each processor using a sequential merge operation.

- The overall running time is $O(n \log n) / (\log p) \sim O(n)$ but the unbalanced processor load and communication makes this algorithm inefficient than expected in practice.
Bitonic MergeSort

• Bitonic Mergesort was introduced by K.E. Batcher in 1968.

• A monotonic sequence is a list that is increasing in value.
 • $a_0, a_1, a_2, ... a_{n-2}, a_{n-1}$ where $a_0 < a_1 < a_2 < ... a_{n-2} < a_{n-1}$

• A bitonic sequence is defined as a list with two sequences, one increasing and another decreasing; no more than one local minimum and one local maximum. (endpoints (i.e., wraparound) must be considered):
 • $a_0 < a_1 < a_2 < ... a_{i-1} < a_i > a_{i+1} ... > a_{n-2} > a_{n-1}$

![Diagram](image-url)

(a) Single maximum
(b) Single maximum and single minimum
Binary Split

- Divide the bitonic list into two equal halves.
- Compare-Exchange each item on the first half \(a_i \) with the corresponding item in the second half \(a_{i+n/2} \).

Result: Two bitonic sequences where the numbers in one sequence are all less than the numbers in the other sequence.
Sorting a Bitonic Sequence via Bitonic Splits

- Compare-and-exchange moves smaller numbers of each pair to left and larger numbers of pair to right.

- Given a bitonic sequence, recursively performing binary splits will sort the list.

- Q: How many binary splits does it take to sort a list? A: $\log n$
Sorting an Arbitrary Sequence via Bitonic Splits

- To sort an arbitrary sequence, A) generate a bitonic sequence, then B) sort it using a series of bitonic splits.

- To generate a bitonic sequence:
 - The unsorted sequences are merged into larger bitonic sequences, starting with pairs of adjacent numbers (Step 1).
 - By a compare-and-exchange operation, pairs of adjacent numbers formed into increasing sequences and decreasing sequences. Pairs form a bitonic sequence of twice the size of each original sequences. By repeating this process, bitonic sequences of larger and larger lengths obtained (Steps 2-3).

- Finally, a single bitonic sequence is sorted into a single increasing sequence (Steps 4-6).
Bitonic Sort Example

<table>
<thead>
<tr>
<th>P_0</th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
<th>P_5</th>
<th>P_6</th>
<th>P_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

| 8 | 3 | 4 | 7 | 9 | 2 | 1 | 5 |

Step 1:

3
4
7
8
2
3
4
7

Step 2:

| 3 | 8 | 7 | 4 | 2 | 9 | 5 | 1 |

Step 3:

| 3 | 4 | 7 | 8 | 9 | 5 | 2 | 1 |

Step 4:

| 3 | 4 | 2 | 1 | 9 | 5 | 7 | 8 |

Step 5:

| 2 | 1 | 3 | 4 | 7 | 5 | 9 | 8 |

Step 6:

| 1 | 2 | 3 | 4 | 5 | 7 | 8 | 9 |
Bitonic Sort Analysis

• In order to form a sorted sequence of length n from two sorted sequences of length n/2, there are log(n) phases required (e.g. the $3 = \log(8)$ phase to form a monotonic sequence i from two bitonic sequences j and j'). The number of phases $T(n)$ of the entire sorting network is given by:

• $T(n) = \log(n) + T(n/2)$

• The solution of this recurrence equation is:

$$T(n) = \sum_{i=1}^{k} k = \frac{k(k + 1)}{2} = \frac{\log(n)(\log(n) + 1)}{2}$$

• Therefore, the overall run time of the algorithm is $O(\log(n)^2)$.
• Number of elements that are smaller than each selected element is counted. This count provides the position of the selected number, its “rank” in the sorted list.

• First $a[0]$ is read and compared with each of the other numbers, $a[1]$ … $a[n-1]$, recording the number of elements less than $a[0]$.

• Suppose this number is x. This is the index of $a[0]$ in the final sorted list.

• The number $a[0]$ is copied into the final sorted list $b[0]$ … $b[n-1]$, at location $b[x]$. Actions repeated with the other numbers.

• Overall sequential time complexity of rank sort: $T(n) = O(n^2)$

```c
// Serial Rank Sort
for (i = 0; i < n; i++) { /* for each number */
    x = 0;
    for (j = 0; j < n; j++)
        /* count number less than it */
        if (a[i] > a[j])
            x++;
    /* copy number into correct place */
    b[x] = a[i];
}
// *This code needs to be fixed if // duplicates exist in the sequence.
Parallel Rank Sort (P=n)

- One number is assigned to each processor.
- $P_i$ finds the final index of $a[i]$ in $O(n)$ steps.

```c
__global__ void ranksort (int* a, int *b, int n) {
 int i = blockIdx.x * blockDim.x + threadIdx.x
 if (i < n) {
 int x = 0;
 /* count number less than it */
 for (int j = 0; j < n; j++)
 if (a[i] > a[j])
 x++;
 /* copy no. into correct place */
 b[x] = a[i];
 }
}
```

- Parallel time complexity, $O(n)$, but that’s not all!
Parallel Rank Sort \((P=n^2)\)

- Use \(n\) processors to find the rank of one element. The final count, i.e. rank of \(a[i]\) can be obtained using a global sum operation (e.g., reduction).
- Time complexity (for \(P=n^2\)): \(O(\log n)\)
Bucket Sort

• For an array of N numbers, create M buckets (or bins) for the range of numbers in the array.

• Note in the example that there are two “2”s and two “1”s.

• Each of the elements are put into one of the M buckets.

• This is a stable sorting algorithm.
Bucket Sort

- For an array of N numbers, create M buckets (or bins) for the range of numbers in the array.

- Note in the example that there are two “2”s and two “1”s.

- Each of the elements are put into one of the M buckets.

- This is a stable sorting algorithm.
Bucket Sort

- For an array of N numbers, create M buckets (or bins) for the range of numbers in the array.

- Note in the example that there are two “2”s and two “1”s.

- Each of the elements are put into one of the M buckets.

- This is a stable sorting algorithm.
Bucket Sort

• Sequential sorting time complexity: $O(n + m)$ for $n$ numbers divided into $m$ parts.
  • Placing into buckets is $O(n)$.
  • Moving from buckets to sorted list is $O(n + m)$.

• Works well if the original numbers uniformly distributed across a known interval, say 0 to $a-1$.

• Simple approach to parallelization: assign one processor for each bucket.
Radix Sort

• A radix is the number taken to be the base (or root) of a system of numbers. For example, for the binary system, the radix is 2, and for the decimal system, the radix is 10.

• Radix Sort is an integer sorting algorithm that uses bucket sort for each digit of an integer (keys) for a sequence of $n$ integers starting from the least significant digit (LSD) to the most significant digit (MSD). The algorithm dates back to a patent in 1887 by Herman Hollerinith on tabulating machines.

• Consider a sequence of $n$ b-bit integers: $x = x_{b-1}...x_1x_0$

• For a set of binary numbers, we represent each element as a b-tuple of integers in the range $[0,1]$ and apply radix sort with $n=2$.

  • Serial running time: $O(kn^2)$ where $k$ is the number of digits.
  • Parallel running time: $O(kn)/p \sim O(kn)$
Radix Sort Example 1

1001 → 0010 → 1001 → 1001 → 0001
0010 → 1110 → 1001 → 1001 → 0010
1101 → 1001 → 0001 → 1101 → 1101
0001 → 1110 → 1110 → 1110 → 1110
Radix Sort Example 2
Radix Sort Parallel Implementation

• Two approaches:
  • 1) Bucket sort each of the keys.
  • 2) Rank sort each of the keys.
Review

• Odd-Even Transposition Sort
• Merge Sort
• Bitonic Sort
• Rank Sort
• Bucket Sort
• Radix Sort