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Single molecule experiments that can track individual trajectories of biomolecular processes provide a
challenge for understanding how these stochastic trajectories relate to the global energy landscape. Using
trajectories from a native structure based simulation, we use order parameters that accurately distin-
guish between protein folding mechanisms that involve a simple, single set of pathways versus a complex
one with multiple sets of competing pathways. We show how the folding dynamics can be analyzed with
replica correlation functions in a way that is compatible with single molecule experiments.

� 2009 Elsevier B.V. All rights reserved.
It is now well established that proteins fold via an ensemble of
states in which the energy landscape is globally funneled or direc-
ted towards a structurally well-defined native state [1–4]. At the
level of individual trajectories of protein folding, one can envisage
multiple pathways from the denatured ensemble descending down
a funneled energy landscape until they join up as they approach
the native state. For proteins in the laboratory the nature of the
discrete trajectories of protein molecules and the degree of similar-
ity of one path of approach to another as the molecule goes to the
folded state is still an open question.

Extraordinary progress has been made in the past few years in
the development of experimental methods sensitive enough to
study the dynamical properties of single molecules [5]. It is now
possible to follow, in part, the trajectories of individual molecules
to track the dynamical time-dependence of features of their con-
formation in space [6–9]. The random sequence of events during
transitions of the folding of proteins and other biomolecules at
the individual molecular level, intrinsically gives stochastic data.
As such, statistical physics tools are needed to quantify the path-
ways traversed in a set of individual trajectories and map the sta-
tistical properties of such single molecule data to the topography of
the energy landscape [10].

In this Letter, we demonstrate that statistical physical tools can
richly quantify, in principle, the pathways from a collection of tra-
jectories. Specifically, using trajectories from simulations of pro-
teins from perfectly funneled energy landscapes, we show that
appropriately computed replica correlation functions can diagnose
whether folding occurs largely via a single set of pathways or
whether several distinct sets of competing routes to the native
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state actually coexist. This is the first application of replica correla-
tion functions to a concrete problem after their introduction in the
context of protein folding in Ref. [11].

Ordinarily, partially folded protein conformations in simula-
tions are characterized with the help of appropriately chosen
order parameters measuring the similarity to the final native
structure. On the other hand, replica order parameters measure
the similarity between the different routes taken to the final
product. To define such a quantity a measure in phase space is
required to quantify how similar two microscopically distinct
configurations are to each other. For proteins and random
polymers, the overlap function between two conformations is a
useful object because it correlates with pair interaction energies.
The overlap between conformation i and j is then an explicit func-
tion qij ¼ UðfrðiÞg; frðjÞgÞ of the atomic coordinates frðiÞg and frðjÞg.
On a somewhat coarse-grained scale, an appropriate choice for
the function U is the fraction of contacts between specific resi-
dues in the macromolecule which occur in both configurations.
When one of the configurations is the native state (with atomic
coordinates frðf Þg) then Qi ¼ UðfrðiÞg; frðf ÞgÞ is simply the fraction
of native-like tertiary contacts of conformation i.

This global quantity qij determines the overall shape similarity,
but would be difficult to directly measure. Experimentally, the cor-
responding pair specific quantity is accessible by means of fluores-
cence quenching studies. If residue m contains an energy donor
that can be excited, while residue n has a chromophore to act as
an energy acceptor, then the time-dependence of the mn contact
can be experimentally resolved. If this contact is made in configu-
ration i and in configuration j of another trajectory then qij

mn – 0.
The global overlap is then given by the sum over all possible con-
tacts, i.e., qij ¼

P
m;nqij

mn.
With this reaction coordinate the replica correlation function

between two paths a and b (which both fold into the native state)
can be defined as [11]
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Fig. 1. Protein folding with multiple sets of pathways. (Left) A ribbon diagram is shown of 1N0Q with clouds representing the folded ensemble of the pathway where the c-
terminal (top) or n-terminal (bottom) folds first. (Right) A free energy profile is projected to the fraction of native contacts of the n-terminal [Q(n-term)] and the c-terminal
[Q(c-term)] with two example trajectories overlaid.
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qabðtp1; tp2; tl1; tl2Þ
¼ Uðfra

i ; tl1g; frb
i ; tl2gÞhðNa � NtÞ

�
�hðNb � NtÞjaðtp1 þ tl1Þjbðtp2 þ tl2Þ

E
; ð1Þ

where h. . .i denotes an ensemble average, hðxÞ is Heaviside’s func-
tion, tp and tl are the preparation times (i.e., the time elapsed before
the observation is started) and lookback time, respectively, Nt is the
value of the reaction coordinate at the transition state, and jaðtÞ and
jbðtÞ are the (normalized) flux in trajectory a and b into the product
state at time t. Generally, special care is required in choosing the
adequate reaction coordinate and associated transition state. How-
ever, for the purpose of this study it is sufficient to simply choose
the transition state in such a way that once the system leaves the
transition state (in direction of the product) it is committed to react
[19,20]. Quantities similar to these replica correlation functions
have been studied in the theory of disordered systems such as
glasses and spin glasses [12–16].

The replica correlation provides a measure of how similar two
trajectories are to each other at all times. However, to compare tra-
jectories, one has to take into account that different trajectories
traversing the same route might spend different amounts of time
in the vicinity of a given region in phase space such as, e.g., the
transition state. Even if the two trajectories lead to the folded state
via the same intermediate conformations, the sequence of events
takes different amounts of time. The Laplace-transform provides
a natural means of comparing trajectories of different duration,
and we use it here to quantify the similarity of our molecular tra-
jectories. This general analysis reveals, in particular, the near equi-
librium behavior (for s! 0) and fast motions ðs!1Þ.

The simulation data were obtained from a Ca native topology-
based model, which is described in detail in Ref. [17]. Briefly, a sin-
gle bead centered on the Ca position represents a residue and bond
and angle potentials string together the beads to their neighbors
along the protein chain. The dihedral potential encodes the second-
ary structures. The protein’s native topology defines the network of
favorable long-range tertiary interactions, while all other non-
bonded interactions are repulsive.

The network of native contact pairs was determined using the
CSU (Contacts of Structural Units) software [18]. Multiple trajecto-
ries with numerous unfolding/folding transitions were collected
and analyzed using the weighted histogram analysis method
(WHAM) to calculate the free energy surface projected onto the
fraction of native contacts Q (defined as in Ref. [19]). The folding
temperature ðTf Þ was identified as the peak of a specific heat ver-
sus temperature profile.

To analyze the transitions between the unfolded and folded
states, we performed multiple constant temperature simulations
ðT ¼ Tf Þ of the src-SH3 protein and the designed ankyrin repeat
protein (PDB Codes: 1SRL and 1N0Q, respectively). Each constant
temperature trajectory consists of multiple transitions between
the unfolded and folded ensembles. The trajectories were then
combined to calculate the free energy profiles with respect to Q
(see Fig. 1 as an example for 1N0Q).

From long trajectories, we extracted for further analysis only
those portions where the transitions between the unfolded and
folded states occurred. The unfolded and folded states were chosen
as the values of Q at which the free energy is 1kBT above the appro-
priate free energy minimum. The Q values that demarcate the un-
folded and folded ensembles for 1SRL are 0.26 and 0.81,
respectively, while for 1N0Q the values are 0.15 and 0.81. Three
hundred and ninety-nine trajectories for 1SRL which went through
40790 different conformations and 126 trajectories for 1N0Q with
51570 different conformations were used for analysis.

Previous studies indicate that 1SRL predominantly folds via a
single correlated route, while 1N0Q, clearly possesses distinct sets
of competing folding pathways [19]. One clear difference between
these systems is the distribution of the folding times (i.e., number
of steps required to reach the folded state for the first time starting
from the unfolded one). These are shown in Fig. 2. While the distri-
bution for 1SRL is unimodal, the one for 1N0Q is wide and skewed,
consistent with two peaks (as expected for 1N0Q which has at least
two different folding pathways with different folding times).

A protein with several distinct sets of folding pathways should
encounter a more diverse ensemble of conformations along its
folding trajectory. To see this, we have discretized the set of folding
trajectories and analyzed the distribution of qij (defined as in Ref.
[19]) for all states i and j which have a given Q (and thus a given
similarity with the folded state) for different Q . In doing so, we pro-
jected all of the conformations onto N ¼ 30 different states where
state i (with 1 6 i 6 30) represents all microscopic conformations
having Q between ði� 1Þ/N and i=N. A complete folding trajectory
is a sequence of microscopic conformations frðtÞg, but in this dis-
cretization scheme it becomes a sequence fqðtÞg of integers. A
coarse-grained folding pathway is a sequence of transitions be-
tween the N ¼ 30 different discrete states starting at the unfolded
state ðqðt ¼ 0Þ ¼ 1Þ and ending in the native state ðqðt ¼ tf Þ ¼ NÞ.
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Fig. 3. The distribution of q as function of Q . Data shown are for bins of width 0.02
(continuously interpolated) centered around Q = 0.19, 0.28, 0.41, 0.44 for 1SRL (top)
and for 1N0Q (bottom). For 1N0Q the distribution starts to be bimodal around
Q ¼ 0:24 (data not shown). For Q > 0:44 the distribution becomes unimodal. The q-
distribution of 1SRL is unimodal for all 0:26 < Q < 0:81.
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Fig. 2. Histogram of folding times for 1SRL (top) and 1N0Q (bottom).
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The comparison of all NQ conformations having a given Q re-
quires � N2

Q numerical operations. We therefore restricted the
analysis to a subset of the 1N0Q trajectories. Fig. 3 shows the dis-
tribution of q for four different Q values for all 399 1SRL trajecto-
ries and 34 randomly picked 1N0Q trajectories (out of the total
126 trajectories). Generally, we find that the distribution of q is
unimodal for 1SRL for all Q , indicating that the conformations of
the folding pathways are very similar. For 1N0Q however, the dis-
tribution of relative q is distinctly bimodal for the range
0:24 6 Q 6 0:44.

To check how folding times influence the q-distribution, we can
partition the folding trajectories into slow, medium, and fast fold-
ing pathways2. As shown in Fig. 4, for the fast trajectories the bimo-
dality is more pronounced at smaller QðQ ’ 0:28Þ, while for slower
trajectories the q-distribution becomes bimodal only at larger
QðQ ’ 0:44Þ. All of the 1SRL trajectories (slow, fast and medium)
are unimodal (data not shown).

The bimodality of the q-distribution implies that the two sub-
sets of the protein conformations have very few common struc-
tural features. In the context of protein folding, the key event
leading to the bifurcation into the two subsets occurs upon reach-
ing the transition state ensemble. Thus, in Fig. 3 those conforma-
tions that have reached the transition state have large structural
differences from those that have not yet reached the transition
state, leading to the small q-values. The unimodal distribution for
1SRL and the bimodal distribution for 1N0Q agree with our expec-
2 For 1N0Q (1SRL), fast trajectories find the folded states within 330 steps (100
steps) and slow ones need more than 660 steps (200 steps).
tations from their distinct pathways patterns. For 1N0Q, the fast
and slow trajectories take different routes in configuration space.
For the fast trajectories the transition state is reached for small
QðQ ’ 0:28Þ, while the slow trajectories reach the transition state
only for larger QðQ ’ 0:44Þ. Thus, the transition state is reached by
conformations with significant structural differences implying that
(at least) two different transition states exist that lead to different
folding times.

As in the earlier analysis of pathways on random landscapes, we
analyze the Laplace-transform of the replica correlation function
[11]. The numerically calculated Laplace-transform qab of Eq. (1)
is shown in Fig. 5 as function of the single Laplace variable s asso-
ciated with the lookback time (for tl1 ¼ tl2). The Laplace variables
sp1 and sp2 associated with the preparation times can be set to zero
since our trajectories are well equilibrated. As shown in Fig. 5, for
small sð0 < s < 1Þqab decays algebraically for both 1SRL and 1N0Q.
For larger s > 1; qabðsÞ decays exponentially (data not shown) as
one expects for a set of data with discrete time steps (with the
dominant contribution coming from the correlations between
nearly denaturated states). Note, qabðsÞ is generally larger for
1SRL than for 1N0Q reflecting the fact that the conformations
encountered during folding are generally more similar for 1SRL
than for 1N0Q.

This characteristic s-dependence reflects the full dynamics of
the folding transition (from the transition state ensemble to the
native state). To illustrate this connection we now consider a sim-
ple protein folding model that describes the folding transition as a
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330 steps, slow ones need more the 660 steps. As one sees the q-distribution is
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simple sequence of reactions between well-separated states. More
specifically, we generalize the model introduced in Ref. [11] to a
system with two different ensembles of transition states. The
states of the reactant ensemble XD reach the transition states with
energy Ei;a of ensemble aða ¼ 1;2Þ with rates kd;a, the reverse reac-
tion has a rate k0;aebEi;a , while the transition from ensemble a to the
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Fig. 5. The Laplace-transform of the replica correlation function qabðsÞ for 1N0Q
(solid black) and 1SRL (dashed red) as determined numerically from the simulation
data (time unit = 1 simulation step). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
folded state occurs with rate jF;a. Interconversion between the
states of ensemble a occurs with rate x0;a=X

y
aebEi;a , where Xya is

the number of states in ensemble a.
The occupation probabilities PD (of the reactant states) and Pl;a

(of transition state l of ensemble a) can be explicitly calculated

ePDðsÞ sþ
X

a
Xyakd;a

 !
¼
X

a
k0;afi;a; ð2Þ

X
l

ePl;a ¼ Zyakd;a
ePDðsÞ þ

1
sþxi;a

þ Zyax0;a

Xya
fi;a; ð3Þ

where the Laplace-transformed quantities are denoted by ~P. Fur-
thermore,with ~s ¼ sþ jF;a

fi;a ¼
kd;a

ePDðXya � Zya~sÞ þ 1� ~s=ðsþxi;aÞ
~sZyax0;a=X

y
a þ k0;a

; ð4Þ

xi;a ¼ jF;a þ ðk0;a þx0;aÞebEi;a ; ð5Þ

ZyaðsÞ ¼
X

i

1
sþxi;a

: ð6Þ

The Laplace-transformed replica correlation function becomes

qabðsÞ ¼
X

a

X
i

j2
F;a

X
k

eP ðiÞk;aðslÞePeq
i;aðspÞ

 !2

; ð7Þ

where eP ðiÞk;aðslÞ is the (Laplace-transformed) occupation of state k in
transition state ensemble a assuming that at tl ¼ 0 only state i is
populated and ePeq

i;aðspÞ is the occupation of state i of transition state
ensemble a assuming that at tp ¼ 0 only the reactant ensemble is
populated.

If the internal relaxation in the transition state ensembles can
be neglected (x0;a ¼ 0), then (in leading order)

qabðsÞ �
X

a

X
i

1

ðsþxi;aÞ2
; ð8Þ

while for a system with forward reaction only ðk0;a ¼ 0Þ

qabðsÞ �
X

a

Xa

ðsþ jF;aÞ2
: ð9Þ

With the last 2 formulas, it is not possible to fit the numerical
data of Fig. 5, which decays as qab � s�2:5 (data not shown). In
Eqs. (8) and (9) the decay of qab with s is too slow and reasonable
fits require that either xi;a < 0 or jF;a < 0 (data not shown). The
characteristic s-dependence of qab can only be explained if higher
order corrections are taken into account in Eq. (8).

The data can be interpreted more directly by taking the dynam-
ics of the folding transition explicitly into account. For this pur-
pose, it is sufficient to describe the folding transition as a 1-
dimensional diffusion process in a potential. To keep the analysis
analytically tractable we focus here on a linear potential.

Here, the transition state is assumed to be at x ¼ 0, the folded
state at xf > 0 (which is in accordance with our above choice of
the transition state). In the presence of a linear potential VðxÞ the
probability distribution Pðx; tÞ obeys the Fokker–Planck equation

@tPðx; tÞ ¼
D

kBT
@xðV 0ðxÞPðx; tÞÞ þ D@2

x Pðx; tÞ; ð10Þ

where V 0ðxÞ ¼ @xVðxÞ ¼ �kBT=a. Upon Laplace-transforming Pðx; tÞ
one has for the initial condition Pðx; 0Þ ¼ dðx� x0Þ for xf > x0 P 0

sPðx; sÞ � DP00ðx; sÞ þ D
a

P0ðx; sÞ ¼ dðx� x0Þ: ð11Þ

One can easily show that this equation has the solution

PGðx; x0Þ ¼ �
Z 1

�s
dk

s
ak

f ðkþ sÞe�f ðkþsÞðxþx0Þ=2a; ð12Þ
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where f ðkþ sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s2ðsþ kÞ

p
and s ¼ a2=D. With

qabðsÞ �
R1

0 dx0P2
Gðxf ; x0Þ, one then obtains in leading order for the

replica correlation function

qabðsÞ �
~s�2

s2 þ C
~s�3

s3 ð13Þ

with a constant C and ~s ¼ sxf =a. The fit in Fig. 5 corresponds to
~s�1 ¼ 0:13 (1N0Q) and ~s�1 ¼ 0:11 (1SRL), which in turn corresponds
to energy differences DF ’ 7:7kBT and DF ’ 8:9kBT between the
transition state and the folded state. For 1N0Q this compares well
with DF ’ 7kBT from the simulations, while for 1SRL the estimate
for the barrier is off by a factor of 2 (simulations: DF ’ 4kBT). This
implies that the description of the folding dynamics as diffusion
in a linear potential works better for 1N0Q than for 1SRL.

In this study, we have sought to demonstrate how static and dy-
namic replica correction functions can be used to analyze single
molecule experiments. These tools allow one to characterize quan-
titatively how large the accessed phase space is during a complex
reaction. The s-dependence of the Laplace-transformed replica cor-
relation function qðsÞ provides information about the multiplicity
of routes taken to the folded state.
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