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ABSTRACT
Understanding protein and RNA biomolecular folding and
assembly processes have important applications because mis-
folding is associated with diseases like Alzheimer’s and Parkin-
son’s. However, simulating biologically relevant biomolecules
on timescales that correspond to biological functions is an
extraordinary challenge due to bottlenecks that are mainly
involved in force calculations. We briefly review the molec-
ular dynamics (MD) algorithm and highlight the main bot-
tlenecks, which involve the calculation of the forces that in-
teract between its substituent particles. We then present
new GPU-specific performance optimization techniques for
MD simulations, including 1) a parallel Verlet Neighbor List
algorithm that is readily implemented using the CUDPP li-
brary and 2) a bitwise shift type compression algorithm that
decreases data transfer with GPUs. We also evaluate the
single vs. double precision implementation of our MD sim-
ulation code using well-established biophysical metrics, and
we observe negligible differences. The GPU performance
optimizations are applied to coarse-grained MD simulations
of the ribosome, a protein-RNA molecular machine for pro-
tein synthesis composed of 10,219 residues and nucleotides.
We observe a size-dependent speedup of 30x of the GPU-
optimized MD simulation code on a single GPU over the
single core CPU-optimized approach for the full 70s ribo-
some when all optimizations are taken into account.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and En-
gineering—Chemistry, Physics
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1. INTRODUCTION
Biomolecules interact and assemble to form molecular ma-

chines that carry out biological functions in the cell. Molec-
ular dynamic (MD) simulations of these processes provide
molecular-resolution clues to the solutions to the biomolec-
ular folding problems that have important applications be-
cause misfolding results in aberrant aggregation events that
are widely associated with devastating conditions such as
Alzheimer’s and Parkinson’s diseases and prion disorders
[4]. As such, MD simulations are now indispensible tools
in biophysics because long time-scale trajectories of biologi-
cally relevant biomolecular system can directly describe how
these biomolecules perform their function. Considerable ef-
fort has been made in attaining a global understanding of
the self-organization principles that determine protein and
RNA folding mechanisms, resulting in breakthroughs in ex-
periments [7], theory [21], and computations [20]. However,
one of the major reasons why the challenge still remains is
because of the computational demands of performing simu-
lations of biologically relevant proteins and RNA molecules
on timescales that can be directly compared with experi-
ments.

In MD simulations, the potential energy function, which
determines how the biomolecule is represented, is evaluated
as a function of the coordinates of its individual substituent
particles (e.g., atoms, residues/nucleotides, etc.) [1]. These
particles are connected through short-range bonding inter-
actions, and they are analogous to vertices (particles) and
edges (bonds) from graph theory. The derivatives of the po-
tential energies is numerically calculated to obtain the forces,
which are in turn used to solve Newton’s equations of mo-
tion, thereby moving the biomolecules in consecutive time
steps to result in a ”movie”trajectory of how the biomolecules
moves in time.

However, simulating the folding of biologically relevant
protein and RNA on timescales that can be directly com-
pared with experiments remains an extraordinary challenge.
Protein and RNA biomolecular experiments show that their
folding time-scales are on the order of 10-1,000 μsecs [7],
which is rapid given the inherent complexity of biomolec-
ular folding processes [21]. The major bottleneck for sim-
ulating these processes is the force evaluation involved in
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these complex systems, specifically the long-range interac-
tions that must be computed for each pair of interacting
particles, and they constitute over 90% of the MD simula-
tion computations. However, there exist several methods
for reducing the computational requirement without signifi-
cantly sacrificing accuracy, such as the Verlet Neighbor List
algorithm [19, 1].

To increase the timescales, some researchers use coarse-
grained simulations that still accurately capture folding and
binding mechanisms of biologically relevant protein and RNA
biomolecules [6, 10, 5] . For these classes of simulations,
groups of atoms are represented as a bead or a group of
beads such that the degrees of freedom that are considered to
be negligible in the overall folding mechanism are excluded.
The description of the biomolecule is effectively simplified
while still retaining accuracy so that these simulations be-
come more feasible to compute.

Another significant direction that has already achieved
successes is the use of graphics processing unit (GPU) hard-
ware, which readily lends itself to a high degree of paral-
lelization and very fast floating point calculations [18]. The
CUDA programming language allows general-purpose appli-
cations, enabling a wide range of scientific computing groups
to implement their code using GPUs and significantly im-
proving performance over the traditional CPU-optimized ap-
proach. For MD simulations, the forces between each pair
of independent interactions are computed in parallel.

In our present study, we introduce a GPU-optimized al-
gorithm for calculating neighbor lists using only parallel
operations, thereby eliminating the need to transfer data
between the CPU and GPU to update the neighbor list.
This algorithm is especially well-suited for implementation
on GPUs because each of these operations involved in the
algorithm are already optimized and available in the open
source CUDA Data Parallel Primitives (CUDPP) Library
[9]. We also discuss non-trivial, but straightforward, GPU-
specific performance optimization techniques for MD simu-
lations.

2. BACKGROUND

2.1 Coarse-Grained MD Simulations
The basic idea of an MD simulation is to track the po-

sitions of N particles that interact with one another over
a span of time. The particles or groups of particles are
usually represented as spherical beads, and there could be
many types of interactions, depending on the complexity
of the system representation. In the simplest representa-
tion of biomolecules, each particle i is connected by springs
to form ”bonds” via harmonic interactions to particle i − 1
and i + 1 (except for the first and last particle), resulting
in a linear chain that is characteristic of protein and RNA
biomolecules. Each particle i also interacts with all other
particles j through non-bonded interactions, and those in-
teractions are typically represented as the classical Lennard-
Jones interaction that consists of attractive interactions and
repulsive interactions that determine the spherical interac-
tion of the particles. These sets of interactions that define
the biomolecule are used to solve Newton’s equations of mo-
tions to predict the positions and velocities of each particle
over a collection of snapshots over a period of time, resulting
in a ”movie” trajectory.

The time spent computing the interactions, particularly

the Lennard-Jones interactions between all possible pairs,
scales with O(N2). As such, it is necessary to coarse-grain
the representation of biomolecules to perform MD simula-
tions of biologically relevant-sized systems for long timescales.
One such approach is the Self-Organized Polymer (SOP)
model MD simulation approach, where each residue or nu-
cleotide is represented by a single bead that is centered on
the Cα or C2’ position of proteins or RNA, respectively, and
effectively reducing N, the number of simulated particles [11,
12]. Recent studies have demonstrated that MD simulations
of biomolecules using the SOP model reproduces experimen-
tally measured mechanical properties of biomolecules with
remarkable accuracy [8, 22]

In the SOP model, the energy that describes the biomolecule,
and hence dictates how it moves in time, is as follows:
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The first term is the finite extensible nonlinear elastic
(FENE) potential that connects each bead to its successive
bead in a linear chain. The parameters are: k = 20kcal/(mol·
2), R0 = 0.2nm, r0

i,i+1 is the distance between neighboring
beads in the folded structure, and ri,i+1 is the actual dis-
tance between neighboring beads at a given time t.

The second term, a soft-sphere angle (SSA) potential, is
applied to all pairs of beads i and i + 2 to ensure that the
chains do not cross.

The third term is the Lennard-Jones potential, which is
used to stabilize the folded structure. For each bead pair i
and j, such that |i−j| > 2, a native pair is defined as having

a distance less than 8Å in the folded structure. If beads i
and j are a native pair, Δi,j = 1, otherwise Δi,j = 0. The
r0

i,j term is the actual distance between native pairs at a
given time t.

The fourth term is a repulsive term between all pairs of
beads that are non-native, and σ is chosen to be 3.8Å de-
pending on whether the pair involves protein-protein, RNA-
RNA, or protein-RNA interactions.

Since the equations of motion cannot be integrated analyt-
ically, many algorithms have been developed to numerically
integrate the equations of motion by discretizing time Δt
and applying a finite difference integration scheme. In our
study, we use the well-known Langevin equation for a gen-
eralized MD simulation such that �F = m�a = −ζ�v + Fc + Γ
where Fc = − ∂V

∂r
is the conformational force that is the neg-

ative gradient of the potential energy V with respect to r. ζ
is the friction coefficient and Γ is the random force. The role
of the random force is to mimic the effect of solvent interact-
ing with the biomolecule, and its computation is dependent
on a suitable random number generator (see below).

When the Langevin equation is numerically integrated us-
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ing the velocity form of the Verlet algorithm, the position

of a bead r(t) + v(t)Δt + �F (t)Δt2

2m
where m is the mass of a

bead.
Similarly, the velocity after Δt is given by
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The MD simulation program first starts with an initial
set of coordinates (r) and a random set of velocities (v).
The above algorithm is repeated until a certain number of
timesteps is completed, the ending the simulation.

2.2 Verlet Neighbor List Algorithm
The evaluation of the Lennard-Jones forces can be further

simplified by noting that according to Newton’s Third Law,
the interaction between particle i and j are identical to the
interaction between j and i, reducing the problem to a still
challenging N(N+1)/2 steps. More significantly, when the
particles are far away from each other, the interaction is
negligible and effectively zero. Therefore, a cutoff radius
can be introduced into the computation of the interactions
that determines whether it is computed or not.

In the Verlet Neighbor List algorithm (Fig. 1), instead of
calculating the interactions between every possible pair of
interactions, a subset neighbor list is constructed with par-
ticles within a ”skin” layer radius, rl. This list is updated ev-
ery n timesteps, and only whose interactions between beads
less the cutoff radius, rc, are computed. These computed
interactions are members of a further subset pair list. The
values of rc and rl are chosen as 2.5σ and 3.2σ, respectively,
as was done in Verlet’s seminal paper, where σ is the ra-
dius of the interacting particle. With the Verlet Neighbor
List algorithm, the computations of the interactions become
O(Nr3c) ∼ O(N), which becomes far more computationally
tractable [19].

3. GPU PERFORMANCE OPTIMIZATIONS
OF COARSE-GRAINED MD SIMULATIONS

Recently, several studies developed and demonstrated that
GPU-optimized MD simulations, including the empirical force
field MD simulation software NAMD [17] and the general
purpose particle dynamics simulation software suites HOOMD
[2] and LAMMPS [13], can significantly increase the perfor-
mance. Briefly, modern GPU architectures consist of high-
throughput many-core processors that are capable of fast,
parallel floating point operations. These characteristics are
ideal for MD simulations because the major bottleneck of
their algorithms is computing the forces between indepen-
dently interacting particles. The GPU cards are placed on
the motherboard of a computer so that it can directly com-
municate with the CPU and thereby send and receive data
via a PCI Express slot, a relatively slow process.

For NVIDIA GPU cards, one can develop software for
GPUs using the CUDA programming language, which is es-
sentially the C/C++ programming language with library
calls to transfer information to the GPU and perform float-
ing point calculations in parallel. In the CUDA program-
ming model, an application consists of a sequential ”host”

program that executes commands on the CPU as it is tradi-
tionally done with programs. When a computationally ex-
pensive portion of the program that would benefit from the
GPU is reached, the host transfers the relevant information
to the GPU and executes ”kernels” that perform the same
identical instruction in parallel [15]. The major performance
bottleneck in this paradigm is the transfer of information to
the GPU, which may not be worthwhile if the speedup on
the GPU is not significant. Also, most commercially avail-
able GPUs have a finite RAM memory (1.5-6 GB) (Table
1), limiting the size of a system one can simulate on a single
GPU. For these reasons, trivial GPU optimization strate-
gies include 1) not precompute values (as it typically done
in CPU programs), 2) use the smallest data types possible,
and 3) move all relevant data to the GPU at the beginning
of the program and keep it there for as long as possible.

To perform coarse-grained MD simulations on GPUs, we
developed a basic coarse-grained MD simulation code in
the CUDA programming language. The simple SOP model
is an ideal starting point for the development of more so-
phisticated simulation software. The main focus in the de-
velopment of our GPU-optimized code was to 1) minimize
computations without significantly affecting the accuracy of
the simulations and 2) reduce the memory transfer between
the CPU and GPU that would degrade the overall perfor-
mance of the simulation. In the following sections, we dis-
cuss the non-trivial, yet still straightforward strategies for
GPU-optimized coarse-grained MD simulations.

Figure 1: An overview of the differences in the tra-
ditional sequential Verlet Neighbor List algorithm
and our GPU-optimized Parallel Neighbor List al-
gorithm. (A) Schematic of the Verlet Neighbor List
algorithm. Only the forces for pairs of interacting
particles within the pair list are computed because
all other interactions are considered to have negli-
gible interactions. (B) In the CPU-optimized algo-
rithm each entry in the Master List must be read se-
rially and copied to an iteration-dependent location
in the Neighbor List. (C) Using the GPU-optimized
algorithm, the Master list can be sorted and scanned
in parallel using CUDPP, producing an equivalent
Neighbor List in a shorter amount of time.
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Table 1: CPU and GPU Hardware Profiles
CPU/GPU Type i7-950 480GTX 580GTX C2070
# processors 4 480 512 448
clock speed 3.06 GHz 1.40 GHz 1.54 GHz 1.15 GHz
memory 16GB 1.5 GB 1.5 GB 6GB
memory bandwidth 25.6 GB/s 117.4 GB/s 192.4 GB/s 144 GB/s

FLOPS 1.35 x 1012 1.58 x 1012 1.03 x 1012

3.1 Parallel Verlet Neighbor List Algorithm
Though many portions of the original CPU-optimized code

are readily parallelizable, a seemingly notable exception is
Verlet Neighbor List algorithm. Recall that the Verlet Neigh-
bor List algorithm in its original form creates a subset neigh-
bor list and a further subset pair list (Fig. 1A). Although
computing whether each interaction is a member of a neigh-
bor list or pair list can be performed in parallel, the cre-
ation of each subset list that is smaller than the original
list is inherently a sequential operation (Fig. 1B). Further
complicating the issue is that the neighbor list is updated
once every ten thousand time steps, which is a relatively
low frequency, but the pair list must be updated at every
time step. Also, large amounts of data must be copied from
the GPU to the host before the neighbor list or pair list is
calculated, and the data representing the neighbor list or
pair list must be copied from the host to the GPU once
the serial calculation has taken place. The combined per-
formance drawbacks of performing serial calculations on the
CPU and transferring the large amounts of memory create a
significant performance bottleneck that would benefit from
parallelization.

In our implementation of the original Verlet Neighbor List
algorithm (Fig. 1B), the algorithm first searches through an
array of all of the interactions between pairs of beads in the
system, which we called the ”Master List” and determines
which interactions have beads that are within the layer cutoff
distance, rl. An array of equal length to the Master List
called the Member List is updated as the Master List is
iterated through. When the two beads in an interaction
represented by an entry in the Master List are found to
be within rl, the corresponding entry in the corresponding
”Member List” is set to ”true”. Alternatively, if the beads
within an interaction in the Master List are not within rl,
the corresponding entry in the Member List is set to ”false”.
The calculations performed for each entry of the Master List
are done independently, so this portion of the algorithm is
easily parallelizable.

The second portion of the neighbor list algorithm is more
complex and does not lend itself to parallelization. The
Member List is iterated through serially and when an entry
at position i is found to be ”true”, the i-th entry of the
Master List is copied to the Neighbor List. The index in
the Neighbor List array that the Master List entry will be
copied to is determined by how many previous entries have
been added the the Neighbor List. For example, if j entries
have already been added to the Neighbor List when the i-th
entry of the Member List is found to be ”true”, the i-th entry
of the Master List will then be copied to the j+1-st entry of
the Neighbor List. The pseudocode for this process is listed
below:

j = 0;

for(i = 0; i < num_NL; i++)

if(Member_List[i] = TRUE)

Neighbor_List[j] = Master_List[i];

j++;

If the action taken by each iteration of the for-loop was
independent of the others, each action could be assigned to
its own independent, parallel process. However, since the
value of the j variable could possibly vary at each iteration,
it is unknown which location of the Neighbor List the true
values of the Master List could be copied to without cal-
culating each of the previous values. It is therefore clear
that this particular implementation of the Verlet Neighbor
List algorithm cannot be parallelized since the location of
the copy that takes place in each iteration of the for-loop is
dependent on the results of each of the previous iterations.

To parallelize the Verlet Neighbor List algorithm to run on
a GPU, a new approach was taken by utilizing the key-value
sort and parallel scan functionalities of the CUDA Data Par-
allel Primitives Library (CUDPP) (Fig. 1C). This approach
calculates a neighbor list that is equivalent to the one cal-
culated by the serial Verlet Neighbor List algorithm and
accomplishes this entirely on the GPU, circumventing the
need to transfer data between the CPU and GPU and per-
form serial calculations on the CPU.

The first step of this parallel method is to perform a key-
value sort on the data, using the Member List as the keys
and the Master List as the values. Since the Member List
needs to only hold a value of ”true” or ”false”, these values
can be represented with a zero or one. Sorting these values in
numerical order will simply arrange them in such a way that
the ”true” values are moved to the top of the Member List
and the ”false” values are moved to the bottom of the list.
The associated values of the Master List will be moved in an
identical fashion, meaning that the entries of the Master List
that are part of the Neighbor List will occupy the first entries
in the list and can be copied directly to the Neighbor List in
parallel. Although the entries that need to be copied to the
Neighbor List are guaranteed to be at the top of the Master
List after the key-value sort takes place, the exact number
of entries that need to be copied to the Neighbor List will
still need to be determined. Fortunately, the parallel scan
algorithm implemented by CUDPP can quickly sum up the
values in an array in parallel. Since the values present in
the Member List consist of only zeros and ones, a parallel
scan will produce the total number of ”true” values present
in the array, indicating how many entries of the Master List
will need to be copied to the Neighbor List.

Using the parallel key-value sort and scan functionalities
of CUDPP therefore produces a Neighbor List that is equiv-
alent to the one created by the serial CPU algorithm without
requiring the GPU to pause while the data is transferred to
and from the CPU and serial calculations are performed on
the CPU. Our algorithm eliminates a very significant perfor-
mance bottleneck and allows the program to perform much
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more efficiently. Note that each operation is performed in
parallel, and they can be implemented completely on the
GPU. Also, the sorting and scan algorithms are performed
in place in the array so that no new data structures have
to be constructed, minimizing the memory footprint that
would degrade the performance of the algorithm on a GPU.

3.2 Type Compression
The most straightforward approach to cut down on the

amount of data that is transferred between the host and de-
vice, thereby minimizing latency, is to use the smallest data
types possible. When using integral data types, the mini-
mum size of each variable is dictated by the maximum value
that it could be required to hold in a simulation. For exam-
ple, if eight bits were allocated to assign a unique number
to each bead in a simulation, there would be a maximum of
28-1 = 255 beads that could be used in a simulation. Using
smaller data types therefore limits the size of the structure
that can be simulated, but in practice this does not create
any problems so long as reasonable sizes are chosen. Data
types in C/C++, CUDA and most other programming lan-
guages come in only a limited number of sizes, however, so it
is entirely possible that when trying to find an optimal size
for a data type given a maximum structure size, the maxi-
mum values given by the built-in data types may be either
too small to store the information necessary, or much larger
than necessary, leading to wasted space in the form of bits
that will never be used.

As an illustration, we give an example in our develop-
ment that optimally introduces type compression to mini-
mize memory transfer latency. While optimizing the CUDA
SOP MD simulation code, one variable that had its size
reduced was the variable that identified which beads were
being represented in an interaction that was stored in the
neighbor list and pair list. In a 70s ribosome, a total of
10,219 bead are present, so the variable used to represent
one of these beads must be able to represent at least 10,219
different values. Using a 13-bit variable would give a to-
tal of 213-1 = 8,191 total representable beads, which would
not allow for enough unique values. Using a 14-bit vari-
able, on the other hand, would allow 214-1 = 16,383 total
representable beads, which is more than enough, but there
are no 14-bit data types in CUDA or C/C++. The ushort
(unsigned short integer) data type occupies 16 bits of mem-
ory, which is enough to represent 216-1 = 65,535 different
values. This is more than would be necessary for the 70s
ribosome, but leaves 2 bits that will always be unused. Still,
using the ushort data type instead of the 32-bit int data type
would reduces the amount of time taken while transferring
information and the amount of space needed to store that
information by half.

In addition to the variable identifying each bead in a
neighbor list or pair list entry, a different variable is used
to represent whether the interaction type is protein-protein,
protein-RNA, RNA-protein, or RNA-RNA. Since there are a
total of four different types of interactions, no more than two
bits would be necessary to represent these values. The small-
est data type in CUDA and C/C++ is the uchar (unsigned
character) which is an 8-bit value capable of representing 28-
1 = 255 different values. Though this is more than enough
unique values, a total of six bits will always be unused, lead-
ing to a large waste of storage space and memory transfer
time.

Since the identifying number for a bead in the 70s ribo-
some could be represented by using 14 bits and the type of
interaction could be represented by using only 2 bits, these
two variables could be combined into a single 16-bit ushort
value to completely eliminate the wasted space when using
a ushort and uchar to represent each of them individually.
This reduces a total memory requirement for each entry from
24 bits to 16 bits, leading to a 33% reduction in memory re-
quirements and latency.

The values were combined into a single data type by using
the two highest-order bits in the 16-bit ushort to store the
type of the interaction and the fourteen low-order bits to
store the identifying number of the bead. These values are
combined by setting the ushort value to be equal to the
value of the interaction type left shifted by 14 bits and using
a bitwise OR operation to set the low-order fourteen bits
to the identifier. Once these values are stored in a ushort
variable, they can be retrieved very easily. To find the type
of the interaction that is stored in the variable, the value
is simply right shifted by 14 bits. Alternatively, to find the
identifying number stored in the variable, a bitwise AND
operation is performed to set the two highest-order bits to
zero, leaving the fourteen lowest-order bits unchanged.

3.3 GPU-Optimized MD Simulations Perfor-
mance

We next benchmarked the performances of the CPU- and
GPU-optimized codes as a function of system size by sim-
ulating systems ranging from the tRNAphe molecule (76
beads) to the full 70s ribosome (10,219 beads) (Fig. 2,3) for
1,000,000 timesteps. The ribosome is an ideal model system
for benchmarking because even though it is relatively large,
it can be readily discomposed into smaller subunits. We
used the experimentally known structure of the ribosome
[16] as a basis for constructing a SOP-Model representation
for CPU- and GPU-optimized MD simulations.

To quantify the performance difference between the CPU-
and GPU-optimized codes performed on a single CPU core/GPU
card desktop, we measure the speedup factor, S(p) = TCPU/TGPU ,
where T is the execution time for the calculation of the
CPU- or GPU-optimized code for each of the systems we
studied. Of course, one can unfairly inflate the S(p) by
simply running inferior CPU-optimized code. However, we
stress that the CPU- and GPU-optimized codes are opti-
mized for their respective architecture. For example, the
CPU-optimized code takes advantage of precomputing val-
ues to hold in memory so that the values would not have
to be recomputed. On the other hand, since the memory
transfer is a major bottleneck, it is simply faster to keep re-
computing values at the GPU rather than transferring them
to the GPU.

To evaluate our CPU- and GPU-optimized MD simula-
tions, we began by implementing them on different types of
GPUs, namely the NVIDIA 480GTX, 580 GTX, and C2070
(Fig. 2A). All three GPUs types we tested are based on
the Fermi architecture, and they mainly differ in the pro-
cessor speed, memory size, and number of computational
cores (i.e., processors). A particularly significant limitation
of GPUs is the relatively small amount of memory avail-
able to it. On the 480GTX and 580GTX, the memory is
limited to 1.5 GB and the C2070 has a capacity of 6GB,
which are all considerably smaller than most modern CPU
architectures (Table 1). However, through significant mem-
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ory optimizations, even the full 70s ribosome was able to
fit into a single GPU in our GPU-optimized MD simulation
code. Therefore, its performance became a function of the
processor speed and number of processors (Fig. 2A).

Figure 2: System size (N) dependent performance
improvements of GPU-optimized SOP MD simu-
lations benchmarked versus CPU-optimized imple-
mentation on a single CPU core/GPU card desktop.
(A) GPU-optimized code with traditional neigh-
bor list algorithm and various models of GPUs,
(B) GPU-optimized code with additional CURAND
random number generator, (C) GPU-optimized
with GPU-optimized neighbor list algorithm.

Interestingly, for systems that are very small (< ∼100
beads), the GPU-optimized SOP model program is actually
slower than the CPU-optimized one, presumably because
the computational speedup benefit of the GPU is less than
the cost of the the memory transfer, a major bottleneck for
GPUs. Therefore, even if there is a speedup in the floating-
point operations, the memory transfer latency becomes the
rate-limiting step. However, for larger sized systems, there
is a marked speedup using the GPU-optimized program over
the CPU-optimized program. Indeed, the full 70s ribosome
with 10,219 residues/nucleotides is ∼30x faster than the

CPU-optimized code, and the exact speedup is clearly de-
pendent on the number of particles in the system of study.

We next evaluated the difference between using a CPU-
optimized random number generator [14] and the NVIDIA
CURAND library for the computing of the random force
term in our Langevin dynamics integrator. We observe a
doubling of the speedup across all of the ribosome subunits
we simulated for benchmarking (Fig. 2B).

Finally, we benchmarked our simulations using three dif-
ferent variants of the neighbor list algorithm on the GPU
(Fig. 2C). When we computed the neighbor list on the
CPU, we observed a modest speedup that leveled off. For
simulations using the original neighbor list algorithm where
the subset neighbor lists are generated on the GPU, there
exists an N-dependent speedup with ∼14x speedup for the
full 70s ribosome. However, for simulations using our GPU-
optimized algorithm, the N-dependent speedup results in
∼30x speedup for the 70s ribosome.

Figure 3: SOP Model MD simulation performance
benchmarks with GPU-optimized neighbor list al-
gorithm + CURAND on 580 GTX. The dotted line
indicates that the GPU vs. CPU speedup is 1 (i.e.,
same execution time). The speedup is clearly N-
dependent, which is ∼30x for the full 70s ribosome.
Note that the tRNAphe MD simulation execution
time on the GPU-optimized code is slower than on
the CPU-optimized code.

3.4 Floating Point Arithmetic and CUDA
When writing a program to run on a GPU, the mathemat-

ical operations that are performed will be done in an envi-
ronment that is much different from that of the CPU, which
requires programmers to ensure that operations produce ac-
curate results. Though the current generation of NVIDIA
GPUs are IEEE 754 compliant with both single and dou-
ble precision floating point numbers, previous generations
of hardware were not. The features that are supported by a
GPU can be determined by its Compute Capability version,
consisting of both a major and a minor revision number.
GPUs that are Compute Capability 1.2 or lower do not sup-
port IEEE 754 double precision numbers and are not fully
IEEE 754 compliant with some single precision floating point
operations. However, Compute Capability 1.3 brought the
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Table 2: Size-dependent execution times (in seconds) for 1 million timesteps of CPU/GPU floating point
precision implementations of MD simulations

tRNAphe 16s 30s 50s 70s
Number of Beads 76 1,530 3,883 6,336 10,219

GPU Single 292.45 389.31 641.89 1,191.87 2,204.87
GPU Double 292.45 411.94 737.73 1,409.57 2,647.22
CPU Single 142.90 5,293.94 13,827.40 32,209.40 66,009.10
CPU Double 137.16 4,959.63 12,619.10 29,975.30 61,249.80

introduction of IEEE 754-compliant double precision sup-
port, but did not improve the single precision support of
Compute Capability 1.2 and lower devices. Full IEEE 754
support with both single and double precision was intro-
duced in Compute Capability 2.0 devices and has been im-
plemented in all devices since these were introduced.

Even though the current generation of CUDA capable
GPUs support IEEE 754 floating point arithmetic, a pro-
gram written for a CUDA GPU will often produce results
that differ from the ones generated by the CPU in an equiv-
alent calculation. It is also likely that numerical results
produced by one GPU program run will be different than
those of the same program during a different run. In a
single-threaded CPU program, the order in which the differ-
ent operations will take place are well-defined, which result
in identical output after every run. In any multi-threaded
architecture such as GPUs, there exist multiple orders in
which the operations can be performed. In GPUs, if differ-
ent blocks perform calculations on overlapping portions of
data, the order of those operations will therefore be unde-
fined and can lead to slightly different results across multiple
runs. This will often lead to differences between the results
of a CPU-optimized calculation and a GPU-optimized one
under certain circumstances.

Figure 4: Difference between trajectories for (A,B)
small and (C,D) large systems using the end-to-end
distance, Δre−e, and radius of gyration, ΔRg

3.5 Biophysical Metrics to Evaluate Single vs.
Double Precision: Negligible Differences
and No Appreciable Energy Drift

To evaluate the floating point precision calculations of our

MD simulation code, we used multiple metrics that are com-
monly used in biomolecular folding experiments to compare
single- and double-precision based MD simulation trajecto-
ries. The end-to-end distance, re−e, and radius of gyra-
tion Rg are readily measured for biomolecules in FRET and
SAXS experiments, respectively. The differences of these
metrics for each frame in a trajectory that corresponds to
structures can evaluate the differences between the two tra-
jectories. We observe larger differences for smaller sized
systems, but the overall difference between the single- and
double-precision based trajectories are minimal in our view,
at least at the resolution of the biophysical metrics we used
(Fig. 4).

Figure 5: The energy over the course of a repre-
sentative 100 million time steps of MD simulation
trajectory. The total energy of the system, as well
as the energies of the constituent terms of the SOP
model, is demonstrated to have negligible changes
over the course of the trajectory.

We also compared the energies associated with a single-
and double- precision MD simulations. Some researchers
using older generation GPUs observed an “energy drift” in
their calculations using single precision numbers where the
energy of the system slowly increased[3]. This is significant
because the simulations were performed for an isolated sys-
tem such that there should be no energy entering or escaping
the system (i.e., the total energy should be nearly constant).
This concept is known as “detailed balance,” and it is a fun-
damental law in physics. In our simulations, we observe no
appreciable energy drift over a long trajectory, even when
using single-precision MD simulations (Fig. 5).
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4. CONCLUSIONS
We developed a GPU-optimized coarse-grained MD simu-

lation software, and we evaluated various performance strate-
gies that are specific to the GPU implementation. We bench-
mark the performance of our code by evaluating the speedup
versus a CPU-optimized implementation using various sub-
units of the ribosome over a range of different sizes. We ob-
serve an N-dependent speedup for the range of biologically
relevant systems we studied. By maximizing the computa-
tions performed on the GPU, we noted the greatest speedup
in our performance. In particular, a GPU-optimized Paral-
lel Verlet Neighbor List algorithm we implemented by taking
advantage of readily available CUDPP libraries resulted in
a speedup of about 30x for the full 70s ribosome, a system
with 10,219 residues/nucleotides. The algorithm is general
for all MD simulations.

Furthermore, the speedup increases monotonically over
the range of the systems we studied, but it should be noted
that since there is finite memory in the GPUs, a physical
RAM memory limit will be reached when the system is large
enough, and a multi-GPU approach would be necessary to
perform the simulation. However, such an implementation
would not be expected to continuously increase the perfor-
mance with system size because of the performance costs of
communication between the GPUs.
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