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Abstract—How biomolecules fold and assemble into well-
defined structures that correspond to cellular functions is
a fundamental problem in biophysics with direct biomedical
application because some functions lead to diseases such as
Alzheimer’s, Parkinson’s, and cancer. Molecular dynamics (MD)
simulations provide a molecular-resolution physical description
of the folding and assembly processes, but the computational
demands of the algorithms restrict the size and the timescales
one can simulate. In a recent study, we introduced a parallel
neighbor list algorithm that was specifically optimized for MD
simulations on GPUs. We now analyze the performance of our
MD simulation code that incorporates the algorithm, and we
observe that the force calculations and the evaluation of the
neighbor list and pair lists constitutes a majority of the overall
execution time. The overall speedup of the GPU-optimized MD
simulations as compared to the CPU-optimized version is N-
dependent and ∼30x for the full 70s ribosome (10,219 beads). The
pair and neighbor list evaluations have performance speedups of
∼25x and ∼55x, respectively. We then make direct comparisons
with the performance of our MD simulation code with that of
the SOP model implemented in the simulation code of HOOMD,
a leading general particle dynamics simulation package that is
specifically optimized for GPUs.

I. INTRODUCTION

Understanding how biomolecules carry our their functions

have direct medical applications because some functions are

deleterious, such as the telomerase enzyme that promotes

cancer, and misfolding events are widely accepted to lead

to diseases such as Alzheimer’s and Parkinson’s. A powerful

computational tool for studying bimolecular folding and as-

sembly mechanisms is molecular dynamics (MD) simulations,

which allows the study of atomic and molecular systems,

usually represented as spherical beads. Although the MD sim-

ulation protocol is relatively straightforward, it is computation-

ally demanding because the long-range interactions scales as

O(N2) because each pair of independent interactions between

beads i and j is considered. To reduce the computational

demands of the long-range interactions, neighbor list and cell

list algorithms consider only interactions that are close in

distance, and these approaches scales as O(Nr3c ), where rc
is a distance cutoff.

Fig. 1. MD simulations of biomolecular systems on GPUs. (A) A schematic
of the processing flow of CPUs and GPUs. In a single-core processor, a single
thread sequentially executes commands while GPUs have many threads that
executes commands in parallel. (B) A cartoon of two typical proteins with the
native interactions between residues shown. Each interaction can be computed
independently in MD simulations, which makes GPUs ideal architectures for
implementation of MD simulation algorithms.

Recently, several studies developed and demonstrated that

GPU-optimized MD simulations, including the empirical force

field MD simulation software NAMD [9] and AMBER [3]

and the general purpose particle dynamics simulation software

suites HOOMD [1] and LAMMPS [8], can significantly in-

crease performance. MD simulations lend themselves readily

to GPUs because many independent processor cores can be

used to calculate the independent set of forces acting between

the beads in a MD simulation.

We implement a GPU-optimized parallel Verlet neighbor

list algorithm, and we analyze its performance. We first

compare the GPU-optimized MD simulation performance to

a CPU-optimized implementation of the same MD simulation

approach. We then evaluate the performances of the individual
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components of the MD simulation algorithm to isolate the

major bottlenecks that still remain. We then make direct

comparisons to the HOOMD MD simulation software by

comparing the performances the full SOP model implemented

in our in-house simulation code and in HOOMD.

II. SELF-ORGANIZED POLYMER (SOP) MODEL

COARSE-GRAINED MD SIMULATIONS

There are a wide range of levels of precision that can

be used depending on the desired degree of accuracy. Due

to the computational demands of detailed representations of

biomolecules, some researchers use coarse-grained simulations

that still accurately capture folding and binding mechanisms

of biologically relevant protein and RNA biomolecules. In the

SOP model, a coarse-grained approach that has been demon-

strated to reproduce experiments remarkably well [5], [7], [11],

[4], the energy potential that describes the biomolecule, and

hence dictates how it moves in time, is as follows:
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The first term is the finite extensible nonlinear elastic

(FENE) potential that connects each bead to its successive

bead in a linear chain. The parameters are: k = 20kcal/(mol ·
Å2), R0 = 0.2nm, r0i,i+1 is the distance between neighboring

beads in the folded structure, and ri,i+1 is the actual distance

between neighboring beads at a given time t.
The second term, a soft-sphere angle potential, is applied

to all pairs of beads i and i + 2 to ensure that the chains do

not cross.
The third term is the Lennard-Jones potential, which is

used to stabilize the folded structure. For each protein-protein,

protein-RNA, or RNA-RNA bead pair i and j, such that

|i − j| > 2, a native pair is defined as having a distance less

than 14Å 11Å or 8Å respectively, in the folded structure. If

beads i and j are a native pair, Δi,j = 1, otherwise Δi,j = 0.

The r0i,j term is the actual distance between native pairs at a

given time t.
The fourth term is a repulsive term between all pairs of

beads that are non-native, and σ is chosen to be 7.0Å , 5.4Å , or

3.8Å depending on whether the pair involves protein-protein,

protein-RNA, or RNA-RNA interactions, respectively.
The overall goal of the coarse-graining MD approach is to

increase the timescales of the simulations so that conforma-

tion sampling is enhanced while still retaining the essential

Fig. 2. Schematic of the type compression optimization for representing
the indices and types of the interacting beads. (A) A total of 48 bits are
required when using two 16-bit ushorts and two 8-bit uchars to represent two
interaction indices and two interaction types. A total of 16 bits will always
be unused. The bits that will be used in the compressed type is highlighted
in red. (B) Only 32 bits are required when using a single 32-bit ushort2 to
represent two interaction indices and two interaction types. Note that there
are no unused bits when simulating the 70s ribosome (10,219 beads).

chemical details that capture the physics of the biomolecular

folding and assembly processes. It is important to note that the

interactions in the van der Waals energies (and thus forces)

scales as O(N2), which can be avoided using a truncation

scheme such as a neighbor list algorithm, which we describe

below.

III. MD SIMULATION OPTIMIZATIONS FOR GPUS

A. Type Compression

One of the major bottlenecks of MD simulations on GPUs

is the transfer of information between the CPU and the GPU.

A trivial approach to minimize memory transfer is to use

the smallest data types possible. For integer data types, the

minimum size of each variable one can choose is determined

by the maximum value that it is expected to hold. For example,

if 8 bits were allocated to assign indices for each bead in

an MD simulation, the maximum number of beads in the

simulation would be 28 = 256. While the minimizing data

types limits the size of the system one can simulate, the benefit

is the lower latency that results in faster performance.

One limit to this approach is that the available built-in sizes

of data types in C/C++, CUDA, and most other programming

languages are limited and fixed. Therefore, it is possible, and

indeed likely, that the optimal sized data type for a simulation

may be either too small to store the necessary information or

larger than necessary, leading to wasted space in the form of

bits that will never be used and slow down performance.

In our implementation of the SOP model MD simulation

code, we used arrays of indices for the beads involved in a

native or non-native Lennard-Jones interactions. The largest

biomolecule we studied was the 70s ribosome, which is

represented by 10,219 beads. The minimum number of bits

required to represent the indices of the beads, n, is �log2(n)�,
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which for the 70s ribosome is �log2(10, 219)� = 14. Using

14 bits allows a maximum of 214 = 16, 384 beads to be

represented in this way.

Unfortunately, there are no 14-bit data types in CUDA or

C/C++. The next largest available data type, ushort (unsigned

short integer), occupies 16 bits of memory, which is enough

to represent 216 = 65, 536 different values. Not only is this

significantly more than necessary, two bits will remain unused

(Fig. 2A).

The weight and minimum energy distance of interaction

between the beads is determined by whether the bead repre-

sents an amino acid or nucleic acid of a protein or RNA,

respectively. There are a total of three different types of

interactions, namely the protein-protein, protein-RNA, and

RNA-RNA interactions, meaning that no more than 2 bits

would be necessary to represent these three types. The smallest

available integral data type in C/C++ and CUDA is the uchar

(unsigned character), which is an 8-bit data type capable of

representing 28 = 256 different values. If we used uchar

to represent the three different interaction types, 6 bits will

always be unused, leading to a waste of storage space and

increase in memory transfer time (Fig. 2A).

Since the indices for the beads in the 70s ribosome could be

represented by using 14 bits and the type of interaction could

be represented by using only 2 bits, we developed an approach

to combine these two variables into a single 16-bit ushort value

to completely eliminate the wasted space when using a ushort

and a uchar to represent each of them individually [6],. The

total memory requirement for each entry is reduced 33%, and

the number of read and write operations is reduced by half

because only one data type will be transferred instead of two.

In each interaction there are a total of two different beads

that must be stored, so two ushort values will need to be stored.

CUDA provides an implementation of a ushort2 data type,

which is essentially two 16-bit ushort values combined into a

32-bit data type. The ushort2 data type can be thought of a

two dimensional vector with an x and y component. Using a

ushort2 instead of two ushort values takes up the same amount

of memory, but can reduce the number of memory reads

required to transfer data from main memory to thread-level

memory, depending on access patterns. These components can

be accessed in order to extract either of the two ushort values

stored in the ushort2.

We combined the interaction index and interaction type into

a single x or y component of a ushort2 by using the 2 highest-

order bits of one of the 16-bit ushort2 components to store the

type of the interaction and the 14 low-order bits to store the

identifying number of the bead (Fig. 2B). These values are

combined by setting the component’s value to be equal to the

value of the interaction type left shifted by 14 bits and using

a bitwise OR operation to set the low-order fourteen bits to

the identifying bead number. Once these values are stored in a

ushort2 component, they can be retrieved very easily. To find

the type of the interaction that is stored in the component, the

value is simply right shifted by 14 bits. Alternatively, to find

the identifying number stored in the variable, a bitwise AND

//The 2-bit type value and the 14-bit index value are
//combined into a single 16-bit value by left shifting
//the type value and then ORing the results with the
//14-bit index value.
#define COMBINE(type, idx) ((type << 14) | idx)

//The type of interaction stored in a type compressed
//value can be retrieved by right shifting the value
//by 14 bits
#define GET_TYPE(combined) ((combined) >> 14)

//The index of an interaction stored in a type compressed
//value can be retrieved by ANDing the value with 0x3FFF
//(equivalent to the binary value 0011 1111 1111 1111),
//which sets the two high-order bits to 0
//while leaving the 14 low-order bits unchanged.
#define GET_IDX(combined) ((combined) & 0x3FFF)

Fig. 3. Type compression and decompression code in C

Fig. 4. Original Verlet neighbor list algorithm (A) In the Verlet neighbor list
algorithm, out of a master list of all pairs of possible interactions, a neighbor
list is constructed of interactions within a ”skin” layer radius (rl) distance
cutoff. The neighbor list is updated every n timesteps from which a pair list
is constructed of interactions within a cutoff radius (rc) distance cutoff. At
every timestep, the forces are evaluated only for the members of the pair list.
(B) The structure of tRNAphe is shown with blue lines indicating members
of the pair list (left) and all possible interaction pairs (right).

operation is performed to set the 2 highest-order bits to zero,

leaving the 14 lowest-order bits unchanged (Fig. 3).
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Fig. 5. Sequential and parallel Verlet neighbor list algorithms. (A) A schematic of the original Verlet neighbor list algorithm that involves an inferentially
sequential implementation. (B) A parallel neighbor list algorithm that is specifically optimized for GPUs that involves only parallel operations.

B. Parallel Neighbor List Algorithm

The calculation of long range interactions such as the

Lennard-Jones or electrostatic forces can be comprise about

90% of the calculations in a typical MD simulation because

it is evaluated between pairs of all particles in the systems i
and j, resulting in an algorithm that scales O(N2). However,

when the particles are sufficiently far apart from each other,

the interaction force between them is effectively zero. Noting

this, the Verlet neighbor list algorithm [10] first calculates the

distance between each pair and constructs a subset neighbor

list of particle pairs whose distances is within a ”skin” layer

radius, rl. The neighbor list is updated every n time steps,

and only the interactions between pairs of particles within a

distance cutoff radius, rc, are computed, resulting in a further

subset pair list (Fig. 4). Verlet’s original paper [10] chose 2.5σ
and 3.2σ for rc and rl, respectively, where σ is the radius of

the interacting particles. The resulting algorithm then scales

O(Nr3c ) ∼ O(N).
However, the algorithm used to calculate the neighbor and

pair lists in the Verlet neighbor list algorithm cannot be

modified to run in parallel, at least in the form originally

introduced by Verlet [10]. In that algorithm, computing a

subset list is inherently sequential (Fig. 5). It can be computed

on the GPU, but a single GPU core is very slow. Alternatively

it could be computed on the CPU, but the resulting list must

be transferred back to the GPU, a major bottleneck as we

described above. We therefore developed an algorithm that

involves only parallel operations so that it can be implemented

entirely on the GPU [6] .

In the parallel neighbor list algorithm, we take advantage

of the highly optimized GPU library functions in CUDA Data

Parallel Primitives Library (CUDPP), namely the key-value

sort and parallel scan operations. The first step is to perform a

key-value sort on the data using the Member List as keys and

the Master List as the values. Those interactions represented in

the Master List are evaluated to be within the distance cutoff

and the Member List holds values of ”true” or ”false” and

represented with a zero or one. A sorting of these values in

numerical order will place the ”true” values at the top of the

Member List and the ”false” values at the bottom. The next

step would be to copy only those interactions that are within

the distance cutoff to the Neighbor List in parallel, but one

must first know how many interactions to copy. We therefore

perform he parallel scan operation to produce the total number

of ”true” interactions and then copy only those interactions to

the Neighbor List.

Overall, the parallel neighbor list algorithm results in a

neighbor list that is equivalent to the one created by the

original Verlet neighbor list algorithm, and it only consists

of parallel operations that can be performed entirely on the

GPU without transfer of information to and from the CPU

that would degrade the performance.

IV. RESULTS AND DISCUSSION

A. Performance Speedup of GPU-Optimized SOP Model MD
Simulations is N-Dependent

We implemented the parallel neighbor list algorithm in a

SOP Model GPU-optimized MD simulation code and com-

pared it to an equivalent CPU-optimized SOP Model MD

simulation code with the Verlet neighbor list algoirthm. We

then performed 1 million timesteps of MD simulations for

biomolecular systems of varying size. The biomolecular sys-

tems include a tRNAphe (76 beads), 16s ribosome (1530

beads), 30s ribosome (3,883 beads), 50s ribosome (6,336

beads), and 70s ribosome (10,219 beads). To evaluate the con-

tributions of the individual components of the MD simulation

execution, we calculated the execution times for the force

evaluation, neighbor and pair list evaluations of the parallel

neighbor list algorithm, the position and velocity updates, and

general logging and I/O (Fig. 6A). The force and the neighbor

and pair list evaluations of the parallel neighbor list algorithm

accounts for almost the entire overall execution time of the

MD simulations in all cases.

We then compared the N-dependent performance of the

GPU-optimized versus the CPU-optimized MD simulations to

calculate the overall difference between the two approaches.

We observe an N-dependent speedup in which the smallest

system we studied, the tRNAphe, is actually slower on the
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Fig. 6. Relative execution times and speedup of different components of
the SOP model MD simulations with the parallel neighbor list algorithm. (A)
The percentages of the execution times are shown for different components of
the GPU-optimized MD simulations for the biologically relevant systems we
simulated. (B) The speedup of the different components of the GPU-optimized
MD simulations are shown for the same biologically relevant systems as
compared to the equivalent single-core CPU-optimized MD simulations.

GPU, presumably because any gain in the speedup of the

calculations on the GPU does not overcome the time it takes to

transfer of information to the GPU. In the full 70s ribosome,

however, we observe a ∼30x speedup in the GPU-optimized

MD simulations as compared to the CPU-optimized version.

Furthermore, the Pair List and Neighbor List performances

speedups were ∼25x and ∼55x, respectively (Fig. 6B). Inter-

estingly, the speedup of the calculations of the new positions

was ∼145x (Fig. 6B), but it contributes very little to the overall

speedup because it represents a small portion of the overall

execution time (Fig. 6A).

B. Performance Comparison with HOOMD

To benchmark the performance of the parallel neighbor list

algorithm, we compared the performance of our simulation

code with that of HOOMD. HOOMD is a widely used general

purpose particle dynamics simulation software suite that is

implemented on GPUs. Its versatile and flexible code consists

of many different types of potentials that include the harmonic

bond and angle and Lennard-Jones potentials. As such, the

SOP model can be largely implemented on HOOMD. The

energy potential of the SOP model as we implemented in the

HOOMD simulation code is as follows:
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The first and second terms are the short-range harmonic

bond and angle potentials The parameters are: k = 20kcal/mol

and r0i,i+1 and θ0i,i+1,i+2 is the distance and angle between

neighboring beads in the folded structure, and ri,i+1 and

θ0i,i+1,i+2 are the actual distance and angle between neighbor-

ing beads at a given time t, respectively. While these terms

are explicitly different, they serve the same purpose as the

original SOP model we implemented in our MD simulation

code. Furthermore, we expect qualitatively identical simulation

results.

The third and fourth terms are the Lennard-Jones inter-

actions that are identically implemented. As such, the per-

formance scales O(N). The HOOMD code is designed to

accommodate the Lennard-Jones interactions of a homoge-

neous and heterogeneous particle systems of different types

of particles with different r0i,j . We note, however, that the

implementation of the Lennard-Jones interactions requires a

different type for each interaction pair because the r0i,j is

different for each native interaction pair, and the memory

storage scales as O(N2). The HOOMD code was not designed

to handle this many different ”types” of interactions, and the

current release version of the code limits the number of types

so that the parameters fit in shared memory. We therefore

explicitly removed the limit so that the GPU hardware memory

will instead determine the limit on the number of types.

We implemented the SOP model into HOOMD and com-

pared our simulation code to that of HOOMD. For the neigh-

bor list algorithm, we ensured that the number of particles

were approximately the same by comparing the average num-

ber of particles in the neighbor list for each particle in both our

MD simulation code and in HOOMD. We chose this measure

for comparison because the HOOMD code already performed

this calculation, however, we do not anticipate significant
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Fig. 7. Execution times comparisons with HOOMD. (A) Comparison of
execution times of the SOP Model implemented in our MD simulation code as
compared to the SOP model implemented in HOOMD for system sizes up to
∼1,000 beads, which was the maximum hardware limit on the NVIDIA Tesla
C2070. (B) The same comparison for systems sizes up to ∼10,000 beads,
which is the maximum hard limit for our simulation code on the NVIDIA
Tesla C2070.

differences in our conclusions with other reasonable measures.

Since the original HOOMD code has a limit on the number of

different types of interactions, we trivially modified the code

to remove this software limit. However, there also exists a

hardware limit in that the memory available to the GPU is

finite. In the NVIDIA C2070 we used for our simulations,

that limit is 6 GB of memory.

For systems less than ∼400 beads, HOOMD has a lower

execution time than our MD simulation code (Fig. 7A). How-

ever, for larger systems up to ∼1,000 beads, our simulation

code execution time is markedly less. After that point, the

HOOMD code can no longer execute the simulations due to

memory limits. However, our simulation code is able to handle

larger systems because of the type compression and other

optimization techniques we used to reduce memory transfer

bottlenecks, and we again observe N-dependent execution

times up to ∼10,000 beads (Fig. 7B).

V. CONCLUSION

We analyzed the performance of a SOP model MD sim-

ulation code with a parallel neighbor list algorithm on the

GPU. We observe that the force evaluation and the neighbor

list calculations comprises of the largest percentage of the

overall execution times. When compared to an equivalent

CPU-optimized SOP model MD simulations on a single core,

we observe an N-dependent speedup in which the smallest

systems are actually slower on the GPU but the largest

system (10,219 beads) we studied is 30x faster. The pair

and neighbor list calculations of the parallel neighbor list

algorithm calculations were observed to have speedups of

25x and 55x, respectively. We next implemented the SOP

model algorithm into HOOMD, a widely used leading general

particle dynamics simulation software suite, to benchmark the

performance of our simulation code. Since HOOMD is was

not originally intended to be optimized for the SOP model

algorithm, our results would be expected to favor our MD

simulation code. We observe an N-dependent execution times

in which HOOMD performs the simulations faster for smaller

systems (∼400 beads), but our simulation code is faster for

larger systems up to ∼1,000 beads, which is the limit of what

can be performed on a NVIDIA Tesla C2070 due to hardware

memory constraints. However, our present simulation code can

accommodate systems of ∼10,000 beads.
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