
GPU-Optimized Hybrid Neighbor/Cell List Algorithm for
Coarse-Grained MD Simulations of Protein and RNA

Folding and Assembly

Andrew J. Proctor
Wake Forest University

Department of Computer
Science

1834 Wake Forest Road
Winston-Salem, NC 27109
procta06@gmail.com

Cody A. Stevens
Wake Forest University

Department of Computer
Science

1834 Wake Forest Road
Winston-Salem, NC 27109
stevca9@gmail.com

Samuel S. Cho
Wake Forest University

Departments of Physics and
Computer Science

1834 Wake Forest Road
Winston-Salem, NC 27109

choss@wfu.edu

ABSTRACT
Molecular dynamics (MD) simulations provide a molecular-
resolution view of biomolecular folding and assembly pro-
cesses, but the computational demands of the underlying
algorithms limit the lenth- and time-scales of the simula-
tions one can perform. Recently, graphics processing units
(GPUs), specialized devices that were originally designed
for rendering images, have been repurposed for high perfor-
mance computing, and there have been significant increases
in the performances of parallel algorithms such as the ones
in MD simulations. Previously, we implemented a GPU-
optimized parallel neighbor list algorithm for our coarse-
grained MD simulations, and we observed an N -dependent
speed-up (or speed-down) compared to a CPU-optimized al-
gorithm, where N is the number of interacting beads rep-
resenting amino acids or nucleotides for proteins or RNAs,
respectively. We had demonstrated that for MD simulations
of the 70s ribosome (N=10,219), our GPU-optimized code
was about 30x as fast as a CPU-optimized version. In our
present study, we implement a hybrid neighbor/cell list algo-
rithm that borrows components from the well-known neigh-
bor list and the cell-list algorithms. We observe about 10%
speedup as compared to our previous implementation of a
GPU-optimized parallel neighbor list algorithm.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and En-
gineering—Chemistry, Physics

General Terms
Algorithms, Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM-BCB’13 September 22-25, 2013, Washington, DC, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords
Verlet neighbor list, cell-list, performance analyses

1. INTRODUCTION
Molecular dynamics (MD) simulations are well established

computational tools [1] that can characterize how biomolecules
such as proteins and RNA assemble into well-defined config-
urations to perform its biological function [12, 6]. They can
also be indispensible tools for studying when the assembly
process results in misfolded states that correspond to protein
aggregation diseases [10]. Although MD simulations have a
long history of providing accurate, molecular-resolution de-
scriptions of complex systems, the underlying algorithms are
limited by the demanding computations required. It remains
a challenge to develop and implement scalable algorithms
that decrease the inherent computational demands of MD
simulations.

In general, there are two sets of limitations of MD simula-
tions, and they are problems of length-scale and time-scale
such that there are limits on the size of the system and the
amount of time one can perform these simulations. Ideally,
one would use a detailed description of the biomolecule, and
this can be accomplished using quantum mechanical calcu-
lations. However, one must include a description of all of the
electrons in the biomolecule, which may actually be irrele-
vant to the problem at hand. Others use empirical force field
MD simulations where classical mechanics is used instead by
approximating biomolecules at an atomistic resolution [16,
4]. Still others use coarse-grained MD simulations where
groups of atoms are approximated as beads [3, 15, 17]. By
using a less detailed description of a biomolecule, we instead
gain the ability to perform MD simulations of larger systems
and on longer timescales.

Once the energy potential function for representing the
biomolecule(s) of interest is determined, one must determine
the rules for moving the biomolecule over time. Briefly, the
MD simulation algorithm is as follows: given a set of initial
positions and velocities, the gradient of the energy is used to
compute the forces acting on each bead, which is then used
to compute a new set of positions and velocities by solving
Newton’s equations of motion (~F = m~a) after a time interval
∆t. The process is repeated until a series of sets of positions
and velocities (snapshots) results in a movie trajectory [1].

The major bottleneck in the MD simulation algorithm is

ACM-BCB 2013 634



the calculation of the forces that correspond to the pair-
wise long-range interactions between interacting beads. A
common approach for minimizing the computations while re-
taining accuracy is to introduce a truncation method. Since
the interactions between distant beads results in negligible
interactions, one can partition the set of possible interac-
tions and only compute those that are proximal to one an-
other. In principle, distant “zero” forces could all be calcu-
lated to maintain perfect accuracy, but they could also be
disregarded without significantly impacting the accuracy of
the MD simulation. Among the different approaches include
the well-known Verlet neighbor list and cell list algorithms
[18, 1].

Since these interactions can be independently computed,
MD simulation algorithms are particularly well-suited for
implementation on graphics processor units (GPUs). As
such, hybrid high performance computing platforms that in-
clude GPU accelerators, in addition to conventional multi-
core CPUs, have become important tools in scientific com-
puting. For example, several studies recently demonstrated
that GPU-optimized MD simulations, including the empiri-
cal force field MD simulation software NAMD [16] and AM-
BER [4] and the general purpose particle dynamics simu-
lation software suites HOOMD [2] and LAMMPS [13], can
significantly increase performance.

MD simulations lend themselves readily to GPUs because
many independent processor cores can be used to calculate
the independent set of forces acting between the beads in
an MD simulation. For NVIDIA GPUs, software is writ-
ten using the CUDA programming language, which allows
programs to be written for execution on the GPU. Included
are operations for data transfer so that floating point op-
erations can be performed on the GPU. Once the data is
there, a “kernel”, the CUDA equivalent of a parallel func-
tion call, executes a set of parallel operations on the data.
The kernel spawns a collection of threads that carry out
the exact same instruction on its own subset of the data.
These threads are extremely lightweight with very little cre-
ation overhead, and they are arranged into a hierarchy of
thread blocks that are concurrently executed by SIMD mul-
tiprocessors [8]. The main bottleneck of a GPU program
is the transfer of information between the CPU and GPU,
and GPU-optimized algorithms must avoid this scenario by
performing as much calculations on the GPU as possible be-
fore sending it back to the CPU. Although recasting the MD
simulation software to the GPU can have significant perfor-
mance gains, these efforts are often nontrivial because they
require recasting traditional algorithms that were originally
optimized for serial operations for parallel architectures or
developing new ones. Therefore, there is a great need for
new parallel, scalable MD simulation algorithms that can
optimally take advantage of the GPU hardware.

In the present study, we begin with an overview of our
coarse-grained MD simulation approach and describe a pre-
viously introduced a GPU-optimized algorithm for a paral-
lel Verlet neighbor list algorithm that could be completely
performed on the GPU using only parallel operations [9].
We had shown that our coarse-grained MD simulation code
with the GPU-optimized parallel Verlet neighbor list algo-
rithm performs comparably or better than a leading GPU-
optimized general particle dynamics simulation software [14].
We then describe a parallel cell list algorithm, and we present
a parallel hybrid neighbor/cell list algorithm that is specifi-

cally optimized for the GPU. Finally, we analyze its perfor-
mance and scalability as compared with the parallel neigh-
bor and cell list algorithms.

2. COARSE-GRAINED MD SIMULATIONS
The most basic physical description of a biomolecule is

a potential energy function that includes the short-range
connectivity of the individual components through a bond
energy term and long-range interactions of the spherical
components through attractive and repulsive energy terms.
More sophisticated descriptions can include electrostatic charge
interactions, solvation interactions, and other interactions.
Regardless, the physical description of biomolecules essen-
tially become spherical nodes that are connected by static
edges that correspond to bonds and dynamic edges that cor-
respond to long-range interactions [12, 6].

A very simple coarse-grained simulation model is the Self
Organized Polymer (SOP) model, where each residue or nu-
cleotide is represented by a single bead that is centered on
the amino acid or nucleotide (at the Cα or C2’ position) for
proteins or RNA, respectively, thereby reducing the total
number of simulated beads [7, 20, 9]. Recent studies have
demonstrated that MD simulation of biomolecules using the
SOP model reproduces experimentally measured mechanical
properties of biomolecules with remarkable accuracy [20, 5].

In the SOP model representation, the potential energy
function that describe biomolecules is as follows:

V (~r) =VFENE + VSSA + V ATTVDW + V REPVDW

=−
N−1∑
i=1

k

2
R2

0 log

[
1−

(
ri,i+1 − r0i,i+1

)2
R2

0

]

+

N−2∑
i=1

εl

(
r0i,i+2

ri,i+2

)6

+

N−3∑
i=1

N∑
j=i+3

εh

[(
r0i,j
ri,j

)12

− 2

(
r0i,j
ri,j

)6
]

∆i,j

+

N−3∑
i=1

N∑
j=i+3

εl

(
σi,j
ri,j

)6

(1−∆i,j)

The first term is the finite extensible nonlinear elastic
(FENE) potential that connects each bead to its succes-

sive bead in a linear chain where k = 20kal/(mol · Å
2
),

R0 = 0.2nm, r0i,i+1 is the distance between neighboring
beads in the folded structure, and ri,i+1 is the actual dis-
tance between neighboring beads at a given time t.

The second term, a soft-sphere angle potential, is applied
to all pairs of beads i and i+2 with separated by the distance
r0i,i+2 in the folded structure to ensure that the chains do not
cross.

The third term is the Lennard-Jones potential that de-
scribes van der Waals native interactions, which is used to
stabilize the folded structure. For each bead pair i and j,
such that |i − j| > 2, a native pair is defined as having a

distance less than 8Å in the folded structure. If beads i and
j are a native pair, ∆i,j = 1, otherwise ∆i,j = 0. The ri,j
term is the actual distance between native pairs at a given
time t, and r0i,j is its distance in the folded structure.

Finally, the fourth term is a Lennard-Jones type repul-
sive term for van der Waals interactions between all pairs of

ACM-BCB 2013 635



Figure 1: Illustration of the serial and parallel Verlet
neighbor list algorithms. (A) In the original Verlet
neighbor list algorithm, two lists are maintained: a
neighbor list of interactions, with distance cutoff, rl,
is updated every N timesteps and a pair list that is a
subset of the neighbor list where the distance cutoff
is rc. Only the interactions between beads in the pair
list are computed. (B) Copying the entries of the
Master List to to the Neighbor List is a sequential
process usually performed by the CPU. (C) A paral-
lel approach to copying the lists is presented. Step
1: Perform key-value sort on GPU using Member
List as keys and Master List as values. This groups
members of Neighbor List places them at the top of
the Master and Member Lists. Step 2: Perform par-
allel scan to count the total number of TRUE values
in Member List, determining how many entries are
in Neighbor List. Step 3: Update Neighbor List by
copying the appropriate entries from the Master list
in parallel.

beads that are non-native, and σi,j , the radius of the inter-

acting beads, is chosen to be 3.8Å, 5.4Å, or 7.0Å depending
on whether the pair involves protein-protein, protein-RNA,
or RNA-RNA interactions, respectively.

The most computationally demanding portion of the SOP
model are the last two terms, which collectively include in-
teractions between all long-range pairs of interactions. Triv-
ially, we can halve the computations of the interactions by
noting that each interaction between i and j is identical
to the interaction between j and i, but the computational
complexity remains the same. A common practice to mini-
mize computations while retaining accuracy is to introduce
a truncation method. Since the interactions between distant
beads results in negligible interactions, one can partition the
set of possible interactions and only compute those that are
proximal to one another. In principle, these “zero” forces
could all be calculated to maintain perfect accuracy, but
they could also be disregarded without significantly impact-
ing the simulation. It is important to note that the interac-
tions in the Lennard-Jones potential scales as O(N2), which
can be avoided using a truncation scheme such as a neighbor
list or cell list algorithms as described below.

3. PARALLEL VERLET NEIGHBOR LIST
ALGORITHM

In the original Verlet neighbor list algorithm, instead of
calculating the force between every possible pair of long-
range interactions, a subset “neighbor list” is constructed
with beads within a“skin”layer radius of rl. The skin layer is
updated every nts timesteps, and the interactions within the
cutoff radius rc are computed at each timestep (Figure 1A).
These interactions become members of the “pair list”, which
holds a subset of all interactions. The values of rc and rl are
chosen as 2.5σ and 3.2σ, respectively as was done in Verlet’s
seminal paper [18]. With the neighbor list algorithm, the
computations of the interactions become O(Nr3c) ≈ O(N),
which becomes far more computationally tractable [18].

The original Verlet neighbor list algorithm is inherently
serial because the generation of a neighbor list necessitates
a serial operation (Figure 1B). From a list of all possible
interactions between pairs of beads i and j, which we call the
“Master List”, a “Member List” is generated by determining
whether a pair of beads are within a distance cutoff. If
so, the subset of pairs of interactions that are within the
distance cutoff are copied to a neighbor (or pair) list array.
Since the first pair is placed at the top, then the second in
the next place, and so forth, this is a sequential operation
that would be optimal for a CPU but not on a GPU, so
its implementation could suffer from a performance penalty
if the data were transferred to the CPU to complete the
operation.

To fully parallelize the algorithm to run on the GPU, Lip-
scomb et al. developed a novel GPU-optimized neighbor
list algorithm that utilizes the key-value sort and parallel
scan functionalities [9] (Figure 1C). The algorithm gener-
ates a neighbor (or pair) list using only parallel operations
on the GPU that is identical to the one generated by the
serial neighbor list and, in turn, avoids the memory transfer
bottleneck of sending information to and from the CPU. In
our MD simulation code, a Master List is used that indexes
each pair of interacting beads i and j. We call a kernel to
compute the distance between every pair of beads i and j
that are each assigned an individual thread and label the in-
teraction as “true” or “false” in the Member List depending
on whether rij < rcut. The interaction list also eliminates
the need for a for-loop on the GPU, and a kernel with n
threads is needed where n is the number of interactions in
the list.

Once the Member List is generated, the first step of this
parallel method is to perform a key-value sort on the data.
A key-value sort involves two arrays of equal length: a keys
array and a values array. Typically the keys are sorted in as-
cending or descending order with the corresponding entries
in the values array (Master List) moving with the sorted
entries in the keys array (Member List). When using the
Member List as keys in the key-sort, the “true” values move
to the top of the list and the “false” values move to the bot-
tom. That is, the entries in the Master List that correspond
to the indices of the interactions move along with their coun-
terparts in the Member List that identifies the interaction as
members of the neighbor (or pair) list. Next, the number of
“true” entries are summed using a parallel scan operation to
determine the number of entries to be copied from the Mas-
ter List to the Neighbor List. Finally, that number is used
to copy the first x entries of the Master List to the Neigh-

ACM-BCB 2013 636



bor List, which can now be done in parallel. This algorithm
clearly takes more steps to perform than the original Verlet
neighbor list algorithm. However, since it can be performed
entirely on the GPU through parallel operations, it avoids
the performance bottleneck of transferring data between the
CPU and GPU. Also, the Verlet neighbor list algorithm had
to be recast into a form that is distinct and optimized for
the GPU architecture.

4. PARALLEL CELL LIST ALGORITHM
Before we discuss our parallel cell list algorithm, we first

review the original cell list algorithm [1]. Unlike the Ver-
let neighbor list algorithm, the cell list algorithm does not
compute the distances between interacting pairs. Rather,
the cell list algorithm works by dividing the the simulation
box into many subdomains or “cells” as shown in Figure 2A.
The beads are sorted into cells based on their x, y, and z
coordinates. On a CPU, the cell list algorithm is typically
implemented using linked lists to keep track of which the
cell that each bead is located. Each cell has its own linked
list and all beads in the cell are added as nodes in the list.
Beads in the same cell and adjacent cells are considered to be
interacting and are marked “true” so that their interactions
are computed. A single cell has eight neighboring cells to
compute in a 2D environment (above, below, left, right, and
one in each diagonal direction), and the algorithm computes
the interaction between pairs of beads in the same cell. In a
3D implementation, there are 26 neighboring cells to check.
In its original form, the cell list algorithm evaluates each
bead at every timestep.

The biggest advantage of the cell list algorithm is not hav-
ing to compute the Euclidean distance between each bead
in the biomolecule. Instead, the cell list algorithm com-
putes its neighbors from adjacent cells through conditional
“if”statements, which is less computationally expensive than
computing the squares of the differences in the x, y, and z
directions in a Euclidian distance calculation. A cell list al-
gorithm can also account for periodic boundary conditions
to wrap the interactions around the simulation box.

As we had seen in the previous section with the recast-
ing of the Verlet neighbor list algorithm for GPUs, the im-
plementation of even well-established MD simulation algo-
rithms on GPUs can be very nontrivial and require rethink-
ing of the problem in the context of the GPU architecture
to take advantage of the parallel architecture while limit-
ing the performance bottlenecks from information transfer
to and from the GPU device. The original cell list algorithm
is typically implemented by organizing beads belonging to a
cell into a linked list structure. While this approach is op-
timal for a CPU based architecture, the memory overhead
associated with the linked list data structure is unlikely to
be optimal for GPUs because of the limited memory and the
performance cost associated with memory transfers.

Even without implementing a linked list data structure,
there are multiple approaches to implement the serial al-
gorithm into an equivalent GPU-optimized parallel version
that exploits the underlying hardware. In one possible ap-
proach on the GPU, each cell chould be associated with a
CUDA thread block and a single thread should be used to
compute the forces for each bead. This approach, similar
to the linked-list approach, takes advantage of the parallel
architecture of the GPUs by distributing the computational
load among the different beads that are interacting indepen-

Figure 2: Illustration of cell list algorithm in 2D.
(A) A 2D simulation box is shown with many beads.
The simulation box is divided into cells with a length
cellLength. The neighboring cells for the bead de-
picted in orange are shown in blue. Only the inter-
actions between beads in the same or neighboring
cells are computed. (B) An example is shown where
two beads are in a simulation box that has been di-
vided up into cells with each dimension length of 10.
The two beads are deemed to have significant inter-
actions if they are located in neighboring cells. The
corresponding example and pseudocode illustrating
how two beads in neighbor cells is determined is
shown on the right. (C) A similar example is shown
using periodic boundary conditions where the inter-
actions are wrapped.

ACM-BCB 2013 637



dently. However, this approach can leave a large number of
threads unused. Unless the simulation system is saturated
with beads, the vast majority of the cell will be empty. For
each cell that is unoccupied, it leaves an entire thread block
idle for the duration of that kernel call. Another potential
approach would be to evaluate the forces by examining each
bead individually. This would require each thread to locate
the cell of the bead, determine the neighboring cells, and
then loop over each bead in each adjacent cell. This method
is also less than ideal because it requires each thread to per-
form several loops and it does not distribute the work to all
the available processors.

Motivated to avoid these pitfalls and to optimally imple-
ment the algorithm on the GPU architecture, we instead
present an alternative parallel cell list algorithm for the
GPU. We evaluate whether pairs of beads are in neighboring
cells by looking at each interaction individually. In our im-
plementation of the cell list algorithm, we allocate n threads,
one for each interaction. Each thread evaluates whether two
beads i and j, are in neighboring cells. Instead of calculat-
ing a global cell id from the x, y, and z coordinates of the
beads and searching for the beasd in neighboring cells, we
compared the beads in each individual direction.

As a pedagogical illustration of the our cell list algorithm,
we refer to Figure 2B, where two beads i and j are compared
in the x and y directions. In this example, we chose a cell
length of 10, but any value that evenly divides the simulation
box is applicable. To determine the cell id in the x direction,
the x coordinate of the bead is integer divided by the cell
length. In Figure 2B, bead i has an x position of 27 and
when divided by the cell length of 10, xi = 2 so it exists
in Cell.x = 2. We performed the same set of operations for
bead j and determine that it lies in Cell.x = 3. Similarly,
both beads i and j exist in Cell.y = 1. After taking the
difference of Cell.x for both beads, an “if” statement checks
if dx is within the range −1 ≥ dx ≥ 1. If the beads were
in the same cell, then dx would equal 0. If dx equals 1 or
-1, the beads are in neighboring cells to the left or right.
Again, a similar scenario would occur for the y direction for
the same reason.

To account for periodic boundary conditions, we want
beads in the first cell and last cell to be recognized as neigh-
bors. In our simulation code, this is done by computing dx
modulo numCells − 1. In Figure 2C, Cell.x 5 and 0 are
neighboring cells under the definition of periodic boundary
conditions. If two beads are in these cells, dx will equal
5 or -5. Computing modulo numCell − 1 would assign dx
a value of 0 thus allowing beads in the first and last cell to
pass through the “if” statement. Beads i and j are compared
in the x, y, and z directions in 3 nested “if” statements. If
they are neighboring in all three directions, they are flagged
as true and are added to the pair list to have their forces
evaluated. This kernel is applied to each entry in the in-
teraction list. A single thread is tasked with executing the
kernel code for each pair of beads i and j and each thread
does so independently and in parallel.

5. PARALLEL HYBRID NEIGHBOR/CELL
LIST ALGORITHM

In the Verlet neighbor list algorithm, the computations re-
quired for calculating the interactions between beads in our
simulations are significantly reduced while maintaining high

Figure 3: Illustration of hybrid neighbor/cell list
algorithm. Combining the concepts of the neigh-
bor and cell list algorithms, a cell list of interacting
beads that are located in adjacent cells is updated
every nup timesteps, and a distance cutoff is rc is
used to compute a subset pair list of interactions
that are computed.

accuracy by instead calculating the distance between them
first to determine whether to compute the interaction using
a distance cutoff. If the two beads are sufficiently far away,
we know that the interaction is effectively zero so the interac-
tion only negligibly contributes to the overall dynamics and
can be ignored. To further improve performance, the Verlet
neighbor list algorithm maintains two lists: 1) a neighbor
list with a larger distance cutoff that is updated every N
timesteps and 2) a pair list with a smaller distance cutoff
with interactions that are a subset of the neighbor list. As
we saw previously, the Verlet neighbor list algorithm was
successfully recast for implementation on the GPU using
only parallel operations.

In the cell list algorithm the relatively expensive distance
calculations in the Verlet neighbor list algorithm, while still
cheaper than calculating the actual interaction, is replaced
by the less expensive conditional operations. By dividing
up the simulation box into cells, the actual distances do
not have to be calculated. As we described in the previous
section, this algorithm can also be recast for GPUs using
only parallel operations. In addition, by chosing appropri-
ate cell lengths, the accuracy of our computations can be
maintained while benefiting from the expected performance
improvements.

It has been shown in previous studies [11, 19] that combin-
ing the Verlet neighbor and cell lists approaches into a hybrid
method can improve performance on a CPU. We then asked
whether it would be possible to take these two approaches
and combine their benefits into a Hybrid Neighbor/Cell List
algorithm for GPUs too. In our approach, we replace the
neighbor list in the Verlet neighbor list algorithm with a

ACM-BCB 2013 638



System Neighbor Cell Hybrid
1ehz (76 beads) 27.22 25.5 27.35
16s (1,530 beads) 42.31 135.46 36.69
30s (3,883 beads) 80.64 735.92 76.40
50s (6,336 beads) 145.54 1787.23 132.18
70s (10,219 beads) 277.35 4766.35 253.74

Table 1: Execution times(s) of the GPU-optimized
neighbor list, cell list, and hybrid neighbor/cell list
algorithms simulated for 100,000 timesteps on the
NVIDIA 480GTX.

cell list of interactions. That is, a cell list of interactions
is generated that is updated every N timesteps, and a sub-
set pair list of interactions within a distance cutoff is used
to determine whether to compute the interaction. Just like
the parallel Verlet neighbor list and cell list algorithms, the
hybrid algorithm can be performed entirely on the GPU be-
cause it only involves parallel operations.

6. PERFORMANCE AND SCALING COM-
PARISONS OF TRUNCATION METHODS

Initially, our implementation of the hybrid neighbor/cell
list algorithm had a slower execution time than the parallel
Verlet neighbor list algorithm. However, we added an ad-
ditional CUDA kernel call to store information as we will
describe below, and we significantly reduced the execution
time. When the hybrid list is comparing the location of two
beads i and j, it must compute which cell they reside in for
each dimension. Long range interactions exist between ev-
ery bead in the system, therefore, each bead is involved in
N − 1 interactions where N is the number of beads. There
are N − 1 interactions because beads do not interact with
themselves. This means each bead’s cell location is com-
puted N − 1 times. As the system size increases, the cell
location is needlessly computed more and more. To avoid
this inefficiency, an additional CUDA kernel with N threads
is used to compute and store the cell number for each bead.
An array of size N stores the Cell.x, Cell.y, and Cell.z in
the x, y, and z components of a float3 data type. When
the interactions are being computed, the cell positons are
accessed from memory rather than being calculated again.

With that modification, we made direct comparisons be-
tween the GPU-optimized parallel Verlet neighbor list, cell
list, and hybrid neighbor/cell list algorithms implemented in
our coarse-grained MD simulation code. All MD simulations
were performed on a desktop computer with a Intel Core i7-
960 3.20 GHz processor, 12 GB DDR3 RAM, and a NVIDIA
480GTX GPU. To benchmark the scaling of our code to dif-
ferent sized systems, we performed 100,000 timesteps of MD
simulations to tRNAPhe (PDB code: 1ehz), and the 16s, 30s,
50s, and 70s subunits of the E. coli ribosome, which span
about 3 orders of magnitude in the number of residues and
nucleotides that are represented as beads in our simulations.
To ensure a fair comparison, we counted the number of beads
in the neighbor and cell list algorithms, and we chose the cell
length parameter in the cell list algorithm to best match the
number of beads in the neighbor list algorithm. To mini-
mize the information transfer between the CPU and GPU,
we also outputted the coordinates of the trajectory only at
the end of the MD simulation. Of course, the MD simulation

Figure 4: Execution times of GPU-optimized cutoff
algorithms for systems of different size. (A) A com-
parison of the execution times of the neighbor, cell,
and hybrid neighbor/cell list algorithms. (B) For
clarity, we also present a comparison of the execu-
tion times for the neighbor and hybrid neighbor/cell
list algorithms.

Figure 5: Percent speedup of GPU-optimized hybrid
neighbor/cell list algorithm as compared to neighbor
list algorithm.

ACM-BCB 2013 639



Figure 6: The output frequency dependence of the
execution times scaling with system size.

coordinates are typically outputted with a regular frequency
that is determined by the situation, and it requires the co-
ordinates to be transferred from the GPU to the CPU. Note
that we evaluate the effects of output frequency below.

Figure 4A shows the N-dependent execution times and
the corresponding execution times are shown in Table 1.
The parallel cell list algorithm is much slower than both the
parallel Verlet neighbor list and hybrid list algorithms. The
slower execution time is to be expected, however, because
the cell list algorithm must determine whether two beads
are in neighboring cells for every pair of interactions list at
every timestep. The neighbor and hybrid lists only have to
do this every N timesteps, and the pair list for each of those
methods only has to evalute a small subset of the all pos-
sible interaction pairs. When we compare the parallel Ver-
let neighbor list and hybrid list algorithms by themselves,
we observe similar execution times with differences that be-
comes more pronounced with larger systems Figure 4B.

The percent speedup of our parallel hybrid neighbor/cell
list algorithm over the parallel Verlet neighbor list is, on
average ∼10% faster, with the exception of our smallest sys-
tem, which is represented by only 76 beads (Figure 5). The
tRNAPhe is so small that there are not enough beads to fully
utilize the GPUs, and we actually observe a slower perfor-
mance as compared to the parallel Verlet neighbor list algo-
rithm. It is worth noting that the ∼10% speedup over the
neighbor list algorithm is in addition to the ∼30x speedup
of the neighbor list over the CPU version of the code for the
70s ribosome (10,219 beads).

To better gauge the performance of the hybrid neigh-
bor/cell list algorithm under realistic conditions, we changed
the output frequency of the coordinates in our MD simula-
tion code. Since information transfer between the CPU and
GPU is a major bottleneck in GPU algorithms, of course, we
expect the output frequency to play an important role in the
performance. We chose output frequncies ranging from ev-
ery 10 timesteps to every 10,000 timesteps, and we observe
that the difference becomes smaller when the coordinates
are output after a larger number of timesteps (Figure 6).

7. CONCLUSIONS
We have presented a general parallel hybrid neighbor/cell

list algorithm, which we implemented into a simple coarse-
grained MD simulation code on the GPU. This algorithm,
inspired by previous similar algorithms that were optimized
for CPUs, is specifically optimized for the GPU, and it builds
on a parallel Verlet neighbor list algorithm we previously de-

veloped and a parallel cell list algorithm we developed for
this study. The implementation of a parallel cell list al-
gorithm, which updates at every timestep, turned out to
be significantly slower than the parallel Verlet Neighbor list
algorithm. However, incorporating a parallel cell list algo-
rithm, which uses relatively inexpensive conditional state-
ments to search for proximal beads, into the parallel Verlet
neighbor list algorithm resulted in ∼10% speedup.

8. ACKNOWLEDGMENTS
The National Science Foundation (CBET-1232724) finan-

cially supported this work. AJP and SSC acknowledge fi-
nancial support from the Wake Forest University Center
for Molecular and Cellular Communication and Signaling
(CMCS). CAS was supported by a CMCS graduate research
fellowship.

9. REFERENCES
[1] M. P. Allen and D. J. Tildesley. Computer Simulation

of Liquids. Oxford University Press, USA, 1989.

[2] J. A. Anderson, C. D. Lorenz, and A. Travesset.
General purpose molecular dynamics simulations fully
implemented on graphics processing units. Journal of
Computational Physics, 227(10):5342–5359, 2008.

[3] C. Clementi, H. Nymeyer, and J. N. Onuchic.
Topological and energetic factors: What determines
the structural details of the transition state ensemble
and ”en-route” intermediates for protein folding? an
investigation for small globular proteins. Journal of
Molecular Biology, 298(5):937–53, 2000.

[4] A. W. Gotz, M. J. Williamson, D. Xu, D. Poole,
S. Le Grand, and R. C. Walker. Routine microsecond
molecular dynamics simulations with AMBER on
GPUs. 1. Generalized Born. Journal of Chemical
Theory and Computation, 8(5):1542–1555, 2012.

[5] M. Guthold and S. S. Cho. Fibrinogen unfolding
mechanisms are not too much of a stretch. Structure,
19(11):1536–1538, Nov. 2011.

[6] R. D. Hills and C. L. Brooks. Insights from
Coarse-Grained Go models for protein folding and
dynamics. International Journal of Molecular
Sciences, 10:889–905, Mar. 2009.

[7] C. Hyeon, R. I. Dima, and D. Thirumalai. Pathways
and kinetic barriers in mechanical unfolding and
refolding of RNA and proteins. Structure,
14(11):1633–1645, 2006.

[8] D. B. Kirk and W.-m. W. Hwu. Programming
Massively Parallel Processors: A Hands-on Approach.
Morgan Kaufmann, 1 edition, Feb. 2010.

[9] T. J. Lipscomb, A. Zou, and S. S. Cho. Parallel verlet
neighbor list algorithm for GPU-optimized MD
simulations. ACM Conference on Bioinformatics,
Computational Biology and Biomedicine, pages
321–328, 2012.

[10] B. Ma and R. Nussinov. Simulations as analytical
tools to understand protein aggregation and predict
amyloid conformation. Current Opinion in Chemical
Biology, 10(5):445–452, Oct. 2006. Cited by 0133.

[11] W. Mattson and B. M. Rice. Near-neighbor
calculations using a modified cell-linked list method.
Computer Physics Communications, 119:135–148,
1999.

ACM-BCB 2013 640



[12] D. L. Pincus, S. S. Cho, C. Hyeon, and D. Thirumalai.
Minimal models for proteins and RNA from folding to
function. Progress in Molecular Biology and
Translational Science, 84:203–50, 2008.

[13] S. Plimpton and B. Hendrickson. A new parallel
method for molecular dynamics simulation of
macromolecular systems. Journal of Computational
Chemistry, 17(3):326–337, 1996.

[14] A. J. Proctor, T. J. Lipscomb, A. Zou, J. A. Anderson,
and S. S. Cho. GPU-optimized coarse-grained MD
simulations of protein and rna folding and assembly.
ASE Science Journal, 1:1–11, 2012.

[15] J. E. Shea and C. L. Brooks. From folding theories to
folding proteins: a review and assessment of simulation
studies of protein folding and unfolding. Annual
Review of Physical Chemistry, 52:499–535, 2001.

[16] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and
K. Schulten. GPU-accelerated molecular modeling
coming of age. Journal of Molecular Graphics and
Modeling, 29(2):116–25, 2010.

[17] S. Takada. Coarse-grained molecular simulations of
large biomolecules. Current Opinion in Structural
Biology, 22(2):130–137, Apr. 2012.

[18] L. Verlet. Computer ”Experiments” on classical fluids.
i. thermodynamical properties of Lennard-Jones
molecules. Physical Review, 159(1):98, 1967.

[19] D. B. Wang, F. B. Hsiao, C. H. Chuang, and L. Y. C.
Algorithm optimization in molecular dynamics
simulation. Computer Physics Communications,
177:551–559, 2007.

[20] A. Zhmurov, A. Brown, R. Litvinov, R. Dima, J. W.
Weisel, and V. Barsegov. Mechanism of fibrin(ogen)
forced unfolding. Structure, 19(11):1615–1624, Nov.
2011.

ACM-BCB 2013 641


