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1 Central Dogma of Biomolecular Folding and
Assembly

There is no better “big picture” of genetic information
flow to biological functions than the central dogma of
molecular biology,[1] and we present it here in the context
of biomolecular folding mechanisms (Figure 1). Of
course, it is well known that DNA replication passes on
information from one generation to the next, and it is
transcribed into RNA, which in turn is translated into
proteins. These proteins have been selected through evo-
lution to fold into specific structures that correspond to
a myriad of catalytic, transport, storage, structural, and
regulatory functions in the cell.[2] Although notable ex-
ceptions to the original version of the central dogma
exist, the general paradigms by which information flows
from DNA to RNA to proteins and from sequences to
structure to function still hold true. Misfolding events can
result in aggregation that leads to diseases.[3,4]

In the decades since MD simulations first provided
a molecular view of biomolecular dynamics,[5] a quantita-
tive framework for how biomolecules assemble to form
structures that correspond to functions is coming into
clearer focus.[6] For proteins, Anfinsen�s seminal experi-
ments[7] moved the protein folding field, once a purely ex-
perimental problem, into one that could also be tackled
through theory and computations because the informa-
tion for finding a protein�s 3D structure was largely self-
contained in its sequence.[8] The still-complex problem of
a conformational search for the folded state has been ac-
cepted to be simpler than a random search first put forth
by Levinthal�s Paradox,[9] and a large body of evidence
from experiments, theory, and simulations have estab-

lished that natural proteins have a funneled energy land-
scape for folding that is globally directed towards its
native basin.[10–13] There are many excellent recent reviews
on this fascinating subject,[10–12,14] and it continues to be
an active area of research.[15–17]

However, we have also known for quite some time that
there exist RNA, such as tRNA and rRNA, that do not
act as passive intermediaries that code for protein se-
quences but instead fold into specific structures for other
functions.[18] It was the discovery of ribozymes that are ca-
pable of enzymatic catalysis by Cech and co-workers that
sparked a renewed interest in the functional roles of
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RNA molecules.[19] We now know that RNA molecules
are responsible for a host of biological functions that in-
clude not only catalysis, but also replication, transcrip-
tional and translational regulation, and ligand binding.[2]

DNA G-quadruplexes, which are a form of DNA found
in G-rich regions of DNA, can inhibit telomerase activity,
for example.[20] The determination of their folding mecha-
nisms has been a focus of recent studies.[21–23] In addition,
each of these biomolecules can also assemble to form
quaternary structured proteins, RNA, and DNA oligo-
mers, as well as protein�RNA and protein�DNA com-
plexes. As such, DNA, RNA, and proteins all fold into

specific structures that correspond to biological functions
(Figure 1).

Although structural information of proteins still far
outstrips that of RNA and DNA, as well as their struc-
tures in complex with proteins, many new and interesting
structures have been solved by X-ray crystallography or
nuclear magnetic resonance (NMR) spectroscopy.[24]

However, the structures of folded nucleic acids by them-
selves do not provide crucial details about the energetics
and driving interaction forces of their dynamics and fold-
ing mechanisms.

2 Nucleic Acid Folding Energy Landscapes

The main contours of nucleic acid folding energy land-
scapes for the folding are also being addressed using
atomistic and coarse-grained MD simulations that can
greatly enhance our experimental observations.[25–27] Since
DNA and RNA adopt specific structures in a relatively
short timescale, one can presume that their energy land-
scapes are also largely funneled towards a native basin.
They consist of fewer possible subunits (nucleotides) than
proteins, and their secondary structures consist of predict-
able Watson�Crick (WC) base-pairing rules. The folding
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of RNA is known to be hierarchical in that the secondary
structures generally form before tertiary structures,[28] al-
though there are a few exceptions.[29–31] Based on these
cursory observations, one might conclude that nucleic
acid folding mechanisms and their corresponding energy
landscapes are even simpler than proteins.

While DNA folding mechanisms are just starting to be
explored, experimental and theoretical approaches are in-
creasingly supporting the view that RNA folding mecha-
nisms are actually more complex than those of proteins,
often involving kinetically partitioned distinct parallel
pathways and traps.[32] These seemingly counterintuitive
observations can be rationalized by the structures of the
possible nucleotides, which are largely similar with chemi-
cally identical ribose sugars and charged phosphates. The
only difference between the nucleotides is in the four
types of bases, which are all aromatic and roughly the
same size, and the charged phosphate backbone, which
has nonspecific electrostatic interactions. This is in strik-
ing contrast to the 20 natural amino acids of various sizes
found in proteins, which can be not only aromatic but
also polar, nonpolar, or charged. The level of specificity
for the native basin inherent in protein folding mecha-
nisms cannot exist for RNA molecules because their

bases are deficient in variation, leading to more promis-
cuous folding mechanisms. In addition, while the bases in
the four types of RNA nucleotides can hydrogen bond to
one another in WC base pairings, only about half of RNA
sequences are found to be WC base-paired, and many of
the remaining RNA nucleotides form unpaired regions
including bulges, loops, dangling ends, and other motifs.[33]

Taken together, the problem of nucleic acid folding
mechanisms is likely to be more complex than protein
folding. Indeed, even simple RNA hairpins and pseudo-
knots have complex folding kinetics.[30,34–37] However, the
similar themes imply that the same formalism and con-
cepts from protein folding can serve as a basis for the
study of nucleic acid folding mechanisms.[32,38]

3 Bottom-Up and Top-Down Approaches for
Biomolecular MD Simulations

MD simulations continue to be an indispensable tool for
the study of biomolecular folding and assembly mecha-
nisms. Although there are now many different flavors of
MD simulations, we summarize two classes of ap-
proaches: empirical force fields and native structure�

Figure 1. Central dogma of molecular biology in the context of biomolecular folding. In this extended version, we include DNA, RNA, and
protein folding and some representative functions, as well as protein aggregation and associated diseases. Also listed are associated Nobel
Prize laureate names with the years they received the award.
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based MD simulations. An exhaustive description of
these energy functions is beyond the scope of this review,
and here we only discuss a basic description of the ap-
proaches. For empirical force field MD simulations, there
exists a simple potential energy function that describes
the biomolecule of interest that is defined by bonds,
angles, dihedral, Urey�Bradley, out-of-plane improper,
Lennard-Jones, and electrostatic terms:

Etotal ¼ Ebackbone þ Enonbonded

Ebackbone ¼
Xbonds
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Xangles

Kqðq� q0Þ2
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In a “bottom-up” approach, each of these terms con-
tains atomistic force field parameters that are typically
obtained from quantum mechanical calculations of model
compounds or empirical data when available. Based on
the potential energy function for the molecule(s) of inter-
est for which the parameters must be known, long MD
simulations are performed for folding events to occur,
and the energy landscape for folding would be an emer-
gent phenomenon (Figure 2, left).

Popular atomistic empirical force field�based MD sim-
ulation programs include CHARMM,[39] AMBER,[40] and
NAMD.[41] In these approaches, the partial charges of
atoms are static and located at their centers but new po-
larizable force fields are being developed that aim to ac-
count for the electronic polarization of its environment.
While these calculations are computationally more expen-
sive than the simpler fixed-point charge models, they im-
prove the accuracy of the electronic description of the
biomolecular environment. Since nucleic acids are highly
charged systems, polarizability is likely to become an im-
portant direction for empirical force field improvements

Figure 2. Comparison between the “bottom-up” empirical force field and the “top-down” native structure based MD simulation ap-
proaches for studying biomolecular folding mechanisms.
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in DNA and RNA MD simulations, and they are now be-
coming available.[42]

The computational demands of the atomistic empirical
force field MD simulations limit the size of biomolecular
system that one can investigate. A nucleic acid is a highly
solvated biomolecule in the presence of ions that play im-
portant roles in the stability and folding mechanisms. To
perform MD simulations in a reasonable time while still
capturing the folding events, advanced sampling methods
such as replica exchange can reduce the time spent in
trap states and increase conformational sampling at the
expense of any kinetic information about the folding
mechanism.[43] Other approaches include using advanced
computing infrastructure such as the distributed comput-
ing Folding@Home[44] approach or the Anton supercom-
puter,[45] which are inaccessible to the average researcher.
One can also coarse-grain biomolecules based on empiri-
cal force fields to increase timescales while reproducing
basic structural order parameters.[46]

An independent, native structure�based approach for
MD simulations assumes that the energy landscape is fun-
neled or globally directed towards the native basin. The
principle of minimal frustration states that natural bio-
molecules have been evolutionarily selected to have se-
quences whose interactions are favorable if they contrib-
ute to the native basin and all other conflicting interac-
tions that would compete with non-native trap states are
disfavored.[47] A minimally rugged funneled energy land-
scape results that is directed toward the native basin.[48,49]

A Go-type model uses an idealized and simplified rep-
resentation where the energy landscape is perfectly fun-
neled.[50] The potential energy function of an off-lattice
Go-type model MD simulation is defined by bonds,
angles, dihedral, and Lennard-Jones terms whose parame-
ters correspond to the native structure such that its global
minimum is the native basin:

Etotal ¼ Ebackbone þ Enonbonded

Ebackbone ¼
Xbonds

Krðr� r0Þ2 þ
Xangles

Kqðq� q0Þ2

þ
Xdihedrals

KðnÞ� 1� cosðnð�� �0ÞÞ½ �

Enonbonded ¼
X

i

ð2Þ

The main difference in comparison to the empirical
force field approach is that all of the parameters corre-
spond to the native state as the energy minimum for each
term in the Go-type model. Although the off-lattice Go-
type model is typically represented as a coarse-grained
one bead per residue model for proteins, other variants
include all-atom representations,[51,52] ones with solvation
models,[53,54] and ones with native interactions “flavored”
by sequence identity[54,55] (Figure 2, right).

4 RNA Folding Mechanisms: Base-Stacking
Interactions and Electrostatics

4.1 Overview

The major goal of any MD simulation approach is to ac-
curately represent the physics of the biological system
such that one can compare directly with experiments and
inform them with higher-resolution predictions. As such,
these MD simulation models must capture the important
interactions that contribute significantly to the folding.
Nucleic acids contain aromatic nucleotide bases that pair
with other bases through hydrogen bonds and then stack
on top of one another through p-stacking interactions.
Also, phosphates line the backbone with charged electro-
static interactions with ions (Figure 3). For RNA mole-
cules, the base-stacking and electrostatic interactions play
pivotal roles in their folding mechanisms.

4.2 Atomistic Empirical Force Field MD Simulations of RNA
Folding

The nucleotide bases consist of aromatic moieties that
have delocalized electrons in p orbitals. The stacking of
bases on top of one another provides additional stability
through quadrupole moments that stabilize the interac-
tion between bases. It has been known for some time that
the stacking interactions in CHARMM and AMBER are
lower and higher than expected, respectively.[56,57] As
a result, the conformational sampling of nucleic acid
bases in CHARMM is greater than expected, while con-
formational sampling in AMBER is too stable. Both sce-
narios could lead to unphysical trap states in MD simula-
tions. In a very recent study, Chen and Garcia optimized
the van der Waals parameters of the AMBER force field
and performed replica-exchange MD simulations to fold
three RNA tetraloop hairpins with non-canonical loop-
stabilizing interactions. The resulting structures were
within about 1–3 � of their experimentally determined
X-ray crystallographic or NMR structures.[58] The im-

Figure 3. Structures of Escherichia coli A) tRNAPhe and B) tRNAfMet.
The phosphate backbone is shown in red and the rest of the RNA
is shown by a transparent space-filled and opaque ball-and-stick
representation and colored according to the nucleotide type.
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provements in the force field parameters could open the
possibility of more accurate MD simulations of larger
RNAs.

For nucleic acids, there is also a profound dependence
of structure on salt conditions, due to the ionic interac-
tions with the phosphate backbone. For DNA, a high salt
concentration results in the A-DNA conformation and
then a B-DNA conformation in physiological salt concen-
trations. The G-quadruplex structure contains a negatively
charged channel that requires the presence of cations for
stability.[59] For RNA folding, the presence of ions deter-
mines the overall tertiary structure.[60] In 2000, Cheatham
and Kollman stated, “Study of the ionic strength and
identity effects on biomolecular structure in MD simula-
tions is the next frontier for MD simulation”,[61] and the
accuracy of ion interactions remains a significant chal-
lenge.[62]

4.3 Coarse-Grained Go-Type MD Simulations of RNA Folding

Hyeon and Thirumalai developed the three interaction
site (TIS) model, a three bead per nucleotide model of
RNA folding.[63] The three beads correspond to the base,
sugar, and phosphate moieties of a nucleotide. In addition
to the traditional Go-type long-range interactions for the
bases, they included sequence-dependent base-stacking
interactions using empirical Turner�s rules[64] and nonspe-
cific electrostatic interactions between the phosphate
beads using the ion concentration�dependent Debye�
H�ckel potential. The TIS model MD simulations were
applied to RNA hairpins, pseudoknots, and larger RNA,
and directly compared to experimental observables. The
intermediates observed in experiments and their melting
temperatures are accurately reproduced in TIS model
MD simulations.[30,31,36,63,65,66] In addition, the TIS model
predicts: 1) for the telomerase RNA pseudoknot that the
tertiary structure formation occurs before secondary
structure is complete,[30] and 2) for p5abc that an inter-
mediate exists in the folding mechanism where the secon-
dary and tertiary structure formation are coupled.[31] The
stabilities of the individual hairpins in TIS models of
RNA are generally predicted on the basis of the base-
stacking stabilities.[30]

The TIS model can also accurately predict the kinetics
of RNA pseudoknot folding. Cho et al. performed TIS
model temperature quench folding MD simulations and
monitored the folding times and pathways for several H-
type RNA pseudoknots. They observed parallel folding
pathways that were kinetically partitioned between the
folding of the individual substituent stems.[30] The folding
times predicted by the TIS model were remarkably simi-
lar to the relaxation times measured by Ansari and co-
workers in a subsequent laser temperature-jump pertur-
bation study.[37] Inspired by interrupted multiple ion-jump
single-molecule experiments,[67] Biyun et al. developed
novel ion-concentration induced jump TIS model MD

simulations by abruptly changing the ion concentration in
the Debye�H�ckel potential.[36]

Very recently, Li et al. performed TIS model simula-
tions of four different tRNA molecules of similar length
and tertiary structure but different sequence.[66] The simi-
lar length meant that the electrostatic interactions from
the phosphates and the Go-type interactions, as well as
the tertiary structure, were nearly identical. The main dif-
ference between the tRNA molecules in the TIS model
was the sequence-dependent base-stacking interactions
(Figure 3). In classical absorbance spectra experiments,
Crothers and co-workers observed different melting pro-
files for different tRNA molecules, and the TIS model ac-
curately predicted them for several tRNA.

For certain tRNA molecules, Li et al. also predicted the
existence of premature unproductive folding mechanisms.
These “backtracking” events were first observed in pro-
teins by Clementi et al. in the original off-lattice Go-type
MD simulations[50] and in other subsequent studies,[68–70]

and they have been ascribed to topological frustration. In
these cases, premature partial folding of a protein re-
quires complete unfolding before proceeding to the
folded state. For tRNA, the Y hairpin loop is the least
stable hairpin in the tRNAs they studied and must unfold
to reach the folded state.[66]

As with any theoretical representation of biomolecules,
the TIS model has limits. In particular, it performs poorly
in the limit of low ion concentration. When the ion con-
centration was tuned in the Debye�H�ckel potential to
less than 0.01 M [Na+] for tRNAs, they remained melted
even at temperatures close to the freezing temperature of
water, even though it is expected to fold at a significantly
higher temperature.[66] Denesyuk and Thirumalai also ob-
served ambiguity between experiments and simulations
for concentrations greater than 0.2 M [Na+].[65]

A simpler Go-type coarse-grained MD simulation ap-
proach is the self-organized polymer (SOP) model.[71]

This one bead per nucleotide/residue model consists of
only two sets of terms: a FENE potential for chain con-
nectivity and a Lennard-Jones potential for the long-
range Go-type interactions. Recently, Lin et al. applied
the SOP model to riboswitches, which are noncoding
RNA that regulate gene expression by controlling tran-
scription or translation through the specific binding of
a metabolite. The metabolites themselves are comparable
in size to one or more nucleotides. Representing a metab-
olite as one or more beads with a SOP model representa-
tion for RNA is sufficient to differentiate between force
extension curves of the unliganded and liganded
states.[72,73]

4.4 Atomistic Go-Type MD Simulations of RNA Folding

The Go-type energy function can be readily extended
into an all-atom representation, such that all of the heavy
atom interactions are globally directed to the native
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basin. Whitford et al. performed all-atom Go-type MD
simulations of the S-adenosylmethionine-1 (SAM-1) ribo-
switch and showed that the binding of SAM-1 stabilizes
the P1 helix and reduces the free energy barrier for fold-
ing.[74] Feng et al. studied the queuosine anabolic inter-
mediate preQ1 riboswitch using an all-atom Go-type
energy function. The preQ1 riboswitch is largely unstruc-
tured in the absence of preQ1. Interestingly, they ob-
served premature folding of P2 that has to unfold or
“backtrack” so that P1 can form and folding can proceed
to completion.[75]

5 DNA Folding Mechanisms

5.1 Overview

The primary function of DNA is to contain hereditary in-
formation and pass it along to successive generations or
to transcribe the information to RNA molecules. There
have been numerous studies of MD simulations involving
DNA due to its obvious importance in the cell, but many
of the MD simulations to date have focused on the pro-
teins that complex with DNA.

Many transcription regulation proteins bind to duplex
DNA by neatly fitting into the major or minor grooves,
and their binding mechanisms have been extensively stud-
ied using coarse-grained MD simulations. Generally, the
electrostatic interactions are incorporated between the
negatively charged DNA phosphate backbone and
charged amino acids (i.e., positively charged Arg and Lys
and negatively charged Asp and Glu).[76] Coarse-grained
MD simulations have also been used to identify the three
steps in which RNA polymerase partially melts and
unzips DNA so that it can be transcribed by RNA poly-
merase into RNA.[77] Atomistic MD simulations of pro-
tein�DNA complexes have been largely restricted to the
study of the local dynamics of the folded state.[78] Howev-
er, partial unfolding of DNA through protein-mediated
base flipping has been extensively studied using umbrella
sampling to map out the energetic barriers using multiple
empirical force fields.[56]

Generally, unlike RNA molecules that fold into one of
many possible specific structures, the DNA molecules are
often seen in MD simulations as static structures that are
already folded into a duplex to carry out its function.
Therefore, it is natural to presume that DNA folding
mechanisms might have little biological relevance. How-
ever, there are numerous biological examples where al-
ready folded DNA duplexes assemble into complex struc-
tures including chromatin and viral genome assembly, and
we direct readers to a very recent review of the develop-
ment of Go-type coarse-grained MD simulations of
duplex DNA.[79] Here, we focus on MD simulations of
DNA G-quadruplex folding mechanisms.

5.2 DNA G-Quadruplex Folding Mechanisms

Guanine-rich sequences of DNA and RNA can fold into
quaternary structures called G-quadruplexes, but we will
focus on the DNA form here. DNA G-quadruplexes are
of particular biological relevance because they are found
at the telomeric regions at the end of DNA.[20] DNA G-
quadruplexes have been known to fold in vitro in human
telomeres with the repeats TTAGGG. This sequence is
not recognized by the telomerase enzyme, which is upre-
gulated in cancerous cells. G-quadruplexes have been an
important anticancer target for promoting G-quadruplex
formation and stabilization through the introduction of
small molecules that recognize G-quadruplex structures
to inhibit telomerase activity and induce apoptosis.[80,81]

G-quadruplexes consist of four guanines interacting
through Hoogsteen hydrogen bonding to form a square
planar tetrad, and two or three of these tetrads interact
through base stacking to form a quadruplex. The G-quad-
ruplex structure can involve one, two, or four strands of
DNA. The G-quadruplex structure can consist of many
different topologies that can be largely classified into par-
allel (all strands go in the same direction), antiparallel
(half of the strands go in the opposite direction), or
a mixed hybrid topology (three of the strands go in the
same direction while one goes in the opposite), as shown
in Figure 4. The formation of the G-quadruplex structure
also requires dehydrated K+ or Na+ ions in a negatively
charged channel formed by the centers of each tetrad.

Figure 4. Schematic of DNA G-quadruplex folding from an unfold-
ed state (U) to several different possible topologies through some
intermediate state(s). The folding mechanism is thought to be
complex and involve at least one intermediate state.
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The correct representation of the ions in G-quadruplex
MD simulations is a challenge.[82]

Tremendous progress has been made in the experimen-
tal characterization of G-quadruplexes, but their folding
mechanisms remain unsettled (Figure 4). Despite the sim-
plicity of the G-quadruplex structures, their folding mech-
anisms involve intermediate states and complex kinetics.
There are currently two proposed models of G-quadru-
plex folding. The first involves the stepwise addition of
the strands to form a duplex, then a triplex, and finally
a quadruplex to complete the folding process.[83] In the
second model, FRET and magnetic tweezers experiments
show that a partial disruption of a few base pair contacts
is sufficient to completely unfold the quadruplex struc-
ture, which is inconsistent with a long-lived DNA triplex
intermediate.[84,85] We note, however, that both mecha-
nisms are possible and could simply be kinetically parti-
tioned.

To date, MD simulations of G-quadruplexes have been
restricted to atomistic empirical force field MD simula-
tions. Due to their relatively small size (~20 nucleotides
per three-tetrad G-quadruplex), G-quadruplex MD simu-
lations have reached the microsecond timescale using
fairly standard computational techniques. While this is an
insufficient timescale for a complete energy-landscape
characterization of G-quadruplexes, putative intermedi-
ates were identified.

Recently, Sponer and co-workers performed unfolding
MD simulations of G-quadruplexes by starting from the
folded structure and removing the ion.[105] They observed
individual strand slippage that supports a triplex inter-
mediate mechanism. They then performed subsequent
MD simulations in excess ions, similar in spirit to
stopped-flow experiments, and they observed structures
moving closer to the folded state. While their study in-
volved very few trajectories over a microsecond time-
scale, which is inadequate to characterize thermodynami-
cally or kinetically, they observe “misfolded” arrange-
ments that indicate a complex folding mechanism.

6 MD Simulations on the GPU Architecture

6.1 Overview

Over the past few years, graphics processing units
(GPUs) have become a commonly used approach for per-
forming MD simulations of biomolecular systems
(Figure 5). For parallelizable algorithms such as those
used in MD simulations, GPUs can in some cases result
in a substantial speedup of their performances. GPUs are
specialized hardware devices that are optimized for paral-
lel execution of floating-point operations.[86,87]

In a heterogeneous CPU�GPU environment, a GPU
device is connected to the CPU through a PCI express
bus and consists of multiple cores that can be executed
independently with a limited set memory. The single in-

struction, multiple data (SIMD) parallel programming
paradigm is implemented by assigning multiple threads to
execute the same single kernel instruction on multiple,
distinct data. Parallel algorithms using the SIMD pro-
gramming paradigm can be implemented using GPU-spe-
cific programming languages such as NVIDIA CUDA or
OpenCL. CUDA is specific for NVIDIA GPUs while
OpenCL is designed for cross-platform compatibility. As
a result, CUDA has less overhead for GPU programming
and is easier to implement, while the OpenCL program-
ming language allows greater specific control that can
result in greater performance even when OpenCL is im-
plemented and optimized for NVIDIA GPUs.

The main goal of developing any algorithm for the
GPU architecture is to isolate the parallelizable portion
of the code that can be computed independently and
recast the algorithm so that these calculations are per-
formed in parallel on the GPU instead of serially on the
CPU. Broadly, the basic MD simulation algorithm has
two main portions: 1) the calculation of the forces be-
tween interacting particles, and 2) the update of the posi-
tions and velocities in the next timestep based on the
forces in the current timestep. Since the update of the po-
sitions and velocities are dependent on the previous step,
it is inherently serial and would not benefit from a parallel
execution. However, the calculations of the forces be-
tween the particles, the main computational bottleneck of
MD simulations, are independent of one another and
therefore amenable to parallel execution. Kernel instruc-
tions for calculating the forces are executed for the differ-
ent data points corresponding to each particle�s position
and velocity relative to every other interacting particle in
the current timestep. For reasons we will state below, we
must note that the porting of MD simulation codes to the
GPU architecture is much more involved than just re-
programming the code in a different language. It requires
the development of new algorithms that are optimized
specifically for the GPU architecture.

Recently, several GPU-optimized atomistic and coarse-
grained MD simulation codes have been developed and

Figure 5. Number of publications with the words “MD simulations”
and “GPU” in the title according to Google Scholar. General-pur-
pose GPU programming became available in 2007.
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implemented. For atomistic MD simulations, several well-
known MD simulation codes that had been previously
available for traditional CPUs are now available for
GPUs, including NAMD,[88] AMBER,[89] and GRO-
MACS.[90] Coarse-grained or general particle dynamics
MD simulation codes have also been developed, and they
include HOOMD-Blue,[91] LAMMPS,[92] OpenMM,[93] and
SOP-GPU.[94] Here, we will largely focus on our own in-
house coarse-grained MD simulation software for the
GPU,[95–98] but many of the strategies and issues we dis-
cuss are general and applicable to all MD simulation
codes on GPUs.

6.2 Performance Issues of MD Simulations on GPUs

While there are clear benefits to using a GPU for MD
simulations, there also exist a number of performance
and accuracy issues because the primary purpose of the
GPU architecture is to render images. New advances,
largely driven by the gaming market that drives down the
prices of GPUs to make them economically viable for sci-
entific applications, continue to remove or lower these
barriers for the average researcher. As with all computer
algorithms, there are temporal and spatial performance
and accuracy issues related to implementing the MD sim-
ulation algorithm on the GPU architecture.

Since the GPU device is separate from the CPU, data
involved in MD simulations must be transferred to the
GPU for calculations to be performed. Currently, GPUs
have a hardware memory limit of 1.5–12 GB, depending
on the model, and most of the commercially available
models have memory limits that are unfortunately closer
to the bottom of that range. Furthermore, the most signif-
icant bottleneck of programming on GPUs is the transfer
of information to the CPU and back across the PCI ex-
press bus. It is possible to optimize a program to hide the
latency of the information transfer such that other calcu-
lations are performed while the transfer is occurring, but
the optimizations are usually hardware specific and can
vary between GPU models. While these latency-hiding
approaches should be taken whenever possible, the per-
formance differences between GPU models limit the gen-
erality of the optimization techniques. GPU programs
must be optimized so that as little information as possible
is transferred and to keep the information on the GPU
for as long as possible to limit the number of information
transfers. Many tried-and-true CPU strategies[99] such as
keeping precomputed values in memory should be avoid-
ed because it may be faster to simply recompute the
values over and over rather than accepting the cost of
transferring the information. Also, the precomputed
values would take up limited memory space.

Recently, we introduced two noteworthy novel GPU-
optimized MD simulation algorithms based on well-
known CPU versions, which we will highlight in the fol-
lowing sections. We stress that these algorithms are not

just a trivial recasting of code from one programming lan-
guage to another, but instead involve the development of
new algorithms that are specifically optimized for the
GPU architecture.

6.2.1 Parallel Verlet Neighbor List Algorithm

Since the computation of the forces between long-range
interacting particles is the main performance bottleneck
of MD simulations, many cutoff algorithms have been de-
veloped to reduce the computational demands of the
force calculations. One of the most widely used for Len-
nard-Jones interactions is the Verlet neighbor list algo-
rithm (Figure 6A).[100] In this approach, a subset list of in-
teractions within a “skin” distance cutoff is generated and
updated every n timesteps. Out of all of the members of
the neighbor list, the forces are computed for only a fur-
ther subset of interactions within a cutoff radius.

While the original Verlet neighbor list algorithm works
well on a CPU, it is inherently serial because the genera-
tion of a subset list requires looping over all of the inter-
actions and placing only the subset into a list, one after
another. Lipscomb et al. developed a novel parallel
Verlet neighbor list algorithm[95] where the distances be-
tween interacting particles are computed and sorted using
a parallel algorithm such that those within the distance
cutoff are placed at the top of the list. Only those interac-
tions within the distance cutoff are copied, in parallel, to
the subset list. A similar approach is used to generate
a pair list of interactions as well. The parallel Verlet
neighbor list algorithm involves more steps but can be
performed using only parallel operations. As such, the
entire algorithm can be performed on the GPU without
any transfer of information between the CPU and GPU.

Figure 6. Truncation algorithms for MD simulations. A) Verlet
neighbor list algorithm, B) cell list algorithm, and C) a hybrid algo-
rithm where the outer layer is determined by the cell list algorithm
and the inner pair list uses a distance cutoff like the Verlet neigh-
bor list algorithm.
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6.2.2 Parallel Hybrid Neighbor/Cell List Algorithm

Another commonly used MD simulation algorithm for in-
teraction cutoffs is the cell list algorithm (Figure 6B).[99]

In this algorithm, the simulation box is divided evenly
into cubic “cells”. The benefit of this approach over the
Verlet neighbor list algorithm is that the relatively com-
putationally expensive distance calculations between
pairs of interacting particles need not be computed be-
cause only their positions need to be known to determine
whether they are in neighboring cells. The forces are com-
puted only for pairs of particles that are located in neigh-
boring cells.

The cell list algorithm also works well on the CPU, and
it is typically implemented using a linked list data struc-
ture. The implementation of this algorithm on the GPU
would greatly limit the size of the simulation one could
perform, because of the memory required to maintain the
linked list. We instead implemented the algorithm on the
GPU without the linked list data structure and using only
parallel operations, but we observed performance that
was significantly poorer than our implementation of the
parallel Verlet neighbor list algorithm even though it
could be performed entirely on the GPU.[95]

Previous studies have combined the neighbor and cell
list algorithms into a hybrid version, and these demon-
strated performance increases on the CPU beyond the in-
dividual algorithms alone.[101] Proctor et al. implemented
a hybrid neighbor/cell list algorithm where a cell list was
updated every n timesteps and the forces were computed
for only those particles within a distance cutoff (Fig-
ure 6C).[97] Again, the algorithm was performed entirely
on the GPU because it involves parallel operations only.

6.2.3 Performance Analysis: N-Dependent Speedup

In our GPU-optimized coarse-grained MD simulation
code, we implemented the parallel Verlet neighbor list[95]

and the parallel hybrid neighbor/cell list[97] algorithms. We
compared the performance to an equivalent CPU-opti-
mized code with the Verlet neighbor list algorithm and
compared execution times of MD simulations of systems
that range in size from a tRNA (76 beads) to the 70S ri-
bosome (10,219 beads). We note that the CPU code was
developed such that it was optimal for the CPU architec-
ture. For example, precomputed values were used exten-
sively in the code, as one would expect in code that was
appropriate for the CPU-only architecture.

For the Verlet neighbor list algorithm, we observed
that for the smallest system it required more time to per-
form the MD simulation on a GPU than on a CPU. The
cost of transferring information to the GPU was not
worth the gain of performing the force calculations on
the GPU in parallel. On the other hand, for the largest
system, we observed approximately 30 � speedup over the
CPU code.[95]

We then compared our code to HOOMD, one of the
leading GPU-optimized general particle dynamics soft-
ware available. This is not a particularly fair comparison
because the HOOMD software is designed to be flexible
and our code was developed specifically for Go-type MD
simulations. However, the comparison is valuable to
quantify the performance of our MD simulation code rel-
ative to one of the leading GPU-optimized MD simula-
tion codes. We implemented the SOP model energy func-
tion into HOOMD, and we observed that HOOMD has
a faster execution time for systems that are less than
around 500 beads. For systems that contain about 500–
1000 beads, our code has a faster execution time. After
that, HOOMD, due to the memory overhead associated
with its flexibility, cannot perform MD simulations for
larger systems, but our code can accommodate a maxi-
mum of ~80,000 beads for GPUs with 1.5 GB of
memory.[96]

When we compared our parallel Verlet neighbor list al-
gorithm MD simulation code to the same code using in-
stead the parallel hybrid neighbor/cell list algorithm, we
observed about 10% speedup for the systems we studied,
if we excluded the smallest system with only 76 beads.[97]

6.3 Accuracy Issues: Single vs. Double Precision

Another significant issue has to do with the accuracies of
the MD simulation calculations themselves. Since the
original purpose of GPUs was to accelerate the floating-
point operations involved in rendering graphical images
that did not need to be accurate, the floating-point opera-
tions in older GPU models were not IEEE compliant to
speed up calculations. As a result, MD simulations imple-
mented on some of the early NVIDIA Tesla model GPUs
exhibited an energy drift,[102] indicating that detailed bal-
ance was not preserved due to errors in the calculations.
More recent NVIDIA GPU models are now IEEE com-
pliant so this is no longer an issue.[95] However, unlike tra-
ditional CPUs, the GPU architecture has a significant per-
formance difference between single-precision and double-
precision calculations.[86,95,103] It is usually standard to im-
plement MD simulations on CPUs using double-precision
calculations, because the performance difference is negli-
gible.

Since the use of double-precision calculations to per-
form MD simulations is an arbitrary goalpost for accuracy
that is convenient for computer architecture, we generat-
ed single- and double-precision versions of our code to
quantify the difference. Using the recent Tesla models
(and more recent Kepler models; data not published), we
observed no significant energy drift that was observed in
previous studies. To quantify the significance of the differ-
ence between the single- and double-precision calcula-
tions, we ran independent MD simulations using single-
and double-precision calculations starting from the same
structure and the same velocities. As with any calcula-
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tions, round-off errors do occur and for parallel programs
the order in which the calculations are performed can
result in different numbers. We then computed order pa-
rameters that could be directly compared to experiments,
namely the radius of gyration that could be compared to
SAXS experiments, and end-to-end distances that could
be directly compared to single-molecule FRET experi-
ments. We observed minimal differences between the
single- and double-precision coarse-grained MD simula-
tions, at least at the resolution of these experimentally
relevant biophysical metrics.[95]

In a recent study, Walker and co-workers developed
a mixed single/double precision approach for performing
MD simulations in AMBER, and they applied it to gener-
alized Born implicit solvent and explicit solvent particle
mesh Ewald MD simulations. They observed minimal
energy drift and minimal differences in RMSD and
RMSF while still retaining similar performance to the
single-precision-only approach.[103] If it turns out that MD
simulations are indeed necessarily sensitive to the preci-
sion of the calculations, such precision optimization tech-
niques may be necessary to obtain the accurate MD simu-
lation trajectories while retaining performance benefits as
well. However, even when performing MD simulations
on the GPU using double-precision calculations only,
a significant performance gain can be observed.[95,103]

7 Summary and Outlook

MD simulations continue to be a critical tool to advance
experiments and theory. While many of the main features
and even the finer details of protein folding theory are
becoming settled, our understanding of nucleic acid fold-
ing mechanisms continue to be developed and MD simu-
lations are a key tool.

In our review, we have focused on empirical force field
and Go-type MD simulations, and we have highlighted
their successes in reproducing experiments and outlined
their limitations. Specifically, we highlighted recent ad-
vances in atomistic empirical force field MD simulations
for refining parameters to accurately characterize base-
stacking interactions. For TIS model MD simulations that
use empirical Turner�s rules for base-stacking interactions,
RNA folding can reproduce thermodynamic and kinetic
features of the folding mechanism. The accurate electro-
static representation in nucleic acids, however, continues
to be a challenge for both approaches, which may be im-
proved with the development of polarizable force fields.
In both empirical force field and Go-type MD simula-
tions, a complex folding mechanism for folding is ob-
served. The chemical simplicity of RNA leads to promis-
cuous folding mechanisms arising from non-specific inter-
actions such as electrostatics. We discussed above cases
where this was true for both RNA and DNA.

In addition to physical advances for MD simulations,
computational advances continue to play a fundamental
role in describing folding and assembly mechanisms. Cur-
rently, the state-of-the-art atomistic empirical force field
MD simulations of folding and assembly mechanisms are
typically performed for systems that are about 100 resi-
dues/nucleotides in length for timescales of about a few
microseconds. While these advances in computation are
orders of magnitude better with respect to the time and
length scales than the first MD simulations of a biomole-
cule, we feel that it is important to take a step back and
also appreciate that we still have significant computation-
al challenges ahead. Indeed, in a standard biology text-
book, we found that the proteins and nucleic acids dis-
cussed are generally far larger in length than 100 resi-
dues/nucleotides (Figure 7). The development of coarse-
grained MD simulation approaches, such as the Go-type
model, will likely continue to play a key role in MD simu-
lations of biologically relevant systems.

Recent work with performing MD simulations on the
GPU architecture has already demonstrated that the par-
allel architecture lends itself well to MD simulations. The
implementation of MD simulations on the GPU architec-
ture will require new algorithms and we have discussed
two novel ones that our group has developed. There
remain issues with GPU performance and accuracy that
are largely being addressed, and the field is becoming
mature and accessible enough for the average researcher.
The development of MD simulation algorithms continues
to be a promising direction.

In light of the great advances we have seen over the
past few decades, we are optimistic that the continued
rapid expansion of computational methods will continue
to advance our knowledge of biomolecular folding mech-

Figure 7. A histogram of the number of residues or nucleotides
present in proteins and nucleic acids mentioned in an undergradu-
ate-level biology textbook.[104] The approximate lengths were ob-
tained from the PDB when the full-length structure was available
or from other sources.
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anisms. The development and application of MD simula-
tions have always been interdisciplinary in nature, and
recent developments indicate that significant contribu-
tions from biophysics and computer science will be re-
quired to advance the field of biomolecular folding mech-
anisms.
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[23] X. Cang, J. Šponer, I. Cheatham, J. Am. Chem. Soc. 2011,

133, 14270.

[24] J. A. Cruz, E. Westhof, Cell 2009, 136, 604.
[25] J. Pan, D. Thirumalai, S. A. Woodson, J. Mol. Biol. 1997,

273, 7.
[26] D. L. Pincus, S. S. Cho, C. Hyeon, D. Thirumalai, Prog.

Mol. Biol. Transl. Sci. 2008, 84, 203.
[27] M. H. Bailor, A. M. Mustoe, C. L. Brooks III, H. M. Al-

Hashimi, Curr. Opin. Struct. Biol. 2011, 21, 296.
[28] I. Tinoco, C. Bustamante, J. Mol. Biol. 1999, 293, 271.
[29] M. Wu, I. Tinoco, Proc. Natl. Acad. Sci. U.S.A. 1998, 95,

11555.
[30] S. S. Cho, D. L. Pincus, D. Thirumalai, Proc. Natl. Acad.

Sci. U.S.A. 2009, 106, 17349.
[31] E. Koculi, S. S. Cho, R. Desai, D. Thirumalai, S. A. Wood-

son, Nucleic Acids Res. 2012, 40, 1–10.
[32] D. Thirumalai, D. K. Klimov, S. A. Woodson, Theor. Chem.

Acc. 1997, 96, 14.
[33] R. I. Dima, C. Hyeon, D. Thirumalai, J. Mol. Biol. 2005,

347, 53.
[34] S. Cao, S. J. Chen, J. Mol. Biol. 2007, 367, 909.
[35] C. Hyeon, D. Thirumalai, J. Am. Chem. Soc. 2008, 130,

1538.
[36] S. Biyun, S. S. Cho, D. Thirumalai, J. Am. Chem. Soc. 2011,

133, 20634.
[37] R. Narayanan, Y. Velmurugu, S. V. Kuznetsov, A. Ansari,

J. Am. Chem. Soc. 2011, 133, 18767.
[38] D. Thirumalai, C. Hyeon, Biochemistry 2005, 44, 4957.
[39] A. D. MacKerell, M. Feig, C. L. Brooks, J. Am. Chem. Soc.

2004, 126, 698.
[40] P. K. Weiner, P. A. Kollman, J. Comput. Chem. 1981, 2,

287.
[41] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhor-

shid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten,
J. Comput. Chem. 2005, 26, 1781.

[42] C. M. Baker, V. M. Anisimov, A. D. MacKerell, J. Phys.
Chem. B 2011, 115, 580.

[43] Y. Sugita, Y. Okamoto, Chem. Phys. Lett. 1999, 314, 141.
[44] V. A. Voelz, G. R. Bowman, K. Beauchamp, V. S. Pande, J.

Am. Chem. Soc. 2010, 132, 1526.
[45] R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, D. E.

Shaw, Annu. Rev. Biophys. 2012, 41, 429.
[46] A. Morriss-Andrews, J. Rottler, S. S. Plotkin, J. Chem.

Phys. , 2010, 132, 035105.
[47] J. D. Bryngelson, P. G. Wolynes, Proc. Natl. Acad. Sci.

U.S.A. 1987, 84, 7524.
[48] P. E. Leopold, M. Montal, J. N. Onuchic, Proc. Natl. Acad.

Sci. U.S.A. 1992, 89, 8721.
[49] J. D. Bryngelson, J. N. Onuchic, N. D. Socci, P. G. Wolynes,

Proteins 1995, 21, 167.
[50] C. Clementi, H. Nymeyer, J. N. Onuchic, J. Mol. Biol.

2000, 298, 937.
[51] L. Li, E. I. Shakhnovich, Proc. Natl. Acad. Sci. U.S.A.

2001, 98, 13014.
[52] P. C. Whitford, J. K. Noel, S. Gosavi, A. Schug, K. Y. San-

bonmatsu, J. N. Onuchic, Proteins: Struct., Funct., Bioinf.
2009, 75, 430.

[53] M. S. Cheung, A. E. Garcia, J. N. Onuchic, Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 685.

[54] J. Karanicolas, C. L. Brooks, Protein Sci. 2002, 11, 2351.
[55] S. S. Cho, Y. Levy, P. G. Wolynes, Proc. Natl. Acad. Sci.

U.S.A. 2009, 106, 434.
[56] U. D. Priyakumar, A. D. MacKerell, J. Chem. Theory

Comput. 2006, 2, 187.
[57] K. B. Hall, Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 16706.

Isr. J. Chem. 2014, 54, 1152 – 1164 � 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.ijc.wiley-vch.de 1163

Review



[58] A. A. Chen, A. E. Garc�a, Proc. Natl. Acad. Sci. U.S.A.
2013, 110, 16820.

[59] C. C. Hardin, M. J. Corregan, D. V. Lieberman, B. A.
Brown, Biochemistry 1997, 36, 15428.

[60] D. E. Draper, RNA 2004, 10, 335.
[61] T. E. Cheatham III, P. A. Kollman, Annu. Rev. Phys.

Chem. 2000, 51, 435.
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