Initial Data for Black-Hole Binaries

Gregory B. Cook
Wake Forest University

June 11/12, 2004

Abstract
We will examine the current state of our efforts to generate astrophysically realistic initial data for black-hole binaries.

Collaborators: Harald Pfeiffer (Caltech) & Saul Teukolsky (Cornell)
Motivation

- Black hole binaries are among the most likely sources for early detection with LIGO, VIRGO, GEO, . . .
- Available computed waveforms should increase chance of detecting collision events.

Quasi-Equilibrium Binary Data

- General Relativity doesn’t permit true equilibrium for astrophysical binary systems.
- When the bodies are sufficiently far apart, the timescale for orbital decay is much larger than the orbital period.
- If the orbit is nearly circular (quasi-circular) then there is a corotating reference frame in which the binary appears to be at rest.

★ Quasi-equilibrium gives us a physical condition to guide us in fixing boundary conditions and data that is not otherwise constrained.
The 3 + 1 Decomposition

Lapse: \(\alpha \)
Spatial metric: \(\gamma_{ij} \)
Shift vector: \(\beta^i \)
Extrinsic Curvature: \(K_{ij} \)
Time vector: \(t^\mu = \alpha n^\mu + \beta^\mu \)

\[\text{d}s^2 = -\alpha^2 \text{d}t^2 + \gamma_{ij}(\text{d}x^i + \beta^i \text{d}t)(\text{d}x^j + \beta^j \text{d}t) \]
\[\gamma_{\mu\nu} = g_{\mu\nu} + n_\mu n_\nu \]
\[K_{\mu\nu} = -\frac{1}{2} \gamma^\alpha_{\mu} \gamma^\beta_\nu \mathcal{L}_n g_{\alpha\beta} \]

Constraint equations

\[\bar{R} + K^2 - K_{ij} K^{ij} = 16\pi\rho \]
\[\bar{\nabla}_j \left(K^{ij} - \gamma^{ij} K \right) = 8\pi j^i \]

\[S_{\mu\nu} \equiv \gamma^\alpha_\mu \gamma^\beta_\nu T_{\alpha\beta} \]
\[j_{\mu} \equiv -\gamma^\nu_\mu n^\alpha T_{\nu\alpha} \]
\[\rho \equiv n^{\mu} n^{\nu} T_{\mu\nu} \]
\[T_{\mu\nu} = S_{\mu\nu} + 2n_{(\mu} j_{\nu)} + n_\mu n_\nu \rho \]

Evolution equations

\[\partial_t \gamma_{ij} = -2\alpha K_{ij} + \bar{\nabla}_i \beta_j + \bar{\nabla}_j \beta_i \]
\[\partial_t K_{ij} = -\bar{\nabla}_i \bar{\nabla}_j \alpha + \alpha \left[\bar{R}_{ij} - 2 K_{i\ell} K^{\ell j} + K K_{ij} - 8\pi S_{ij} + 4\pi \gamma_{ij} (S - \rho) \right] + \beta^\ell \bar{\nabla}_\ell K_{ij} + K_{i\ell} \bar{\nabla}_j \beta^\ell + K_{j\ell} \bar{\nabla}_i \beta^\ell \]
Conformal Thin-Sandwich Decomposition

\[\gamma_{ij} = \psi^4 \tilde{\gamma}_{ij} \]
\[K^{ij} = \frac{\psi^{-10}}{2\tilde{\alpha}} \left[(\tilde{\mathbb{L}}\beta)^{ij} - \tilde{u}^{ij} \right] + \frac{1}{3} \psi^{-4} \tilde{\gamma}^{ij} K \]

Hamiltonian Const.
\[\tilde{\nabla}^2 \psi - \frac{1}{8} \psi \tilde{R} - \frac{1}{12} \psi^5 K^2 + \frac{1}{8} \psi^{-7} \tilde{A}_{ij} \tilde{A}^{ij} = -2\pi \psi^5 \rho \]

Momentum Const.
\[\tilde{\nabla}_j (\tilde{\mathbb{L}}\beta)^{ij} - (\tilde{\mathbb{L}}\beta)^{ij} \tilde{\nabla}_j \tilde{\alpha} = \frac{4}{3} \tilde{\alpha} \psi^6 \tilde{\nabla}^i K + \tilde{\alpha} \tilde{\nabla}_j \left(\frac{1}{\tilde{\alpha}} \tilde{u}^{ij} \right) + 16\pi \tilde{\alpha} \psi^{10} j^i \]

Constrained vars: \(\psi, \beta^i, \) and \(\tilde{\alpha} \equiv \psi^{-6} \alpha \)

Freely specified:
\[K \quad \text{and} \quad \partial_t K \]

Constrained vars:
\[\tilde{\gamma}_{ij}, \tilde{u}^{ij} \equiv -\partial_t \tilde{\gamma}^{ij} \]

Quasi-equilibrium \(\Rightarrow \)
\[
\begin{cases}
\partial_t \tilde{\gamma}^{ij} = 0 \\
\partial_t K = 0
\end{cases}
\]
Equations of Quasi-Equilibrium

\[
\begin{align*}
\text{Ham. & Mom. const. eqns., & Const Tr}(K) & \quad \text{eqn. from Conf. TS} \\
+ \tilde{u}^{ij} = \partial_t K = 0
\end{align*}
\]

\[\Rightarrow \text{Eqns. of Quasi-Equilibrium}\]

With \(\tilde{\gamma}_{ij} = f_{ij}\) and \(K = 0\), these equations have been widely used to construct binary neutron star initial data\([2, 9, 3, 10]\).

Binary neutron star initial data require:

- boundary conditions at infinity compatible with asymptotic flatness and corotation.
 \[
 \psi|_{r \to \infty} = 1 \quad \beta^i|_{r \to \infty} = \Omega \left(\frac{\partial}{\partial \phi} \right)^i \quad \alpha|_{r \to \infty} = 1
 \]

- compatible solution of the equations of hydrostatic equilibrium. \((\Rightarrow \Omega)\)
Equations of Quasi-Equilibrium

With \(\tilde{\gamma}_{ij} = f_{ij} \) and \(K = 0 \), these equations have been widely used to construct binary neutron star initial data\([2, 9, 3, 10]\).

Binary neutron star initial data require:

- boundary conditions at infinity compatible with asymptotic flatness and corotation.
 \[
 \psi|_{r \to \infty} = 1 \quad \beta^i|_{r \to \infty} = \Omega \left(\frac{\partial}{\partial \phi} \right)^i \quad \alpha|_{r \to \infty} = 1
 \]

- compatible solution of the equations of hydrostatic equilibrium. \(\Rightarrow \Omega \)

Binary black hole initial data require:

- a means for choosing the angular velocity of the orbit \(\Omega \).

* with excision, inner boundary conditions are needed for \(\psi, \beta^i \), and \(\tilde{\alpha} \).

Gourgoulhon, Grandclément, & Bonazzola\([7, 8]\): Black-hole binaries with \(\tilde{\gamma}_{ij} = f_{ij} \) & \(K = 0 \), “inversion-symmetry”, and “Killing-horizon” conditions on the excision boundaries.

“Solutions” require constraint violating regularity condition imposed on inner boundaries!
The Inner Boundary

Σ

Extrinsic curvature of S embedded in Σ

$H_{ij} \equiv \frac{1}{2} h^k_i h^\ell_j \mathcal{L}_s \gamma_{k\ell}$

Projections of K_{ij} onto S

$J_{ij} \equiv h^k_i h^\ell_j K_{k\ell}$

$J_i \equiv h^k_i s^\ell K_{k\ell}$

$J \equiv h^{ij} J_{ij} = h^{ij} K_{ij}$

Expansion of null rays

$\theta \equiv h^{ij} \Sigma_{ij} = \frac{1}{\sqrt{2}} (H - J)$

Shear of null rays

$\sigma_{ij} \equiv \Sigma_{ij} - \frac{1}{2} h_{ij} \theta$

$\dot{\sigma}_{ij} \equiv \dot{\Sigma}_{ij} - \frac{1}{2} h_{ij} \dot{\theta}$

$\dot{\theta} \equiv h^{ij} \dot{\Sigma}_{ij} = -\frac{1}{\sqrt{2}} (H + J)$

$s_i \equiv \frac{\nabla_i \tau}{|\nabla \tau|}$

$h_{ij} \equiv \gamma_{ij} - s_is_j$

$k^\mu \equiv \frac{1}{\sqrt{2}} (n^\mu + s^\mu)$

$\dot{k}^\mu \equiv \frac{1}{\sqrt{2}} (n^\mu - s^\mu)$

Extrinsic curvature of Σ embedded in spacetime

$\Sigma_{\mu\nu} \equiv \frac{1}{2} h^\alpha_\mu h^\beta_\nu \mathcal{L}_k g_{\alpha\beta}$

$\dot{\Sigma}_{\mu\nu} \equiv \frac{1}{2} h^\alpha_\mu h^\beta_\nu \dot{\mathcal{L}}_k g_{\alpha\beta}$

Extrinsic curvature of S embedded in Σ

$\Sigma_{ij} = \frac{1}{\sqrt{2}} (H_{ij} - J_{ij})$

$\dot{\Sigma}_{ij} = -\frac{1}{\sqrt{2}} (H_{ij} + J_{ij})$
AH and QE Conditions on the Inner Boundary

The quasi-equilibrium inner boundary conditions start with the following assumptions:

1. The inner boundary S is a (MOTS):
 \[\theta = 0 \]

2. The inner boundary S remains a MOTS:
 \[\mathcal{L}_\zeta \theta = 0 \]
 \[t^\mu = \alpha n^\mu + \beta^\mu \]
 \[\zeta^\mu \equiv \alpha n^\mu + \beta_\perp s^\mu \]
 \[\beta_\perp \equiv \beta^i s_i \]
 ζ^μ is null on the AH and the chosen form is a gauge choice.

3. The horizons are in quasi-equilibrium:
 \[\sigma_{ij} = 0 \] and no matter is on S
AH/Quasi-Equilibrium Boundary Conditions

\[\theta = \frac{\psi^{-2}}{\sqrt{2}} \left[\tilde{h}^{ij} \tilde{\nabla}_i \tilde{s}_j + 4 \tilde{s}^k \tilde{\nabla}_k \ln \psi - \psi^2 J \right] \]

\[\mathcal{L}_\zeta \theta = -\frac{1}{\sqrt{2}} \left[\theta \left(\theta + \frac{1}{2} \dot{\theta} + \frac{1}{\sqrt{2}} K \right) + \mathcal{E} \right] (\beta_\perp + \alpha) \]

\[-\frac{1}{\sqrt{2}} \left[\theta \left(\frac{1}{2} \theta - \frac{1}{2} \dot{\theta} + \frac{1}{\sqrt{2}} K \right) + \mathcal{D} + 8\pi T_{\mu\nu} k^\mu k^\nu \right] (\beta_\perp - \alpha) \]

\[+ \theta s^i \tilde{\nabla}_i \alpha \]

\[\mathcal{D} \equiv \tilde{h}^{ij} (D_i + J_i)(D_j + J_j) - \frac{1}{2} R \]

\[\mathcal{E} \equiv \sigma_{ij} \dot{\sigma}^{ij} + 8\pi T_{\mu\nu} k^\mu k^\nu \]

\[\sigma_{ij} = \frac{1}{\sqrt{2}} \left(H_{ij} - \frac{1}{2} h_{ij} H \right) \left(1 - \frac{\beta_\perp}{\alpha} \right) \]

\[-\frac{1}{\sqrt{2}} \frac{\psi^4}{\alpha} \left\{ \tilde{D}_{(i\beta\|j)} - \frac{1}{2} \tilde{h}_{ij} \tilde{D}_{k\|i} \beta^k - \frac{1}{2} [\tilde{h}_{ik} \tilde{h}_{j\ell} \tilde{u}^{k\ell} - \frac{1}{2} \tilde{h}_{ij} \tilde{h}_{k\ell} \tilde{u}^{k\ell}] \right\} \]
AH/Quasi-Equilibrium Boundary Conditions

$$\theta = \frac{\psi^{-2}}{\sqrt{2}} \left[\tilde{h}^{ij} \tilde{\nabla}_i \tilde{s}_j + 4 \tilde{s}^k \tilde{\nabla}_k \ln \psi - \psi^2 J \right]$$

$$\mathcal{L}_\zeta \theta = -\frac{1}{\sqrt{2}} \left[\theta (\theta + \frac{1}{2} \dot{\theta} + \frac{1}{\sqrt{2}} K) + \mathcal{E} \right] (\beta_\perp + \alpha)$$

$$-\frac{1}{\sqrt{2}} \left[\theta (\frac{1}{2} \dot{\theta} - \frac{1}{2} K) + \mathcal{D} + 8\pi T_{\mu\nu} k^\mu \dot{k}^\nu \right] (\beta_\perp - \alpha)$$

$$+ \theta s^i \tilde{\nabla}_i \alpha$$

$$\mathcal{D} \equiv \tilde{h}^{ij} (D_i + J_i) (D_j + J_j) - \frac{1}{2} R$$

$$\mathcal{E} \equiv \sigma_{ij} \sigma^{ij} + 8\pi T_{\mu\nu} k^\mu k^\nu$$

$$\sigma_{ij} = \frac{1}{\sqrt{2}} \left(H_{ij} - \frac{1}{2} h_{ij} H \right) \left(1 - \frac{\beta_\perp}{\alpha} \right)$$

$$- \frac{1}{\sqrt{2}} \psi^4 \left\{ \tilde{D}_{(i \beta_\parallel j)} - \frac{1}{2} \tilde{h}_{ij} \tilde{D}_k \beta_\parallel^k - \frac{1}{2} [\tilde{h}_{ik} \tilde{h}_{j\ell} \tilde{u}^{k\ell} - \frac{1}{2} \tilde{h}_{ij} \tilde{h}_{k\ell} \tilde{u}^{k\ell}] \right\}$$

$$\tilde{s}^k \tilde{\nabla}_k \ln \psi = -\frac{1}{4} (\tilde{h}^{ij} \tilde{\nabla}_i \tilde{s}_j - \psi^2 J)$$

$$\beta^i = \alpha \psi^{-2} \tilde{s}^i + \beta_\parallel^i$$

$$0 = \tilde{D}_{(i \beta_\parallel j)} - \frac{1}{2} \tilde{h}_{ij} \tilde{D}_k \beta_\parallel^k$$
AH/Quasi-Equilibrium Boundary Conditions

\[\theta = \frac{\psi^{-2}}{\sqrt{2}} \left[\tilde{h}_{ij} \tilde{\nabla}_i \tilde{s}_j + 4 \tilde{s}^k \tilde{\nabla}_k \ln \psi - \psi^2 J \right] \]

\[\mathcal{L}_\zeta \theta = - \frac{1}{\sqrt{2}} \left[\theta (\theta + \frac{1}{2} \dot{\theta} + \frac{1}{\sqrt{2}} K) + \mathcal{E} \right] (\beta_\perp + \alpha) \]
\[- \frac{1}{\sqrt{2}} \left[\theta \left(\frac{1}{2} \theta - \frac{1}{2} \dot{\theta} + \frac{1}{\sqrt{2}} K \right) + \mathcal{D} + 8\pi T_{\mu\nu} k^\mu \dot{\tilde{k}}^\nu \right] (\beta_\perp - \alpha) \]

\[+ \theta s^i \tilde{\nabla}_i \alpha \]

\[\mathcal{D} \equiv \tilde{h}_{ij} (D_i + J_i) (D_j + J_j) - \frac{1}{2} R \]

\[\mathcal{E} \equiv \sigma_{ij} \sigma^{ij} + 8\pi T_{\mu\nu} k^\mu k^\nu \]

\[\sigma_{ij} = \frac{1}{\sqrt{2}} \left(H_{ij} - \frac{1}{2} h_{ij} H \right) \left(1 - \frac{\beta_\perp}{\alpha} \right) \]
\[- \frac{1}{\sqrt{2}} \frac{\psi^4}{\alpha} \left\{ \tilde{D}_i \beta_{\parallel j} - \frac{1}{2} \tilde{h}_{ij} \tilde{D}_k \beta_\parallel^k - \frac{1}{2} \left[\tilde{h}_{ik} \tilde{h}_{j\ell} \tilde{u}^{k\ell} - \frac{1}{2} \tilde{h}_{ij} \tilde{h}_{k\ell} \tilde{u}^{k\ell} \right] \right\} \]

\[\tilde{s}^k \tilde{\nabla}_k \ln \psi = - \frac{1}{4} (\tilde{h}_{ij} \tilde{\nabla}_i \tilde{s}_j - \psi^2 J) \]

\[\beta^i = \alpha \psi^{-2} \tilde{s}^i + \beta_{\parallel}^i \]

\[0 = \tilde{D}_i \beta_{\parallel j} - \frac{1}{2} \tilde{h}_{ij} \tilde{D}_k \beta_\parallel^k \]

\[\partial_t \ln \psi = \left[\tilde{D}_k \beta_\parallel^k + 4 \beta_{\parallel}^k \tilde{D}_k \ln \psi \right. \]
\[- \frac{1}{2} \tilde{h}_{k\ell} \tilde{u}^{k\ell} \]
\[\left. - \sqrt{2} \theta + (\beta_\perp - \alpha) H \right] \]
Defining the Spin of the Black Hole

The spin parameters β^i can be defined by demanding that the time vector associated with quasi-equilibrium in the corotating frame must be null, forming the null generators of the horizon.

$$k^\mu \propto (n^\mu + s^\mu) \implies k^\mu = \left[1, \alpha s^i - \beta^i\right]$$

This vector k^μ is null for any choice of α & β^i.

In the frame where a black hole is not spinning, the null time vector has components $t^\mu = [1, \vec{0}]$.

Corotating Holes
Corotating holes are at rest in the corotating frame, where we must pose boundary conditions. So,

$$k^\mu = \left[1, \alpha s^i - \beta^i\right] = [1, \vec{0}]$$

Thus we find

$$\beta^i = \alpha s^i \implies \beta^i = 0$$

Irrotational Holes
Irrotational holes are at rest in the inertial frame. With the time vectors in the inertial and corotating frames related by

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \Omega \frac{\partial}{\partial \phi}$$

$$k^\mu = \left[1, \alpha s^i - \beta^i\right] = [1, -\Omega(\partial/\partial \phi)^i]$$

Thus we find

$$\beta^i = \alpha s^i + \Omega \left(\frac{\partial}{\partial \phi}\right)^i \implies \beta_{\parallel}^i = \Omega \xi^i$$

$$\xi^i \approx \left(\frac{\partial}{\partial \phi}\right)^i \quad \& \quad \tilde{D}_{(i \xi_j)} - \frac{1}{2} \tilde{h}_{ij} \tilde{D}_k \xi^k = 0$$
The Lapse BC & QE

So far, nothing has fixed a boundary condition on the lapse α. One possibility\cite{6} is to recall that $\theta\dot{\theta}$ is a Lorentz invariant and so to consider $\mathcal{L}_\zeta \dot{\theta} = 0$ as a quasi-equilibrium condition.

\[
\mathcal{L}_\zeta \dot{\theta} = 0 \quad \Rightarrow \quad J s^i \tilde{\nabla}_i \alpha = -\psi^2 (J^2 - J K + \tilde{D}) \alpha
\]

\[
\tilde{D} \equiv \psi^{-4} [\tilde{h}^{ij} (\tilde{D}_i - J_i)(\tilde{D}_j - J_j) - \frac{1}{2} \tilde{R} + 2 \tilde{D}^2 \ln \psi]
\]
The Lapse BC & QE

So far, nothing has fixed a boundary condition on the lapse α. One possibility is to recall that $\theta\dot{\theta}$ is a Lorentz invariant and so to consider $\mathcal{L}_\zeta \dot{\theta} = 0$ as a quasi-equilibrium condition.

$$\mathcal{L}_\zeta \dot{\theta} = 0 \quad \implies \quad J \tilde{s}^i \tilde{\nabla}_i \alpha = -\psi^2 (J^2 - JK + \tilde{D}) \alpha$$

$$\tilde{D} \equiv \psi^{-4} [\tilde{h}^{ij} (\tilde{D}_i - J_i)(\tilde{D}_j - J_j) - \frac{1}{2} \tilde{R} + 2 \tilde{D}^2 \ln \psi]$$

This condition is satisfied for stationary solutions, but seems to be degenerate with the other QE boundary conditions. To see this, note that the stationary maximal slicings of Schwarzschild form a 1-parameter family:

$$ds^2 = \frac{dR^2}{1 - \frac{2M}{R} + \frac{C^2}{R^4}} + R^2 d^2\Omega$$

$$\alpha = \sqrt{1 - \frac{2M}{R} + \frac{C^2}{R^4}}$$

$$\beta^R = \frac{C}{R^2} \sqrt{1 - \frac{2M}{R} + \frac{C^2}{R^4}}$$

$$K^i_j = \frac{C}{R^3} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\alpha|_S = \frac{C}{4M^2}$$
The Orbital Angular Velocity

- For a given choice of the Lapse BC, $\tilde{\gamma}_{ij}$ and K, we are still left with a family of solutions parameterized by the orbital angular velocity Ω.
- Except for the case of a single spinning black hole, it is not reasonable to expect more than one value of Ω to correspond to a system in quasi-equilibrium.

GGB[7, 8] have suggested a way to pick the quasi-equilibrium value of Ω:

\[\Omega \text{ is chosen as the value for which the ADM energy } E_{\text{ADM}} \text{ equals the Komar mass } M_K. \]

\[
M_K = \frac{1}{4\pi} \int_{\infty} \gamma^{ij} (\bar{\nabla}_i \alpha - \beta^k K_{ik}) d^2 S_j \quad \text{Acceptable definition of the mass only for stationary spacetimes.}
\]

\[
E_{\text{ADM}} = \frac{1}{16\pi} \int_{\infty} \gamma^{ij} \bar{\nabla}_k (G^k_i - \delta^k_i G) d^2 S_j \quad \text{Acceptable definition of the mass for arbitrary spacetimes.} \\
G_{ij} \equiv \gamma_{ij} - f_{ij}
\]
Summary of QE Formalism

\[
\gamma_{ij} = \psi^4 \tilde{\gamma}_{ij} \quad K^{ij} = \psi^{-10} \tilde{A}^{ij} + \frac{1}{3} \gamma^{ij} K \quad \tilde{A}^{ij} = \frac{\psi^6}{2\alpha} (\tilde{L}\beta)^{ij} \quad \partial_t \tilde{\gamma}_{ij} = 0
\]

\[
\tilde{\nabla}^2 \psi - \frac{1}{8} \psi \tilde{R} - \frac{1}{12} \psi^5 K^2 + \frac{1}{8} \psi^{-7} \tilde{A}_{ij} \tilde{A}^{ij} = 0 \\
\tilde{\nabla}_j (\tilde{L}\beta)^{ij} - (\tilde{L}\beta)^{ij} \tilde{\nabla}_j \ln \alpha \psi^{-6} = \frac{4}{3} \alpha \tilde{\nabla}^i K \\
\tilde{\nabla}^2 (\alpha \psi) - (\alpha \psi)\left[\frac{1}{8} \tilde{R} + \frac{5}{12} \psi^4 K^2 + \frac{7}{8} \psi^{-8} A_{ij} A^{ij} \right] = \psi^5 \beta^i \tilde{\nabla}_i K \quad \partial_t K = 0
\]

\[
\tilde{s}^k \tilde{\nabla}_k \ln \psi|_S = -\frac{1}{4} (\tilde{h}^{ij} \tilde{\nabla}_i \tilde{s}_j - \psi^2 J)|_S \quad \theta = 0
\]

\[
\beta^i|_S = \begin{cases}
\alpha \psi^{-2} \tilde{s}^i|_S & \text{corotation} \\
\alpha \psi^{-2} \tilde{s}^i|_S + \Omega \xi^i|_S & \text{irrotation}
\end{cases}
\]

\[
\alpha|_S = \text{unspecified by QE}
\]

| \psi|_{r \to \infty} = 1 \\
|\beta^i|_{r \to \infty} = \Omega \left(\frac{\partial}{\partial \phi} \right)^i \\
|\alpha|_{r \to \infty} = 1
|}

The only remaining freedom in the system is the choice of the lapse boundary condition, the initial spatial and temporal gauge, and the initial dynamical ("wave") content found in \(\alpha|_S, \tilde{\gamma}_{ij} \) and \(K \).
Results

Corotation
\[\tilde{\gamma}_{ij} = f_{ij} \] : Maximal Slicing:
- \[\frac{\partial (\alpha \psi)}{\partial r} = 0 \]
- \[\alpha \psi = \frac{1}{2} \]
- \[\frac{\partial (\alpha \psi)}{\partial r} = \frac{\alpha \psi}{2r} \]

\[\tilde{\gamma}_{ij} = f_{ij} \] : Eddington-Finkelstein Slicing:
- \[\frac{\partial (\alpha \psi)}{\partial r} = 0 \]
- \[\alpha \psi = \frac{1}{2} \]
- \[\frac{\partial (\alpha \psi)}{\partial r} = \frac{\alpha \psi}{2r} \]

Irrotation
\[\tilde{\gamma}_{ij} = f_{ij} \] : Maximal Slicing:
- \[\frac{\partial (\alpha \psi)}{\partial r} = 0 \]
- \[\alpha \psi = \frac{1}{2} \]
- \[\frac{\partial (\alpha \psi)}{\partial r} = \frac{\alpha \psi}{2r} \]

\[\tilde{\gamma}_{ij} = f_{ij} \] : Eddington-Finkelstein Slicing:
- \[\frac{\partial (\alpha \psi)}{\partial r} = 0 \]
- \[\alpha \psi = \frac{1}{2} \]
- \[\frac{\partial (\alpha \psi)}{\partial r} = \frac{\alpha \psi}{2r} \]

Compared with
- Effective-One-Body PN[5]
- Inversion-Symmetric HKV[8]

Compared with
- Effective-One-Body PN[5]
- Conformal Imaging[4]
- Puncture Method[1]
Corotating; Maximal Slicce; QE-BC; E_b/μ vs $J/\mu m$
Corotating; Maximal Slice; Comparison; E_b/μ vs $J/\mu m$
Irrotational; Maximal Slice; QE-BC; E_b/μ vs $J/\mu m$

\begin{align*}
\text{IR: MS - } d(\alpha \psi)/dr &= 0 \\
\text{IR: MS - } \alpha \psi &= 1/2 \\
\text{IR: MS - } d(\alpha \psi)/dr &= (\alpha \psi)/2r
\end{align*}
Irrotational; Maximal Slicce; Comparison; E_b/μ vs $J/\mu m$
Maximal Slice; Comparison of ISCO; \(\frac{E_b}{M_{irr}} \) vs \(\Omega M_{irr} \)
Maximal Slice; Comparison of ISCO; E_b/M_{irr} vs J/M_{irr}^2
Open Questions

• Is the physics of the corotating and irrotational models correct?
 – Do the corotating black holes have the correct angular momentum?
 – Is the angular momentum of the irrotational holes nearly zero?

• How do we make a *physically motivated* choice for $\tilde{\gamma}_{ij}$?
References

