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We describe the burgeoning field of numerical relativity, which aims to solve
Einstein’s equations of general relativity numerically. The field presents many
questions that may interest numerical analysts, especially problems related to
nonlinear partial differential equations: elliptic systems, hyperbolic systems,
and mixed systems. There are many novel features, such as dealing with
boundaries when black holes are excised from the computational domain, or
how to even pose the problem computationally when the coordinates must
be determined during the evolution from initial data. The most important
unsolved problem is that there is no known general 3-dimensional algorithm
that can evolve Einstein’s equations with black holes that is stable. This
review is meant to be an introduction that will enable numerical analysts and
other computational scientists to enter the field. No previous knowledge of
special or general relativity is assumed.
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1. Introduction

Much of numerical analysis has been inspired by problems arising from the
study of the physical world. The flow of ideas has often been two-way, with
the original discipline flourishing under the attention of professional numer-
ical analysis. In this review we will describe the burgeoning field of numer-
ical relativity, which aims to solve Einstein’s equations of general relativity
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numerically. The field contains many novel questions that may interest nu-
merical analysts, and yet is essentially untouched except by physicists with
training in general relativity.

The subject presents a wealth of interesting problems related to nonlin-
ear partial differential equations: elliptic systems, hyperbolic systems, and
mixed systems. There are many novel features, such as dealing with bound-
aries when black holes are excised from the computational domain, or how
to even pose the problem computationally when the coordinates must be
determined during the evolution from initial data. Perhaps the most im-
portant unsolved problem is that, at the time of writing, there is no known
general 3-dimensional algorithm that can evolve Einstein’s equations with
black holes that is stable. What red-blooded computational scientist could
fail to rise to such a challenge? This review is meant to be an introduction
that will enable numerical analysts and other computational scientists to en-
ter the field—a field that has a reputation for requiring arcane knowledge.
We hope to persuade you that this reputation is undeserved.

Our review will not assume any previous knowledge of special or general
relativity, but some elementary knowledge of tensors will be helpful. We will
give a brief introduction to these topics. This should be sufficient to follow
the main part of the review, which describes the formulation of general rel-
ativity as a computational problem. We then describe various methods that
have been proposed for attacking the problem numerically, and outline the
successes and failures. We conclude with a summary of several outstanding
problems. While numerical relativity encompasses a broad range of topics,
we will only be able to cover a portion of them here.

The style of this review is more informal than those usually found in this
journal. There are two reasons for this. First, numerical relativity itself
is largely untouched by rigorous investigation, and few results have been
formalized as theorems. Second, the authors are physicists, for which we
beg your indulgence.

1.1. Resources

A somewhat terse introduction to the partial differential equations of general
relativity aimed at mathematicians can be found in Taylor (1996, §18). A
more leisurely and complete exposition of the subject is given by Sachs and
Wu (1977). Standard textbooks aimed at physicists include Misner, Thorne
and Wheeler (1973) and Wald (1984).

Several collaborations are working on problems in numerical relativity. In-
formation is available at the web sites http://www.npac.syr.edu/projects/bh
and http://jean-luc.ncsa.uiuc.edu. These sites also include links to
DAGH (Parashar and Brown 1995), a package supporting adaptive mesh
refinement for elliptic and hyperbolic equations on parallel supercomputers.
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1.2. Special Relativity

Physical phenomena require four coordinates for their specification: three
for the spatial location and one for the time. The mathematical description
of special relativity unifies the disparate concepts of space and time into
spacetime, a 4-dimensional manifold that is the arena for physics. Points on
the manifold correspond to physical events in spacetime. The geometry of
spacetime is described by a pseudo-Euclidean metric,

ds2 = −dt2 + dx2 + dy2 + dz2, (1.1)

which describes the infinitesimal interval, or distance, between neighboring
events.∗ All of physics takes place in this fixed background geometry, which
is also called Minkowski space.

We label the coordinates by Greek indices α, β, . . . , taking on values from
0 to 3 according to the prescription

x0 = t, x1 = x, x2 = y, x3 = z. (1.2)

Then if we introduce the metric tensor

ηαβ = diag(−1, 1, 1, 1), (1.3)

we can write equation (1.1) as

ds2 = ηαβ dxα dxβ. (1.4)

Here and throughout we use the Einstein summation convention: whenever
indices are repeated in an equation, there is an implied summation from 0
to 3.

A special role is played by null intervals, for which ds2 = 0. Events
connected by such an interval can be joined by a light ray. More generally,
a curve in spacetime along which ds2 = 0 is a possible trajectory of a light
ray, and is called a null worldline. Similarly, we talk of timelike intervals and
timelike worldlines ( ds2 < 0) and spacelike intervals and spacelike worldlines
( ds2 > 0). For a timelike worldline, the velocity

v2 =
(

dx
dt

)2

+
(

dy
dt

)2

+
(

dz
dt

)2

(1.5)

is everywhere less than 1; this corresponds to the trajectory of a material
particle. A spacelike worldline would correspond to a particle traveling faster
than the speed of light, which is impossible.

Just as rotations form a symmetry group for the Euclidean metric, the set
of Lorentz transformations forms the symmetry group of the metric (1.4). A

∗ We always use the same units of measurement for time and space. It is convenient
to choose these units such that the speed of light is one. Thus 1 second of time is
equivalent to 3× 1010 cm of time.
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Lorentz transformation is defined by a constant matrix Λα
′
α that transforms

the coordinates according to

xα → xα
′

= Λα
′
αx

α. (1.6)

It must preserve the interval ds2 between events. Substituting the transfor-
mation (1.6) into (1.4) and requiring invariance gives the matrix equation

η = ΛTηΛ. (1.7)

This equation is the generalization of the relation δ = RTR for the rotation
group, where δ is the Kronecker delta (identity matrix), the Euclidean metric
tensor, and R is a 3 × 3 rotation matrix. The Lorentz group turns out
to be six dimensional. It contains the 3-dimensional rotation group as a
subgroup. The other three degrees of freedom are associated with boosts,
transformations from one coordinate system to another moving with uniform
velocity in a straight line with respect to the first.

Note that in special relativity we select out a preferred set of coordinate
systems for describing spacetime, those in which the interval can be written
in the form (1.1). These are called inertial coordinate systems, or Lorentz
reference frames.

An observer in spacetime makes measurements—that is, assigns coordi-
nates to events. Thus an observer corresponds to some choice of coordinates
on the manifold. Corresponding to the inertial or Lorentz coordinates, we
also use the terms inertial observers or Lorentz observers. The relation (1.6)
is phrased in physical terms as: all inertial observers are related by Lorentz
transformations.

Physically, an inertial observer is one for whom a free particle moves with
uniform velocity in a straight line. Note that the worldline in spacetime
(curve on the manifold) traced out by a free particle is simply a geodesic of
the metric.

Requiring invariance of the interval under Lorentz transformations builds
in one of the physical postulates of special relativity, that the speed of light
is the same when measured in any inertial reference frame. For ds2 = 0
is equivalent to v = 1, and a Lorentz transformation preserves ds2. The
second far reaching postulate of Einstein was that one cannot perform a
physical experiment that distinguishes one inertial frame from another. In
other words, suppose we write down an equation for some purported law of
nature in one inertial coordinate system. Then we transform each quantity
to another coordinate system moving with uniform velocity. When we are
done, all quantities related to the velocity of the new frame must drop out
of the equation, otherwise we could find a preferred frame with no velocity
terms. This requirement turns out to restrict the possible laws of nature
quite severely, and has been an important guiding principle in discovering
the form of the laws.
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Mathematically, we implement the second postulate by writing all the
laws of physics as tensor equations. We can always write such an equation
in the form: tensor = 0. Since the tensor transformation law under Lorentz
transformations is linear, if such an equation is valid in one inertial frame it
will be valid in any other in the same form.

One could use non-Lorentzian coordinates to describe spacetime. For
example, one could use polar coordinates for the spatial part of the metric,
or one could use the coordinates of an accelerated observer. However, the
interpretation of these coordinates would still be done by referring back to an
inertial coordinate system. The underlying geometry is still Minkowskian.

Special relativity turns out to be entirely adequate for dealing with all
the laws of physics, as far as we know, except for gravity. Einstein’s great
insight was that gravity could be described by giving up the flat metric of
Minkowski geometry, and introducing curvature.

1.3. General Relativity

In general relativity, spacetime is still a 4-dimensional manifold of events,
but it is endowed with a pseudo-Riemannian metric:

ds2 = gαβ dxα dxβ. (1.8)

No choice of coordinates can reduce the metric to the form (1.4) everywhere:
spacetime is curved. The metric tensor gαβ and its derivatives play the role
of the “gravitational field”, as we shall see. The coordinates xα can be any
smooth labeling of events in spacetime, and we are free to make arbitrary
transformations between coordinate systems,

xα → xα
′

= xα
′
(xα). (1.9)

This is the origin of the “general” in general relativity (general coordinate
transformations).

If the coordinates can be completely arbitrary, not necessarily related
directly to physical measurements, how are measurements carried out in
the theory? The answer depends on the following theorem: At any point
in a manifold with a pseudo-Riemannian metric, there exists a coordinate
transformation such that

gαβ = ηαβ , ∂γgαβ = 0. (1.10)

In other words,

ds2 =
[
ηαβ +O

(
|x|2

)]
dxα dxβ. (1.11)

The proof follows from counting the degrees of freedom in the Taylor ex-
pansion of the transformation (1.9) about the chosen point. In fact, there is
a whole 6-parameter family of such transformations, all related by Lorentz
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transformations that preserve ηαβ . We call one of these coordinate systems a
local Lorentz frame. It is the best approximation to the global Lorentz frames
of special relativity that can be found in a general pseudo-Riemannian met-
ric. To first order in |x|, the geometry is the same as that of special relativ-
ity. The observer can make measurements as in special relativity, provided
they are local. In particular, ds2 itself is a physically measurable invariant.
Departures from special relativity will be noticed on the scale set by the sec-
ond derivatives of gαβ : the stronger the gravitational field, the more curved
spacetime is, the smaller is this scale.

Not only are measurements in a local inertial frame carried out as in
special relativity. General relativity asserts that all the nongravitational
laws of physics are the same in a local inertial frame as in special relativity.
This is the Principle of Equivalence, a generalization from Einstein’s famous
thought experiment about an observer inside a closed elevator. Physics in-
side a uniformly accelerated elevator is indistinguishable from physics inside
a stationary elevator in a uniform gravitational field. Conversely, inside an
elevator freely falling in a uniform gravitational field there are no observable
gravitational effects. A local inertial frame is just the reference frame of a
freely falling observer.

The mathematical implementation of the Principle of Equivalence is very
similar to the mathematical implementation of the special relativity principle
for uniform velocity, namely to write the laws of physics as tensor equations.
Now, however, the tensors must be covariant under arbitrary coordinate
transformations, not just under Lorentz transformations between inertial
coordinate systems. A (nonunique) way of doing this is to start with any
law valid in special relativity and replace all derivative operators by covariant
derivative operators. In a general coordinate system, this introduces extra
terms, the connection coefficients (Christoffel symbols). They are assumed
to represent the effects of the gravitational field. Contrast this with special
relativity. There transforming from one inertial frame to another introduces
terms from the velocity of the transformation. Covariance requires that
these terms cancel out, restricting the form of the laws. Here covariance
introduces terms involving derivatives of the metric that are interpreted as
gravitational effects. Thus no purported law of physics that is valid in special
relativity can be ruled out a priori; the real world has to be consulted via
experiment.

An example of a generalization of a law from special to general relativity
is the law of motion of a test particle: we postulate that the worldline is a
geodesic of spacetime.

In Newton’s theory of gravity the gravitational field is measured simply by
the gravitational acceleration of a test particle released at a point. In general
relativity, gravitational effects can always be removed locally by going to a
freely falling frame. So what is the meaning of a “true” gravitational field at
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a point? The answer is that the true gravitational field is a measure of the
difference between the gravitational accelerations of two nearby test bodies.
This is often called the tidal gravitational field, since the difference between
the Moon’s pull on different parts of the Earth is responsible for the tides
in Newtonian gravity. Differential geometers will recognize that the tidal
gravitational field is encoded in the Riemann tensor, since we are describing
the separation of neighboring geodesics.

1.4. Some Differential Geometry

We summarize here some basic formulas of differential geometry. Our pur-
pose is mainly to establish notation and sign conventions, which unfortu-
nately are not standardized in the literature.

A vector ~V at any point in the manifold can be expressed in terms of its
components in some basis:

~V = V α~eα. (1.12)

In this paper we will restrict ourselves to coordinate basis vectors for sim-
plicity. These are tangent to the coordinate lines, so we can write them as
the differential operators

~eα =
∂

∂xα
. (1.13)

The dot product of the basis vectors is given by the metric tensor:

~eα · ~eβ = gαβ . (1.14)

1-forms comprise the dual space to the space of vectors, i.e., for every vector
~V and 1-form Ã, 〈Ã, ~V 〉 defines a linear mapping to the real numbers. Since
we are in a metric space, we set up a correspondence between vectors and
1-forms: Ṽ corresponds to ~V iff 〈Ṽ , ~W 〉 = ~V · ~W for all ~W . If we introduce
basis 1-forms to write the components Vα of Ṽ , then the correspondence can
be written

Vα = gαβV
β. (1.15)

This is called “lowering an index”. In physical applications, we treat a vector
and its corresponding 1-form as describing the same physical quantity, just
with different representations. In the older literature, vectors and 1-forms
are called contravariant vectors and covariant vectors. We still refer to the
components as contravariant (up) or covariant (down). This use of the term
“covariant” should not be confused with the generic usage that denotes
correct transformation properties under coordinate transformations.

Tensors are multilinear maps from product spaces of 1-forms and vectors
to real numbers. For example,

Tαβ
γAαB

βCγ = number. (1.16)
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Again, we do not distinguish between tensors where a 1-form is replaced by
its corresponding vector or vice versa:

Tαβ
γAαB

βCγ = Tαβ
γAαBβCγ . (1.17)

This leads to “index gymnastics”, where components of a tensor can be
raised and lowered with gαβ or the inverse metric tensor gαβ ,

Tαβ
γ = gαµTµβ

γ . (1.18)

The covariant (coordinate invariant) derivative operator is represented by
the operator ∇α which denotes the αth component of the covariant deriva-
tive, or the covariant derivative in the α direction. The covariant derivative
of a scalar is simply the usual partial derivative: If f(xµ) is a scalar function
over the manifold, then its covariant derivative is

∇αf =
∂f

∂xα
≡ ∂αf. (1.19)

The covariant derivative of a vector field with components V µ is a second-
rank tensor with components defined by

∇αV µ = ∂αV
µ + V σΓµσα. (1.20)

Here, Γµσν is the connection coefficient, which is not a tensor. The corre-
sponding formula for a 1-form follows from linearity and the fact that 〈Ã, ~V 〉
is a scalar:

∇αAµ = ∂αAµ −AσΓσµα. (1.21)

Similarly, for a general tensor the covariant derivative is the partial deriva-
tive with one “correction term” with a plus sign for each up-index, and one
correction term with a minus sign for each down-index.

The values of the connection coefficients are

Γµσα = 1
2g
µν(∂αgνσ + ∂σgνα − ∂νgσα). (1.22)

This formula follows from the requirement that the connection be compatible
with the metric, that is, the covariant derivative of the metric vanishes,

∇αgµν = ∂αgµν − gσνΓσµα − gµσΓσνα = 0. (1.23)

Covariant derivatives do not commute in general. The noncommutation
defines the Riemann curvature tensor:

∇α∇βV µ −∇β∇αV µ = RµναβV
ν . (1.24)

Its components can be written in terms of the connection and its derivatives
(in a coordinate basis) as

Rµναβ = ∂αΓµνβ − ∂βΓµνα + ΓµσαΓσνβ − ΓµσβΓσνα. (1.25)

Note that the Riemann tensor depends linearly on second derivatives of
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the metric and quadratically on first derivatives of the metric. Various
symmetries reduce the number of independent components of the Riemann
tensor in four dimensions from 44 to 20. It is a theorem that the Riemann
tensor vanishes iff the geometry is flat, i.e., there exist coordinates such that
gαβ = ηαβ everywhere.

A contraction of a tensor produces another tensor of rank lower by two.
For example,

Aαβ = gµνAµαβν = Aµαβµ. (1.26)

Contractions of the Riemann tensor are very important in general relativity.
They are called the Ricci tensor,

Rµν ≡ Rσµσν , (1.27)

and the Ricci scalar,
R ≡ Rσσ. (1.28)

The Einstein tensor is the trace-reversed Ricci tensor:

Gµν ≡ Rµν − 1
2gµνR. (1.29)

The covariant derivatives of the Riemann tensor satisfy certain identities,
the Bianchi identities. Contracting these identities shows that the Einstein
tensor satisfies four identities, also called the Bianchi identities:

∇νGµν ≡ 0. (1.30)

These identities play a crucial role in the formulation of general relativity.

1.5. Einstein’s Field Equations

We have discussed how gravitation affects all the other phenomena of physics.
To complete the picture we need to describe how the distribution of mass
and energy determines the geometry, gαβ .

Newtonian gravitation can be described as a field theory for a scalar field
Φ satisfying Poisson’s equation,

∇2Φ = 4πGρ. (1.31)

Here ρ is the mass density and G is Newton’s gravitational constant, which
depends on the units of measurement. The gravitational acceleration of any
object in the field is given by −∇Φ.

Because Newtonian gravity is governed by an elliptic equation, changes in
the distribution of matter instantaneously change the gravitational potential
everywhere. Propagation of effects at speeds greater than the speed of light
leads to causality violation, and Newtonian gravity is not consistent with
special relativity. General relativity is a dynamical theory in which changes
in the gravitational field propagate causally, at the speed of light.
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Einstein’s field equations are written as

Gµν = 8πGTµν , (1.32)

where Gµν is the Einstein tensor (1.29) and Tµν is the stress-energy tensor of
matter and fields in the spacetime. In essence, (1.32) says that matter and
energy dictate how spacetime is curved. The Bianchi identities (1.30) ap-
plied to Einstein’s equations (1.32) imply that ∇νTµν = 0, which expresses
conservation of the total stress-energy of the system, and is a fundamen-
tal property of all descriptions of matter. Thus (1.32) also says that the
curvature of spacetime dictates how matter and energy flow through it.

To solve Einstein’s equations, we must find a metric that satisfies (1.32)
at all spatial locations for all time. The metric we are looking for exists
on a 4-dimensional manifold but, interestingly enough, Einstein’s equations
do not specify the topology of that manifold. Furthermore, the coordinates
labeling points on the manifold are also freely specifiable. Coordinate free-
dom (e.g. using spherical or cylindrical coordinates) is common in solving
field equations such as those of hydrodynamics, but there is a fundamental
difference in the case of general relativity. With hydrodynamics, one solves
for the density and velocity of matter within some specified geometry. The
exact form of, say, the divergence of a vector field may vary depending on the
coordinate system used, but the value of that divergence does not change.
In general relativity, we are solving for the geometry that defines what the
divergence operator means.

In addition to changing the spatial coordinate system, we are also free
to redefine the temporal coordinate. We can redefine the time coordinate
so that the shape and embedding of 3-dimensional constant-time slices vary
throughout the 4-dimensional manifold. This is a freedom that is not ex-
ploited in Newtonian hydrodynamics, but is very important in general rel-
ativity. Given a solution of Einstein’s equations gµν , we may find that one
choice of coordinates will lead to singularities in the metric, while another
choice may be perfectly regular. How to determine a good choice of coordi-
nates is one of the major open questions in numerical relativity.

As with most complex theories, the majority of solutions to Einstein’s
equations have been obtained in the case of special symmetries, or in certain
limits where perturbation theory can be applied. The more general and more
interesting solutions can only be obtained via numerical techniques. Given
that general relativity is a 4-dimensional theory, a natural approach for
solving the equations might be to discretize the full 4-dimensional domain
into a collection of simplexes and solve the equations somehow on this lattice.
A discrete form of Einstein’s equations based on this idea was developed by
Regge (1961) (see also Williams and Tuckey (1992)). While considerable
efforts have been made to implement numerical schemes based upon this
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Regge calculus approach, they have not yet moved beyond test codes (cf.
Barrett et al. (1997); Gentle and Miller (1998)).

1.6. Einstein’s Equations as a Cauchy Problem

Gµν and Tµν are symmetric in their indices, so (1.32) represents ten inde-
pendent equations. From the definition of the Einstein tensor (1.29), we see
that these ten equations are linear in the second derivatives, and quadratic
in the first derivatives, of the metric. Since there are ten components of
gµν , it seems that we have the same number of equations as unknowns. But
recall that there are four degrees of freedom to make coordinate transforma-
tions that leave ds2 invariant, according to equation (1.9). The problem is
still well-posed, however, because of the four Bianchi identities (1.30). We
therefore expect the ten equations (1.32) to decompose into four constraint
or initial value equations, and only six evolution or dynamical equations. If
the four initial value equations are satisfied at t = 0, the Bianchi identities
guarantee that the evolution equations preserve them—at least analytically,
if not numerically! (An analogous situation occurs for the initial value prob-
lem in Maxwell’s equations of electromagnetism.) Another way of seeing
that there are only six dynamical Einstein equations is that when they are
written out, only six involve second time derivatives of the metric.

Let us now consider the initial value formulation more carefully. Foliate
the 4-dimensional manifold with a set of spacelike, 3-dimensional hypersur-
faces (or slices) {Σ}. Label the slices by a parameter t, i.e., the slices are
t = constant. Let xi be spatial coordinates in the slices. (Latin indices range
from 1 to 3 in this so-called 3 + 1 formulation of Einstein’s equations.) Let
~n be the unit normal at some point on a slice, i.e.,

~n = −α∇t. (1.33)

Choose the scalar function α to set the spacing of the slices by

ds|along ~n = α dt. (1.34)

α is called the lapse function (sometimes denoted N in the literature), since
it relates how much physical time elapses ( ds) for a given coordinate time
change ( dt). Equation (1.34) is equivalent to

α~n =
∂

∂t

∣∣∣∣
along ~n, fixed xi

, (1.35)

since then

α~n · α~n = −α2 =
∂

∂t
· ∂
∂t

= gtt, (1.36)

which is the coefficient of dt2 in ds2 when xi = constant, as required by
(1.34).
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α~n

~β

~t

Σt0

Σt0+dt

Fig. 1. The 3 + 1 decomposition of spacetime. Neighboring slices of the foliation
are labeled by the value of the time coordinate on that slice. Spatial coordinates
remain constant along the ~t direction as they evolve from Σt0 to Σt0+dt. ~n is the

unit normal vector to the slice Σt0 .

Now in general one is not required to evolve initial data off the t = 0 slice
along the normal congruence. Consider a non-normal congruence threading
the family of spacelike hypersurfaces. Let

~t =
∂

∂t
(1.37)

be the tangent vector to the congruence, i.e., ~t connects points with the
same spatial coordinates xi.

Then we can write (see Fig. 1)

~t = α~n+ ~β, ~β · ~n = 0. (1.38)

The spatial vector βi is called the shift vector (sometimes denoted N i in the
literature). In terms of the metric components, equation (1.38) is equivalent
to

gtt =
∂

∂t
· ∂
∂t

= −α2 + βiβ
i, (1.39)

gti =
∂

∂t
· ∂
∂xi

= βi. (1.40)

Denote the spatial part of the metric gij by γij . The quantity γij describes
the intrinsic geometry on a 3-dimensional slice Σ. Then in light of equa-
tions (1.39) and (1.40), the general pseudo-Riemannian metric (1.8) can be
rewritten as

ds2 = −α2 dt2 + γij( dxi + βi dt)( dxj + βj dt). (1.41)

This is the standard starting point of most numerical attempts to solve
Einstein’s equations.

We have seen that the four coordinate degrees of freedom in the theory
are parametrized by α and βi. (This is also called the gauge freedom of the
theory.) We regard γij as a “fundamental” variable of the theory. Rather
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than work with Einstein’s equations as second order in time for this quan-
tity, we introduce its “time derivative” Kij called the extrinsic curvature.†
The quantities γij and Kij completely describe the instantaneous state of
the gravitational field. Recall that in the 4-dimensional form of Einstein’s
equations, six of the ten field equations contain second time derivatives.
These now correspond to twelve first order-evolution equations for γij and
Kij . The particular value of γij induced by the 4-metric gµν onto a slice
Σ depends on how Σ is embedded into the full spacetime. In order for the
foliation of slices {Σ} to fit into the higher-dimensional space, they must
satisfy a set of four elliptic constraint equations. These are the remaining
four field equations.

We can write the twelve first-order evolution equations for γij and Kij as
follows:

∂tγij = −2αKij + ∇̄iβj + ∇̄jβi, (1.42)

∂tKij = α
[
R̄ij − 2Ki`K

`
j +KKij − 8πGSij + 4πGγij (S − ρ)

]
− ∇̄i∇̄jα+ β`∇̄`Kij +Ki`∇̄jβ` +Kj`∇̄iβ`. (1.43)

Here ∇̄i is the spatial covariant derivative compatible with γij , R̄ij is the
Ricci tensor associated with γij , K ≡ Ki

i , ρ is the matter energy density, Sij
is the matter stress tensor, and S ≡ Sii . The four constraint equations can
be written as

R̄+K2 −KijK
ij = 16πGρ, (1.44)

∇̄j
(
Kij − γijK

)
= 8πGji. (1.45)

Here, R̄ ≡ R̄ii and ji is the matter momentum density. Equation (1.44) is
referred to as the scalar or Hamiltonian constraint, while the three equations
in (1.45) are referred to as the vector or momentum constraints. Both can
be transformed into standard elliptic forms, as described in §2.1.

In this 3 + 1, or Cauchy, initial value formulation of Einstein’s equations,
we evolve the gravitational field from some initial time slice Σ0 through
time using (1.42) and (1.43). The initial data for the evolution are γij and
Kij , which must be chosen to satisfy the constraints (1.44) and (1.45) on
Σ0. As mentioned earlier, it can be shown that the evolution preserves the
constraints.

1.7. The Characteristic Initial Value Problem

An alternative approach for posing Einstein’s equations as an initial value
problem is to foliate spacetime with a set of null hypersurfaces. This leads

† More precisely, Kij = − 1
2
L~nγij , where L denotes the Lie derivative.



14 Cook and Teukolsky

to the 2 + 2, or characteristic, initial value formulation of general relativity
(see Bishop, Gómez, Lehner, Maharaj and Winicour (1997b) and references
therein). The characteristic formulation of Einstein’s equations is particu-
larly adept at following gravitational waves propagating through the space-
time, but has difficulty in highly dynamic, strong field regions where the
null surfaces tend to form caustics. Because of this problem, and the lim-
ited scope of this review, we will focus entirely on the Cauchy initial value
formulation of general relativity.

2. Initial Data

The initial data for the Cauchy formulation of general relativity are the
metric γij and extrinsic curvature Kij . These each have six components
that must be fixed, a total of twelve. As discussed in §1.6, general rela-
tivity has a 4-dimensional coordinate invariance or gauge freedom that can
be parametrized by the lapse and shift functions. These functions can be
chosen to specify four of the twelve quantities (or relations among them).
The four constraint equations fix four more quantities. The remaining four
quantities describe the two “dynamical degrees of freedom” of general rel-
ativity, four quantities satisfying first-order dynamical equations, or equiv-
alently two quantities satisfying second-order wave-like equations. These
four quantities are freely specifiable initial data, corresponding roughly to
the initial gravitational wave content of the spacetime.

In the weak field limit where the equations of general relativity can be
linearized, there are clear ways to determine which components are dynamic,
which are constrained, and which are gauge. However, in the full nonlinear
theory, there is no unique decomposition. The approach one follows for
decomposing the metric and extrinsic curvature determines the final form
of the elliptic equations that constrain the initial data.

2.1. York-Lichnerowicz conformal decomposition

The most widely used approach for separating out the freely specifiable
initial data from the constrained initial data is the York-Lichnerowicz con-
formal decomposition. Here we give a brief summary. For a more complete
discussion, with references to the original literature, see York (1979).

First the metric is decomposed into a conformal factor multiplying a 3-
metric:

γij ≡ ψ4γ̃ij . (2.1)

The auxiliary 3-metric γ̃ij is called the conformal 3-metric. Its determinant
can be normalized to some convenient value, leaving five degrees of freedom.
Using (2.1), we can rewrite the Hamiltonian constraint (1.44) as

∇̃2ψ − 1
8ψR̃−

1
8ψ

5K2 + 1
8ψ

5KijK
ij = −2πGψ5ρ, (2.2)
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where ∇̃2 and R̃ are the scalar Laplace operator and the Ricci scalar asso-
ciated with γ̃ij . Equation (2.2) shows that ψ is constrained by the elliptic
Hamiltonian constraint. The five components of γ̃ij contain two freely speci-
fiable degrees of freedom together with three pieces of information related to
the 3-dimensional spatial gauge freedom. These three pieces of information
are essentially the initial choice of the spatial coordinate system which are
then propagated by the shift vector.

The extrinsic curvature is decomposed into its trace K and trace-free parts
Aij via

Kij ≡ Aij + 1
3γ

ijK. (2.3)

The embedding of the initial data hypersurface within the full spacetime
fixes the initial time coordinate, the choice then being propagated by the
lapse. Thus one piece of Kij is used to specify the time coordinate, and it is
taken to be the trace K for geometric and physical reasons (Ó Murchadha
and York 1974). K is thus freely specifiable in the initial data. The five
components of Aij can be further decomposed using a transverse-traceless
decomposition. In order to write the full set of constraints in terms of
operators on the conformal 3-geometry, it is necessary to also conformally
decompose Aij . The conformal and transverse-traceless decompositions of
Aij do not commute, leading to two different formulations of the full set of
constraint equations. Historically, the most widely used decomposition has
applied the transverse-traceless decomposition to the conformally rescaled
version of Aij . While somewhat less physically motivated, under certain sim-
plifying assumptions this approach decouples the vector constraint equation
(1.45) from the Hamiltonian constraint. This was an important simplifica-
tion when computational power was limited. This is not so much of a con-
cern any more and we present the alternative decomposition here. Readers
wishing to skip the details can proceed to equation (2.9).

We first decompose Aij as

Aij ≡ (L̄W )ij +Qij , (2.4)

where

(L̄W )ij ≡ γi`∇̄`W j + γj`∇̄`W i − 2
3γ

ij∇̄`W ` (2.5)

and Qij is a symmetric transverse-traceless tensor (i.e., it satisfies ∇̄jQij =
Qii = 0). The remainder of Aij , constructed from (L̄W )ij , is referred to as
the trace-free longitudinal part of the extrinsic curvature.

In general, one would construct Qij from a general symmetric, trace-free
tensor M ij by subtracting off its longitudinal part. However, since the vector
constraint is linear in Kij , we can rewrite (2.4) as

Aij ≡ ψ−4(L̃V )ij + ψ−10M̃ ij , (2.6)
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where (L̃V )ij is defined as in (2.5) but with ∇̄i → ∇̃i and γij → γ̃ij . Note
that the longitudinal part of Aij is constructed from a new vector V i, not
W i (see below), and M̃ ij ≡ ψ10M ij . We can now rewrite the vector, or
momentum constraint (1.45) as

∆̃LV
i + 6(L̃V )ij∇̃j lnψ = 2

3 γ̃
ij∇̃jK − ψ−6∇̃jM̃ ij + 8πGψ4ji. (2.7)

This is a vector elliptic equation for V i, where

∆̃LV
i ≡ ∇̃j(L̃V )ij = γ̃j`∇̃j∇̃`V i + 1

3 γ̃
i`∇̃`(∇̃jV j) + γ̃i`R̃`jV

j , (2.8)

and R̃ij is the Ricci tensor associated with the conformal 3-geometry γ̃ij .
The vector V i is a linear combination of both the three constrained lon-
gitudinal components of Aij represented by W i in (2.4) and the longitu-
dinal components of M ij . Since Aij is traceless, this means that Qij , the
transverse-traceless part of M ij , contains two freely specifiable quantities
that are taken as the two gravitational degrees of freedom.

Finally, given (2.6), we can rewrite the Hamiltonian constraint (2.2) as

∇̃2ψ − 1
8ψR̃−

1
12ψ

5K2 + 1
8ψ

5γ̃ij γ̃`m(L̃V )i`(L̃V )jm (2.9)

+1
4ψ
−1γ̃ij γ̃`m(L̃V )i`M̃ jm + 1

8ψ
−7γ̃ij γ̃`mM̃

i`M̃ jm = −2πGψ5ρ.

Equations (2.9) and (2.7) form the coupled set of four elliptic equations that
must be solved with appropriate boundary conditions in order to properly
specify gravitational data on a given constant-time slice.

In the historically more widely used decomposition, the trace-free extrinsic
curvature is expressed as

Aij = ψ−10Ãij ≡ ψ−10
[
(L̃V )ij + M̃ ij

]
, (2.10)

and the Hamiltonian and momentum constraints reduce to

∇̃2ψ − 1
8ψR̃−

1
12ψ

5K2 + 1
8ψ
−7γ̃ij γ̃`mÃ

i`Ãjm = −2πGψ5ρ, (2.11)

∆̃LV
i = 2

3ψ
6γ̃ij∇̃jK − ∇̃jM̃ ij + 8πGψ10ji. (2.12)

For more on this version of the decomposition, see York (1979).
Two simplifying (but restrictive) choices are frequently made with the

York-Lichnerowicz decomposition. First, the conformal 3-metric γ̃ij is taken
to be flat (i.e, δij in Cartesian coordinates) and the full 3-geometry is said
to be conformally flat. This is a reasonable choice, since it is true in the
limit of weak gravity. This assumption simplifies the elliptic equations be-
cause now R̃ij = R̃ = 0 and the derivative operators become the familiar
flat-space operators. The second assumption usually made is that K = 0.
This says that the initial data slice Σ0 is maximally embedded in the full
spacetime. This is a physically reasonable assumption and, for the case of
the decomposition (2.10), decouples the Hamiltonian and momentum con-
straint equations (2.11) and (2.12). These simplifying choices are used so
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frequently that many people implicitly assume that they are required in
the York-Lichnerowicz decomposition. This, however, is not the case. The
York-Lichnerowicz decomposition can be used to construct any initial data.

In order to properly pose the problem of constructing gravitational initial
data, we must specify boundary conditions. We will discuss the boundary
conditions at the surfaces of black holes in §2.2. We must also specify bound-
ary conditions at infinity. We are interested in the astrophysically relevant
case of isolated systems (as opposed to cosmological models, for example).
In this case, we demand that the hypersurface is R3 outside of some compact
set, and choose the data to be “asymptotically flat”. A full and rigorous for-
mulation of asymptotic flatness is quite tedious and unnecessary (see, e.g.,
York (1979) and references therein). For our purposes it will be sufficient to
use the following. Assume that we are using a Cartesian coordinate system
so that the spatial metric can be written as γij = δij + hij . For the metric,
it is sufficient to demand that

hij = O
(
r−1

)
, ∂khij = O

(
r−2

)
, r →∞. (2.13)

For the extrinsic curvature, it is sufficient to demand that

Kij = O
(
r−2

)
, r →∞. (2.14)

2.2. Black Hole Initial Data

Surprisingly, the most general isolated black hole in equilibrium is described
by an analytic solution of the Einstein equations, the Kerr metric (Mis-
ner et al. 1973, §33). The solution contains two parameters, the mass and
angular momentum (spin) of the black hole. (The solution that includes
electric charge, the Kerr-Newman metric, is not likely to be astrophysically
important.) A nonrotating black hole is a limiting case, described by the
spherically symmetric Schwarzschild metric. The challenge in constructing
more general black-hole spacetimes is to devise schemes that can handle one
or more holes with varying amounts of linear and angular momentum on
each hole. One of the difficulties in constructing black-hole initial data is
that they almost always contain singularities.

Most schemes for specifying black-hole initial data avoid the singularities
by imposing some form of boundary condition near the surface of each of
the black holes. (An alternative is to include some kind of matter source to
produce the black hole by gravitational collapse; see Shapiro and Teukolsky
(1992) for an example.) The most thoroughly studied of these approaches
uses the freedom within general relativity to specify the topology of the
manifold. A maximal slice of the Kerr solution, the most general stationary
black hole solution, has the property that it consists of two identical, causally
disconnected universes (hypersurfaces) that are connected at the surface of
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the black hole by an “Einstein-Rosen bridge” (Einstein and Rosen 1935,
Misner et al. 1973, Brandt and Seidel 1995). We are free to demand that
more general black-hole initial data be constructed in a similar way from two
identical hypersurfaces joined at the black hole “throats” (Misner 1963). A
method of images applicable to tensors can be used to enforce the isometry
between the solutions on the two hypersurfaces and the isometry induces
boundary conditions on the topologically S2 fixed point sets that form the
boundaries where the two hypersurfaces are joined (Bowen 1979, Bowen and
York 1980, Kulkarni, Shepley and York 1983, Kulkarni 1984).

A second approach completely bypasses the issue of the topology of the
initial data hypersurface by imposing a boundary condition at the “apparent
horizon” associated with each black hole (Thornburg 1987). We will come
back to apparent horizons in §3.3.

Yet another approach is based on factoring out the singular behavior of the
initial data (Brandt and Brügmann 1997). This approach uses an alternative
topology for the initial data hypersurface in which each black hole in “our”
universe is connected to a black hole in a separate universe, producing a
solution with NBH + 1 causally disconnected universes joined at the throats
of NBH black holes. This approach has the advantage of not requiring that
boundary conditions be imposed on a spherical surface at each hole, making
it easier to use a Cartesian coordinate system.

All three of these approaches for constructing black-hole initial data are
simplified by being constructed on a conformally flat, maximally embed-
ded hypersurface. Because they all use the alternative transverse-traceless
decomposition of the extrinsic curvature, the Hamiltonian and momentum
constraint equations are decoupled. In vacuum, there exists an analytic solu-
tion for the background extrinsic curvature Ãij that satisfies the momentum
constraint (1.45) for any ψ (Bowen and York 1980). For a single black hole,
this solution is

Ãij =
3G
2r2

[
P inj + P jni − (f ij − ninj)P `n`

]
+

3G
r3

[
εki`S`nkn

j + εkj`S`nkn
i
]
. (2.15)

Here P i and Si are the linear and angular momenta of the black hole, r is
the Cartesian coordinate radius from the center of the black hole located
at Ci, and ni ≡ (xi − Ci)/r in Cartesian coordinates. fij is the flat metric
in whatever coordinate system is used, and εijk is the totally antisymmetric
tensor. For a general spatial metric γij , it is defined as εijk ≡

√
γ[ijk], where

[ijk] is the totally antisymmetric permutation symbol with [123] = 1, and
γ = det γij . The solution (2.15) is constructed as in (2.10) with M̃ ij = 0
and can be verified easily by noting that the momentum constraint (2.12)
reduces under the assumptions above to ∇̃jÃij = 0. Solutions for multiple
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black holes, each with a different center, can be constructed as a linear
superposition. As given, (2.15) will not satisfy the isometry condition when
the topology is chosen to be two identical hypersurfaces. However, this can
be corrected by adding an infinite series of correction terms; see Cook (1991)
for references and an explicit algorithm for computing the series.‡

With an analytic solution for Ãij , only a single, quasi-linear elliptic equa-
tion for ψ needs to be solved to obtain the complete initial data. Equation
(2.11) reduces to

∇̃2ψ +
1
8
ψ−7γ̃ij γ̃`mÃ

i`Ãjm = 0, (2.16)

The boundary condition on ψ at large distances from the collection of black
holes can be obtained from its asymptotic behavior, ψ → 1 +C/r+O

(
r−2

)
where C is a constant. When the choice of topology is that of two isometric
hypersurfaces, the isometry induces a boundary condition on the spherical
surface where the two hypersurfaces connect,

ni∇̃iψ = − ψ
2r
. (2.17)

When the inner boundary is constructed to be an apparent horizon instead
of using two isometric hypersurfaces, (2.17) is modified with a nonlinear
correction; see Thornburg (1987) for details.

The limitation of all three of the solution schemes described above is that
the simplifying choice of a conformally flat 3-geometry and the analytic so-
lution for the background extrinsic curvature represent a very limited choice
for the unconstrained, dynamical portion of the gravitational fields. Also, a
maximal slice (K = 0) may not always be a good choice for numerical evo-
lutions. Moving beyond these limitations is the major challenge to be faced
in constructing black-hole initial data. This will certainly require solving
the full coupled system of equations, (2.9) and (2.7) (or alternatively (2.11)
and (2.12)).

2.3. Equilibrium Stars

An equilibrium or stationary solution of Einstein’s equations has no time
dependence. In coordinate-invariant language, the solution admits a Killing
vector that is timelike at infinity. The metric is specified by a solution of
the initial value equations that also satisfies the dynamical equations with
time derivatives set to zero. An important class of such solutions describes
rotating equilibrium stars, which are axisymmetric. In axisymmetry there
are just three nontrivial initial value equations. There is only one further
equation to be satisfied from among the dynamical equations, and it is also

‡ In equation (B7) of Cook (1991), “1 for n = 1” should read “α−1 for n = 1”.
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elliptic because the time derivatives have been set to zero. It is simpler in
this case just to choose an appropriate form for the metric and solve the
resulting four equations directly, without going through something like the
York-Lichnerowicz decomposition. There are many numerical approaches
for solving these equations to high accuracy (see Butterworth and Ipser
(1976) and Friedman, Ipser and Parker (1986) and references therein for a
description of a pseudo-spectral method; Komatsu, Eriguchi and Hachisu
(1989) and Cook, Shapiro and Teukolsky (1994) and references therein for
an iterative method based on a Green’s function; Bonazzola, Gourgoulhon,
Salgado and Marck (1993) and references therein for a spectral method).

2.4. Binary Black Holes

The most important computations confronting numerical relativity involve
binary systems containing black holes or neutron stars. Large experimental
facilities are being built around the world in an effort to detect gravitational
waves directly from astrophysical sources in the next few years (Abramovici
et al. 1992). These binary systems are prime candidates as sources: as they
emit gravitational waves they lose energy and slowly spiral inwards, until
they finally plunge together emitting a burst of radiation.

Since emission of gravitational radiation tends to circularize elliptical or-
bits, one is interested in initial data corresponding to quasicircular orbits.
For the case of a binary black hole system, a very high accuracy survey has
been performed to locate these orbits (Cook 1994). In this work, quasicircu-
lar orbits were found by locating binding energy minima§ along sequences
of models with constant angular momentum (see Fig. 2). Locating these
minima required extremely high accuracy, which was achieved using a com-
bination of techniques. First, the Hamiltonian constraint (2.16) was dis-
cretized on a numerically generated coordinate system specifically adapted
to the problem, then solved using a FAS/block-multigrid algorithm (Cook
et al. 1993). Then the results of several runs at different resolutions were
combined using Richardson extrapolation to obtain results accurate to one
part in 105.

There are efforts under way to produce binary black hole initial data that
may be more astrophysically realistic by using a linear combination of single
spinning black hole solutions to provide a conformal 3-geometry γ̃ij that
is not flat (Matzner, Huq and Shoemaker 1998). If the constraints can be
successfully solved on this non-flat background, then a similar procedure can

§ The equations for equilibrium stars can be derived from an energy variational principle.
Thus the stability of such stars can be analyzed by examining turning points along one-
parameter sequences of equilibrium solutions (Sorkin 1982). The extension of this idea
to quasi-equilibrium sequences is plausible, but has not been rigorously demonstrated.
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Fig. 2. The binding energy as a function of separation for models with a range of
angular momenta. The bold line represents the sequence of quasicircular orbits

passing through the minima of the binding energy. µ and m are the reduced and
total masses of the binary system.

be used to locate the quasicircular orbits in these data sets as well. This
would be extremely useful in estimating how much effect the choice of the
conformal 3-geometry has on the location of these orbits.

2.5. Binary Neutron Stars

Even in the simplest case, constructing astrophysically interesting initial
data for binary neutron star systems is considerably more difficult than for
black hole binaries. In addition to finding circular, near equilibrium solutions
for the gravitational fields, we must also demand that the neutron-star mat-
ter be in quasi-equilibrium. In Newtonian physics, a binary star system can
exist as a true equilibrium. In general relativity this is not possible because
of the loss of energy by gravitational wave emission. However, provided the
stars are not so close that they are about to plunge together, the timescale
for the orbit to change is much longer than the orbital period. Accordingly,
one can look for solutions that neglect the gravitational radiation.

Of particular interest are the two limiting cases where the neutron stars
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are co-rotating (no rotation in the frame co-rotating with the binary system)
and counter-rotating (no rotation in the rest frame of the center of mass).
Several schemes have been devised to construct initial data for a neutron-
star binary in quasi-equilibrium (Wilson, Mathews and Marronetti 1996,
Bonazzola, Gourgoulhon and Marck 1997, Baumgarte, Cook, Scheel, Shapiro
and Teukolsky 1998). All of these schemes are based on the simplifying
assumptions of conformal flatness and maximal slicing, differing primarily
in how the neutron star matter is handled. We give here one particular
example of the system of equations to be solved. First, the gravitational
field equations are (Wilson et al. 1996)

Aij =
ψ−4

2α
(L̃ω)ij , (2.18)

∇̃2ωi +
1
3
f i`∇̃`∇̃jωj = 2ψ10Aij∇̃j

(
αψ−6

)
+ 16πGαψ4ji, (2.19)

∇̃2ψ = −1
8ψ

5fijf`m(ψ4Ai`)(ψ4Ajm)− 2πGψ5ρ, (2.20)

∇̃2(αψ) = (αψ)
[

7
8ψ

4fijf`m(ψ4Ai`)(ψ4Ajm)

+ 2πGψ4(ρ+ 2S)
]
. (2.21)

The spatial metric is decomposed as in (2.1) and is taken to be conformally
flat γ̃ij = fij (i.e., fij = δij in Cartesian coordinates). We assume maximal
slicing (K = 0), and get the equation for the trace-free extrinsic curvature
(2.18) from physical arguments for quasi-equilibrium. Note that (2.18) is
very similar to the (2.6) except that M̃ ij is not present and we divide by
2α. We obtain equation (2.19) by substituting (2.18) into the momentum
constraint (1.45). Note that the principal part of the operator for (2.19) is
the same as in (2.7). The conformal factor ψ is fixed via the Hamiltonian
constraint which now takes the form in (2.20). Finally, the lapse α is fixed
via (2.21) which enforces the maximal slicing condition on neighboring slices.

For the counter-rotating case, the fluid velocity is irrotational (curl-free),
and can be derived from a scalar velocity potential even in general relativity
(Teukolsky 1998, Shibata 1998). The matter equations are

1
ψ2
√
f

∂

∂xi

(
f ijψ2

√
f
∂ϕ

∂xj

)
= βi∇̃i

(
λ

α2

)
(2.22)

−
(
ψ−4f ij∇̃jϕ−

λ

α2
βi
)
∇̃i ln

(
αnB

h

)
,

λ ≡ C+ βi∇̃iϕ = α
[
h2 + ψ−4f ij(∇̃iϕ)∇̃jϕ

]1/2
, (2.23)

h2 ≡ −ψ−4f ij(∇̃iϕ)∇̃jϕ+
1
α2

(
C + βi∇̃iϕ

)2
, (2.24)

βi ≡ ωi + Ωξi, (2.25)
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where ϕ is the velocity potential and C is an integration constant. Ω is a
constant specifying the angular velocity of the rotating binary system and
ξi is a circular rotation vector ( ξi = (−y, x, 0) in Cartesian coordinates for
rotation about the z axis). nB is the baryon number density (see (2.31)
below). The domain of solution for (2.22) is the volume covered by matter
and the solution must satisfy(

ψ−4f ij∇̃jϕ−
λ

α2
βi
)
∇̃inB

∣∣∣∣
surf

= 0 (2.26)

at the boundary of the matter where nB goes to zero.
Finally, the matter equations couple back into the gravitational field equa-

tions through the source terms on the right-hand-sides of (2.19), (2.20), and
(2.21), defined by

ρ = (ρ0 + ρi + P )
1

α2h2

(
C + βi∇̃iϕ

)2
− P, (2.27)

S = (ρ0 + ρi + P )
ψ−4

h2
f ij(∇̃iϕ)∇̃jϕ+ 3P, (2.28)

ji = (ρ0 + ρi + P )
ψ−4

αh2

(
C + β`∇̃`ϕ

)
f ij∇̃jϕ, (2.29)

h ≡ ρ0 + ρi + P

ρ0
, (2.30)

ρ0 ≡ mBnB, (2.31)

where ρ0, ρi, and P are, respectively, the rest mass density, internal energy
density, and pressure of the matter in the matter’s rest frame. These are
all determined from the enthalpy h via (2.30) given nB, the baryon mass
density mB, and an equation of state for the matter.

We find then, that solving for an irrotational neutron-star binary system
in quasi-equilibrium requires the solution of a set of six coupled, nonlinear
elliptic equations given by (2.19), (2.20), (2.21), and (2.22). The solution
depends on two free parameters, C and Ω, which must be chosen to allow
a self-consistent solution. A scheme for doing this could be based on the
algorithm described by Baumgarte et al. (1998) for the slightly simpler case
of a synchronous (co-rotating) binary system. A stable iterative scheme
is obtained by rescaling the equations so that the outermost point on the
surface of each neutron star, where it crosses the axis connecting the two
stars, is at a fixed coordinate location. The innermost point on the surface
of each star is taken as an input parameter for a particular solution and
roughly corresponds to the free parameter Ω. Next, the maximum value of
the density ρ0 is taken as another input parameter, roughly corresponding
to C. The exact values of Ω and C are obtained at each step of the iteration
by solving a set of nonlinear algebraic equations that follow from equation
(2.24). What complicates the solution of these six equations is that, while
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five of them are solved on a domain extending out to radial infinity, (2.22)
must be solved on the limited domain consisting of the volume containing
matter. The boundary of this volume is not prescribed, but is determined
by the solution. The first set of successful solutions to the equations for irro-
tational binaries has been obtained by Bonazzola, Gourgoulhon and Marck
(1999) using spectral methods.

2.6. Summary

Common to all of these current efforts at constructing initial data is the
need to solve a large set of coupled nonlinear elliptic equations with com-
plicated boundaries over a large range of length scales. The classic problem
of constructing axisymmetric rotating neutron-star models has been studied
extensively, and highly sophisticated and efficient computational techniques
are now commonly used. The situation is not nearly so well in hand for
the other examples described above. These problems are ripe for new ideas
and algorithms. They have been attacked principally using finite difference
techniques, although Bonazzola, Gourgoulhon and Marck (1998) are explor-
ing spectral techniques for neutron-star binaries, and Arnold, Mukherjee
and Pouly (1998) have applied finite element techniques to the problem of
solving the Hamiltonian constraint. Which numerical schemes will work the
best is still an open question. A good scheme must balance efficiency and
speed against accuracy. It must be able to resolve the different length scales
of the problem, even though the fields vary on characteristic length scales
comparable to the radius of the star when near to the star, while the outer
boundary conditions must be imposed at large distances from the stars.

There is a great need for both efficiency and accuracy. Physicists are
interested in performing extensive parameter space surveys in order to un-
derstand the physical content of the initial data. With sufficient accuracy,
such surveys can also provide great insight into dynamical, but slowly evolv-
ing configurations (the quasi-equilibrium approximation). The accuracy of
solutions is limited not only by the truncation error of the numerical scheme
and the grid resolutions used, but also by the approximations made. Ideally,
the outer boundary should extend to infinity, but this often poses problems
numerically. In practice, the outer boundary is usually approximated via a
falloff condition at large radius (cf. equations (2.13) and (2.14)). How far
out this radius can be pushed while still maintaining accuracy near the stars
depends on the numerical scheme and gridding choices.

There are many other issues that must be addressed. Perhaps the most
important, besides efficiency and accuracy, are: How does the nonlinearity
of the coupled system affect the choice of the solution scheme? And will
iterative schemes for solving the coupled system remain stable when the
nonlinear couplings become strong?
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3. Evolution

3.1. Standard ADM Form

In its simplest form, evolving Einstein’s equations as a Cauchy problem in-
volves updating the metric γij and extrinsic curvature Kij using the evolu-
tion equations (1.42) and (1.43). A pure evolution scheme solves only such
time evolution equations. It relies on the evolution equations to preserve
the validity of the constraints computationally as well as analytically. It is
also possible to determine some of the dynamical quantities from evolution
equations and others from the constraint equations at each time step. Such
algorithms are expected to be less efficient than pure evolution schemes,
since they require the solution of elliptic equations for the constraints at
each time step. These mixed strategies have been the preferred algorithms
in 1- and 2-dimensional problems, because of difficulties in designing stable,
accurate pure evolution schemes. Moreover, as mentioned earlier, there is
no known general 3-dimensional algorithm that can evolve Einstein’s equa-
tions with black holes that is stable. While we will emphasize pure evolution
schemes in this review, one should bear in mind the possibility that some ex-
plicit enforcement of the constraints may be necessary to guarantee a stable
algorithm.

As discussed in §1.6, when solving equations (1.42) and (1.43), we must
separately specify exactly how far along we are evolving each point in proper
time (physical time) by specifying the lapse function α. We must also choose
how the spatial coordinates labeling a particular point on the hypersurface
will change by specifying the shift vector βi. Assume that we have fixed
these four kinematical quantities somehow, and that we are in vacuum so
that the matter terms vanish. Then, if we express the tensors in terms of
a coordinate basis, we can write the evolution equations (1.42) and (1.43)
explicitly as

∂tγij − β`∂`γij = γ`j∂iβ
` + γi`∂jβ

` − 2αKij , (3.1)

∂tKij − β`∂`Kij = Ki`∂jβ
` +Kj`∂iβ

` − 2αKi`K
`
j + αKKij

− 1
2αγ

`m
{
∂`∂mγij + ∂i∂jγ`m − ∂i∂`γmj − ∂j∂`γmi

+ γnp
[
(∂iγjn + ∂jγin − ∂nγij)∂`γmp

+ (∂`γin)∂pγjm − (∂`γin)∂mγjp
]

− 1
2γ

np
[
(∂iγjn + ∂jγin − ∂nγij)∂pγ`m + (∂iγ`n)∂jγmp

]}
− ∂i∂jα+ 1

2γ
`m (∂iγjm + ∂jγim − ∂mγij) ∂`α. (3.2)

Notice that (3.1) and (3.2) do not form a simple wave equation. In fact,
(3.1) contains no derivatives of Kij at all, while (3.2) contains both linear
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combinations of second derivatives of γij and quadratic combinations of
first derivatives of γij . We call the set of evolution equations given by (3.1)
and (3.2) the “standard ADM form”.¶ The “non-Laplacian” like second
derivatives in equation (3.2) can be removed by certain modifications to the
standard ADM equations (see Baumgarte and Shapiro (1999) and reference
within), resulting in a system that seems to be better behaved.

In general, the ADM equations are not of any known mathematical type.
In particular, they do not satisfy any of the standard definitions of hyper-
bolicity. While physical effects propagate at the speed of light in general
relativity, γij and Kij are not simple physical quantities. Rather, they are
gauge-dependent quantities whose values depend on the choice of the lapse
α and shift βi. These can be chosen to allow for propagation of waves in γij
and Kij at arbitrary speeds.

3.2. Hyperbolic Forms

There is a long history of analytic studies of hyperbolic formulations of gen-
eral relativity (Fourès-Bruhat 1952, Fischer and Marsden 1972, Friedrich
1985); see also (Taylor 1996, §18.8). The earliest approaches made special
gauge choices to rewrite (3.1) and (3.2) in the form of a manifestly sym-
metric hyperbolic system (Fourès-Bruhat 1952, Fischer and Marsden 1972).
Interest in using such formulations in numerical studies has been relatively
recent (Bona and Massó 1992). The initial motivation for exploring these
techniques was to put Einstein’s equations into a form that could make
more direct use of the vast repertoire of numerical techniques for handling
first-order symmetric hyperbolic systems such as the equations of fluid me-
chanics. It was soon realized, however, that a clear understanding of the
characteristic speeds of propagation of the evolving variables was also quite
useful. This is especially true for the problem of evolving spacetimes that
contain black holes, as discussed below. It is also hoped that having the
equations in a form that can be more readily analyzed will aid, for exam-
ple, in properly posing boundary conditions or in treating the propagation
of errors in the constraints (Frittelli 1997, Brodbeck, Frittelli, Hübner and
Ruela 1998). In particular, it is hoped that stable evolution schemes can be
developed that do not require that elliptic constraint equations be solved on
each time step (Scheel, Baumgarte, Cook, Shapiro and Teukolsky 1998).

A potential problem with using the gauge freedom to achieve explicitly hy-
perbolic forms is that it is widely believed that successful numerical schemes
will need to exploit the gauge freedom for other purposes. Thus there has

¶ ADM = Arnowitt, Deser, and Misner, who introduced the 3+1 decomposition used in
numerical relativity earlier for other purposes.
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been a considerable effort recently to find formulations of general relativ-
ity that are explicitly hyperbolic while retaining all or most of the gauge
freedom of the standard ADM formulation (Bona, Massó, Seidel and Stela
1995b, Choquet-Bruhat and York 1995, van Putten and Eardley 1996, Frit-
telli and Reula 1996, Friedrich 1996, Anderson, Choquet-Bruhat and York
1997). Common to all of these approaches is to expand the set of funda-
mental variables. All of the approaches include fundamental variables that
are essentially first spatial derivatives of the metric. Some also include vari-
ables that directly encode the curvature of spacetime. Consider one of these
hyperbolic systems, the “Einstein-Bianchi” formulation of general relativity
(Anderson et al. 1997). In vacuum, the equations are:

∂tγij − β`∂`γij = γ`j∂iβ
` + γi`∂jβ

` − 2αKij , (3.3)

∂tKij − β`∂`Kij + α∂kΓ̄kij = Ki`∂jβ
` +Kj`∂iβ

` + α
[
Γ̄mikΓ̄kjm

− (Γ̄kik + ∂i ln α̂)(Γ̄hjh + ∂j ln α̂)

− (∂i∂j ln α̂− Γ̄kij∂k ln α̂)

−KKij − Eij − Eji
]
, (3.4)

∂tΓ̄kij − β`∂`Γ̄kij + αγk`∂`Kij = Γ̄k`j∂iβ`+ Γ̄ki`∂jβ`− Γ̄`ij∂`βk+ ∂i∂jβ
k

+ α
[
Kijγ

`k(Γ̄m`m + ∂` ln α̂)

−Kk
i(Γ̄`j` + ∂j ln α̂)

−Kk
j(Γ̄`i` + ∂i ln α̂)

+ 1
2(H`iεj

`k +H`jεi
`k

+Bi`εj
`k +Bj`εi

`k)

+ γk`KmjΓ̄mi` + γk`KimΓ̄mj`
]
, (3.5)

∂tEij − β`∂`Eij − αεik`∂kH`j = Ei`∂jβ
` + Ej`∂iβ

`

+ α[KEij − 2Kk
i Ekj −Kk

j Eik

− εik`εjmnKkmD`n − εik`H`mΓ̄mjk]

− (εik`Hkj + εj
k`Bik)∂`α, (3.6)

∂tDij − β`∂`Dij − αεik`∂kB`j = Di`∂jβ
` +Dj`∂iβ

` + α[KDij

− 2Kk
i Dkj −Kk

jDik

− εik`εjmnKkmE`n − εik`B`mΓ̄mjk]

− (εik`Bkj + εj
k`Hik)∂`α, (3.7)

∂tHij − β`∂`Hij + αεi
k`∂kE`j = Hi`∂jβ

` +Hj`∂iβ
` + α[KHij

− 2Kk
i Hkj −Kk

jHik
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− εik`εjmnKkmB`n + εi
k`E`mΓ̄mjk]

+ (εik`Ekj + εj
k`Dik)∂`α, (3.8)

∂tBij − β`∂`Bij + αεi
k`∂kD`j = Bi`∂jβ

` +Bj`∂iβ
` + α[KBij

− 2Kk
i Bkj −Kk

jBik

− εik`εjmnKkmH`n + εi
k`D`mΓ̄mjk]

+ (εik`Dkj + εj
k`Eik)∂`α, (3.9)

α̂ ≡ α
√
γ
. (3.10)

See §2.2 for the definition of εijk and γ.
This formulation of general relativity differs significantly from the straight-

forward ADM formulation presented in equations (3.1) and (3.2) above.
First, note that derivatives of the metric are replaced by the spatial con-
nection Γ̄ijk, which is now treated as a fundamental variable. The system
also includes four new variables, Eij , Dij , Hij , and Bij , which encode the
information in the 4-dimensional Riemann tensor (1.25). If the shift β` is
zero and the nonlinear terms are dropped, note the resemblance of equa-
tions (3.6) – (3.9) to Maxwell’s equations. An interesting feature of this
formulation of general relativity is that the nine components each of Eij ,
Dij , Hij , and Bij are treated as independent in order to yield a hyperbolic
system with physical characteristic velocities (zero or the speed of light). If
the symmetries and constraints of general relativity are imposed explicitly
to reduce the number of variables from 36 to the 20 independent compo-
nents of the Riemann tensor, then additional characteristic speeds of half
the speed of light are added to the system (Friedrich 1996). Also, in order to
formulate the evolution equation for the extrinsic curvature Kij as part of
the hyperbolic system, it is necessary to consider the new quantity α̂ (3.10)
as the freely specifiable kinematical gauge quantity instead of the usual lapse
variable α. Finally, note that in vacuum, Dij = Eij and Bij = Hij both
analytically and computationally if they are equal in the initial data. Matter
terms appear as additional source terms on the right-hand sides of equations
(3.6) – (3.9).

The Einstein-Bianchi formulation is an example of a hyperbolic formula-
tion of Einstein’s equations that is so new that there is as yet no published
report of how well it works in practice.

3.3. Black Hole Evolutions

Dealing with black holes when evolving a spacetime numerically introduces
new problems that must be dealt with. Inside a black hole is a physical
singularity that cannot be finessed away by some clever coordinate trans-
formation: the singularity must be avoided somehow. The first approaches
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to avoiding the singularity were to impose special time-slicing conditions
that would slow down the evolution in the vicinity of the singularity. The
most widely used condition was maximal slicing (Smarr and York 1978),
but all such slicings lead to a generic phenomenon known as the “collapse
of the lapse”. When this happens, the lapse very rapidly approaches zero in
the spatial region near the singularity to “hold back” the advance of time
there. Because the lapse stays large far away from the singularity, the spatial
slice has to stretch, leading to steep gradients in the various fields. These
gradients ultimately grow exponentially with time and there is no way to re-
solve these gradients numerically for very long. These “singularity avoiding”
schemes can be made to work in spherical symmetry, and, with consider-
able effort, in axisymmetry (Evans 1984, Stark and Piran 1987, Abrahams,
Shapiro and Teukolsky 1994b, Bernstein, Hobill, Seidel, Smarr and Towns
1994). The trick is to adjust the parameters of the calculation to extract
the useful results before the code crashes. Such efforts appear doomed in
general 3-dimensional calculations.

A newer approach for avoiding the singularity is based on the fundamental
defining feature of a black hole: that its interior has no causal influence on
its exterior. We can, in principle, simply excise the interior of the black hole
from the computational domain. Then there is no chance of the evolution
encountering the singularity. This class of methods is generically known as
“apparent-horizon boundary conditions” for reasons that will become clear
below.

Before we can excise the interior of a black hole from the computational
domain, we must first know where the black hole is. The surface of a black
hole is the event horizon, a null surface that bounds the set of all null
geodesics that can never escape to infinity. Unfortunately this is not a
useful definition for dynamical computations—at any instant you need to
have already computed the solution arbitrarily far into the future to check
if a given light ray escapes to infinity, falls into the black hole, or remains
marginally trapped on the black hole surface. Computationally, the useful
surface associated with a black hole is its apparent horizon, the boundary of
the region of null geodesics that are “instantaneously trapped”. The appar-
ent horizon is guaranteed to lie within the event horizon under reasonable
assumptions (Hawking and Ellis 1973, §9.2), and when the black hole settles
down to equilibrium the apparent and event horizons coincide.

More precisely, the apparent horizon is defined as the outermost surface
on which the expansion of outgoing null geodesics vanishes. Such a surface
is called a marginally outer-trapped surface (Wald 1984) and satisfies

Θ ≡ ∇̄isi +Kijs
isj −K = 0 (3.11)

everywhere on a closed 2-surface of topology S2. Here, si is the outward-
pointing unit normal to the closed 2-surface and Θ is the expansion (diver-
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gence) of null rays moving in the direction si. Since the solution of equation
(3.11) must be a closed 2-surface, it can be expressed as the level surface
τ = 0 of some scalar function τ(xi), and the unit normals can be written as
si ≡ ∇̄iτ/|∇̄τ |. This reduces the equation to a scalar elliptic equation. The
key feature of apparent horizons, as seen from (3.11) is that they are defined
solely in terms of information on a single spacelike hypersurface. A number
of different approaches for solving equation (3.11) have been proposed (see
Cook and York (1990), Baumgarte, Cook, Scheel, Shapiro and Teukolsky
(1996), Gundlach (1998b) and references therein). Since black hole exci-
sion requires locating the apparent horizon at every time step, there is a
premium on finding efficient and robust methods. It is important that the
current methods be improved.

The details of how apparent-horizon boundary conditions are implemented
can vary greatly, and it is not yet clear which methods are preferred, if any.
The first tests of apparent horizon boundary conditions were made on spher-
ically symmetric configurations (Seidel and Suen 1992, Scheel, Shapiro and
Teukolsky 1995a, Anninos, Daues, Massó, Seidel and Suen 1995b, Marsa and
Choptuik 1996). In these tests, the location of the horizon was either fixed
at a particular coordinate radius, or allowed to move outward as matter
fell into the black hole, increasing its physical size. Trial implementations
of apparent horizon boundary conditions in 3-dimensional codes evolving
spherically symmetric configurations have been reported by Anninos et al.
(1995a) and Brügmann (1996). Tests of a more general 3-dimensional imple-
mentation of apparent horizon boundary conditions were reported in Cook
et al. (1998). The details of this scheme were reported in Scheel, Baumgarte,
Cook, Shapiro and Teukolsky (1997). For concreteness, we will describe the
apparent horizon boundary condition scheme used in Cook et al. (1998) and
referred to as “causal differencing”.‖

The key feature of the causal differencing scheme described in Cook et
al. (1998) is that it accommodates excised regions that move through the
computational grid. When an excised region moves, grid points that had
been excised from the domain can return to the computational domain and
must be filled with correct data. This is accomplished by working in two
different coordinate systems during each time step. The “physical” coordi-
nates, denoted as the (t, xi) coordinate system, are defined as having spatial
coordinates that remain constant when dragged along the ~t direction (see
(1.37)). “Computational” coordinates, denoted (t̃, x̃i), are then defined as
having spatial coordinates that remain constant when dragged along the

‖ The term “causal differencing” has been applied to several similar schemes, but was first
coined by Seidel and Suen (1992). An alternative scheme called “causal reconnection”
was developed by Alcubierre and Schutz (1994).
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direction normal to the spatial hypersurface. A time derivative in this di-
rection is defined by

∂

∂t̃
=

∂

∂t
− βi ∂

∂xi
, (3.12)

and the coordinate transformation by

t̃ = t, (3.13)
x̃i = x̃i(xj , t). (3.14)

A time step begins by setting the two coordinate systems equal, x̃i|t̃=t0 =
xi|t=t0 . The evolution equations are then used to evolve the data forward
in time along the normal direction using equation (3.12) to a new time slice
where t̃ = t0 + ∆t. All that remains is to transform the data from the
computational coordinates back to the physical coordinates. If we begin at
t = t0 with data located at grid points that are uniformly distributed in the
xi coordinates, then we end the first phase of the evolution with data located
at grid points that are uniformly distributed in the x̃i coordinates. We can
therefore perform the required transformation back to the physical coordi-
nates via interpolation (or extrapolation) from the computational grid. To
determine the location of the physical grid points within the computational
grid, we evolve the x̃i coordinates along the ~t direction. Using

∂x̃i

∂t̃
= 0 (3.15)

and (3.12), we find that
∂x̃i

∂t
= βj

∂x̃i

∂xj
. (3.16)

Equation (3.16) is evolved to t = t0 + ∆t with the initial conditions that
x̃i|t̃=t0 = xi|t=t0+∆t for each grid point in the physical coordinates at t =
t0 + ∆t that is not excised from the domain. If the black hole has moved
during the time step, the set of non-excised points {xi}|t=t0+∆t 6= {xi}|t=t0 .

Special care must be given to computing spatial derivatives during the
time step. During the first phase of the evolution, the data are in the
computational coordinate system so that terms in the evolution equations
that involve ∂/∂xi must be transformed to

∂

∂xi
=
∂x̃j

∂xi
∂

∂x̃j
. (3.17)

The Jacobians ∂x̃i/∂xj in the computational coordinate system can be ob-
tained by integrating

∂

∂t̃

[
∂x̃i

∂xj

]
=
∂x̃i

∂x`
∂β`

∂xj
(3.18)
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(a)

(b)

t0

t0 + ∆t

t0

t0 + ∆t

Fig. 3. 1-dimensional illustration of causal differencing, showing a time step for a
black hole in both the computational (a) and physical (b) coordinate systems. The
shaded region represents the black hole interior. Data are evolved along the ∂/∂t̃
direction (dashed lines with arrows). In the computational frame (a), this is the
vertical direction. The surface of the black hole is a characteristic. βi has been

chosen so that the black hole moves to the right in the physical coordinate system
(b). ∂/∂t is in the direction of the solid lines which are vertical in the physical

coordinate system (b).

with the initial conditions that ∂x̃i/∂xj |t=t0 = δij .
The underlying reason that the time integration scheme outlined above

should work for black holes moving arbitrarily across a computational do-
main is based on the generic behavior of apparent horizons. When we evolve
along the normal direction, the time direction is centered within the local
light cone, that is, outgoing light rays move out at the local speed of light.
Since such light rays cannot cross the apparent horizon, it must be moving
outwards at least as fast. Thus, by evolving along the normal direction, we
know that the apparent horizon at t0 + ∆t will have moved out in the com-
putational coordinate system. Accordingly, as long as we have no excised
points outside of an apparent horizon at t0, we know we have valid evolved
data at t0 +∆t extending at least a small distance within the location of the
apparent horizon at t0 + ∆t. This will be true regardless of the choice of the
shift vector. Thus, new grid points exterior to the apparent horizon that
appear at t0 + ∆t are guaranteed to lie within the computational domain
and data at these points can be set by interpolation. Figure 3 illustrates
the case of a translating black hole. In Fig. 3(a), we see the view from the
computational coordinate system where the horizon moves outward. Here,
data evolves vertically along the dashed lines with arrows. Physical coordi-
nates remain constant along the solid lines so that, given this choice of the
shift, the black hole is moving to the right. Notice that the first point to
the right of the black hole falls into it, while the left-most point inside the
black hole emerges from it during the time step. Grid points in the physical
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Ĥ

Fig. 4. Normalized Hamiltonian constraint,
Ĥ = (R̄+K2 −KijK

ij)/(|R̄|+ |K2|+ |KijK
ij |), along the z axis as a function of

time. The black hole is translating in the z direction at a speed of 1/10 the speed
of light. The flat region shows the location of the excised part of the domain

within the black hole.

coordinates (where the solid lines intersect the t0 + ∆t hypersurface) are
filled via interpolation form the evolved data. Figure 3(b) shows the same
scenario in the physical coordinate frame where the black hole is moving to
the right. Notice that the picture in the physical coordinate frame is com-
pletely dependent on the choice of the shift. In the computational frame,
however, only the final location of the physical coordinates depends on the
shift.

Figure 4 shows an example of applying this causal differencing scheme to
the case of a translating black hole described in Cook et al. (1998). The black
hole is translating in the z direction with its center on the z axis. Plotted is
a measure of the violation of the Hamiltonian constraint (1.44) on the z axis.
The mass of the black hole is denoted by M and the black hole has a radius
of 2M (in units where the gravitational constant G = 1). Equations similar
to (3.1) and (3.2) were used to evolve the metric and extrinsic curvature.
Values for the lapse and shift during the evolution were obtained from the
analytic solution for the translating black hole. The excised region began
five grid zones inside of the apparent horizon and the evolution continued
until t = 61M . We can clearly see that the domain to the left of the black
hole is filled correctly with data as the hole, and the excised region, move
to the right through the computational grid.

While evolving a translating black hole is a triumph for the causal differ-
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encing method, we are still a long way from generic 3-dimensional evolutions.
The black hole in the above example is constructed from a spherically sym-
metric solution using a simple coordinate transformation (a boost). This
severely limits the generality of the test, since spherically symmetric solu-
tions to Einstein’s equations contain no true gravitational dynamics. While
the discrete nature of the numerics breaks the exact spherical symmetry,
this is only at the level of a small perturbation. At present, there have been
no successful fully dynamical tests of apparent horizon boundary conditions.

To evolve truly dynamical black hole spacetimes one will need to consider
more general shift vector choices than those considered so far. For example,
to evolve a black hole binary system one may want to introduce the analog of
corotating coordinates but without “twisting up” the coordinates around the
individual black holes, which will not in general rotate about their own axes
with the orbital angular velocity. A concern is that these general shift choices
may introduce characteristic speeds into the system that exceed the speed of
light. This could be potentially disastrous when applying apparent horizon
boundary conditions to the standard ADM evolution schemes, since “gauge
waves” could propagate out through the apparent horizon. One reason that
hyperbolic formulations of general relativity are currently receiving so much
attention is that it is easy to compute the characteristic speeds and to be
sure that they are all physical.

3.4. Instabilities and Other Problems

Perhaps the most serious problem that has plagued the development of
schemes for evolving Einstein’s equations is the pervasiveness of instabil-
ities. As we have mentioned before, there are currently no known general
evolution schemes that can evolve Einstein’s equations in three dimensions
for an indefinite period of time. The possible sources of instability in any
general relativistic evolution scheme are many and varied.

First, the usual sorts of numerical instabilities such as the Courant-Friedrichs-
Lewy instability for explicit evolution schemes can be handled trivially with
a Courant condition. We might be concerned about the possible formation
of shocks, given the nonlinear nature of Einstein’s equations. However, un-
like Euler’s equations of fluid dynamics, the gravitational field equations
do not develop shocks from smooth initial data (Choquet-Bruhat and York
1980, Christodoulou and Ó Murchadha 1981). It is unknown whether this
analytic result guarantees that shocks cannot form in a numerical solution.
Moreover, if there are matter sources with shocks on the right-hand sides
of the gravitational equations, there will certainly be numerical difficulties.
Hyperbolic formulations like the Einstein-Bianchi system have derivatives
of the matter density, pressure, etc. as source terms, presumably making
things worse. These problems have not been investigated yet. The situation
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is further complicated because a poor choice of the lapse or shift vector can
introduce steep gradients in the solution that look like shocks but are really
just coordinate singularities.

This problem with the choice of the shift is one aspect of a general class
of problems that can occur in numerical evolutions of Einstein’s equations.
As mentioned in §3.3, a particular choice of time slicing condition can lead
to “grid stretching” in the vicinity of a black hole. This is again a coordi-
nate (gauge) effect that ultimately leads to exponentially growing features
in the solution. These coordinate effects are not really instabilities in the
traditional sense because they represent valid solutions of the equations.
However, a poor choice of the gauge functions, the lapse and the shift, can
lead to solutions with exponentially growing features that are difficult, but
not impossible, to distinguish from real instabilities. The way to diagnose
the presence of these “gauge instabilities” is to examine the growth of phys-
ical, gauge independent quantities, or of violations of the constraints, which
are also gauge independent. Such quantities will not exhibit unstable growth
if the instability is simply due to gauge effects. The problem with this idea
is that without sufficient resolution, inaccuracies caused by growing gauge
modes will contaminate these indicators, making it difficult in practice to
diagnose why a calculation is blowing up.

Also complicating the problem is the fact that the gauge freedom of gen-
eral relativity yields a constrained evolution system. If the constraints are
not explicitly enforced during an evolution, then numerical errors will neces-
sarily drive solutions away from the constraint surface. Not all formulations
of Einstein’s equations are stable when the constraints are violated. It is
known that the gauge-independent constraints do form a stable, symmetric
hyperbolic system when γij and Kij are evolved via (3.1) and (3.2) (Frittelli
1997). Unfortunately, the mathematically rigorous definition of stable evolu-
tion used in this and other proofs may not be sufficient for numerical needs,
since it guarantees only that perturbations do not grow faster than exponen-
tially. Rapid power-law growth is often seen and quickly spoils numerical
evolutions. This sort of constraint-violating instability can be diagnosed by
the unstable growth of gauge independent quantities. An example where a
constraint-violating instability was diagnosed and corrected in a simple 1-
dimensional system can be found in Scheel et al. (1998). An interesting area
of investigation is whether a system of evolution equations can be written
that is attracted to the constraint surface (Brodbeck et al. 1998).

Certain choices of boundary conditions can also turn a stable evolution
scheme unstable. Of particular concern in this regard is the effect of ap-
parent horizon boundary conditions on the overall stability of an evolution
scheme. Currently, there appears to be no good way to analyze the stability
of various apparent horizon boundary conditions. Furthermore, there seem
to be very few good tools for analyzing and diagnosing instabilities in gen-
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eral. The whole area of instabilities in evolution schemes is the outstanding
computational problem in the field, and is urgently in need of further work.

3.5. Outer Boundary Conditions

Another issue that must be addressed is how to accurately and stably pose
outgoing wave boundary conditions in general relativity. The dynamical
simulations of greatest interest are those that generate strong gravitational
waves that will propagate towards infinity. The nonlinearity of Einstein’s
equations couples ingoing and outgoing modes, implying that simple out-
going wave boundary conditions must be applied at large radii where the
coupling is weak. The quadrupole nature of the dominant modes is a fur-
ther complication when the outer boundary is not an S2 constant coordinate
surface.

Consider the apparently easy problem of setting Sommerfeld radiation
conditions at the faces of a Cartesian grid for a simple scalar wave Φ(r, t).
Assume that the solution is a purely outgoing wave given by

Φ(t, r) =
f(t− r)

r
. (3.19)

We can construct a boundary condition from the usual Sommerfeld relation

∂Φ
∂r

= −1
r

Φ− ∂Φ
∂t
, (3.20)

and the relations between Cartesian and spherical coordinates

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ
. (3.21)

Using the fact that f has no angular dependence, we get(
∂r

∂x

)−1 ∂Φ
∂x

= −1
r

Φ− ∂Φ
∂t
, (3.22)

which can be applied easily at a constant x boundary.
This works well for the simple monopole form given in (3.19). It even

works well at large radii if f(t − r)/r is just the leading order term in an
expansion for Φ(t, r, θ, φ) where the higher-order terms have angular depen-
dence. But, if the leading-order term in the expansion has angular depen-
dence, as is the case for the dominantly quadrupole gravitational radiation,
(3.22) will not work, and straightforward Cartesian generalizations have
proven to be unstable for general relativistic problems. An approach that
we term “interpolated-Sommerfeld” has proven to be a dramatic improve-
ment. The idea is to apply (3.20) directly at the boundaries of a Cartesian
grid by using interpolation to provide data at points that are on radial lines
associated with the boundary points. This allows the radial derivative to be
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approximated directly, thereby avoiding problems with angular dependence
in the function. (We would not be surprised if this idea has been used before
in other fields.)

Algorithms designed to extract information about the outgoing gravita-
tional waveforms can provide more sophisticated boundary conditions. One
approach expresses the gravitational field at large distances as a perturba-
tion about an analytic spherically symmetric background metric. The waves
are decomposed into a multipole expansion. Each multipole component sat-
isfies a 1-dimensional linear wave equation. The wave data is “extracted”
from the full numerical solution in the region near the outer boundary. This
provides initial conditions to evolve the perturbation quantities to very large
distances. The evolution is cheap because the equations are 1-dimensional,
and the asymptotic waveform can be read off very accurately. As a by-
product, the evolution provides boundary conditions “along the way” at
the (much closer) outer boundary of the full numerical solution. See Rez-
zolla, Abrahams, Matzner, Rupright and Shapiro (1998) and Abrahams et
al. (1998) and references therein for more details.

Another approach that combines wave extraction with supplying outer
boundary conditions is to match the interior evolution to a full nonlinear
characteristic evolution code (see §1.7). The two evolutions must be fully
coupled, each providing the other with boundary data at the S2 surface where
they are joined. This approach has the advantage of being non-perturbative,
but the additional evolution system is considerably more complex than the
perturbative system. See Bishop, Gómez, Lehner and Winicour (1996) and
Bishop et al. (1997b) and references therein for more details.

The primary difficulty with both matching techniques is in stably provid-
ing boundary conditions to the interior Cauchy evolution. The perturbative
approach has had some success for the case of evolving weak waves. The
characteristic approach has not yet been able to feed back information into a
3-dimensional Cauchy evolution of Einstein’s equations without encounter-
ing severe instabilities. The technique has worked in lower-dimensional prob-
lems (Dubal, d’Inverno and Clarke 1995) and with simpler systems in three
dimensions (Bishop, Gómez, Holvorcem, Matzner and Winicour 1997a).

4. Related Literature

In addition to the references presented in the main part of this review, there
are numerous papers that can prove useful to anyone entering the field of
numerical relativity.

The regime of spherical symmetry provides a lower-dimensional testing
domain. However, there is no true gravitational dynamics in spherical sym-
metry: just as with electrodynamics, there are no spherical gravitational
waves. To compensate for this, researchers typically resort to adding scalar
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wave matter sources, or they explore alternative theories of gravity that ad-
mit spherical waves; see Choptuik (1991), Scheel et al. (1995a), and Scheel,
Shapiro and Teukolsky (1995b) and references therein. A lack of true dy-
namics is not always a problem, since gauge choices can provide time de-
pendence and a non-trivial test of numerical schemes; see Bona, Massó and
Stela (1995a)

Axisymmetry provides another useful testbed, but evolutions are ham-
pered by tedious regularity conditions that must be satisfied at coordinate
singularities. Some useful references to axisymmetric evolutions can be
found in Abrahams, Bernstein, Hobill, Seidel and Smarr (1992), Shapiro
and Teukolsky (1992), Anninos, Hobill, Seidel, Smarr and Suen (1993),
Abrahams et al. (1994b), Abrahams, Cook, Shapiro and Teukolsky (1994a),
Bernstein et al. (1994), and Anninos, Hobill, Seidel, Smarr and Suen (1995c).

Critical behavior in solutions of Einstein’s equations is a recent discov-
ery that was made through high-precision numerical work (Choptuik 1993).
Gundlach (1998a) provides a recent thorough review of this topic.

We have not dealt much with the issue of matter sources in Einstein’s
equations. The matter evolves via its own set of evolution equations, with
gravitational effects coupled in through the metric and its derivatives. The
most common matter sources that have been dealt with are hydrodynamic
fluids. Pons, Font, Ibáñez, Mart́ı and Miralles (1998) treat general rela-
tivistic hydrodynamics with Riemann solvers and provide useful references.
Banyuls, Font, Ibáñez, Mart́ı and Miralles (1997) give an overview of shock-
capturing techniques in relativistic hydrodynamics. An earlier general ref-
erence on general relativistic hydrodynamics is Wilson (1979).

Many of the recent references we have cited are also available from the Los
Alamos preprint server, http://xxx.lanl.gov, in the gr-qc and astro-ph
archives.

5. Conclusions

The frontier in numerical relativity explores 3-dimensional problems, in par-
ticular 3-dimensional evolutions. There are numerous problems, some of a
fundamental physical nature and some computational. Most critical among
the physical problems is the question of how to choose good coordinates
(lapse and shift choices) during the evolution. We have a reasonable quali-
tative notion of what it means to choose good coordinates and ideas on how
to do so. Early work in numerical relativity often made use of geometri-
cally motivated coordinate choices, such as maximal slicing for the lapse, or
“minimal distortion” for the shift (Smarr and York 1978). It is likely that
geometric insight will continue to be useful as new choices are sought.

The fundamental computational issue is to develop an evolution scheme
for general 3-dimensional black holes that is stable and accurate. Schemes
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that work in special cases have been developed, but the goal of a truly
general scheme has so far been blocked by various instabilities. A critical
unanswered question is what is the source of these instabilities and how can
we circumvent them. One possible source includes purely numerical insta-
bilities in the basic discretization of the evolution system. The discretization
is complicated by black hole excision and the imposition of nontrivial outer
boundary conditions. It is also possible that the evolution systems being
used admit unstable modes if the numerical solutions violate the constraints
or if approximated boundary conditions allow these modes to grow.

Thus achieving the goal of stable, accurate and efficient evolutions of black
hole spacetimes means that many questions must be answered. Which sys-
tems of equations can or should be used? Can the evolutions be performed
without imposing the constraints, or at least without imposing them by solv-
ing elliptic equations? How should apparent horizon boundaries be handled?
This latter question is closely tied to the particular numerical scheme to be
used in solving the system of equations. What numerical schemes should be
used?

To date, only relatively simple schemes have been tried for 3-dimensional
black hole simulations. More sophisticated techniques could be based on
using the hyperbolic formulations of general relativity and an understanding
of the characteristic variables and speeds associated with a given system. If
such techniques are to be used, then they must incorporate the properties
of the black hole boundary. A characteristic variable whose characteristic
direction is outgoing just outside the black hole changes to ingoing just
inside the hole. Thus, the black hole surface is a sort of sonic point, and
techniques from computational fluid dynamics might prove useful.

These issues provide many interesting challenges to numerical analysts
interested in evolution systems. Similarly, constructing initial data for the
evolutions provides interesting problems in the area of coupled nonlinear el-
liptic systems. Beyond these numerical challenges exist what might be more
properly called computational challenges. It requires an enormous amount
of computation to evolve dozens of variables in time over three spatial di-
mensions with sufficient resolution to deal both with fields near the black
hole and with waves near the outer boundary. These requirements place
numerical relativity among the problems that will continue to demand the
highest performance supercomputers and the best algorithms that compu-
tational scientists can provide.
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B. Brügmann (1996), ‘Adaptive mesh and geodesically sliced Schwarzschild space-
time in 3+1 dimensions’, Phys. Rev. D 54, 7361–7372.

E. M. Butterworth and J. R. Ipser (1976), ‘On the structure and stability of rapidly
rotating fluid bodies in general relativity. I. The numerical method for comput-
ing structure and its application to uniformly rotating homogeneous bodies’,
Astrophys. J. 204, 200–233.

M. W. Choptuik (1991), ‘Consistency of finite-difference solutions of Einstein’s equa-
tions’, Phys. Rev. D 44, 3124–3135.

M. W. Choptuik (1993), ‘Universality and scaling in gravitational collapse of a mass-
less scalar field’, Phys. Rev. Lett. 70, 9–12.



42 Cook and Teukolsky

Y. Choquet-Bruhat and J. W. York, Jr. (1980), The Cauchy problem, in General
relativity and gravitation. One hundred years after the birth of Albert Einstein
(A. Held, ed.), Vol. 1, Plenum, New York, pp. 99–172.

Y. Choquet-Bruhat and J. W. York, Jr. (1995), ‘Geometrical well posed systems for
the Einstein equations’, C. R. Acad. Sci. Paris A321, 1089–1095.
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N. Ó Murchadha and J. W. York, Jr. (1974), ‘Initial-value problem of general relativ-
ity. I. General formulation and physical interpretation’, Phys. Rev. D 10, 428–
436.

M. Parashar and J. C. Brown (1995), Distributed dynamical data-structures for
parallel adaptive mesh-refinement, in Proceedings of the International Con-
ference for High Performance Computing (S. Sahni, V. K. Prasanna and
V. P. Bhatkar, eds), Tata McGraw-Hill, New Delhi, India. See also
www.ticam.utexas.edu/∼parashar/public html/DAGH.
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