Publications

Journal Articles

  1. Gregory B. Cook and  Suhan Lu, “New total transmission modes of the Kerr geometry with Schwarzschild limit frequencies at complex infinity,” Phys. Rev. D 107 (2023) pp. 044043/19.
  2. Daniel J. Vickers and Gregory B. Cook, “Understanding solutions of the angular Teukolsky equation in the prolate asymptotic limit,” Phys. Rev. D 106 (2022) pp. 104037/31.
  3. Gregory B. Cook, “Aspects of multimode Kerr ringdown fitting,” Phys. Rev. D 102 (2020) pp. 024027/32.
  4. Gregory B. Cook, Luke S. Annichiarico, and Daniel J. Vickers, “Unknown branch of the total-transmission modes for the Kerr geometry,” Phys. Rev. D 99 (2019) pp. 024008/12.
  5. Gregory B. Cook and Maxim Zalutskiy, “Modes of the Kerr geometry with purely imaginary frequencies,” Phys. Rev. D 94 (2016) pp. 104074/25.
  6. Gregory B. Cook and Maxim Zalutskiy, “Purely imaginary quasinormal modes of the Kerr geometry,” Class. and Quant. Grav. 33 (2016) pp. 245008/9.
  7. Gregory B. Cook and Maxim Zalutskiy, “Gravitational Perturnbations of the Kerr geometry: High-accuracy study,” Phys. Rev. D 90 (2014) pp. 124021/31.
  8. Gregory B. Cook and Thomas W. Baumgarte, “Excision boundary conditions for the conformal metric,” Phys. Rev. D 78 (2008) pp. 104016/10.
  9. Paul R. Anderson, Carmen Molina-París, David Evanich, and Gregory B. Cook, “Study of the preheating phase of chaotic inflation,” Phys. Rev. D 78 (2008) pp. 083514/18.
  10. Jason D. Grigsby and Gregory B. Cook, “Measuring eccentricity in binary black-hole initial data,” Phys. Rev. D 77 (2008) pp. 044011/11.
  11. Michael Boyle, Duncan A. Brown, Lawrence E. Kidder, Abdul H. Mroue, Harald P. Pfeiffer, Mark A. Scheel, Gregory B. Cook, and Saul A. Teukolsky, “High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions,” Phys. Rev. D 76 (2007) pp. 124038/31.
  12. Gregory B. Cook and Bernard F. Whiting, “Approximate Killing Vectors on S2,” Phys. Rev. D 76 (2007) pp. 041501(R)/5.
  13. Alessandra Buonanno, Gregory B. Cook, and Frans Pretorius, “Inspiral, merger and ring-down of equal-mass black-hole binaries,” Phys. Rev. D 75 (2007) pp. 124018/42.
  14. Matthew Caudill, Gregory B. Cook, Jason D. Grigsby, and Harald P. Pfeiffer, “Circular orbits and spin in black-hole initial data,” Phys. Rev. D 74 (2006) pp. 064011/24.
  15. Mark D. Hannam and Gregory B. Cook, “Conformal thin-sandwich puncture initial data for boosted black holes,” Phys. Rev. D 71 (2005) pp. 084023/12.
  16. Gregory B. Cook and Harald P. Pfeiffer, “Excision boundary conditions for black hole initial data,” Phys. Rev. D 70 (2004) pp. 104016/24.
  17. Mark D. Hannam, Charles R. Evans, Gregory B. Cook, and Thomas W. Baumgarte, “Can a combination of the conformal thin-sandwich and puncture methods yield binary black holes solutions in quasi-equilibrium?,” Phys. Rev. D  68 (2003) pp. 064003/7.
  18. Harald P. Pfeiffer, Gregory B. Cook, and Saul A. Teukolsky, “Comparing initial-data sets for binary black holes,” Phys. Rev. D 66 (2002) pp. 024047/17.
  19. Gregory B. Cook, “Corotating and irrotational binary black holes in quasi-circular orbit,” Phys. Rev. D 65 (2002) pp. 084003/13.
  20. Gregory B. Cook, “Initial Data for Numerical Relativity,” Living Reviews in Relativity 3 (2000).
  21. Harald P. Pfeiffer, Saul A. Teukolsky, and Gregory B. Cook, “Quasi-circular orbits for spinning binary black holes,” Phys. Rev. D 62 (2000) pp. 104018/11.
  22. Lawrence E. Kidder, Mark A. Scheel, Saul A. Teukolsky, Eric D. Carlson and Gregory B. Cook, “Black hole evolution by spectral methods,” Phys. Rev. D 62 (2000) pp. 084032/20.
  23. Gregory B. Cook and Saul A. Teukolsky, “Numerical Relativity: Challenges for Computational Science,” Acta Numerica 8 (1999).
  24. Shmuel Balberg, Itamar Lichtenstadt, and Gregory B. Cook, “Roles of Hyperons in Neutron Stars,” Ap. J. Supp. 121 (1999) pp. 515—532.
  25. M. Coleman Miller, Frederick K. Lamb and Gregory B. Cook, “Effects of Rapid Stellar Rotation on Equation of State Constraints Derived from Quasi-Periodic Brightness Oscillations,” Ap. J509 (1998) pp. 793—801.
  26. Mark A. Scheel, Thomas W. Baumgarte, Gregory B. Cook, Stuart L. Shapiro, and Saul A. Teukolsky, “Treating Instabilities in a Hyperbolic Formulation of Einstein’s Equations,” Phys. Rev. D 58 (1998) pp. 044020/12.
  27. The Binary Black Hole Grand Challenge Alliance: Roberto Gomez, et al., “Stable Characteristic Evolution of Generic 3-Dimensional Single-Black-Hole Spacetimes,” Phys. Rev. Letters 80 (1998) pp. 3915—3918.
  28. The Binary Black Hole Grand Challenge Alliance: Gregory B. Cook, et al., “Boosted Three-dimensional Black-hole Evolutions with Singularity Excision,” Phys. Rev. Letters 80 (1998) pp. 2512—2516.
  29. The Binary Black Hole Grand Challenge Alliance: Andrew M. Abrahams et al., “Gravitational Wave Extraction and Outer Boundary Conditions by Perturbative Matching,” Phys. Rev. Letters 80 (1998) pp. 1812—1815.
  30. Thomas W. Baumgarte, Gregory B. Cook, Mark A. Scheel, Stuart L. Shapiro, and Saul A. Teukolsky, “General Relativistic Models of Binary Neutron Stars in Quasiequilibrium,” Phys. Rev. D 57 (1998) pp. 7299—7311.
  31. Thomas W. Baumgarte, Gregory B. Cook, Mark A. Scheel, Stuart L. Shapiro, and Saul A. Teukolsky, “The Stability of Relativistic Neutron Stars in Binary Orbit,” Phys. Rev. D 57 (1998) pp. 6181—6184.
  32. Luciano Rezzolla, Andrew M. Abrahams, Thomas W. Baumgarte, Gregory B. Cook, Mark A. Scheel, Saul L. Shapiro, and Saul A. Teukolsky, “Waveform Propagation in Black Hole Spacetimes: Evaluating the Quality of Numerical Solutions,” Phys. Rev. D 57 (1998) pp. 1084—1091.
  33. Mark A. Scheel, Thomas W. Baumgarte, Gregory B. Cook, Stuart L. Shapiro, and Saul A. Teukolsky, “Numerical Evolution of Black Holes with a Hyperbolic Formulation of General Relativity,” Phys. Rev. D 56(1997) pp. 6320—6335.
  34. Thomas W. Baumgarte, Gregory B. Cook, Mark A. Scheel, Stuart L. Shapiro, and Saul A. Teukolsky, “Binary Neutron Stars in General Relativity: Quasiequilibrium Models,” Phys. Rev. Letters 79 (1997), pp. 1182—1185.
  35. Gregory B. Cook and Mark A. Scheel, “Well-behaved Harmonic Time Slices of a Charged, Rotating, Boosted Black Hole,” Phys. Rev. D 56 (1997), pp. 4775—4781.
  36. Thomas W. Baumgarte, Gregory B. Cook, Mark A. Scheel, Stuart L. Shapiro, and Saul A. Teukolsky, “Implementing an Apparent-Horizon Finder in Three Dimensions,” Phys. Rev. D 54 (1996), pp. 4849—4857.
  37. Gregory B. Cook, Stuart L. Shapiro, and Saul A. Teukolsky, “Testing a Simplified Version of Einstein’s Equations for Numerical Relativity,” Phys. Rev. D 53 (1996), pp. 5533—5540.
  38. Gregory B. Cook, “Three-dimensional Initial Data for the Collision of Two Black Holes II: Quasi-circular Orbits for Equal-Mass Black Holes.” Phys. Rev. D 50 (1994), pp. 5025—5032.
  39. Andrew M. Abrahams and Gregory B. Cook, “Collisions of Boosted Black Holes: Perturbation Theory Prediction of Gravitational Radiation.” Phys. Rev. D 50 (1994), pp. R2364—R2367.
  40. Andrew M. Abrahams, Gregory B. Cook, Stuart L. Shapiro, and Saul A. Teukolsky, “Solving Einstein’s Equations for Rotating Spacetimes: Evolution of Relativistic Star Clusters.” Phys. Rev. D 49 (1994), pp. 5153—5164.
  41. Gregory B. Cook, Stuart L. Shapiro, and Saul A. Teukolsky, “Rapidly Rotating Neutron Stars in General Relativity: Realistic Equations of State.” Ap. J. 424 (1994), pp. 823—845.
  42. Gregory B. Cook, Stuart L. Shapiro, and Saul A. Teukolsky, “Recycling Pulsars to Millisecond Periods in General Relativity.” Ap. J. Letters 423 (1994), pp. 117—120.
  43. Gregory B. Cook, Stuart L. Shapiro, and Saul A. Teukolsky, “Rapidly Rotating Polytropes in General Relativity.” Ap. J. 422 (1994), pp. 227—242.
  44. Gregory B. Cook, Matthew W. Choptuik, Mark R. Dubal, Scott Klasky, Richard A. Matzner, and Samuel R. Oliveira, “Three-Dimensional Initial Data for the Collision of Two Black Holes.” Phys. Rev. D 47 (1993), pp. 1471—1490.
  45. Gregory B. Cook, Stuart L. Shapiro, and Saul A. Teukolsky, “Spin-Up of a Rapidly Rotating Star by Angular Momentum Loss: Effects of General Relativity.” Ap. J. 398 (1992), pp. 203—223.
  46. Gregory B. Cook and Andrew M. Abrahams, “Horizon Structure of Initial-Data Sets for Axisymmetric Two Black-Hole Collisions.” Phys. Rev. D 46 (1992), pp. 702—713.
  47. Gregory B. Cook, “Initial Data for Axisymmetric Black-Hole Collisions.” Phys. Rev. D 44 (1991), pp. 2983—3000.
  48. Gregory B. Cook and James W. York, Jr., “Apparent Horizons for Boosted or Spinning Black Holes.” Phys. Rev. D 41 (1990), pp. 1077—1085.
  49. J. R. Macdonald and G. B. Cook, “Reply to Comments by Almond and West on Na β-Alumina Immittance Data Analysis.” J. Electroanal. Chem. 193 (1985), pp. 57—74
  50. J. R. Macdonald and G. B. Cook, “Analysis of Impedance Data for Single Crystal Na β-Alumina at Low Temperatures.” J. Electroanal. Chem. 168 (1984), pp. 335—354.

Book Chapters

  1. Gregory B. Cook, “Initial Data for Quasi-circular Orbits of Black-Hole Binaries,” in Proceedings of the Seventh Marcel Grossmann Meeting on General Relativity, edited by R. T. Jantzen, G. M. Keiser, and R. Ruffini (World Scientific, Singapore), (1996), pp. 624—625.
  2. Gregory B. Cook, “The Multigrid Technique,” in Frontiers in Numerical Relativity, ed. C. R. Evans, L. S. Finn, and D. W. Hobill. Cambridge University Press (1989), pp. 222—229.

Ph.D. Dissertations

Masters Theses


Contact

Gregory Cook
Department of Physics
2090 Eure Dr.
Winston-Salem, NC 27109, USA
email: cookgb@wfu.edu

css.php