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Abstract

In this paper we use insights from Sraffa’s classic, PCMC, to argue that the
classical notion of ‘centre of gravitation’ is not a sound concept. The market
mechanics of labour allocation through price signals and quantity adjustments,
given effectual demands, do not lead to a ‘centre of gravitation’. We work out
all such possible market mechanisms, including the specific classical case, and
show that the ‘centre of gravitation’ is a non-attractive point in all the cases.

1 Introduction

The classical economists (e.g. Adam Smith, David Ricardo and Karl Marx)1 argued
that in a capitalist economy there exists a market mechanism that ensures that the
division of a given social labour for any given system of production, i.e. the given
techniques and total labour in use, is brought in conformity with given ‘social needs’
represented by what Adam Smith called the “effectual demands”. The general ar-
gument works in two stages as follows: (1) For any given system of production at
any given point of time there exists a set of combination of net outputs of commodi-
ties that the system could produce given the total labour and the techniques in use.
From among this set, there is one combination of the net output that corresponds to
the ‘social need’ or the effectual demands of the society.2 If the combination of the
net output produced at any given time is not equivalent to the combination spec-
ified by the effectual demands, then the relative prices of the commodities which
has positive excess effectual demands would rise3 and of the commodities which
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1See Adam Smith (1981, ch. VII, pp. 72-81), David Ricardo (1951, ch. IV, pp. 88-92) and
Karl Marx (1981, ch. 10, pp. 273-301).

2“. . . the demand of those who are willing to pay the natural price of the commodity may
be called the effectual demanders, and their demand the effectual demand; . . . A very poor man
may be said in some sense to have a demand for a coach and six; he might like to have it; but his
demand is not an effectual demand, as the commodity can never be brought to market in order to
satisfy it.” (Smith 1981, p. 73).

3“When the quantity of any commodity which is brought to market falls short of the effectual
demand. . . . A competition will immediately begin among them [the effectual demanders], and the
market price will rise more or less above the natural price, . . . ” (Smith 1981, pp. 73-74).
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has positive excess effectual supplies would fall. It was contended by the classical
economists that such movements in prices would result in rise in the rates of profits
of the commodities with excess effectual demands and fall in the rates of profits
of the commodities with excess effectual supplies. Such movements in the rates of
profits in turn would direct reallocation of capital and labour by moving capital and
labour from sectors that have rates of profits lower than the “natural” rate (the rate
of profits that would prevail when all rates of profits are equal) to the sectors that
have rates higher than the natural rate of profits. Such rescaling of the sectors would
reduce the amount of excess effectual demands and supplies of the system. It should
be kept in mind that though classical economists did not have developed notion of
returns to scale, they nevertheless implicitly assumed constant returns (CRS) during
the adjustment mechanism as the input-output structure of the techniques in use
in their examples do not change during the rescaling of the sectors. From here on
the argument works as follows: (2) As the supplies in the sectors with higher than
the natural rate of profits rises, it leads to fall in their relative prices which in turn
leads to fall in their rates of profits and the converse happens for the sectors that
contract. This tendency is supposed to prevail till the system’s combination of the
net output matches with the effectual demands. At this stage, it is contended that
the rates of profits in all the sectors would converge or become uniform and outputs
will have no reason to change and thus the prices prevailing when the rate of profits
are equal will be the equilibrium or the “natural” prices.

In the light of Sraffa’s (1960) work, several weaknesses in the above argument
can immediately be noticed.4 First of all, given a complex input-output structure
of a large number of basic goods, it cannot be contended that the direction of the
movements of prices and the corresponding rates of profits would always be the same
( see Steedman 1984 and also Section 2.4.1). The classical proposition would always
be true if only the prices of the commodity under consideration changed with all
other prices remaining constant. However, if price of a commodity rises but at the
same time the prices of its inputs that it uses extensively also rise greatly then it
may end up with a fall in its rate of profit along with a rise in its price. Secondly,
the classical mechanism truly begins to work only after prices have adjusted to
their maximum and minimum as a result of the initial excess effectual demands
and supplies. As a matter of fact, the first stage of the story is incoherent as the
adjustment mechanism assumes a downward sloping (in the price-quantity plane)
demand curves passing through the given corresponding effectual demands and the
supply adjustments are supposed to slide down or climb up on the given demand
curves. Thus there is no reason to assume that the initial supply points are off
the given demand curves to begin with. In any case, however, the reasoning again
shows the weakness of the partial equilibrium reasoning. As all the sectors rescale,
the quantity demanded of any basic good would fluctuate according to the rescaling
of all the sectors even though its effectual demand is held to be a fixed quantity.
No smooth demand curve of any particular commodity could be drawn along which

4Elsewhere (Sinha and Dupertuis 2006) we have argued that Sraffa’s prices do not need the
classical gravitational mechanism. The uniformity of the rate of profits is a logical property of
Sraffa’s given system and it must hold irrespective of supplies being equal or not to the effectual
demands.
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supply could be expected to adjust till it reaches the effectual demand point. In
a continuous dynamic framework one would expect prices to rise (fall) so long as
there is excess effectual demand (supply) for the commodity. Thirdly, even if we
accept the above described adjustment process of the classical system that during
the quantity adjustments the rates of profits of the commodities with higher (lower)
than the ‘natural’ rate fall (rise), there is no guarantee that they will all be equal
when supplies are equal to their effectual demands. This proposition has never
been proven but simply assumed. It is true that when supplies are equal to effectual
demands then prices will have no tendency to move. But these prices may be a vector
of prices that gives rise to unequal rates of profits that leads to further rescaling that
in turn causes changes in prices and therefore, the system fails to converge at the
points of effectual demands.

Unfortunately, the literature in the area of classical notion of centre of gravita-
tion is not only modest in size but also most of it is not directly relevant to the
central issue; as most of them deal with the question of convergence in the context
of economic growth (e.g. Duménil and Lévy 1985, 1987; Flaschel and Semmler 1987;
Boggio 1992; Franke 1998)5. The classical economists separated the problem of eco-
nomic growth and the problem of allocation of labour. The gravitation mechanism
was exclusively designed to deal with the problem of allocation of labour and not
with the problem of growth. In the growth context the classical economists were
quite clear that the techniques of production in use as well as the ‘natural wages’
or the ‘natural rate of profits’ etc. cannot be held constant. In Sraffa’s system, the
theoretical distinction between the problematic of allocation of labour and growth
becomes much sharper. To any given system of production there exists a unique
standard system, which is a particular reallocation of its given total labour. This
standard system is associated with a set of all possible reallocation of the given
total labour with the same techniques— that is, any such possible allocation can be
taken as an equivalent of the given system. It is this set that defines the universe of
the problem of allocation of labour pure and simple. On the other hand, whenever
total labour is allowed to change (given the same techniques), which must be the
case in the context of growth, the standard system must change, as the standard
system is not only depended on the techniques of production but also the size of
the total labour of the system. Thus even when we assume constant returns and
balanced growth, we cannot maintain that the system remains the same. It must
continuously be changing as its utilisation of total labour changes. Furthermore,
many of these papers deal with only two-good models (e.g. Nikaido 1983; Duménil
and Lévy 1987). If, however, the system describes chaotic dynamics, then such
models would simply fail to capture it, as chaotic dynamics requires at least three
degrees of freedom which is possible only in a system with at least three goods. In
what follows, in Section 2 we provide a reminder of the basic properties of a Sraffian
system and mathematical proofs of the above propositions.

In Section 3 we first present a Sraffian model of only basic goods with at least
three or more goods with no fixed capital or joint-production. We take a given
system of production with a vector of net output. We describe all the possible

5See Ganguli (1997) for a comprehensive bibliography on this subject.
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economically sustainable set of net outputs given the total labour of the system
and the techniques in use. Out of this set, we arbitrarily pick a combination of net
output other then the given combination of the net output as the vector of effectual
demands. We postulate that the initial vector of relative prices is such that the rates
of profits in all the sectors are equal. However, since the given supplies are not equal
to the effectual demands, the relative prices of the commodities with positive excess
effectual demands (supplies) rise (fall). This tendency persists as long as excess
‘effectual’ demands and supplies exist. As prices rise and fall, they simultaneously
affect the rates of profits in all the sectors. We, in the first case, postulate that the
sectors that show greater than the ‘natural’, or what we call the ‘standard’, rate of
profit expand their supplies and the sectors that show lower than the standard rate
of profit contract (on the assumption of CRS). Throughout this process of expansion
and contraction we maintain that the total labour of the system remains fixed at
the level of the initial period. Thus the model is of pure allocation and not growth.
We find that in a continuous adjustment process of this kind, the system is non-
convergent and quickly moves to negative territory implying that the system breaks
down. In the second case, instead of taking the standard rate of profit as the bench
mark for deciding which sector expands and which contracts, we use the average rate
of profit of the system as a whole (the global rate of profit) as the bench mark— a
bench mark that itself continuously changes with changes in the rates of profits of
individual sectors. We find that in this case as well the results are qualitatively the
same.

In Section 3.5 we try to mimic the classical adjustment process. We start off with
a vector of prices such that the relative prices of all the commodities with positive
excess effectual demands are higher than what they would be in the case of all the
rates of profits being equal and conversely for the commodities with positive excess
effectual supplies. We postulate that the sectors that show higher (lower) rates of
profit than the standard rate expands (contracts) its supplies and every rise (fall)
in supply is associated with a fall (rise) in its relative price. Again we find that the
system is non-convergent. We repeat the exercise by taking the global, in place of
the standard, rate of profit as the benchmark. The result in this case as well remains
qualitatively the same. In Section 3.6 we try a special case where investment flows
only to the sector that has the highest local rate of profit. Again the results remain
qualitatively the same.

It should be pointed out though that all these results do not suggest that the
system can never converge. All it says is that possibility of that happening is most
unlikely— in mathematical terms the probability of convergence is zero.

In Section 3.7 we try only quantity adjustment with fixed prices. Of course, if
we take a vector of prices that gives unequal individual rates of profits and try to
rescale the system on the basis of the difference between the individual or local rates
of profits and the standard rate or the global rate with prices held constant, then
in this case the system can never converge. The reason for it is simple. Since prices
are held constant, the individual rates of profits are independent of rescaling, thus
some sectors would continuously expand and some would continuously contract till
the system breaks down. Thus we only try a pure quantity adjustment mechanism
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with the rate of profits and prices held at the standard rate (which means that
all the individual rates of profits are uniform) and the sectors adjusting only their
quantities on the basis of inventory signals. In this case only, we find that the system
converges. Thus, it seems, it is the ‘Keynesian type’ of fix-price quantity adjustment
mechanism that is more conducive to the idea of centre of gravitation than the price
induced adjustment mechanism of the classical type.

In Section 4 we briefly discuss Steedman (1984), which in our opinion comes
closest to identifying the problems with the classical mechanism and was, in some
sense, an inspiration for our own attempt here. We argue that though Steedman
made a splendid beginning, he did not succeed in proving his case. Furthermore,
though he does not cast his model in a growth context, it is not clear whether
he succeeds in maintaining that the total labour remains constant throughout the
adjustment process.

2 Some properties of Sraffa’s systems

In this section, we work out some properties of Sraffa’s systems which will be used
to describe the gravitational mechanisms.

2.1 Basic properties

In part I of his book (1960), Sraffa introduces systems which are instantaneous
descriptions of closed economies.6 Such systems have exactly the same number of
techniques and commodities and each technique produces only one commodity; for
example:







90 t.iron ⊕ 120 t.coal ⊕ 60 qr.wheat ⊕ 3/16 labour ⇒ 180 t.iron
50 t.iron ⊕ 125 t.coal ⊕ 150 qr.wheat ⊕ 5/16 labour ⇒ 450 t.coal
40 t.iron ⊕ 40 t.coal ⊕ 200 qr.wheat ⊕ 8/16 labour ⇒ 480 qr.wheat

(1)

Each line represents a technique (or a sector). This means that when the observation
was made, it took 90 tons of iron, 120 tons of coal, 60 quarter of wheat and 3/16 of
the total labour used to produce 180 tons of iron. The other lines are interpreted in
the same way.

It should be noted that these notations may hide the fact that units of production
are complex (in the sense “elabourate”). Therefore, since one does not have a more
detailed view of the techniques involved, it could happen that, counter intuitively,
these units of production are not linear. For example, if one doubles all the inputs
in one sector, the output quantity may not double. Therefore, the assumption that
these techniques are linear, i.e. it obeys CRS, should be treated carefully. Never-
theless, CRS may lead to a good approximation and the “gravitational mechanism”,
which this paper is about , assumes CRS.

Let us describe a system such as (1) involving n different commodities, numbered
1 to n. To describe the system one needs a square matrix A = (ai,j) of size n × n

6These descriptions involve only observables.
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called the “input matrix”, a vector L = (ℓi) of size n which represents labour7 and a
vector Q = (qi) of size n called the “output vector”. The system denoted A|L ⇒ Q
is the one for which the unit of production i takes goods 1 to n by the quantities
given by ai,1, . . . , ai,n respectively, with an amount of labour given by ℓi and an
amount of output of good i by qi.

Below we define some notations that would be needed for the analysis of the
system:

• Let ei be the column vector whose all entries are equal to zero except the ith

one, which is equal to 1. The set of these vectors forms what is called the
canonical basis.

• When it will come to rescaling, we will need a notation: if v is a vector, matrix
ṽ will be the diagonal matrix whose entries are the ones of v.

• If v and w are vectors, then 〈v|w〉 is their (euclidean) scalar product.

• The vector e is the column vector whose entries are all equal to 1.

There are matrices and vectors that are not adequate for economically viable
systems. Furthermore, we want to deal only with indecomposable systems, i.e. we
want to deal only with basic goods. If A|L ⇒ Q is a Sraffian system, then the
following assumptions must be satisfied:

Assumption 1 All the entries of matrix A are positive or null and A is invertible.

Assumption 2 All the entries of the vectors L and Q are strictly positive.

Assumption 3 The system can assure it’s own subsistence. This means that for
every j, one has:

∑

i

ai,j ≤ qj . (2)

Assumption 4 The total amount of labour is equal to 1. This means that:

L̄ =
∑

i

ℓi = 1. (3)

Assumption 5 All goods are basic goods. This means that, for every i and j, one
has:

〈Anei|ej〉 6= 0. (4)

7In fact, ℓi represents the proportion of total work the unit of production uses in the closed
economy described by the system. This proportion of labour is an observable: when it comes to
the description of an existing system, it can be worked out by the wages as Sraffa homogenizes the
labour units by assuming “any differences in quality to have been previously reduced to equivalent
differences in quantity so that each unit of labour receives the same wage.” (Sraffa 1960, p.10).
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The standard system:

Definition 1 A system A|L ⇒ Q is said to be standard if there exists a constant
ρ such that, for all j, one has:

∑

i

ai,j = ρqj . (5)

A rescaling is a vector Λ = (λi) with strictly positive entries such that 〈Λ|L〉 = 1.
The rescaled system, which means the system whose i sector is rescaled by λi for all
i, is Λ̃A|Λ̃L ⇒ Λ̃Q. The set of all admissible rescalings is defined by:

RL = {Λ | 〈Λ|L〉 = 1} . (6)

One has RΛ̃L = Λ̃−1RL.

Definition 2 Two systems A|L ⇒ Q and A′|L′ ⇒ Q′ are said to be equivalent8

if there exists an admissible rescaling Λ ∈ RL such that Λ̃A = A′, Λ̃L = L′ and
Λ̃Q = Q′.

Lemma 1 For every system, there is a unique standard system which is equivalent
to it. It’s called the standard system.

Therefore:

Lemma 2 A class of equivalent systems (which consists of all systems that can be
transformed from one to another by CRS) is completely described by the standard
system in that class and the admissible rescalings.

If one gives some prices to each good, then, one can compute the relations be-
tween wages, the local rates of profit (i.e. the rates of profit in each sector) and the
global rate of profit of the whole system. The Sraffa price-wages-profit relations can
be translated in the matrices language by:

(id +R̃)AP + wL = Q̃P (7)

where id is the identity matrix, P = (Pi) is the vector of prices, w represents wages
and R = (Ri) is the vector of local rates of profit.

Lemma 3 Equation (7) is invariant under rescaling. This means that, given some
prices P , the corresponding wages and local rates do not depend on rescaling. In
particular, the maximal rates of profits, which are the local rates of profit when
w = 0, are completely determined by the standard system and the prices. The
relation between prices and maximal rates of profit is then:

R̃AP = (Q̃A−1 − id)AP. (8)

8We do not mean to say that any mathematical system is also a real system. For this one
needs to assume constant returns to scale. Therefore, it is better to think of this equivalence as an
equivalence between the given real system and imaginary systems. To assume CRS means nothing
more than that all of these systems could be real.
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The matrix Q̃A−1 − id has only one positive eigenvalue which admits an eigen-
vector with strictly positive entries. This eigenvalue is called the standard rate
and is denoted by R∗. The prices which lead to all local rates equal to R∗ are called
the standard prices. There are infinitely many such prices. But there is only
one choice of standard prices whose sum is equal to 1, this choice of prices will be
denoted by P ∗. From here on we will assume w = 0 for simplicity sake. A positive
w expressed in Standard commodity will not make any difference to the analysis.

The global rate of profit: The global rate of profit RG is the rate of profit of
the system as a whole:

RG =
〈R̃AP |e〉

〈AP |e〉
=

〈AP |R〉

〈AP |e〉
. (9)

It is evident that the global rate of profit may not be invariant under rescaling
(for the proof, see Sinha-Dupertuis 2007). We prove the following:

Proposition 1 The maximal global rate of profit is invariant under all rescalings if
and only if the maximal local rates of profit are equal two by two. In which case, the
maximal global rate and the maximal local rates are all equal to the standard rate.

Proof. Let us suppose first that the local rates are all equal to the same constant
r, then from lemma 3, one has:

(Q̃A−1 − id−r id)AP = 0. (10)

Therefore, AP is an eigenvector with strictly positive entries of the matrix Q̃A−1−id
for the eigenvalue r. Since the only eigenvalue of this type is R∗, all local rates of
profit are equal to the standard rate and so is the global rate. Since the local rates
are invariant under rescaling, any choice of prices that give equal local rates give
also an invariant global rate.

Let us suppose that the global rate of profit is invariant under rescaling, then,
from (9), for any rescaling Λ, one has:

RG =
〈R̃Λ̃AP |e〉

〈Λ̃AP |e〉
. (11)

Since RHS of equation (11) is a ratio of scalar products, which are homogeneous of
degree 1 in their first variable, RG is homogeneous of degree 0. This implies that
(11) is true not only for rescalings, but for any diagonal matrix. So, let v and w be
any vectors with strictly positive entries. Then, since diagonal matrices commute
between themselves, one obtains:

RG =
〈ṽw̃R̃AP |e〉

〈ṽw̃AP |e〉
=

〈w̃R̃AP |ṽe〉

〈w̃AP |ṽe〉
. (12)

Thus:
〈

(R̃ − RG id)w̃AP |v
〉

= 0. (13)

Therefore, R̃ = RG id, which leads to the conclusion.
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2.2 Rescaling: Why total labour must be kept equal to one

What we want to show here is how rescalings really work with Sraffa’s systems.
We will see that the constraint that total labour must be kept to 1 is not a free
assumption: it is necessary. Indeed, if total labour is not kept equal to 1, we are in
a growth context.

The problem with growth is that if one tries to rescale a Sraffian system over or
under the given total labour, then it turns out that the new system is not equivalent
to the former system. In other words, the two systems do not have the same standard
system. For example, take any given system and multiply all its equations by 2 and
try to construct the standard systems for both the systems. Since in a standard
system the labour inputs for each sector is taken as a proportion of the total labour
used in the system, we will have twice of all commodity inputs and outputs for each
row of the second system with the labour entries remaining the same. Clearly, the
two standard systems will not be the same. Below, we formally prove this point.

Let us assume CRS. Suppose that all labour can be counted in a physical unit
such as labour hours. Then a technique is a way to transform some goods into
another one, all of them measured in quantities per labour hours. A real economic
system is described by a complete set of basic techniques and the quantity of labour
hours used in each sector. Let us denote such a description of a system by T → U ||W
where T is the square matrix of inputs of the techniques, U is the vector of the
outputs and W is the quantity of work. The Sraffian system A|L ⇒ Q associated
with this system is given by: ai,j = ti,jwi, qi = uiwi and ℓi = wi/W where W is the
sum of all the wi’s, i.e. total quantity of labour.

Consider any rescaling Λ. If one tries to adapt the different sectors according
to the rescaling, then the new system will be T → U ||Λ̃W . Denote the associated
Sraffian system by A′|L′ ⇒ Q′. On the basis of the discussion above, this Sraffian
system satisfies the following relations with the original Sraffian system:

a′
i,j = ti,jλiwi, q′i = uiλiwi, ℓ′i = λiwi

(

Λ̃W
)−1

= λ
W

Λ̃W
ℓi. (14)

Therefore, the proportions between ai,j, qi, ℓi and a′
i,j, q

′
i, ℓ

′
i are the same (and, thus,

these systems have the same standard system) if and only if:

〈W |e〉 = W = Λ̃W =
〈

Λ̃W |e
〉

= 〈W |Λ〉 . (15)

Since L = W/W , (15) is equivalent to:

〈Λ|L〉 = 〈Λ|W 〉 /W = 1 (16)

which proves our claim.9

9One should note that since unbalanced growth can be decomposed into a rescaling which
maintains total labour equal to 1 followed by a balanced growth, the problems induced by balanced
or unbalanced growth are of the same nature.
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2.3 Affordable demands

Let us think of demand as a vector of quantities B. Assuming CRS, this demand
may or may not be fitted by rescaling the system. A demand is said to be affordable
if it can be fitted by rescaling.

Should a demand B be affordable, it would mean that there exist a rescaling Λ
such that Λ̃Q = B. The criterion here is that total labour needs to remain equal to
1. Therefore, a demand is affordable if:

〈

Q̃−1B|L
〉

=
〈

B|Q̃−1L
〉

= 1. (17)

The other condition on demand to be affordable is that the system should be
capable of self reproducing. Therefore, for all j, one should have:

∑

i

bi

qi
ai,j ≤ bj . (18)

In terms of matrices, this means that, for all j:

(Q̃−1B̃A)tej ≤ B̃ej (19)

which can also be written as:

AtQ̃−1B̃ej ≤ B̃ej . (20)

This is not ensured for all vectors B (even under assumption 3). But if the system
is in a surplus producing state, there are infinitely many such B’s. In fact, the set
of these vectors is of positive measure.

2.4 Number of goods: Why two is not enough

The behavior of the two goods case can not be taken as a general one because of
the problems with the movements of rates of profit and prices and some general
property of chaotic dynamics.

2.4.1 Rates of profit

Steedman (1984) shows that prices and the rates of profit are not always moving in
the same direction. Here we prove it with our own argument.

Let us choose a system A|L → Q. The rate of profit of sector i is given by:

Ri =
qipi

∑

j ai,jpj
− 1 (21)

The partial derivative of Ri with respect to pk is then:

∂Ri

∂pk
=

(

∑

j

ai,jpj

)−2
{

−qiai,kpi if i 6= k,
qi

∑

j 6=i ai,jpj if i = k.
(22)
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Therefore, the derivative is never a constant and no partial derivative is zero if all
prices are strictly positive (and it satisfies 〈∇Ri|P 〉 = 0.) Therefore, the locus of
local rates of profit is not a plane and, locally, there is a one to one correspondence
between the vector of prices and the vector of local rates of profit.

Let us take a system with strictly more than two goods and suppose that the
prices are such that first good has a high rate of profit, the second good has a low
rate of profit and rates of all other goods are equal to the standard rate. One can
change the prices for the first two goods and let all other prices remain the same. In
general, all the rates of profit will change. Indeed, the rate of profit of the ith good
will remain constant if and only if ai,1 and ai,2 are equal, which is a very restrictive
case.

2.4.2 Chaotic behaviour

Gravitational mechanisms act on prices and rescalings this means that, in an n
goods system, they act on 2n variables. Since total labour is kept equal to 1 and
since the prices are normalized, these variables have a 2n − 2 degree of freedom.

It is a general principle of continuous dynamics that chaotic behaviours can only
arise for conservative systems (i.e. solutions are unique) if the degree of freedom is
greater or equal to 3. Indeed, since the solutions of the system can not cross, with
only two degrees of freedom, each solution divides the plane into two parts and each
other solution which belongs to one part can not switch to the other one. This do
not happen with three degrees of freedom since the solutions do not divide the space
into parts.

For discrete dynamics, chaos may arise even in the two good case. But if the
discrete system is the discretization of a conservative continuous system (which is
the case of most of the discrete mechanisms), such a behaviour is obstructed.

Therefore, although it may diverge, considering only two goods cases (which give
only two degrees of freedom) may be too restrictive and can miss some interesting
behaviour.

3 Gravitational mechanisms

In this section, we will consider different processes based on gravitational mecha-
nisms. What is shown is that the space of systems for which such processes converge
is of codimension at least one. Furthermore, apart from these cases, the set of initial
conditions for which the process converges is of measure zero. In plain words, this
means that the probability for such a process to converge is zero.10

10Here, ‘zero’ does not mean it is impossible: ‘probability equal to zero’ occurs for example
when there is a finite number of possibilities out of infinity.

11



3.1 Overview of gravitational mechanisms

Let us take a system, an affordable demand for this system and a set of prices. This
system may be in a certain state such that demand is not fitted or rates of profits
are not equal. Such a state is not in equilibrium because investments will move
according to these indicators. Our purpose here is to describe mathematically and
study the convergence of various possible ‘gravitational mechanisms’.

3.1.1 Suitable variables for gravitational mechanisms

From now, we will assume CRS. Since we will deal with rescaling of equivalent
systems, we introduce variables that can be easily handled. For example, we don’t
want to deal with all the system entries since there are multiple constraints on
them. One way to achieve this is to look at all the systems we will encounter (even
the given real system) as rescalings of their common standard system. This way the
mathematical models of gravitational mechanisms are more easily described and the
computations are made simpler. This in no sense privileges the standard system. As
laws for the solar system are completely independent of the choice of a referential;
thus to mimic what an observer on Earth can see one may be tempted to set the
Earth as the center of the solar system, however the equations are simpler and more
understandable if one sets the Sun as the center of the system.

Given any Sraffian system Ar|Lr ⇒ Qr (where r stands for real), its standard
system will be denoted by A|L ⇒ Q and the rescaling that brings this standard
system to the real system will be denoted by Λ0 = (λ0,i). This means that one has
Ar = Λ̃0A, Lr = Λ̃0L and Qr = Λ̃0Q. The vector Λ0 is nothing more than an initial
condition.

The variables are Λ (rescaling) and P (prices). The equations for the gravita-
tional mechanisms will only deal with these variables. Since total labour must be
kept equal to 1, at each stage Λ should satisfy 〈Λ|L〉 = 1 (this is more or less like
the ecliptic plane). Furthermore, one should normalize the prices: the local and
global rates of profit do not really depend on prices, but on the proportions between
them. We will maintain the sum of prices equal to 1. This way, there is a one-to-one
correspondence between prices and rates of profit. The manner in which the prices
are normalized is of no importance so long as we keep normalizing them in the same
way.

3.1.2 General principles of gravitational mechanisms

The different processes we will encounter should reflect how capital and labour move
according to the market situation. The indicators which will be used for investments
are either just the sign or sign and the distance between local rates of profit and a
benchmark of profit, which could be either the global rate or the standard rate. If
the rate of profit of one sector is above (below) the benchmark, then it will expand
(contract). This, however, is only a trend: if one sector has a huge expansion,
it could happen that other expanding sectors might shrink because of this ‘highly
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efficient’ sector. The condition is that the rescalings induced by the movements of
capital should maintain total labour equal to 1.

In a second stage, one has to deal with demand. The prices should rise or fall
according to the position of supply with respect to demand. Depending on the
chosen processes, we will have to make it clear whether the information is only if
supply is greater or smaller than the demand or whether there are more information
available. We will see that the processes do not converge in both the cases.

To sum up, the process (continuous or discrete) follows the following scheme:

1. the prices move according to demand and supply;

2. rates of profit are worked out on the basis of market prices;

3. rescaling moves according to the distance between local rates of profit and
some reference that could either be the standard rate (classical case) or the
global rate;

4. these rescalings change supplies;

5. the process is repeated.

There are four ways to classify the gravitational processes:

• a gravitational process may be continuous or discrete;

• the information on demand and supply may be continuous (i.e. the difference
between the quantities of supply and demand is given) or not (i.e. only the
sign of this difference is given);

• the reference for the rates of profit may be the standard rate or the global
rate;

• the change in prices can be dependent on previous prices (the non classical
case) or not (the classical case).

Some combinations of these cases will never show up, for example: the classical
case can not be used in a continuous process;11 discrete information can not be used
in a continuous process; discrete information for the classical case is meaningless;12

etc. The possibilities are:

• non classical continuous process with standard rate and continuous informa-
tion;

• non classical continuous process with global rate and continuous information;

• non classical discrete process with standard rate and continuous information;

11A continuous process uses a relation between demand, supply and the derivative of prices.
Therefore, prices are determined by their former values.

12The classical case needs a demand curve to determine prices. Discrete information would not
be sufficient for determining prices according to demand.
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• non classical discrete process with global rate and continuous information;

• non classical discrete process with standard rate and discrete information;

• non classical discrete process with global rate and discrete information;

• classical discrete process with standard rate and continuous information;

• classical discrete process with global rate and continuous information.

All these processes lead to dynamical systems. These dynamical systems will
all have the same fixed point: demand fitted and all rates of profit equal to the
standard rate.13 This means that P = P ∗ and Λ = Λ∗ where, if B is the demand,
B = Λ̃∗Q.

To study convergence, we will only be interested by what is happening in the
neighborhood of the fixed point. This will allow us to linearize equations.

3.2 Continuous processes

Let us introduce effectual demand in terms of quantities as a vector B. Think of Λ
and P as functions of a time variable. Let Rref be the reference for the rates of profit
(this means the standard rate or the global rate). In the classical case, Rref is a
constant and in the non classical case, it’s a function of the prices. Since a constant
can be seen as a function, in fact, in both cases we can think of Rref as a function.
Therefore, the gravitational equations can be stated once for all. Fromerly, for a
small amount of time h, one should have:

{

Λ(t + h) − Λ(t) = hF (R − Rrefe)

P (t + h) − P (t) = hG(B − Λ̃Q)
(23)

where F and G are continuous derivable functions of the form F = (F1, . . . , Fn) and
G = (G1, . . . , Gn), this means that the rescaling and the price of a good cares about
its own indicators only.

We have to satisfy the constraints on rescaling and prices. Since we want total
labour equal to 1, scalar products between the vectors Λ(t + h) and Λ(t) with L
should be equal to 1. Therefore, Λ(t + h) − Λ(t) should be orthogonal to L. In
the same way, to ensure that total prices are equal to 1, the vector P (t + h) − P (t)
should be orthogonal to e. Thus, let πL and πe be the projections over the planes
orthogonal to vectors L and e respectively, then one should have:

{

Λ(t + h) − Λ(t) = hπL(F (R − Rrefe))

P (t + h) − P (t) = hπe(G(B − Λ̃Q))
(24)

Finally, by letting h tend to zero, the systems of differential equations for continuous
gravitational processes turn out to be of the form:

{

Λ̇ = πL(F (R − Rrefe))

Ṗ = πe(G(B − Λ̃Q))
(25)

13When all local rates of profit are equal to the same constant, this constant is the standard
rate and is also the global rate.
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To ensure that (Λ∗, P ∗) is the fixed point, we assume, without loss of generality,
that the functions F1, . . . , Fn and G1, . . . , Gn take the value zero at zero. It should
also be noted that these functions have to be strictly increasing for gravitational
mechanism to make sense.

Finally, assume that the functions F1, . . . , Fn are the same functions and func-
tions G1, . . . , Gn are the same functions as well. This last assumption may not
really be needed, but it makes sense to suppose that investors will react to rates of
profit regardless of the commodity and, in the same way, the ‘prices-supply-demand’
equation should not be dependent on the nature of the commodity. With these as-
sumptions, (Λ∗, P ∗) is the only fixed point.

Since we are only interested in the behaviour of the system near the fixed point,
we can assume that the Fi’s and Gi’s are constant multiplications.14 Therefore, we
want to study the behaviour of the system:

{

Λ̇ = απL(R − Rrefe)

Ṗ = βπe(B − Λ̃Q)
(26)

where α and β are strictly positive constants.

The projections can be described by non invertible matrices. Let ML and Me be
the matrices of the projections πL and πe respectively. Thus, (26) becomes:

{

Λ̇ = αML(R − Rrefe)

Ṗ = βMe(B − Λ̃Q)
(27)

3.2.1 With the standard rate

The system becomes:
{

Λ̇ = MLαR − C

Ṗ = B′ − MeβΛ̃Q
(28)

where C = R∗MLαe and B′ = MeβB are constants.

Since (Λ∗, P ∗) is the only fixed point, the behaviour of the process is dependent
on the sign of Cr(Λ, P ) = 〈Λ̇|Λ∗ − Λ〉 + 〈Ṗ |P ∗ − P 〉. Notice that P is the vector
of standard prices if and only if Λ̇ = 0. Therefore, for any rescaling Λ, one has
Cr(Λ, P ∗) = 0.

Suppose that demand is fitted. Here Ṗ = 0, then Cr becomes:

Cr(Λ, P ) = 〈MLαR|Λ∗ − Λ〉 − 〈C|Λ∗ − Λ〉 (29)

If Λ 6= Λ∗, then the space of rates of profit is a n−1 unbounded surface which is not
a plane and the image of it by the projection πL covers the plane orthogonal to e.
Since n ≥ 3, there is a choice of prices such that Cr is strictly negative. Since Cr is
linear in P ∗ − P , there is an open half-line starting at P ∗ such that Cr is negative.

14If this simple process diverges, then all continuous processes are diverging.
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This implies that (Λ∗, P ∗) is not an attractive point. There is only one possibility
left for such a process to be more or less ‘stable’. It is the one where a repulsed
trajectory turns around the fixed point and comes back from the rear side (this
is similar to the magnetic flow lines). To rule out this case one could compute the
second order derivatives of the local rates of profit. We have done these computations
and have found that this does not turn out to be the case apart from maybe a very
small number of systems.

In any case, there is a way to avoid these computations— It is by describing
the flow of the system. If one fixes some prices, then Λ̇ and P ∗ − P are constants.
Therefore, Cr is of the form:

Cr(Λ, P ) = d + f(Λ∗ − Λ) (30)

where d = 〈B′ − MeβΛ̃∗Q|P ∗ − P 〉 is a constant and where f is a linear form. This
means that for any prices, there is a half-plane of Λ’s for which Cr is negative.
Furthermore, for any demand B, there is a half-plane of prices such that there is a
half-plane of Λ’s containing Λ∗ for which Cr is negative. It should be noted that
changing both sings of Λ∗ − Λ and P ∗ − P does not change Cr.

If one takes any slice of the space of the flow by a plane containing the fixed
point, one obtains the following configuration in the neighborhood of the fixed point:

Such a configuration is not convergent in the way that the space of solutions
converging to the fixed point is of dimension at most 2n − 3, whereas the space of
solutions is of dimension 2n − 2.

Therefore, we obtain the following:

Theorem 1 Let n ≥ 3. For any continuous system with standard rate, the space of
solutions that are converging is of codimension at least 1 in the space of solutions.

This means that convergent solutions are very rare. And, in fact, if one allows
small perturbations into the process, then no solutions will converge.

16



3.2.2 With the global rate

This case is very similar to the former one. In fact, every argument applies here as
well. Therefore, we obtain:

Theorem 2 Let n ≥ 3. For any continuous system with global rate, the space of
solutions that are converging is of codimension at least 1 in the space of solutions.

It should be noticed that if B = Q, then the global rate of profit has a null
derivative at P = P ∗. This means that when demand is equal to the supply of the
standard system, there is no qualitative difference in the behaviour of the process
with standard and global rate. Therefore, since it is not converging in this case for
the global rate, it will not converge for other demand vectors as well.

3.3 Non classical discrete processes with continuous infor-

mation

This case is in fact the discrete analogue of the former one. The equations for the
gravitational mechanism are:

{

Λt+1 = Λt + αML(R(Pt) − Rrefe)

Pt+1 = Pt + βMe(B − Λ̃tQ)
(31)

where the notations are as before.

Since this case is the discretization of a non converging continuous process, it
can not converge. To see this, one can set Λt+1 = F (Λt, Pt) and Pt+1 = G(Λt, Pt).
If we compute the derivative of these functions at the fixed point, we see that the
norms15 of these derivatives are always greater than 1. Therefore, the fixed point is
not attractive and this for both cases (with global and standard rate).

3.3.1 Example

Here is an example of the first steps of this process.16 The given system is (1). We
are starting from the standard system with the standard prices and demand B is
equal to the output vector of the given real system (therefore B is affordable). The
constants α and β are set equal to 1/100.17 The reference rate is the global rate.
The orbit of rescalings is on the left and the orbit of prices is on the right:

15The derivatives of multidimensional valued functions of several variables are operators. The
norm of an operator is the maximum of its values upon vectors of norm equal to 1.

16The animations of this process and the following examples can be asked directly from the
authors.

17The choice of these numbers does not modify the general behavior of the process, it only
changes its speed.
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Although it may not appears so, both orbits are contained in planes which is a
direct consequence of normalization of prices and constancy of total labour. One
sees that the system is not only divergent, it also breaks down since it moves to
negative territory.

3.4 Non classical discrete processes with discrete informa-
tion

This case is the simplest of all. “Discrete information” means that the distance from
demand to supply is not known, what is only known here is whether the demand is
larger than supply or not. This case will not converge since, even if we are very close
to the stable point, the next prices can go very far form the standard ones. In fact,
to converge, this process needs to attain the fixed point in a finite number of steps.
Therefore, the only converging trajectories are the ones whose initial conditions are
obtained by iterating the inverse of the process on the fixed point. The set of all
these initial conditions may not be countable, but it will be of measure zero.

3.4.1 Example

Here is an example of the first steps of this process. The system and the initial
conditions are as before except that α and β are chosen to be equal to 1/10. The
reference rate is the standard rate. The orbit of rescalings is on the left and the
orbit of prices is on the right:
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3.5 Classical processes

In the classical case, each good has a demand curve and prices are determined only
by demand and supply. As before, since we are only concerned by the neighborhood
of the fixed point, we can suppose that the process is linear. The equations of the
gravitational mechanism are:

{

Pt+1 = P ∗ + MeD(B − Λ̃tQ)
Λt+1 = Λt + αML(R(Pt+1) − Rrefe)

(32)

where D is a diagonal matrix which represents the demand curve.

Here, we can replace prices into the equation for rescaling:

Λt+1 = Λt + αML(R(P ∗ + MeD(B − Λ̃tQ)) − Rrefe). (33)

Then, we can do exactly the same thing we did in 3.3. Computing the derivative,
we see that there is a direction in which this derivative is strictly greater than 1.
Therefore, the fixed point is not attractive. The case where the trajectories could
come back from the rear can be ruled out by computing the second order derivative
(this is not easy and requires many pages of rough computations). If one does so,
one will see that there is enough degrees of freedom so that this case represents only
few particular systems. Therefore, this process does not converge either.

3.5.1 Example

The initial conditions are as before. The reference rate is the standard rate.
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3.6 A very special case: maximal local rate

Here we consider what happens if the investments always go to the sector with
maximal rate of profit. Since this mechanism is not smooth, we have to consider
it as a discrete one. To work out the equations, let us denote by Ω the function
defined, for any vector V = (vi), by Ω(V ) = (wi) where wi is:

wi =
1

# { i | vi = maxj vj}

{

1 if vi = maxj vj ,
0 otherwise

(34)
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where # stands for the number of elements of the set.

The equations for the gravitational mechanism are:

{

Λt+1 = Λt + αML(Ω(R(Pt) − Rrefe))

Pt+1 = Pt + βMe(B − Λ̃tQ)
(35)

This process is not well defined at the fixed point, therefore, we extend the definition
by putting Ω(0) = 0. Still the function defining this process is not derivable at the
fixed point. Giving a rigorous proof of the divergence would be too long and does not
give much information, therefore, we will only do a sketch: to show that this process
will not converge, we can compute the derivative at some points in the vicinity of
the fixed point. One sees that in each neighborhood of the fixed point there are
some points where the derivative exists and is greater than one. Thus the fixed
point is not attractive. Should, by any chance, the process converge for a particular
system, since the function defining the mechanism is not smooth, the process would
not converge for other close systems.

3.6.1 Example

The constants α and β are set equal to 1. The reference rate is the global rate. The
orbit of rescalings is on the left and the orbit of prices is on the right:
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3.7 A very special process: fixed prices

In the former we have dealt with moving prices and we saw that none of these
gravitational processes converge. One can ask the (not so stupid) question: “What
if prices are fixed?”.

Of course, if we keep looking at the former processes without changing prices,
this will mean that we are dealing with equation Λ̇ = αML(R − R∗). So either the
process will not be converging (if P 6= P ∗) or it will not move at all (if P = P ∗).

So, in fact, in this kind of process, we mean that the rescaling depends on
inventory maintenance which in turn depends on demand. The equation would be:

Λ̇ = B − Λ̃Q = B − Q̃Λ. (36)
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This process is converging if and only if the scalar product:

〈

Λ̇|Λ∗ − Λ
〉

=
〈

B − Q̃Λ|Q̃−1B − Λ
〉

=
〈

B − Q̃Λ|Q̃−1(B − Q̃Λ)
〉

=
∑

i

q−1
i (bi − qiλi)

2 (37)

is positive. Which is always the case.

4 A comment on Steedman (1984)

In the first part of his article, Ian Steedman (1984) shows that changes in prices do
not necessarily lead to changes in the rates of profit in the same direction. Although
it is not sufficient, this is a clue that suggest that the gravitational mechanisms may
not be convergent.18 In the last part of his article, he goes further and tries to show
that these mechanisms are divergent.

Steedman’s main argument seems to be that even if one ignores the non linear
terms in his price adjustment equations, the convergence of the system could only
be proved under “certain conditions”, and those conditions cannot be defended on
economic grounds that they would hold in all or most plausible cases. However, as
no one knows what these conditions are, it seems too hasty to rule them out without
consideration.

Furthermore, Steedman uses matrices D and S as weights for his demand and
supply equations respectively. Without such weights his gravitational mechanisms
would not be completely described. In fact, if one compares his equations to ours,
one sees that these matrices should be the linear parts of the functions F and G
together with the projections πL and πe. However, each of Steedman’s matrices S
and D has “positive diagonal (and perhaps a dominant diagonal)” (p.135). This
leads to an alternative for which in each case a problem arises:

• if these matrices have dominant positive diagonals, they would be invertible.
Therefore, there is no projections in these matrices. This means that Steedman
is not keeping total labour equal to 1.19

• if they do not have a dominant diagonal, then they are too general to be
meaningful for the gravitational mechanisms. And they still could be invertible
so that the total labour is not kept to 1.

It seems that this is the reason why Steedman could not conclude: his matrices
are either the wrong ones or too general to draw a conclusion.

18Indeed, these gravitational mechanisms where thought first to be convergent due to partial
equilibrium reasoning.

19We have seen above, 2.2, that the total amount of labour must be kept to 1 for a proper
description of Sraffa’s systems. Suppose for a moment that the total amount of labour could be
changed during the adjustment process then it is possible that during the process the system as a
whole could shrink to zero or keep rising toward infinity.
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