ECN 215 - Expecation and Variance

The expected value of a discrete random variable X with possible values $x_{i}, i=1,2, \ldots, n$ is

$$
\begin{equation*}
E(X)=\sum_{i=1}^{n} P\left(X=x_{i}\right) \times x_{i} \tag{1}
\end{equation*}
$$

That is, it's the probability-weighted sum of the possible values.
The variance of X is, using the same notation,

$$
\begin{equation*}
\operatorname{Var}(X)=\sum_{i=1}^{n} P\left(X=x_{i}\right) \times\left(x_{i}-E(X)\right)^{2} \tag{2}
\end{equation*}
$$

That is, the probability-weighted sum of the squared deviations of X from its expectation, $E(X)$.
Now, as we see from (1), the expectation of something is just the probability weighted sum of that something, so (2) can equally well be written as

$$
\begin{equation*}
\operatorname{Var}(X)=E\left[(X-E(X))^{2}\right] \tag{3}
\end{equation*}
$$

Expanding the square gives

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}-2 X E(X)+E(X)^{2}\right] \\
& =E\left(X^{2}\right)-2 E(X)^{2}+E(X)^{2} \\
& =E\left(X^{2}\right)-E(X)^{2}
\end{aligned}
$$

Note that $E\left(X^{2}\right)$ and $E(X)^{2}$ are not the same thing. For example, when rolling a fair die.

X	X^{2}
1	1
2	4
3	9
4	16
5	25
6	36
$E(X)=3.5$	$E\left(X^{2}\right)=15.1667$

So $E(X)^{2}=3.5^{2}=12.25$, and $\operatorname{Var}(X)$ is then $15.1667-12.25=2.917$.

