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The classical approach

The probability of any event A is the number of outcomes that
correspond to A, nA, divided by the total number of equiprobable
outcomes, n, or the proportion of the total outcomes for which A
occurs.

0 ≤ P(A) = nA
n
≤ 1

Example: let A be the event of getting an even number when rolling a
fair die. Three outcomes correspond to this event, namely 2, 4 and 6,
out of a total of six possible outcomes, so P(A) = 3

6 =
1
2.
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Complementary probabilities

If the probability of some event A is P(A) then the probability that
event A does not occur, P(¬A), must be

P(¬A) = 1− P(A).

Example: if the chance of rain for tomorrow is 80 percent, the chance
that it doesn’t rain tomorrow must be 20 percent.

When trying to compute a given probability, it is sometimes much
easier to compute the complementary probability first, then subtract
from 1 to get the desired answer.
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Addition Rule

A means of calculating the probability of A∪ B, the probability that
either of two events occurs.

With equiprobable outcomes, P(A) = nA
n and P(B) = nB

n .

First approximation: P(A∪ B) = nA+nB
n .

Problem: nA +nB may overstate the number of outcomes
corresponding to A∪ B: we must subtract the number of outcomes
contained in the intersection, A∩ B, namely nAB.

A

B

A∩ BU
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Thus the full version of the addition rule is:

P(A∪ B) = nA +nB −nAB
n

= nA
n
+ nB
n
− nAB

n
= P(A)+ P(B)− P(A∩ B)
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Multiplication rule

Clearly
nAB
n

≡ nA
n
× nAB
nA

(the RHS is the LHS multiplied by nA/nA = 1).

nAB/n ≡ P(A∩ B) is the probability that A and B both occur.

nA/n ≡ P(A) represents the “marginal” (unconditional) probability of
A.

nAB/nA represents the number of outcomes in (A∩ B) over the
number of outcomes in A, or “the probability of B given A”.
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The general form of the multiplication rule for joint probabilities is
therefore:

P(A∩ B) = P(A)× P(B|A)
Special case: A and B are independent. Then P(B|A) equals the
marginal probability P(B) and the rule simplifies:

P(A∩ B) = P(A)× P(B)
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Exercises

• The probability of snow tomorrow is .20, and the probability of all
members of ecn 215 being present in class is .8 (let us say). What
is the probability of both these events occurring?

• A researcher is experimenting with several regression equations.
Unknown to him, all of his formulations are in fact worthless, but
nonetheless there is a 5 per cent chance that each regression
will—by the luck of the draw—appear to come up with ‘significant’
results. Call such an event a ‘success’. If the researcher tries 10
equations, what is the probability that he has exactly one success?
What is the probability of at least one success?
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Marginal probabilities

P(A) =
N∑
i=1

P(A|Ei)× P(Ei)

where E1, . . . , EN represent N mutually exclusive and jointly
exhaustive events.

Example:

conditional on Ei:

snow (P = 2
10) ¬ snow (P = 8

10)

P(all here) 6
10

9
10

product 12
100

72
100 Σ = 84

100
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Conditional probabilities

In general,

P(A|B) ≠ P(B|A)

the probability of A given B is not the same as the probability of B
given A.

Example: The police department of a certain city finds that 60 percent
of cyclists involved in accidents at night are wearing light-colored
clothing. How can we express this in terms of conditional probability?
Should we conclude that wearing light-colored clothing is dangerous?
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Discrete random variables

The probability distribution for a random variable X is a mapping
from the possible values of X to the probability that X takes on each
of those values.

xi P(X = xi) xi P(X = xi)
1 1

6
1
6

2 1
6

2
6

3 1
6

3
6

4 1
6

4
6

5 1
6

5
6

6 1
6

6
6∑ 6

6 = 1 21
6 = 3.5 = E(X)

➠ ➡➡ ➠ ✇ ■ ? ✖ :10



E(X) ≡ µX =
N∑
i=1

xi P(X = xi)

The mean is the probability-weighted sum of the possible values of
the random variable.

Uniform distribution (one die):

1 2 3 4 5 6

1
6

xi

P(X = xi)
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Variance

Probability-weighted sum of the squared deviations of the possible
values of the random variable from its mean, or expected value of the
squared deviation from the mean.

Var(X) ≡ σ 2
X =

N∑
i=1

(xi − µ)2 P(X = xi)

= E (X − µ)2

= E
(
X2 − 2Xµ + µ2

)
= E(X2)− 2E(Xµ)+ µ2

= E(X2)− 2µ2 + µ2

= E(X2)− µ2

= E(X2)− [E(X)]2

Note that in general E(X2) ≠ [E(X)]2.
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Example: variance for one die

xi P(X = xi) xi − µ (xi − µ)2 (xi − µ)2P(X = xi)
1 1

6 −2.5 6.25 1.0417

2 1
6 −1.5 2.25 0.3750

3 1
6 −0.5 0.25 0.0833

4 1
6 +0.5 0.25 0.0833

5 1
6 +1.5 2.25 0.3750

6 1
6 +2.5 6.25 1.0417∑
1 0 2.917 = Var(X)
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Two dice

Sample space:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

1.0 1.5 2.0 2.5 3.0 3.5

1.5 2.0 2.5 3.0 3.5 4.0

2.0 2.5 3.0 3.5 4.0 4.5

2.5 3.0 3.5 4.0 4.5 5.0

3.0 3.5 4.0 4.5 5.0 5.5

3.5 4.0 4.5 5.0 5.5 6.0
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xi P(xi) xi P(xi) xi − µ (xi − µ)2 ×P(xi)
1.0 1

36
1
36 −2.5 6.25 0.17

1.5 2
36

3
36 −2.0 4.00 0.22

2.0 3
36

6
36 −1.5 2.25 0.19

2.5 4
36

10
36 −1.0 1.00 0.11

3.0 5
36

15
36 −0.5 0.25 0.03

3.5 6
36

21
36 0.0 0.00 0.00

4.0 5
36

20
36 0.5 0.25 0.03

4.5 4
36

18
36 1.0 1.00 0.11

5.0 3
36

15
36 1.5 2.25 0.19

5.5 2
36

11
36 2.0 4.00 0.22

6.0 1
36

6
36 2.5 6.25 0.17∑ 36

36 = 1 126
36 = 3.5 0.0 1.46
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Measures of Association

The covariance of X and Y is the expected value of the cross-product,
deviation of X from its mean times deviation of Y from its mean.

Cov(X, Y) = σXY = E
[
[X − E(X)][Y − E(Y)]

]
or

Cov(X, Y) = 1
N

N∑
i=1

[xi − E(X)][yj − E(Y)]

It measures the linear association between X and Y .
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III

III IV

E(X), E(Y)

Cross-products are positive in I and III, negative in II and IV.
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The correlation coefficient for two variables X and Y is a scaled
version of covariance: divide through by the product of the standard
deviations of the two variables.

ρXY =
Cov(X, Y)√

Var(X)Var(Y)
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The correlation coefficient for two variables X and Y is a scaled
version of covariance: divide through by the product of the standard
deviations of the two variables.

ρXY =
Cov(X, Y)√

Var(X)Var(Y)

Note that −1 ≤ ρ ≤ +1.
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Continuous random variables

Let the random variable X = the number towards which the spinner
points when it comes to rest.

3

6

9

12
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Continuous random variables

Let the random variable X = the number towards which the spinner
points when it comes to rest.

3

6

9

12

To find probabilities, think in terms of fractions of the total measure.
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Continuous random variables

Let the random variable X = the number towards which the spinner
points when it comes to rest.

3

6

9

12

To find probabilities, think in terms of fractions of the total measure.

P(0 < X < 3) = 3/12 = 1/4
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Continuous random variables

Let the random variable X = the number towards which the spinner
points when it comes to rest.

3

6

9

12

To find probabilities, think in terms of fractions of the total measure.

P(0 < X < 3) = 3/12 = 1/4

P(7 < X < 9) = 2/12 = 1/6
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Cumulative density function or cdf:

F(x) = P(X < x)
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Cumulative density function or cdf:

F(x) = P(X < x)

The probability that a random variable X has a value less than some
specified value, x.
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Cumulative density function or cdf:

F(x) = P(X < x)

The probability that a random variable X has a value less than some
specified value, x.

cdf for the spinner example:

0 3 6 9 12

1

x

F(x)
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Probability density function or pdf:

f(x) = d
dx

F(x)
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Probability density function or pdf:

f(x) = d
dx

F(x)

Derivative of the cdf with respect to x.
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Probability density function or pdf:

f(x) = d
dx

F(x)

Derivative of the cdf with respect to x.

Determine the probability of X falling into any given range by taking
the integral of the pdf over that interval.
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Probability density function or pdf:

f(x) = d
dx

F(x)

Derivative of the cdf with respect to x.

Determine the probability of X falling into any given range by taking
the integral of the pdf over that interval.

0 3 6 9 12

1
12

x

f(x)

➠ ➡➡ ➠ ✇ ■ ? ✖ :23



Probability density function or pdf:

f(x) = d
dx

F(x)

Derivative of the cdf with respect to x.

Determine the probability of X falling into any given range by taking
the integral of the pdf over that interval.

0 3 6 9 12

1
12

x

f(x)

P(x1 < X < x2) =
∫ x2

x1

f(x)dx
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Gaussian distribution

Central Limit Theorem : If a random variable X represents the
summation of numerous independent random factors then,
regardless of the specific distribution of the individual factors, X will
tend to follow the normal or Gaussian distribution.
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Gaussian distribution

Central Limit Theorem : If a random variable X represents the
summation of numerous independent random factors then,
regardless of the specific distribution of the individual factors, X will
tend to follow the normal or Gaussian distribution.

µ = 0, σ = 1

−4 −3 −2 −1 0 1 2 3 4
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Gaussian distribution

Central Limit Theorem : If a random variable X represents the
summation of numerous independent random factors then,
regardless of the specific distribution of the individual factors, X will
tend to follow the normal or Gaussian distribution.

µ = 0, σ = 1

−4 −3 −2 −1 0 1 2 3 4

General formula for the normal pdf:

f(x) = 1
σ
√

2π
e−

(x−µ)2
2σ2 −∞ < x <∞
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The standard normal distribution is obtained by setting µ = 0 and
σ = 1; its pdf is

f(x) = 1√
2π

e−x
2/2 −∞ < x <∞
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The standard normal distribution is obtained by setting µ = 0 and
σ = 1; its pdf is

f(x) = 1√
2π

e−x
2/2 −∞ < x <∞

Commit to memory:

P(µ − 2σ < x < µ + 2σ) ≈ 0.95

P(µ − 3σ < x < µ + 3σ) ≈ 0.997
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The standard normal distribution is obtained by setting µ = 0 and
σ = 1; its pdf is

f(x) = 1√
2π

e−x
2/2 −∞ < x <∞

Commit to memory:

P(µ − 2σ < x < µ + 2σ) ≈ 0.95

P(µ − 3σ < x < µ + 3σ) ≈ 0.997

A compact notation for saying that x is distributed normally with
mean µ and variance σ 2 is x ∼ N(µ,σ 2). �
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