
Notes on Sampling and Hypothesis Testing

Allin Cottrell∗

1 Population and sample

In statistics, apopulationis an entire set of objects or units of observation of one sort or another, while asample
is a subset (usually a proper subset) of a population, selected for particular study (usually because it is impractical
to study the whole population). The numerical characteristics of a population are calledparameters. Generally the
values of the parameters of interest remain unknown to the researcher; we calculate the “corresponding” numerical
characteristics of the sample (known asstatistics) and use these toestimate, or make inferences about, the unknown
parameter values.

A standard notation is often used to keep straight the distinction between population and sample. The table
below sets out some commonly used symbols.

size mean variance proportion
Population: N µ σ 2 π

Sample: n x̄ s2 p

Note that it’s common to use a Greek letter to denote a parameter, and the corresponding Roman letter to denote
the associated statistic.

2 Properties of estimators: sample mean

Consider for example the sample mean,

x̄ =
1

n

n∑
i =1

xi

If we want to use this statistic to make inferences regarding the population mean,µ, we need to know something
about the probability distribution of̄x. The distribution of a sample statistic is known as asampling distribu-
tion. Two of its characteristics are of particular interest, the mean or expected value and the variance or standard
deviation.

What can we say aboutE(x̄) or µx̄, the mean of the sampling distribution ofx̄? First, let’s be sure we
understand what it means. It is theexpected valueof x̄. The thought experiment is as follows: we sample repeatedly
from the given population, each time recording the sample mean, and take the average of those sample means. It’s
unlikely that any given sample will yield a value ofx̄ that precisely equalsµ, the mean of the population from
which we’re drawing. Due to (random)sampling errorsome samples will give a sample mean that exceeds the
population mean, and some will give anx̄ that falls short ofµ. But if our sampling procedure isunbiased, then
deviations ofx̄ from µ in the upward and downward directions should be equally likely. On average, they should
cancel out. In that case

E(x̄) = µ = E(X) (1)

or: the sample mean is anunbiased estimatorof the population mean.
So far so good. But we’d also like to know howwidely dispersedthe sample mean values are likely to be,

around their expected value. This is known as the issue of theefficiencyof an estimator. It is a comparative
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concept: one estimator is more efficient than another if its values are more tightly clustered around its expected
value. Consider this alternative estimator for the population mean: instead ofx̄, just take the average of the largest
and smallest values in the sample. This too should be an unbiased estimator ofµ, but it is likely to be more widely
spread out, or in other words less efficient thanx̄ (unless of course the sample size is 2, in which case they amount
to the same thing).

The degree of dispersion of an estimator is generally measured by the standard deviation of its probability
distribution (sampling distribution). This goes under the namestandard error.

2.1 Standard error of̄x

What might the standard error ofx̄ look like? In other words, what factors are going to influence the degree of
dispersion of the sample mean around the population mean? Without giving a formal derivation, it’s possible to
understand intuitively the formula:

σx̄ =
σ

√
n

(2)

The left-hand term is read as “sigma sub x-bar”. The sigma tells us we’re dealing with a standard deviation, and
the subscript̄x indicates this is the standard deviation of the distribution ofx̄, or in other words the standard error
of x̄. On the right-hand side in the numerator we find the standard deviation,σ , of the population from which the
samples are drawn. The more widely dispersed are the population values around their mean, the greater the scope
for sampling error (i.e. drawing by chance an unrepresentative sample whose mean differs substantially fromµ).
In the denominator is the square root of the sample size,n. It makes sense that if our samples are larger, this
reduces the probability of getting unrepresentative results, and hence narrows the dispersion ofx̄. The fact that it is
√

n rather thann that enters the formula indicates that an increase in sample size is subject to diminishing returns,
in terms of increasing the precision of the estimator. For example, increasing the sample size by a factor of four
will reduce the standard error ofx̄, but only by a factor of two.

3 Other statistics

We have illustrated so far with the sample mean as an example estimator, but you shouldn’t get the idea that
it’s the only one. For example, suppose we’re interested in theproportion of some population that has a certain
characteristic (e.g. an intention to vote for the Democratic candidate). The population proportion is often written
asπ . The corresponding sample statistic is the proportion of the sample having the characteristic in question,p.
The sample proportion is an unbiased estimator of the population proportion

E(p) = π (3)

and its standard error is given by

σp =

√
π(1 − π)

n
(4)

Or we might be particularly interested in the variance,σ 2, of a certain population. Since the population variance
is given by

σ 2
=

1

N

N∑
i =1

(xi − µ)2

it would seem that the obvious estimator is the statistic

1

n

n∑
i =1

(xi − x̄)2

But actually it turns out this estimator is biased. The bias is corrected in the formula forsample variance:

s2
=

1

n − 1

n∑
i =1

(xi − x̄)2 (5)
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(with a bias-correction factor ofnn−1).

4 The shape of sampling distributions

Besides knowing the expected value and the standard error of a given statistic, in order to work with that statistic
for the purpose of statistical inference we need to know itsshape. In the case of the sample mean, the Central
Limit Theorem entitles us to the assumption that the sampling distribution is Gaussian—even if the population
from which the samples are drawn does not follow a Gaussian distribution—provided we are dealing with a large
enough sample. For a statistician, “large enough” generally means 30 or greater (as a rough rule of thumb) although
the approximation to a Gaussian sampling distribution may be quite good even with smaller samples.

Here’s a rather striking illustration of the point. Consider, once again, the distribution ofX = the number ap-
pearing uppermost when a fair die is rolled. We know that this distribution is not close to Gaussian: it’s rectangular.
But recall what the distribution looked like for the average of the two face values when two dice are rolled: it was
triangular. What happens if we crank up the number of dice further? The triangle turns into a bell shape, and if we
compute the distribution of the mean face value when rolling five dice it already looks quite close to the Gaussian
(see Figure 1).
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Figure 1: Distribution of mean face-value, 5 dice

We can think of the graph in Figure 1 as representing the sampling distribution ofx̄ for samples withn = 5
from a population withµ = 3.5 and a rectangular distribution. Although the “parent” distribution is rectangular
the sampling distribution is a fair approximation to the Gaussian.

Not all sampling distributions are Gaussian. We mentioned earlier the use of the sample variance as an estimator
of the population variance. In this case the ratio(n − 1)s2/σ 2 follows a skewed distribution known asχ2, with
n − 1 degrees of freedom (below).

Nonetheless, if the sample size is large theχ2 distribution converges towards the normal.
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5 Probability statements, confidence intervals

If we know the mean, standard error and shape of the distribution of a given sample statistic, we can then make
definite probability statements about the statistic. For example, suppose we know thatµ = 100 andσ = 12
for a certain population, and we draw a sample withn = 36 from that population. The standard error ofx̄ is
σ/

√
n = 12/6 = 2, and a sample size of 36 is large enough to justify the assumption of a Gaussian sampling

distribution. We know that the rangeµ ± 2σ encloses the central 95 percent of a normal distribution, so we can
state

P(96 < x̄ < 104) ≈ .95

That is, there’s a 95 percent probability that the sample mean lies within 4 units (= 2 standard errors) of the
population mean, 100.

That’s all very well, you may say, but if we already knew the population mean and standard deviation, then
why were we bothering to draw a sample? Well, let’s try relaxing the assumptions regarding our knowledge of the
population and see if we can still get something useful. First, suppose we don’t know the value ofµ. We can still
say

P(µ − 4 < x̄ < µ + 4) ≈ .95

That is, with probability .95 the sample mean will be drawn from within 4 units of the unknown population mean.
So suppose we go ahead and draw the sample, and calculate a sample mean of 97. If there’s a probability of .95
that ourx̄ came from within 4 units ofµ, we can turn that around: we’re entitled to be 95 percent confident thatµ

lies between 93 and 101. That is, we can draw up a 95 percentconfidence intervalfor µ asx̄ ± 2σx̄.
There’s a further problem though. If we don’t know the value ofµ then presumably we don’t knowσ either. So

how can we compute the standard error ofx̄? We can’t, but we canestimateit. Our best estimate of the population
standard deviation will bes, the standard deviation calculated from our sample. Theestimated standard errorof x̄
is then

sx̄ ≡ σ̂x̄ =
s

√
n

(6)

(The “hat” or caret over a parameter indicates an estimated value.)
We can now reformulate our 95 percent confidence interval forµ: x̄ ± 2sx̄. But is this still valid, when we’ve

had to replaceσx̄ with an estimate? Given a sample of size 36, it’s close enough. Strictly speaking, the substitution
of s for the unknownσ alters the shape of the sampling distribution. Instead of being Gaussian it now follows the
t distribution, which looks very much like the Gaussian except that it’s a bit “fatter in the tails”.

5.1 The Gaussian and t distributions

Unlike the Gaussian, thet distribution is not fully characterized by its mean and standard deviation: there is an
additional factor, namely thedegrees of freedom(df). For the issue in question here—estimating a population
mean—the df term is the sample size minus 1 (or 35, in the current example). At low degrees of freedom thet
distribution is noticeably more “dispersed” than the Gaussian (for the same mean and standard deviation), which
means that a 95 percent confidence would have to be wider, reflecting greater uncertainty. But as the degrees of
freedom increase, thet distribution converges towards the Gaussian. By the time we’ve reached 30 degrees of
freedom the two are almost indistinguishable. For the normal distribution, the values that enclose the central 95
percent areµ−1.960σ andµ+1.960σ ; for thet distribution with df = 30 the corresponding values areµ−2.042σ
andµ + 2.042σ . Both are well approximated by the rule of thumb,µ ± 2σ .

5.2 Further examples

There’s nothing sacred about 95 percent confidence. The following information regarding the Gaussian distribution
enables you to construct a 99 percent confidence interval.

P(µ − 2.58σ < x < µ + 2.58σ) ≈ 0.99
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Thus the 99 percent interval is̄x ± 2.58σx̄. If we want greater confidence that our interval straddles the unknown
parameter value (99 percent versus 95 percent) then our interval must be wider (±2.58 standard errors versus±2
standard errors).

Here’s an example using a different statistic. An opinion polling agency questions a sample of 1200 people to
assess the degree of support for candidate X. In the sample the proportion,p, indicating support for X is 56 percent
or 0.56. Our single best guess at the population proportion,π , is then 0.56, but we can quantify our uncertainty
over this figure. The standard error ofp is

√
π(1 − π)/n. The value ofπ is unknown but we can substitutep or,

if we want to be conservative (i.e. ensure that we’re not underestimating the width of the confidence interval), we
can putπ = 0.5, which maximizes the value ofπ(1 − π). On the latter procedure, the estimated standard error is
√

0.25/1200= 0.0144. The large sample justifies the Gaussian assumption for the sampling distribution, so our
95 percent confidence interval is

0.56± 2 × 0.0144= 0.56± 0.0289

This is the basis for the statement “accurate to within plus or minus 3 percent” that you often see attached to
opinion poll results.

5.3 Generalizing the idea

The procedure outlined in this section is of very general application, so let me try to construct a more general
statement of the principle. To avoid tying the exposition to any particular parameter, I’ll useθ to denote a “generic
parameter”. The first step is to find an estimator (preferably an unbiased one) forθ , that is, a suitable statistic that
we can calculate from sample data to yield an estimate,θ̂ , of the parameter of interest; this value, our “single best
guess” atθ , is called apoint estimate. We now set a confidence level for our interval estimate; this is denoted
generically by 1− α (thus, for instance, the 95 percent confidence level corresponds toα = 0.05). If the sampling
distribution ofθ̂ is symmetrical, we can express the interval estimate as

θ̂ ± maximum error for(1 − α) confidence

The magnitude of the “maximum error” can be resolved into so many standard errors of such and such a size. The
number of standard errors depends on the chosen confidence level (and also possibly on the degrees of freedom).
The size of the standard error,σ

θ̂
, depends on the nature of the parameter being estimated and the sample size.

Suppose the sampling distribution ofθ̂ can be assumed to be Gaussian (which is often but not always the case).
The following notation is useful:

z =
x − µ

σ

This “standard normal score” or “z-score” expresses the value of a variable in terms of its distance from the mean,
measured in standard deviations. (Thus ifµ = 1000 andσ = 50, then the valuex = 850 has az-score of−3.0:
it lies 3 standard deviations below the mean.) We can subscriptz to indicate the proportion of the standard normal
distribution that lies to its right. For instance, since the normal distribution is symmetrical,z0.5 = 0. It follows
from points made earlier thatz0.025 = 1.96 andz0.005 = 2.58. A picture may help to make this obvious.

z.975 = −1.96 z.025 = 1.96

0.95

Where the distribution of̂θ is Gaussian, therefore, we can write the 1− α confidence interval forθ as

θ̂ ± σ
θ̂

zα/2 (7)
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This is about as far as we can go in general terms. The specific formula forσ
θ̂

depends on the parameter.
Let me emphasize the last point, since people often seem to get it wrong. The standard error formulaσx̄ =

σ
√

n
may be the first one you encounter, but it isnot universal: it applies only when we’re using the sample mean to
estimate a population mean. In general, each statistic has its own specific standard error. When a statistically savvy
person encounters a new statistic, a common question would be, “What’s its standard error?”Warning: it’s not
always possible to give an explicit formula in answer to this question (although it is for most of the statistics we’ll
come across in this course); in some cases standard errors have to be derived via computer simulations.

6 The logic of hypothesis testing

The interval estimation discussed above is a “non-committal” sort of statistical inference. We draw a sample,
calculate a sample statistic, and use this to provide a point estimate of some parameter of interest along with a
confidence interval. Often in econometrics we’re interested in a more pointed sort of inference. We’d like to know
whether or not some claim is consistent with the data. In other words, we want totest hypotheses.

There’s a well-known and mostly apt analogy between the set-up of a hypothesis test and a court of law. The
defendant on trial in the statistical court is thenull hypothesis, some definite claim regarding a parameter of interest.
Just as the defendant is presumed innocent until proved guilty, the null hypothesis is assumed true (at least for the
sake of argument) until the evidence goes against it. The formal decision taken at the conclusion of a hypothesis
test is either toreject the null hypothesis (cf. find the defendant guilty) or tofail to reject that hypothesis (cf. not
guilty). The “fail to reject” locution may seem cumbersome (why not just say “accept”?) but there’s a reason for
it. Failing to reject a null hypothesis doesnot amount to proving that it’s true. (Here the law court analogy falters,
since a defendant who is found not guilty is entitled to claim innocence.)

The statistical decision is “reject” or “fail to reject”. Meanwhile, the null hypothesis (often writtenH0) is in
fact either true or false. We can set up a matrix of possibilities.

H0 is in fact:
Decision: True False

Reject Type I error Correct decision
Fail to reject Correct decision Type II error

Rejecting a true null hypothesis goes under the name of “Type I error”. This is like a guilty verdict for a
defendant who is really innocent. Failing to reject a false null hypothesis is called “Type II error”: this corresponds
to a guilty defendant being found not guilty. Since the hypothesis testing procedure is probabilistic, there is always
some chance that one or other of these errors occurs. The probability of Type I error is labeledα and the probability
of Type II error is labeledβ. The quantity 1− β has a name of its own: it is the “power” of a test. Ifβ is the
probability that a false null hypothesis willnotbe rejected, then 1−β is the probability that a false hypothesis will
indeed be rejected. It thus represents the power of a test to discriminate—to unmask false hypotheses, so to speak.

Obviously we would like for bothα andβ to be as small as possible. Unfortunately there’s a trade-off. This
is easily seen in the law court case. If we want to minimize the chance of innocent parties being found guilty, we
can tighten up on regulations concerning police procedures, rules of evidence and so on. That’s all very well, but
inevitably it raises the chances that the courts will fail to secure guilty verdicts for some guilty parties (e.g. some
people will get off on “technicalities”).

The same issue arises in hypothesis testing, but in even more pointed form. We get tochoose in advancethe
value ofα, the probability of Type I error. This is also known as the “significance level” of the test. (And, yes, it’s
closely related to theα of confidence intervals, as we’ll see before long.) While we want to choose a “small” value
of α we’re constrained by the fact that shrinkingα is bound to crank upβ, eroding the power of the test.

6.1 Choosing the significance level

How do we get to chooseα? Here’s a first approximation. The calculations that compose a hypothesis test are
condensed in a key number, namely a conditional probability:the probability of observing the given sample data,
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on the assumption that the null hypothesis is true. If this probability, called the “p-value”, is small, we can place
one of two interpretations on the situation: either (a) the null hypothesis is true and the sample we drew is an
improbable, unrepresentative one, or (b) the null hypothesis is false (and the sample is not such an odd one). The
smaller the p-value, the less comfortable we are with alternative (a). To reach a conclusion we must specify the
limit of our comfort zone, or in other words a p-value below which we’ll rejectH0. Say we use a cutoff of .01:
we’ll reject the null hypothesis if the p-value for the test is≤ .01. Suppose the null hypothesis is in fact true. What
then is the probability of our rejecting it? It’s the probability of getting a p-value less than or equal to .01, which is
(by definition) .01. In selecting our cutoff we selectedα, the probability of Type I error.

If you’re thinking about this, there should be several questions in your mind at this point. But before developing
the theoretical points further it may be useful to fix ideas by giving an example of a hypothesis test.

6.2 Example of hypothesis test

Suppose a maker of RAM chips claims an access time of 60 nanoseconds (ns) for the chips. The manufacture of
computer memory is in part a probabilistic process; there’s no way the maker can guarantee that each chip meets
the 60 ns spec. The claim must be that the average response time is 60 ns (and the variance is not too large). Quality
control has the job of checking that the production process is maintaining acceptable access speed. To that end,
they test a sample of chips each day. Today’s sample information is that with 100 chips tested, the mean access
time is 63 ns with a standard deviation of 2 ns. Is this an acceptable result?

To put the question into the hypothesis testing framework, the first task is to formulate the hypotheses. Hy-
potheses, plural: we need both a null hypothesis and an alternative hypothesis (H1) to run againstH0. One
possibility would be to setH0: µ = 60 againstH1: µ 6= 60. That would be a symmetrical setup, giving rise to a
two-tailed test. But presumably we don’t mind if the memory chips are faster than advertised; we have a problem
only if they’re slower. That suggests an asymmetrical setup,H0: µ ≤ 60 (“the production process is OK”) versus
H1: µ > 60 (“the process has a problem”).

We then need to select a significance level orα value for the test. Let’s go with .05.
The next step is to compute the p-value and compare it with the chosenα. The p-value, once again, is the

probability of the observed sample data on the assumption thatH0 is true. The “observed sample data” will be
summarized in a relevant statistic; since this test concerns a population mean, the relevant statistic is the sample
mean. The p-value can be written as

P(x̄ ≥ 63| µ ≤ 60)

whenn = 100 ands = 2. That is, if the population mean were really 60 or less, as stated byH0, how probable is
it that we would draw a sample of size 100 with the observed mean of 63 or greater, and a standard deviation of 2?
Note the force of the “63 or greater”. With a continuous variable, the probability of drawing a sample with a mean
of exactly63 is effectively zero, regardless of the truth or falsity of the null hypothesis. We’re really asking, what
are the chances of drawing a sample like thisor worse(from the standpoint of the null hypothesis)?

We can assign a probability by using the sampling distribution concepts we discussed earlier. The sample mean
(63) was drawn from a particulardistribution, namely the sampling distribution ofx̄. If the null hypothesis is true,
E(x̄) is no greater than 60. The estimated standard error ofx̄ is s/

√
n = 2/10 = .2. With n = 100 we can

take the sampling distribution to be normal. We use this information to formulate atest statistic, a statistic whose
probability, on the assumption thatH0 is true, we can determine by reference to the standard tables. In this case
(Gaussian sampling distribution) the test statistic is thez-score, introduced in section 5.3 above. In general terms,z
equals “value minus mean, divided by standard deviation”. Here, the mean in question is the mean of the sampling
distribution ofx̄, namely the population mean according to the null hypothesis orµH0, while the relevant standard
deviation is the standard error ofx̄. The Thez-score formula is therefore

z =
x̄ − µH0

sx̄
=

63− 60

.2
= 15

The p-value, therefore, equals the probability of drawing from a normal distribution a value that is 15 standard
deviations above the mean. That is effectively zero: it’s far too small to be noted on any standard statistical tables.
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At any rate it’s much smaller than .05, so the decision must be to reject the null hypothesis. We are driven to the
alternative, that the mean access time exceeds 60 ns and the production process has a problem.

6.3 Variations on the example

Suppose the test were as described above, except that the sample was of size 10 instead of 100. How would that
alter the situation? Given the small sample and the fact that the population standard deviation,σ , is unknown,
we could not justify the assumption of a Gaussian sampling distribution forx̄. Rather, we’d have to use thet
distribution with df = 9. The estimated standard error,sx̄ = 2/

√
10 = 0.632, and the test statistic is

t (9) =
x̄ − µH0

sx̄
=

63− 60

.632
= 4.74

The p-value for this statistic is 0.000529—a lot larger than forz = 15, but still considerably smaller than the
chosen significance level of 5 percent, so we still reject the null hypothesis.1

Note that, in general, the test statistic can be written as

test=
θ̂ − θH0

s
θ̂

That is, sample statistic minus the value stated in the null hypothesis—which by assumption equalsE(θ̂)—divided
by the (estimated) standard error ofθ̂ . The distribution to which “test” must be referred, in order to obtain the
p-value, depends on the situation.

Here’s another variation. We chose an asymmetrical test setup above. What difference would it make if we
went with the symmetrical version,H0: µ = 60 versusH1: µ 6= 60? This is the issue of one-tailed versus two-
tailed tests. We have to think:what sort of values of the test statistic should count against the null hypothesis?In
the asymmetrical case only values ofx̄ greater than 60 counted againstH0. A sample mean of (say) 57 would be
quite consistent withµ ≤ 60; it is not evenprima facieevidence against the null. Therefore thecritical region
of the sampling distribution (the region containing values that would cause us to reject the null) lies strictly in the
upper tail. But if the null hypothesis wereµ = 60, then values of̄x both substantially below and substantially
above 60 would count against it. The critical region would be divided into two portions, one in each tail of the
sampling distribution. The practical consequence is thatwe’d have to double the p-value found above, before
comparing it toα. The sample mean was 63, and the p-value was defined as the probability of drawing a sample
“like this or worse”, from the standpoint ofH0. In the symmetrical case, “like this or worse” means “with a
sample mean this far away from the hypothesized population mean, or farther, in either direction”. So the p-value
is P(x̄ ≥ 63∪ x̄ ≤ 57), which is double the value we found previously. (As it happens, the p-values found above
were so small that a doubling would not alter the result, namely rejection ofH0).

7 Hypothesis tests and p-values: further discussion

Let E denote the sample evidence andH denote the null hypothesis that is “on trial”. The p-value can then
be expressed asP(E|H). This may seem an awkward formulation. Wouldn’t it be better if we calculated the
conditional probability the other way round,P(H |E)? Instead of working with the probability of obtaining a
sample like the one we in fact obtained, assuming the null hypothesis to be true, why can’t we think in terms of the
probability that the null hypothesis is true, given the sample evidence we obtained? This would arguably be more
“natural” and comprehensible.

To see what would be involved in the alternative approach, let’s remind ourselves of the multiplication rule for
probabilities, which we wrote as

P(A ∩ B) = P(A) × P(B|A)

1I determined the p-value using the econometric software package,gretl . I’ll explain how to do this in class.
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Swapping the positions ofA andB we can equally well write

P(B ∩ A) = P(B) × P(A|B)

And taking these two equations together we can infer that

P(A) × P(B|A) = P(B) × P(A|B)

or

P(B|A) =
P(B) × P(A|B)

P(A)
(8)

The above equation is known as Bayes’ rule, after the Rev. Thomas Bayes. It provides a means of converting
from a conditional probability one way round to the inverse conditional probability. SubstitutingE for evidence
andH for null hypothesis, we get

P(H |E) =
P(H) × P(E|H)

P(E)

We know how to find the p-value,P(E|H). To obtain the probability we’re now canvassing as an alternative,
P(H |E), we have to supply in additionP(H) andP(E). P(H) is the marginal probability of the null hypothesis
andP(E) is the marginal probability of the sample evidence. Where are these going to come from?

7.1 Bayesian statistics

There is an approach to statistics that offers a route to supplying these probabilities and computingP(H |E): it is
known as the Bayesian approach, and it differs from the standard sampling theory doctrine. On the standard view,
talking of P(H) is problematic. The null hypothesis is in fact either true or false; it’s not a probabilistic matter.
Given a random sampling procedure, though, wecan talk of a probability distribution for the sample statistic, and
it’s on this basis that we determine the p-value. Bayesians dispute this; they conceive probabilities in terms of
degree of justified beliefin propositions. Thus it’s quite acceptable to talk of aP(H) that differs from 0 or 1: yes,
the hypothesis isin fact true or false, but we don’t know which, and what matters is the degree of confidence we’re
justified in reposing in the hypothesis: this can be represented as a probability.

For a Bayesian, theP(H) that appears on the right-hand side of Bayes’ rule is conceived as a “prior probabil-
ity”. It’s the degree of belief we have inH beforeseeing the evidence. The conditional probability on the left is
the “posterior probability”, the modified probability after seeing the sample. The rule provides an algorithm for
modifying our probability judgments in the light of evidence.

One difficulty with the Bayesian approach is obtaining the prior probability. For instance, in the example above,
it’s not obvious how we should assign a probability toµ ≤ 60 in advance of seeing any sample data. There are
techniques, however, for formulating “ignorance priors”—prior probabilities that correctly reflect an initial state
of ignorance regarding the parameter values.

To illustrate the idea, let me vary the example above. Suppose the chip maker packages up RAM into boxes
of one thousand modules, with a speed specification of either 60 ns or 70 ns. We’re faced with a box whose label
has come off: which sort does it contain? Suppose we setH0: µ = 60 againstH1: µ = 70. If the 60 ns and 70 ns
boxes are produced in equal numbers a suitable ignorance prior would be aP(H) of 0.50 for the hypothesis that
the mystery box contains 60 ns chips. We sample 9 of the chips and find a sample mean access time of 64 ns with
a standard deviation of 3 ns. What then is the posterior probability of the hypothesisµ = 60?

The standard test statistic is

t (8) =
64− 60

3/
√

9
= 4.0

which has a two-tailed p-value of 0.004. At this point we have the prior,P(H) = 0.50, and the p-value,(E|H0) =

0.004. What about the marginal probability of the evidence,P(E)? We have to decompose this as follows:

P(E) = P(E|H0)P(H0) + P(E|H1)P(H1)
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which means we have another calculation to perform:P(E|H1). This is similar to the p-value calculation forH0.
We want the two-tailed p-value for

t (8) =
64− 70

3/
√

9
= −6.0

which is 0.0003234. So:

P(H |E) =
P(H) × P(E|H)

P(E)
=

0.5 × 0.004

0.004× 0.5 + 0.0003234× 0.5
= 0.925

Based on the evidence, if the only two possibilities are that the sample chips came from a batch with a mean of
60 ns or a batch with a mean of 70, we can be fairly confident (92.5 percent) that they came from a 60 ns batch.
Note that this seemed unlikely on the face of it (small p-value) but the probability of the evidence conditional on
the alternative,µ = 70, was much smaller still so the posterior probability ofH0 came out quite high. In this
exampleP(E|H0) = .004 yetP(H0|E) = .925.

The Bayesian take on statistics is interesting and has quite a lot to recommend it, but in this course we’ll con-
centrate on the standard sampling-theory approach. Thus you’ll have to get used to thinking in terms of those
“awkward” p-values! (Besides, as you’ve just seen, while the Bayesian approach does yield a value for the prob-
ability of the hypothesis conditional on the evidence it is not really a simplification; in fact it generally involves
calculating the regular p-value and more. We need a prior probability forH0 and the marginal probability of the
sample, which are not required for the standard calculation.)

If you’d like to read more about Bayesian statistics here are two recommendations:Data Analysis: A Bayesian
Tutorial by D. S. Sivia (Oxford: Clarendon Press, 1996), and the fascinating work by E. T. Jaynes,Probability
Theory: The Logic of Science, online athttp://bayes.wustl.edu/etj/prob.html .

8 Relationship between confidence interval and hypothesis test

We noted above that the symbolα is used for both the significance level of a hypothesis test (the probability of Type
I error), and in denoting the confidence level (1− α) for interval estimation. This is not coincidental. There is an
equivalence between a two-tailed hypothesis test at significance levelα and an interval estimate using confidence
level 1− α.

Supposeµ is unknown and a sample of size 64 yieldsx̄ = 50,s = 10. The 95 percent confidence interval for
µ is then

50± 1.96

(
10

√
64

)
= 50± 2.45

Now suppose we want to testH0: µ = 55 using the 5 percent significance level. No additional calculation is
needed. The value 55 lies outside of the 95 percent confidence interval, so we can immediately conclude thatH0
is rejected. In a two-tailed test at the 5 percent significance level, we fail to rejectH0 if and only if x̄ falls within
the central 95 percent of the sampling distribution, conditional onH0, but since 55 exceeds 50 by more than the
“maximum error”, 2.45, we can see that, conversely, the central 95 percent of a sampling distribution centered on
55 will not include 50, sōx = 50 must lead to rejection of the null. “Significance level” and “confidence level”
are complementary.
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