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1 Introduction

I write as one who has long been fascinated by both “Gödel’s proof” (that is, the two theorems
in his famous article of 1931) and Wittgenstein’s Remarks on the Foundations of Mathematics
(hereinafter RFM) in which he gave, to all appearances, a dismissive account of Gödel’s work.1 I’m
far from being the first to attempt to puzzle out the relationship between the two,2 but I hope
to add something to previous discussion. My text proceeds by means of an iterative exposition of
“what Gödel proved”, on the one hand, and Wittgenstein’s perspective on mathematics, on the
other, leading eventually to an examination and assessment of Wittgenstein’s remarks on Gödel.

2 What Gödel proved: first pass

Let’s start from what a reader of a reasonably serious popular, or semi-popular, account of Gödel’s
work—for example Nagel and Newman (2001)3—might take him to have proved. We’ll bypass the
many weird and wonderful things that some writers have claimed to derive from Gödel; Franzén
(2005) skewers most of these with admirable precision. To circumvent such irrelevancies we must
first specify what Gödel is talking about. His topic is a formal system, comprising a set of axioms
plus rules of inference, which is capable of representing elementary arithmetic (addition and mul-
tiplication) on the natural numbers (non-negative integers). In the first instance he has in mind
something like Principia Mathematica (Russell and Whitehead, 1910), but his results are not tied
to the specifics of PM, and in the following we’ll refer to the system in question using the generic
label S.

Given all that, in terms of what a reasonably well-informed reader will likely take Gödel to have
proved we’re looking at one or more of the following statements.

1. He proved that such a system cannot be both consistent and complete.

2. He showed that in any such system there are bound to be propositions that are true, but
which cannot be proved.

3. He showed that in such a system there must be undecidable propositions, which can neither
be proved nor disproved.

1The proper references: Gödel (1931) and Wittgenstein (1967).
2There was no personal relationship; I’m just talking of their work.
3Rebecca Goldstein’s Incompleteness (2005) might seem to belong in this category, but see Feferman’s devastating

review (2006).
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4. He showed that no such system can prove its own consistency.

Most of these statements are correct, provided that the technical terms therein are understood
correctly. But statement 2 (which I placed near the top of the list since it’s a claim that’s often
made) needs immediate amendment. Gödel’s unprovable proposition—call it G—can be taken as
true only on condition that the system in question is assumed to be consistent. In other words, he
proved that if S is consistent, then G is true.

OK, so let’s work a little on the technical terms, starting with statement 1. Consistency—in its
most basic meaning, sometimes called simple consistency—is ascribed to a formal system S if and
only if there is no proposition p such that S proves both p and its negation ¬p (“not-p”).4 This is
a rather weak condition. By analogy with a consistent liar, a consistent formal system may prove
all kinds of falsehoods just so long as it doesn’t prove both a falsehood and its (true) negation.

A brief digression on this point may be worthwhile. To prove the consistency of a system S it’s
enough to show that there’s at least one well-formed proposition in the language of S that is not
proved by S. That’s sufficient on account of the concept of “material implication” in standard
formal logic. Here’s how it goes. A ⊃ B (A implies B) means that you can’t have A true and B
false. In logical notation, the conjunction that’s ruled out is written as A∧¬B, ‘∧’ being the logical
“and” symbol. That sounds OK, doesn’t it? Then it seems that A ⊃ B must be equivalent to the
negation of that conjunction, namely ¬(A ∧ ¬B). But suppose A is a contradiction, equivalent to
p ∧ ¬p for some p. Then A can never be true, so ¬(A ∧ ¬B) is guaranteed to be true, regardless
of the truth or falsehood of B. So if S proves p ∧ ¬p for some p, any and every B is implied, or in
other words is ‘proved’. In the ordinary way of things we would not say that “It’s raining and it’s
not raining” implies “London is in Japan”, but in standard formal logic this sort of implication is
impeccable.

Still dealing with statement 1 above, we now come to the completeness of a formal system. This
can have more than one sense, but in the context of Gödel’s 1931 paper the specific meaning is
clear enough. However, to get it right we first need to define an additional term.

A proposition, or well-formed formula (wff), in the language of a formal system S can be proved or
disproved (i.e., its negation can be proved)—based only on the axioms and rules of inference of S,
without any additional ad hoc premises—only if it is a so-called closed wff or sentence. A sentence
is a wff in which any variables that appear are bound by quantifiers. Consider this proposition
(which is not written in the language of a standard formal system, but could easily be translated
into such a language):

x+ 4 = 7

Is it true? Well, it’s true if x = 3, otherwise false. The variable x is said to be free, and the
proposition is not of the sort that could be proved or disproved in the manner indicated above. But
here are two modified versions:

∃x(x+ 4 = 7)

∀x(x+ 4 = 7)

The first variant says that there exists an x (which we take to mean, a natural number) such that
x+4 = 7, which is clearly true and ought to be provable in any system designed to encompass basic

4The statement that a formal system S ‘proves’ a proposition p is logician’s shorthand. Strictly speaking, what
it means is that a prover (human or mechanical) can prove p using the axioms and rules of inference of S.
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arithmetic. The second says that every x satisfies x+4 = 7; that’s clearly false and a formal system
of the relevant sort should surely be able to prove its negation. The point is that by binding the
variable x, via an existential or universal quantifier, we have produced a closed wff that’s capable
of being true or false in general, provable or disprovable (or perhaps undecidable) as the case may
be.

So now we can define completeness for our purposes: a system S is complete if and only if every
sentence (closed wff) in its language can be proved (derived as a theorem) or disproved (its negation
is a theorem). And Gödel exhibited a sentence—expressible in a large class of formal systems—that
(on certain assumptions) can neither be proved nor disproved.

For the moment, let’s leave Gödel and develop a few relevant points about Wittgenstein’s take on
mathematics.

3 Wittgenstein on proof and infinity

A topic on which Wittgenstein lays stress in RFM is mathematical proof. He makes two closely
related claims. First, if a purported proof is really to function as such it must be ‘surveyable’ or
‘perspicuous’ (terms I take to be more or less synonymous); it must be capable of being ‘taken in’.
Second, he says that a proof serves to give a definite meaning to the proposition that is proved. If
a given mathematical proposition has not been proved, and neither has its negation been proved,
its meaning is not fully determinate; its sense remains to some degree ‘veiled’. It’s the proof that
makes clear the meaning of that which has been proved. This sounds quite plausible, but of course
is not immune to objection.

Take for example Goldbach’s Conjecture—namely, that every even number greater than 2 can be
written as the sum of two primes (possibly with repetition). The first few candidates clearly fit the
bill—4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 (or 5 + 5)—and as of this writing mathematicians
have searched for counter-examples up to at least n ≤ 4 × 1017 without finding any. But to date
neither the conjecture nor its negation has been proved. Does the meaning of the conjecture then
remain ‘veiled’? I suspect that most mathematicians would say that it’s already clear enough, but
how might Wittgenstein respond?

That question leads us onto another aspect of Wittgenstein’s take on mathematics—his skepticism
regarding infinity.

There’s a distinction between the “potential infinite” and the “actual” or “completed” infinite that
goes back to Aristotle. In modern discussions it’s sometimes expressed as the difference between a
sequence 1, 2, 3, . . . that doesn’t terminate and an infinite set {1, 2, 3, . . . }, as in Cantor’s set theory.
From Aristotle onward, the potential infinite has been generally recognized as an indispensable item
in the mathematician’s toolkit but the status of the actual infinite has been controversial. Those
who reject it typically argue that the Law of Excluded Middle (which asserts that any meaningful
statement of purported fact must be either true or false, there being no third alternative) doesn’t
properly apply in the context of an infinite series. Followers of Cantor, however, are happy to apply
the Law to infinite sets.

Wittgenstein was one who vehemently rejected the “actual infinite”, and in this respect he was
was by no means alone: he was in the company of Henri Poincaré, Leopold Kronecker and Thoralf
Skolem, for example.5 Wittgenstein notes that we’re tempted to think of an infinite series as a

5Even David Hilbert—who called the transfinite realm opened up by Cantor a ‘paradise’—insisted that the proofs
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super-long series (a plenitude). But that’s wrong, he claims: an infinite series is characterized by
an absence—it doesn’t have a last member. And he asks of the infinite case, can we be sure that
what we’re talking about might not begin to ‘flicker’ in the ‘far distance’.

A simple example of Wittgenstein’s skepticism can be found in a question he discussed several time
in his writings and lectures on the philosophy of mathematics: Does the sequence 777 occur in the
decimal expansion of π? For a Cantorian this question has a definite answer: it either occurs or it
doesn’t. If it doesn’t occur we may never know that, but it’s still a fact in good standing, one way
or the other. Actually, in relation to Wittgenstein’s particular ‘777’ we know the answer today:6

that sequence first occurs at digit 1589, and it occurs 106 times in the first 100,000 digits—much as
we would expect if the digits of π were effectively random, since in that case the probability of that
sequence starting at any point in the expansion is 0.13 or one in a thousand. But Wittgenstein’s
question could be restated as: “Does 777 occur in the decimal expansion beyond the number of
digits to which π can currently be calculated?” On a probabilistic basis we’d no doubt say that’s
very likely, but it’s not clear that there’s any pre-existing fact of the matter.

These points are relevant because Goldbach’s Conjecture is a universally quantified claim regarding
the infinite series of natural numbers: for every natural number x, either x is less than 3, or x is
odd, or x can be written as the sum of two primes. Wittgenstein regards as quite comprehensible
a claim about the members of a finite series of length n, even if n is very large. But he doubts that
claims involving universal quantification over an infinite domain are in good standing.

Two more points are worth considering before we depart from this line of thought. First, what
about Fermat’s “Last Theorem” (or more properly, “conjecture”, since it’s very unlikely that Fermat
actually had a proof). The proposition here is that the equation

xn + yn = zn

where n is an integer, has no solution in positive integers (x, y, z) for n > 2. Unlike Goldbach’s
Conjecture, Fermat’s has now been proved—to the satisfaction of the mathematical community—by
Wiles (1995).7 So in relation to Wittgenstein’s claims about proof we might ask whether Wiles’s
proof was ‘surveyable’, and whether it had the effect of clarifying the meaning of Fermat’s conjecture.
Well, it’s clear that the 109 pages of Wiles (1995) cannot be ‘taken in’ by most of us; nonetheless
it seems they were surveyable by those with the relevant expertise. That’s shown by the fact that
Wiles’s original attempt at a proof was judged by his peers to be flawed, but then his revised
version, following a year of additional work, was seen to be correct. As for fixing the meaning of
Fermat’s proposal, that may be less clear but at least we can say that Wiles established a linkage
with ideas developed in twentieth-century mathematics. As Franzén (2005) notes, Wiles’s proof
was basically a proof of what’s known as the Taniyama–Shimura conjecture for elliptic curves in
the semi-stable case, which implies Fermat’s claim. Perhaps for a sufficiently adept mathematician
that helps in understanding the theorem.

Part of the point of what might seem like a digression on Wittgenstein’s ideas about proof is that
it prepares the way for this thought: to get a good understanding of what Gödel proved, it will be
necessary to take a look at the proof itself. Indeed, Kienzler and Sunday Grève (2016) cite a letter
from Wittgenstein to Moritz Schlick in which he says,

of completeness and consistency that he sought must be ‘finitary’: mathematicians could embrace the transfinite,
but could not rely upon it in proving the soundness of their formal apparatus.

6See http://newton.ex.ac.uk/research/qsystems/collabs/pi/.
7See Singh (1997) for an engaging account of Wiles’s quest.
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If you hear that someone has proved that there must be unprovable sentences in math-
ematics, then there is not yet anything astonishing in this, because you have as yet no
idea whatsoever what this prose sentence that seems to be so clear is saying. You have,
therefore, to go through the proof from A to Z in order to see what it proves.

While I don’t intend to go through Gödel’s incompleteness proof in anything like full detail, I hope
to present enough to “see what it proves”. However, before doing so it will be useful to draw out
something else from the discussion above of Goldbach’s Conjecture and Fermat’s Last Theorem.

Fermat’s claim has an important similarity with Goldbach, and in fact it’s commonly referred to as
a Goldbach-like statement. Here’s what they have in common. First, each one can be put into the
form of the statement that every natural number has a certain well-defined property, with the help
of disjunction. In Fermat’s case: every natural number n is either less than 3 or there are no natural
numbers x, y and z such that xn + yn − zn = 0. Second, whether a given natural number has the
property in question can be determined by means of a definite algorithm, a readily programmable
test. The property is said to be computable. And that means that if the statement is false, it will
be possible in principle to find a counter-example; if it’s false, it’s decidable. If it’s true, a search
for counter-examples would go on forever, and in general we can’t know whether it’s decidable or
not. (Prior to Wiles’s proof, many mathematicians thought Fermat’s claim was probably true but
undecidable.)

Now it’s worth noting that the concepts of computability and decidability were developed in the
1930s, prior to the development of what we now know as computers.8 Turing (1936) developed these
concepts by means of what became known as a Turing machine, but this was a thought-object, not
bound by requirements of finite memory or finite run-time. So one should bear in mind that if a
property is ‘computable’, in the language of mathematical logic, that by no means guarantees that
it can be computed by a real computer on a time-scale of relevance to humans (or even at all).

Now let’s get back to Gödel’s proof, starting with a key ingredient, his arithmetization of syntax,
known as Gödel numbering.

4 Gödel numbering

This is a system which constructs for each distinct well-formed formula in the language L of a
formal system S a unique number g (a positive integer). It is designed such that given a valid g
(not every positive integer is an instance of g) one can in principle decode this number and retrieve
the formula it encodes. Detailed accounts of how this is done, both in Gödel’s own system of 1931
and in various alternatives which achieve the same object, are readily available. Here we’ll give
a brief and incomplete sketch of the method set out by Smith (2007), which is close to Gödel’s
own; it employs prime numbers in such a way that the possibility of decoding is ensured by the
Fundamental Theorem of Arithmetic (every integer greater than 1 is either a prime or has a unique
prime factorization).

The fourteen constants in L are assigned the first fourteen odd numbers, and the names of numerical
variables (x, y, z, . . . ) are assigned successive even numbers.

8There were “computers” then, but they were people—mostly women—who performed computations by hand or
with the help of mechanical calculators.

5



sign 0 s ¬ ∧ ∨ ⊃ = ∀ ∃ ≡ ( ) + × x y z · · ·
code 1 3 5 7 9 11 13 15 17 19 21 23 25 27 2 4 6 · · ·

A formula f including k symbols is given a number equal to the product

k∏
i=1

πci
i = πc1

1 × πc2
2 · · · × πck

k (1)

where πi is the i
th prime by magnitude and ci is the numeric code of the ith symbol in f . A sequence

of m formulae is then assigned the number

m∏
j=1

π
gj
j = πg1

1 × πg2
2 · · · × πgm

m (2)

where gj is the Gödel number of formula j.

Among the constants are 0, s, = and +, with numerical codes 1, 3, 19 and 25 respectively. The
symbol s represents the successor operator, which gives the successor of any natural number and
can be concatenated to give “the successor of the successor” and so on. The other symbols cited
are fairly self-explanatory, representing the number zero, “equals” and addition. In this notation
one writes “2 + 2 = 4” as

ss0 + ss0 = ssss0

Applying eq 1, we find that the Gödel number of this sentence is

g1 = 23 × 33 × 51 × 725 × 113 × 133 × 171 × 1913 × 233 × 293 × 313 × 373 × 411 ≈ 2.6× 1075

This is a seriously big number, 56 orders of magnitude greater than the biggest integer that can be
represented precisely in ordinary computer arithmetic (264 ≈ 1.845×1019, which can accommodate
the number of seconds since the Big Bang with ease).

To complete this exercise let’s consider a little sequence of formulae, composed of the formula above
plus the equally trivial

∃ y(s0+ y) = ss0

(meaning, there exists a number y such that 1 + y = 2). This second formula has Gödel number
g2 ≈ 3.6 × 10122. The Gödel number of the sequence, using eq 2, is the integer 2g1 × 3g2 . This
number cannot be written down in full, nor can it be stored on any computer. What we can do
is calculate, using floating-point arithmetic, an approximation to the number of binary digits that
would be required to store it.

B = log2(2
g1 × 3g2) = g1 log2(2) + g2 log2(3) ≈ 5.8× 10122

This B is over 40 orders of magnitude greater than the estimated number of elementary particles
in the universe. The term ‘Vast’ (“very much more than astronomical”) coined by Dennett (1995)
is apposite here.

It should be clear, then, that nobody has ever actually calculated the Gödel number of a non-trivial
formula, let alone carrying out the prime factorization of such a number that’s needed to recover
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the corresponding sequence of symbols in L. Gödel numbering is an in-principle construction in
thought, not limited by any consideration of real-world feasibility.9

J. Barkley Rosser, who produced a strengthened version of Gödel’s proof (Rosser, 1936), also gave
a relatively informal exposition of Gödel’s own proof in Rosser (1939), and I’ll draw on the latter
here. Note that Rosser uses L below in the same sense as was given above: to refer to the language
of a suitable formal system S.

When numbers have been assigned to formulas, statements about formulas can be re-
placed by statements about numbers. That is, if P is a property of formulas, we can
find a property of numbers, Q, such that the formula A has the property P if and only
if the number of A has the property Q.

Many statements about numbers can be expressed in L, even though all cannot. In
particular, if P is properly chosen, we can often express “x has the property Q” in L. If
x is taken to be the number of a formula of L, we are then expressing in L a statement
about a formula of L. (Rosser, 1939, pp. 55–56)

Rosser goes on to say,

Gödel chooses for P the property of not being provable in L. So if we denote (as Gödel
does) “the formula with the number x is provable in L” by “Bew(x),” then “x has
property Q” is equivalent to “not-Bew(x).” (Rosser, 1939, pp. 57–58)

(“Bew” is short for the German Beweisbar, ‘provable’.) In other words Gödel comes up with two
predicates that apply to natural numbers, with Bew(x) indicating that x is the number of a sentence
that stands at the end of a proof in S, and ¬Bew(x) indicating that x is not such a number, so the
sentence with number x is not proved by S. It’s by no means obvious that it should be possible
to define such predicates, but by a lengthy argument involving what Gödel calls rekursiv functions
(now known as ‘primitive recursive’ following Kleene (1936)) he shows this is true for a large class
of L’s.

Then, via what came to be known as the Diagonalization Lemma,10 Gödel constructs a sentence G
which can be read as

The sentence with number g satisfies ¬Bew(g)

where it “so happens” that the sentence with number g is G itself.11 So in effect this sentence
asserts its own unprovability. That is its metamathematical reading. As stated above, it’s possible
in principle to decode g and hence determine the “non-meta” reading of G. This reading—let’s call
it A—is then a statement of arithmetic that is not provable in S, if G is true.

9Gödel’s prime-based numbering scheme is completely general but other, more economical, schemes can be em-
ployed if there’s a known upper limit to the number of symbols in the ‘alphabet’ of L and the number of individual
wffs in a proof. Nonetheless, the integers representing non-trivial formulas and sequences will quickly ascend into
‘Vast’ territory.

10As Smith (2007) notes, Gödel credited Carnap (1934) with the first publication of this Lemma, but it seems that
Gödel himself had found it in 1930.

11The sense of “diagonal” here is akin to that of the 45-degree line in an x-y graph, where y = x.
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5 What Gödel proved: second pass

Based on the self-referential sentence, G, that he has painstakingly constructed, Gödel offers two
arguments that S is incomplete. These are generally called the semantic argument, which is fairly
straightforward, and the syntactic argument (the ‘proof’ proper), which takes more work. We’ll
consider these in turn.

5.1 The semantic argument

We introduced the concept of consistency of a formal system above. The semantic argument relies
on a stronger condition on S than consistency, namely that S is sound. That means that all the
theorems of S are true; S may or may not prove all relevant truths but it proves no falsehoods.

Why might anyone feel entitled to make such an assumption? Well, we’re talking about a system
that employs very standard, uncontroversial, rules of inference which are generally accepted as
truth-preserving:12 they won’t lead you from true premises to a false conclusion. If the axioms of S
are taken to be true—not merely ‘posited’—and the inference rules are truth-preserving, it follows
that all theorems will be true. But on what basis can we take the axioms to be true? The basis
we need is an interpretation of the formalism. In this case the standard interpretation is that the
axioms of S are ‘about’ the natural numbers, and the standard view is that they are indeed true of
the natural numbers. These axioms go under the name Peano Arithmetic (PA). Here are the first
six of them:13

1. ∀x¬sx = 0

2. ∀x∀y(sx = sy ⊃ x = y)

3. ∀x(x+ 0 = x)

4. ∀x∀y(x+ sy = s(x+ y))

5. ∀x(x× 0 = 0)

6. ∀x∀y(x× sy = x× y + x)

Given the notation established above, these should be fairly self-explanatory, and moreover clearly
true of the natural numbers. For example, axiom 2 just says that if the successor of x equals the
successor of y (or in other words x + 1 = y + 1) it follows that x = y. The relatively complex
axiom 4 says in effect that for all x and y, x + (y + 1) = (x + y) + 1. Axiom 1 might appear a
little mysterious, but it’s by way of a stipulation: the natural numbers are just the non-negative
integers. This is expressed by the statement that no natural number x has 0 as successor.

Does judging the Peano axioms to be true of the natural numbers imply a platonistic conception
of mathematical objects having an objective existence, independent of human thought? I don’t
think so; if the natural numbers are our own invention (based on how we find nature to behave) we

12For example instantiation of universal statements: if we have ∀xF (x) we can conclude that F (a) for any a we
like.

13Peano Arithmetic is so called after Giuseppe Peano (1858–1932). But note that Peano’s original set of axioms
differed somewhat from the now-standard listing shown below; Peano assumed a background of intuitive set theory
and didn’t see a need to define addition or multiplication. See Gillies (1982) for details.
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should be in a good position to know what’s true of them. We can say, simply, that we recognize
these axioms to be a faithful formalization of the idea of natural number that is implicit in everyday
arithmetic. For more on platonism see Section 6 below, and for more on the relevance of how nature
behaves see Section 7.

The axioms above are supplemented by a schema for mathematical induction: if 0 has property P ,
and the successor of x has property P whenever x has property P , then for all x, x has the property
P , or

P (0) ∧ (P (n) ⊃ P (sn)) ⊃ ∀xP (x)

In principle we could make a single axiom of this, if we could preface it by ∀P (“for all properties
P”), but that can’t be done in the sort of system under discussion. S is a first-order system, in
which we can quantify over variables ranging over the natural numbers but we can’t quantify over
properties. That’s why the above is referred to as a schema; in effect we need a distinct axiom
that instantiates the schema for each case where we appeal to induction. The induction schema is
the only component of PA about which anyone might have defensible qualms, it seems to me, but
even it is a very standard component of mathematical reasoning, in the context of definite formal
systems or otherwise. Wittgenstein expressed puzzlement over mathematical induction in his 1939
lectures on the Foundations of Mathematics (Diamond, 1976) but he did not pronounce the method
illegitimate. That would have flown in the face of his avowed intent not to tell mathematicians how
to do mathematics based on philosophical considerations; he wished to limit his criticisms to the
questionable philosophical gloss that mathematicians are sometimes tempted to give their results,
as in what he called “puffed-up proofs”.

So for the moment let’s assume that S is indeed sound. We now wish to show that S does not
prove G, and neither does it prove ¬G (or in other words, G is undecidable in S).

Suppose S does prove G; then it would prove a falsehood, since G states that G is not provable. But
if S can’t prove falsehoods it can’t prove G. However, if G is not provable then it’s true, because
that’s just what it says. And now, if we take the truth of G to be established, it follows on the
same semantic grounds that ¬G can’t be proved either since ¬G must be false and, once again, S
doesn’t prove any false statements.

Before leaving the semantic argument, it’s worth raising the question, what about the arithmetical
reading of G? That too—we called it A above—should be true but unprovable in S, but what might
it look like? Since computing the actual Gödel number, g, of G is infeasible in practice, as is the
prime factorization of g that could in principle lead us to an explicit statement of A, it might seem
that A must remain inscrutable. Something of the sort is suggested by (Goldstein, 2005, p. 167):
“it’s going to be a weird arithmetical proposition, what with all the fiddlefaddling that gets us to
it.” Similarly, (Steiner, 2001, p. 272) says that the Gödel sentence “has no mathematical interest:
the sentence, regarded as a number-theoretic one, is so long as to be unsurveyable.”

Surprisingly enough, A turns out not to be quite so weird and inscrutable. That’s because G
amounts to a generalization regarding a property of the natural numbers—namely, every natural
number has the property of not being the Gödel number of a proof of G—and “not being the
Gödel number of a proof of G” turns out to be a primitive recursive property. This places A in the
category of Goldbach-like statements, which we came across in Section 3.

Stephen Kleene gives an account of developments following Gödel’s presentation at the Königsberg
Conference of 1930 (for more on which see Section 6).
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At that time Gödel only had undecideable propositions which were finitary combinatorial
in nature, and von Neumann asked whether number-theoretic undecideable propositions
could also be constructed. Gödel replied that they would have to contain concepts
quite different from those occurring in number theory like addition and multiplication.
Gödel was astonished when slightly afterward he succeeded in turning the undecideable
proposition into a polynomial equation preceded by quantifiers over the natural numbers
(Theorem VIII). (Kleene, 1986, p. 137)

In his “Postscriptum” of 1964 to the printing of his 1934 lectures on undecidable propositions,
Gödel was able to go further.

By slightly strengthening the methods used above. . . , it can easily be accomplished
that the prefix of the undecidable proposition consists of only one block of universal
quantifiers followed by one block of existential quantifiers, and that, moreover, the
degree of the polynomial is 4. (Gödel, 1986b, pp. 370–371)

The “above” here refers to section 8 of his text, titled “Diophantine equivalents of undecidable
propositions”. A Diophantine equation is a polynomial equation with integer coefficients; we’ve
already seen an example in Section 3, namely Fermat’s Last Theorem. Gödel is in effect equating
his undecidable proposition to one regarding the solution of a certain Diophantine equation, which
can be put into the canonical form of

(Q)[P = 0]

where (Q) denotes a sequence of quantifiers and P denotes a polynomial with natural-number
coefficients.

That this fact is no mere curiosity was shown when Yuri Matiyasevich (1970) completed work begun
by Julia Robinson, Martin Davis and Hilary Putnam. This work, spanning over twenty years,
produced a result known as the MRDP theorem, which says that there exists no general algorithm
to decide whether a given Diophantine equation has a solution among the integers (Davis, 1973).
This amounts to an incompleteness proof that stands alongside Gödel’s, but does not depend on
Gödel’s apparatus of the self-referential sentence.

5.2 The syntactic argument

Gödel had no doubt that the system he was considering was sound, but he was well aware that the
semantic argument, which rests on the assumption of soundness, would not satisfy the formalists.
Hilbert insisted that validation of a formal system should proceed in purely syntactical terms, which
requires that the axioms be deinterpreted and talk of ‘truth’ be eschewed. In the main section of
his 1931 paper, Gödel therefore fell back on the assumption of consistency; this property can be
defined in syntactical terms, and as noted above it is a weaker condition than soundness.

The first point to notice is that if the system S is consistent, it cannot prove its Gödel sentence G.
That’s because G “says that” G is not provable, so a proof of G in S would amount to a proof of
G’s contrary, ¬G. That would yield a contradiction, which cannot happen in a consistent system.

This point can be unpacked a little and made somewhat more precise. If G were a theorem of S this
fact would itself be provable, via the arithmetization of syntax: the Gödel number of G would have
the computable property of being the number of a formula that stands at the end of a valid proof

10



in S, something that can be verified within S. But G is a provable fixed point (‘diagonalization’)
of the property of not being a theorem of S, meaning that a proof of G in S would also prove the
negation of G, so S would be inconsistent, contrary to assumption.

To complete his argument that G is undecideable in S, Gödel also has to show that S cannot prove
¬G. That turned out to require a stronger condition on S than simple consistency, a condition that
he dubbed ω-consistency.

Let the expression “φ(x)” mean that some predicate φ is satisfied by a natural number x. (Simple
examples include “x is divisible by 2”, “x is prime”, and so on.) Now suppose that for each natural
number, x, taken in turn, S can prove that φ(x) holds. So S can prove φ(0), φ(1), φ(2), . . . One
might then expect that S should also be able to prove the generalization, ∀xφ(x), but that’s not
necessarily the case. If the generalization cannot be proved that’s a case of ω-incompleteness, which
Peter Smith (2007) describes as a “regrettable weakness” for a formal system. But ω-inconsistency
is worse: it means that despite proving each individual case, the system proves the negation of
the generalization, ¬∀xφ(x). Conversely, an ω-inconsistent system might prove the generalization
∀xφ(x) but also prove that there exists an exception, ∃x¬φ(x). In neither case is this a flat-out
proof of p∧¬p but it certainly looks like a contradiction (“equally intolerable”, says Quine (1953)).
It’s easily shown that if S is ω-consistent—that is, it is not ω-inconsistent—it necessarily satisfies
simple consistency. But the converse does not hold, so ω-inconsistency is the stronger condition.

Now let’s define φ(x) as the predicate Gödel is interested in, to complete his proof of the undecid-
ability of G in S—namely, x is not the Gödel number of a proof of ¬G in S. Suppose Gödel is
able to prove ∀xφ(x). The trouble is that if S is ω-inconsistent this does not rule out the possi-
bility of a proof of ∃x¬φ(x), which is to say that there exists some (unspecified) x that is such a
Gödel number. Hence, as stated above, Gödel needs to assume the ω-consistency of S to clinch his
argument.

However, it later transpired that the stronger assumption was not strictly required: Rosser (1936)
produced a version of Gödel’s undecidability proof that depends only on simple consistency of S.
The counterpart of Gödel’s sentence G is a somewhat more complex Rosser sentence R which says,
in effect, “If a proof of the sentence with Gödel number r exists in S, there also exists in S a shorter
proof of the negation of that sentence.” And of course the sentence with Gödel number r turns out
to be R itself. For discussion of Rosser’s result as a strengthening of Gödel’s see Kleene (1952),
Mendelson (1964), Smith (2007).

5.3 The unprovability of consistency

The last point alluded to in Section 2 concerned Gödel’s proof that a formal system of the sort
under discussion cannot prove its own consistency—hence dashing one of Hilbert’s cherished hopes.
We’re now in a position to address this in a little more detail.

As noted above, to show that a system S is consistent it’s sufficient to exhibit a proposition in
S that cannot be proved (since if S were inconsistent any arbitrary proposition could be proved).
Now of course the Gödel sentence G “says of itself” that it’s not provable in S. And as we have
seen, on the assumption that S is consistent G must be true: consistency of S implies G. We’re
now noting in addition that the truth of G (that is, its unprovability) implies the consistency of S.
This is a case of bi-implication or logical identity. But then the impossibility of proving that G is
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true within S leads directly to the impossibility of proving the consistency of S within S.14

This is the merest sketch of an argument, and although Gödel’s own version in 1931 was more
extended, Franzén (2005) judges that it “consisted mostly of handwaving”. Full formal details were
eventually provided by Hilbert and Bernays (1939), Hilbert (or at least Bernays, who was by all
accounts the main author of this work) having meanwhile come to terms with the fallout from
Gödel’s work.

5.4 Can incompleteness be remedied?

A further question arises from Gödel’s two proofs: does his perspective offer any means of “fixing”
the incompleteness of S? Well, only at the price of an infinite recursion—which we might take as
meaning, not really. If the Gödel sentence, G, of the system S is taken to be true, we could define
a system S+, identical to S except that the original G is added as an axiom. If, as per the second
proof, G is logically equivalent to Cons(S), this would amount to making the consistency of S an
axiom of S+. The trouble is that a new Gödel sentence could then be found for S+, which could
in turn be added as an axiom for a further system S++. And so on, ad infinitum.15

5.5 Gödel’s reach

There’s something rather surprising about the reach of Gödel’s proofs. On the one hand, it was
quite quickly realized that his results were not specific to the system of Principia Mathematica,
or to particularly close relatives of PM, but applied to any formal system capable of representing
elementary arithmetic (addition and multiplication) on the natural numbers. Gödel had originally
thought he had more work to do to demonstrate this generality, which is why he appended “I” to
the title of his 1931 paper, but it soon became clear that this would not be necessary. On the other
hand, we find that systems that formalize arithmetic on the real numbers are not prey to Gödelian
incompleteness Tarski (1951). And neither are systems that confine themselves to either addition
(Presburger, 1929) or multiplication (Skolem, 1931) of the natural numbers. It’s the particular
combination of addition and multiplication, confined to the natural numbers, that turns out to
resist completability.

6 The platonism connection

It’s time to say something about platonism. This is relevant to our topic because Gödel was a
convinced platonist and Wittgenstein a convinced anti-platonist, which might lead us to expect
them to hold opposed views on specific points such as the meaning of Gödel’s proof, possibly
compounded by a degree of mutual incomprehension.

In the philosophy of mathematics, platonism is the idea that (at least some) mathematical objects
exist independently of human cognition and practices, in an immaterial realm of their own. Humans
are able to apprehend the properties of these objects (more or less clearly, more or less accurately)
via the faculty of reason, and the task of mathematics is to discover, as best we can, such properties.

14A prior condition is needed if an impossibility proof along Gödel’s lines is to go forward: the proposition Cons(S),
stating that S is consistent, must be expressible in the language of S. That can’t be taken for granted, but it turns
out to be so; Cons(S) is primitive recursive.

15In his PhD thesis, under the supervision of Alonzo Church, Alan Turing (1939) seemed to be willing to explore
this route, to the extent of transfinite recursion, though not without some reservations. This reader finds it difficult
to determine how seriously Turing regarded such a project.
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Platonism is a matter of degree. One might, for example, grant a platonic existence to the natural
numbers but reckon that more complex mathematical objects are our own constructions—there’s
the well known statement ascribed to Kronecker, “God created the integers, all else is the work of
man.” A hard-core platonist, however, may extend the courtesy much further, positing a platonic
existence for such objects as Cantor’s transfinite sets.

It seems that many working mathematicians subscribe to platonistic views to some degree,16 but
among philosophers platonism is far from fashionable. Naturalism is a general tendency of modern
philosophy, and it seems clear that independently existing mathematical objects would have to be
supernatural.

I said above that Gödel was a convinced platonist.17 A startling index of this is his remark, “It
might be that there are only finitely many integers” (Wang, 1996, p. 302) The context here is Gödel’s
parallel adherence to fallibilism, the idea that we can never have absolutely certain knowledge of
anything. It may seem evident to us that the sequence of natural numbers has no end, but what
seems evident to us may not be true. There is—‘out there’, so to speak—a fact of the matter as
to whether the (independently existing) natural numbers go on forever or not. Gödel even gives an
illustration: for all we know, 1010 could be the greatest natural number.

Gödel’s platonism extended to the Cantorian transfinite. The so-called Continuum Hypothesis (CH)
is a supposition made, and considered of great importance, by Cantor. (It concerns the relative
size of various infinite sets; I will not attempt to explain it here.) To date nobody has been able
to prove or refute CH. It has been shown to be independent of the now-standard version of set
theory—Zermelo–Fraenkel plus the Axiom of Choice, or ZFC—in the sense that neither CH nor its
negation is inconsistent with the axioms of ZFC. Gödel devoted considerable effort to obtaining a
proof or refutation of CH. He did not succeed, but he was motivated by the belief that CH must be
either true or false, as a matter of platonic fact. Anti-platonist logicians will likely suspect that the
Cantorian concepts at play in CH are just not sufficiently well-defined to make the truth or falsity
of the hypothesis an answerable question (Feferman, 1998), so that the question loses its interest.

In discussion with Hao Wang during his time at the Institute for Advanced Studies, Gödel said that
his platonistic, or objectivistic, convictions dated to well before his famous paper of 1931, and indeed
before his first notable publication, a proof of the completeness of first-order logic (Gödel, 1930).
Wang asked Gödel why he thought there had been such a long pause between Skolem’s work in the
early 1920s and his own 1930 completeness result, for which (at least with hindsight) Skolem had
laid the foundation. Gödel’s reply is interesting: he ascribes the delay to anti-platonistic thinking.

This blindness (or prejudice, or whatever you may call it) of logicians is indeed surpris-
ing. But I think the explanation is not hard to find. It lies in a widespread lack, at
that time, of the required epistemological attitude toward metamathematics and toward
non-finitary reasoning. (Wang, 1996, p. 204)

In similar comments, Gödel says that his “objectivistic conception of mathematics and metamath-
ematics in general, and of transfinite reasoning in particular, was fundamental” to his work in logic
(Wang, 1996, p. 73); and he says of Hilbert’s “On the infinite” (Hilbert, 1926): “Here again the
anti-Platonistic view was hampering mathematics” (Wang, 1996, p. 85).

16Hacking (2014) offers an interesting discussion of this point—see chapter 6 in particular.
17As a general statement that’s uncontroversial, but there is some room for doubt as to when he acquired that

conviction, a point to which we’ll return briefly below.
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Feferman (1998) finds reason to doubt Gödel’s retrospective account of his own early views. The
first occasion on which Gödel publicly indicated his adherence to platonism was in a discussion
of Bertrand Russell’s philosophy (Gödel, 1944). Prior to that, in a 1933 lecture (Gödel, 1995), he
had said of his account of foundational issues up to a certain point, “The result of the preceding
discussion is that our axioms, if interpreted as meaningful statements, necessarily presuppose a
kind of Platonism, which cannot satisfy any critical mind and which does not even produce the
conviction that they are consistent.” It is plausible that when Gödel—who was anyway generally
reticent—was in a relatively junior position he might have felt disinclined to advertise his espousal
of an unfashionable philosophy. But by 1933, when he was widely recognized as a leading figure
in his field, is it plausible that he would willingly traduce his own philosophical commitments in a
public lecture?

Anyway—leaving this historical puzzle aside as probably insoluble—the more interesting question
is whether Gödel’s key results of 1931 somehow depended on platonism. A weak version of this
idea might run along these lines: Gödel’s (presumed) platonism motivated him more strongly than
others to believe that definite results ought to be available in certain difficult areas. A strong version
might say that Gödel’s results were somehow logically dependent on platonistic premises. There
may be something to be said for the weak version but the strong version seems wrong. Plenty of
non-platonist (and outright anti-platonist) logicians18 have recognized Gödel’s 1931 argument as
compelling—at least the syntactic variant if not also the semantic one.

It may be relevant to note the initial reaction to Gödel’s incompleteness result. He gave a preview of
his findings at a conference on ‘The epistemology of the exact sciences’ in Königsberg in September
of 1930. Several luminaries were present to expound various views on the foundations of mathe-
matics: Rudolf Carnap to represent Bertrand Russell’s logicism; John von Neumann for Hilbert’s
formalism; Arend Heyting for Brouwer’s intuitionism; and Friedrich Waismann for Wittgenstein’s
views. Gödel’s presentation on incompleteness was relegated to a session on the last day when some
attendees were already leaving. At this point just one of those present understood what Gödel was
saying, and grasped its importance: not surprisingly it was von Neumann, not a noted platonist.19

That said, it’s also true that Gödel’s “true but unprovable” sentence was quite widely taken to
validate platonistic thinking—Shanker (1988) provides historical evidence to that effect. Gödel’s
distinguishing mathematical truth from provability was open to an appropriation in which ‘truth’
was a matter of conformity with a platonic reality.

I’ll touch on an extension of this point. It has seemed to some—notably J. R. Lucas (1961)—that
Gödel’s incompleteness proof can be parlayed into a proof that the human mind surpasses any
machine in its ability to recognize mathematical truth. The gist of the argument is that machines
are limited to grinding out theorems from axioms plus rules of inference while humans are able to
‘see’ that Gödel’s unprovable sentence is true. There’s a lot wrong with this, and Franzén (2005,
chapter 6) offers a scrupulous takedown; I’ll confine myself to a few remarks. Insofar as humans
can ‘see’ the truth of a Gödel sentence, G, at all, this is to do with its metamathematical reading,
and relies on the argument that if S is consistent then G must be true (whatever its arithmetical
reading might be). That rule can easily be built into a machine. Although Gödel was able to tell us

18Among whom we find Solomon Feferman, the principal editor of Gödel’s Collected Works.
19Keynes once described Piero Sraffa as one “from whom nothing is hid” (Keynes, 1933). John von Neumann was

another such. He noticed the corollary, not mentioned in Gödel’s 1930 talk, that the consistency of a formal system
of the sort that Gödel described could not be proved within the system itself, and remarked on this in a letter to
Gödel, who had in fact already arrived at that conclusion.
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a surprising amount about the arithmetical reading, A, of his unprovable sentence, nobody has ever
seen A in full and the idea that a human might ‘see’ it to be true is absurd. No mathematician has
claimed to ‘see’ the truth or falsity of much simpler arithmetical propositions such as Goldbach’s
Conjecture or Fermat’s Last Theorem. Moreover, if anyone had made such a claim it would have
cut no ice; the response of the mathematical community would have been, “So you say. Let’s see a
proof.”

7 Wittgenstein on mathematics: the basics

We have already noted that Wittgenstein was an anti-platonist, surely an uncontroversial statement.
The position in the philosophy of mathematics that is diametrically opposed to platonism goes un-
der various names: conventionalism, suggesting that what are sometimes taken to be ‘truths’ about
mathematical objects are really propositions that have been made unassailable by their adoption as
conventions; or constructivism, suggesting in a similar way that mathematical ‘truths’ are human
constructs (although this label may have other connotations). One of the schools of thought men-
tioned above in the context of the Königsberg conference, namely Brouwer’s intuitionism, might
also be claimed as the opposite of platonism. So was the Wittgenstein of RFM a conventionalist,
a constructivist or an intuitionist? None of the above, really, although he was sympathetic with
Brouwer’s point of view in certain respects.

Michael Dummett, in a well known paper (Dummett, 1959), described Wittgenstein as a “full-
blooded conventionalist”. You can certainly find some statements in Wittgenstein’s work that
seem to justify that label, for example, that the mathematician is “an inventor, not a discoverer.”
But I agree with Gerrard (1996) that this is a superficial judgment: taking Wittgenstein’s work on
mathematics as a whole, he is trying to thread the needle between platonism and conventionalism—
as Gerrard puts it, “a philosophy of mathematics between two camps.”

One message that comes across loud and clear from RFM is that Bertrand Russell’s project of
providing a logical foundation for mathematics (logicism) is misguided. Russell’s logical apparatus
is a calculus in its own right, says Wittgenstein—possibly useful in some ways, but in no way prior
to or ‘foundational for’ ordinary arithmetic.

In my reading, Wittgenstein’s point is that ordinary arithmetic already has a perfectly good ‘foun-
dation’ in our practices of counting and measurement. And these practices are useful to us—have
become part of our way of life—due to some very general facts of nature that we’re inclined to
take for granted but that in principle could have been otherwise. There’s a multitude of objects
of interest to us in our surroundings that do not generally fuse or divide spontaneously, so that
counting “works” quite stably most of the time. Similarly, measurement of magnitudes in which
we’re interested turns out to be mostly stable. Some things we want to measure can change in
size with temperature—as can, for example, metal rulers—but these changes turn out to be fairly
predictable and do not vitiate our intent to measure. If we get a notion of “natural number” via
counting, we can get a notion of “real number” via measurements of progressively greater accuracy.

Here’s my main text from RFM (Wittgenstein, 1967, p. 14):

Put two apples on a bare table, see that no one comes near them and nothing shakes
the table; now put another two apples on the table; now count the apples that are
there. You have made an experiment; the result of the counting is probably 4. (We
should present the result like this: when, in such-and-such circumstances, one puts first
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2 apples and then another 2 on a table, mostly none disappear and none get added.)
And analogous experiments can be carried out, with the same result, with all kinds of
solid bodies.—This is how our children learn sums; for one makes them put down three
beans and then another three beans and then count what is there. If the result at one
time were 5, at another 7 (say because, as we should now say, one sometimes got added,
and one sometimes vanished of itself), then the first thing we said would be that beans
were no good for teaching sums. But if the same things happened with sticks, fingers,
lines and most other things, that would the end of all sums.

“But shouldn’t we then still have 2 + 2 = 4?”—This sentence would have become
unusable.

As Wittgenstein indicates, addition arises naturally from counting. He goes on to show how multipli-
cation can be based on iteration of addition, and exponentiation on iteration of multiplication—all
meaningful for us so long as the world continues to cooperate, for the most part!

At one point in his lectures on the Foundations of Mathematics, in Cambridge in 1939, Wittgenstein
cited Russell:

Russell said, “It is possible that we have always made a mistake in saying 12×12 = 144.”
But what would it be like to make a mistake? Would we not say, “This is what we do
when we perform the process which we call ‘multiplication’. 144 is what we call ‘the
right result’ ”? (Diamond, 1976, p. 97)

If Russell said such a thing it seems likely it was somewhat tongue-in-cheek, but perhaps designed
to suggest that the rigorous logical apparatus of Principia Mathematica could in principle correct
a long-standing error in received school-room arithmetic. But Wittgenstein’s dismissal is surely
right: if a purported proof in PM showed 12×12 to be anything other than 144, we would conclude
that there was an error in the proof, or in the system of PM itself. The received result is much too
thoroughly grounded in our practice of counting to be given up on the say-so of a system such as
Russell’s.

Returning to the theme of pigeon-holing Wittgenstein’s views, I said above that he was sympathetic
with Brouwer’s point of view in certain respects (their approval of finitism would be one such point
of contact). But here’s one respect in which the two diverge. Brouwer liked to talk of mathematics
as a “free creation” of the human mind. I don’t detect anything of the sort in Wittgenstein.
Arithmetic is not of itself an empirical science, but its rules are an abstraction from what we
commonly observe, and therefore come to treat as paradigmatic—so, according to Wittgenstein,
neither a “free creation” nor something based on insight into a platonic realm.

8 Wittgenstein on Gödel

We are now, hopefully, in a position to assess Wittgenstein’s remarks on Gödel in Remarks on the
Foundations of Mathematics. But before engaging with the text it may be worth offering a brief
account of reactions to these remarks to date. As I see it, they have unfolded in three main phases.
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8.1 Reactions to Wittgenstein’s remarks

Phase one. Following the first publication of RFM in 1956, five years after Wittgenstein’s death,
several logicians reviewed the book, notably Bernays (1959) (Paul Bernays was Hilbert’s student,
his assistant, then his collaborator); Goodstein (1957) (R. L. Goodstein was a student of Wittgen-
stein’s); and Kreisel (1958) (Georg Kreisel was also a student of Wittgenstein’s, and one who
engaged in personal discussions with Wittgenstein on mathematics following the Second World
War).20 All of these authors found something to agree with in Wittgenstein’s philosophy of mathe-
matics. For example, both Bernays and Kreisel explicitly endorsed his view that Russell’s logicism
ultimately failed, in that it could not provide a firmer foundation for arithmetic than the counting
that Wittgenstein had cited; indeed, a Russellian proof of 2 + 2 = 4 was in the last analysis par-
asitic on counting. But their reviews were quite scathing on the topic we’re concerned with here.
The gist: Wittgenstein had not really understood Gödel’s work, and his comments were worth
little. Bernays: “his discussion of Gödel’s theorem . . . suffers from the defect that Gödel’s quite
explicit premiss concerning the consistency of the formal system under consideration is ignored.”
Goodstein: “unimportant and throws no light on Gödel’s work”. Kreisel: “Wittgenstein’s views on
mathematical logic are not worth much because he knew very little and what he knew was confined
to the Frege–Russell line of goods.”

Phase two. Some time later several “revisionist” authors published emphatic defences of Wittgen-
stein. Wittgenstein had not misunderstood Gödel, they claimed; rather the logicians had failed to
grasp Wittgenstein’s point. Examples include Shanker (1987), Shanker (1988), Floyd (1995, 2001)
and Floyd and Putnam (2000). Meanwhile Berto (1996), although not explicitly endorsing Wittgen-
stein’s remarks, argued that they may be of interest in the light of relatively recent developments
such as Paraconsistent Logic.21

Phase three. The debate continues. Steiner (2001) and Bays (2004), for example, have contested
the revisionist reading, while Rodych (2002), for example, has supported it.

We’ll return to some of these contributions below, but for now: to business with the text.

8.2 Wittgenstein’s text

The most substantive comments on Gödel are to be found in Appendix I of RFM on pages 50–53
(dated to 1937 by the editors).22 I’ll examine this text, quoting extensively but interspersing some
comments.

5. Are there true propositions in Russell’s system, which cannot be proved in his
system?—What is called a true proposition in Russell’s system, then?

6. For what does a proposition’s ‘being true’ mean? ‘p’ is true = p. (That is the
answer.)

So we want to ask something like: under what circumstances do we assert a proposition?
Or: how is the assertion of a proposition used in the language game? And the ‘assertion

20According to Monk (1990, p. 498) Kreisel at age twenty-one won Wittgenstein’s approbation as “the most able
philosopher he had ever met who was also a mathematician”.

21For an account of which, see https://plato.stanford.edu/entries/logic-paraconsistent/.
22The exact same text appears in the 1978 revised edition of RFM, but as Appendix III, with different page

numbering.

17

https://plato.stanford.edu/entries/logic-paraconsistent/


of the proposition’ is here contrasted with the utterance of the sentence e.g. as practice
in elocution,—or as part of another proposition, and so on.

I think one can accept Wittgenstein’s equation of asserting that p is true with simply asserting p,
without prejudice to what follows. Continuing with §6:

If, then, we ask in this sense: “Under what circumstances is a proposition asserted in
Russell’s game?” the answer is: at the end of one of his proofs, or as a ‘fundamental
law’ (Pp.). There is no other way in this system of employing asserted propositions in
Russell’s symbolism.

That is true of “Russell’s game” as understood by Russell himself, but Wittgenstein is here implicitly
excluding the possibility that Gödel might have found a third ground for asserting a proposition
expressible in Russell’s system. I’ll come back to this point below.

7. “But may there not be true propositions which are written in this symbolism, but
are not provable in Russell’s system?”—‘True propositions’, hence propositions which
are true in another system, i.e. can rightly be asserted in another game. Certainly;
why should there not be such propositions; or rather: why should not propositions—of
physics, e.g.—be written in Russell’s symbolism?

This I don’t really get. As a proposition of physics, take for example Newton’s F = ma. In
Newton’s theory we’d think of all the terms in this equation as real-valued variables. I suppose that
could be specialized to the natural numbers for the sake of argument, but how would you write
Newton’s proposition in the notation of a formal system that supports elementary arithmetic? One
might try

∀m∀a∃f(f = m× a)

(For all natural numbers m and a there exists a natural number f such that f equals m times a.)
That would itself be provable in a system such as Russell’s but it has nothing to do with Newton,
and I don’t see how you could make it even appear to have anything to do with Newton given the
resources of the sort of system in question. Let’s continue with §7.

The question is quite analogous to: Can there be true propositions in the language
of Euclid, which are not provable in his system, but are true?—Why, there are even
propositions which are provable in Euclid’s system, but are false in another system.
May not triangles be—in another system—similar (very similar) which do not have
equal angles?—“But that’s just a joke! For in that case they are not ‘similar’ to one
another in the same sense!”—Of course not; and a proposition which cannot be proved
in Russell’s system is “true” or “false” in a different sense from a proposition of Principia
Mathematica.

Again Wittgenstein is ruling out—a priori, one might say—the possibility that there could be
grounds for saying that an unprovable proposition p in a formal system S is true, other than by
interpreting p as belonging to a different language game—that is, via a sort of pun. But might not
Gödel have come up with something that is not so much a “different language game” or “another
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system” but an extension of a Russell-type system—and an extension which is not easily dismissed
as “foreign” and hence inadmissible?

Wittgenstein’s next numbered point:

8. I imagine someone asking my advice; he says: “I have constructed a proposition (I
will use ‘P ’ to designate it) in Russell’s symbolism, and by means of certain definitions
and transformations it can be so interpreted that it says: ‘P is not provable in Russell’s
system’. Must I not say that this proposition on the one hand is true, and on the other
is unprovable? For suppose it were false; then it is true that it is provable. And that
surely cannot be! And if it is proved, then it is proved that it is not provable. Thus it
can only be true, but unprovable.”

Leaving aside the business of portraying of Gödel as a naif seeking advice on what to make of
his theorem, this is not totally out of order as a highly compressed account of his argument. But
Wittgenstein aims to problematize “suppose it were false”, as we find on page 51.

Just as we ask, “ ‘provable’ in what system?”, so we must also ask: “ ‘true’ in what
system?” ‘True in Russell’s system’ means, as was said: proved in Russell’s system; and
‘false in Russell’s system’ means: the opposite has been proved in Russell’s system’.—
Now what does your “suppose it is false” mean? In the Russell sense it means ‘suppose
the opposite is proved in Russell’s system’; if that is your assumption, you will now
presumably give up the interpretation that it is unprovable.

Here it seems that Wittgenstein does not take on board that “the interpretation that [the relevant
Gödel sentence] is unprovable” is not optional for Gödel; it’s not something that he could decide to
“give up” since it’s something he had ensured with a rigor that had, by 1937, been fully recognized
by the community of mathematical logicians. By the contrapositive, Gödel’s “suppose it is false”
does not mean supposing that its negation has been proved in the formal system in question (but
simply that it’s false). Another perspective on this point is that Wittgenstein is not allowing Gödel’s
assumption that the system in question is ω-consistent, in which case it’s provably impossible that
the negation of P could be proved. There’s further discussion of this point in Section 8.4.

Let’s proceed to §9 and §10.

9. For what does it mean to say that P and “P is unprovable” are the same proposition?
It means that these two English sentences have a single expression in such-and-such a
notation.

10. “But surely P cannot be provable, for, supposing it were proved, then the proposition
that it is not provable would be proved.” But if this were now proved, or if I believed—
perhaps through an error—that I had proved it, why should I not let the proof stand
and say I must withdraw my interpretation “unprovable”?

Again we have the theme of giving up an interpretation. It seems that Wittgenstein wants to drive
a wedge between whatever it is that Gödel has definitely proved in mathematical terms and the
natural-language interpretation of the Gödel sentence P as saying “P is not provable”—between
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the ‘proof’ and the ‘prose’, as Floyd (2001) puts it. When the ‘prose’ is given in the simple (and in
fact, imprecise) form just stated, it seems quite plausible that there could be slippage here, that the
interpretation might be put in question without impugning any of Gödel’s technical work. However,
the plausibility of slippage is diminished if the prose is put into a more precise form. Here I’ll revert
to use of the generic S to indicate the formal system in question in place of “Russell’s system”.
Given that every wff of S has a Gödel number, and that g is the Gödel number of P , one might
try the following.

Prose 2 : There exists no integer x such that x has the property ψ of being the Gödel
number of a proof of the sentence with Gödel number g—where ψ is a primitive recur-
sive property, defined in syntactical terms and indicating that the sentence with Gödel
number g can be reached from the axioms of S by application of the rules of inference
of S.

That statement could no doubt be improved upon; my point is that something like it can serve
as a bridge, being relatively close to the formal argument but also pretty clearly sustaining the
conclusion that P is not provable in S. The question would then be: Now where are you going
to insert the wedge? If I really believed I had constructed a proof of P , I would have to conclude
that Prose 2 was incorrect, and that would not just be a matter of interpretation, it would have to
involve a formal error.

Next Wittgenstein tries out the idea that the unprovability of P might be proved in S:

11. Let us suppose I prove the unprovability (in Russell’s system) of P ; then by this
proof I have proved P . Now if this proof were one in Russell’s system—I should in that
case have proved at once that it belonged and did not belong to Russell’s system.—That
is what comes of making up such sentences.—But there is a contradiction here!—Well,
then there is a contradiction here. Does it do any harm here?

Gödel’s position is clearly that there cannot be a contradiction here. Since he’s assuming that the
system S he’s working with is consistent, there can’t be a proof in S of the unprovability of P . On
that view, Wittgenstein’s “Let us suppose. . . ” is illegitimate (other than as the starting point of
a possible reductio), and the question of whether the contradiction does any harm simply doesn’t
arise.

12. Is there harm in the contradiction that arises when someone says: “I am lying.—So
I am not lying.—So I am lying.—etc.”? I mean: does it make our language less usable if
in this case, according to the ordinary rules, a proposition yields its contradictory, and
vice versa?—the proposition itself is unusable, and these inferences equally; but why
should they not be made?—It is a profitless performance!—It is a language-game with
some similarity to the game of thumb-catching.

Wittgenstein’s views on the relative unimportance of contradiction, and the “superstitious fear and
awe of mathematicians in face of contradiction” (RFM, p. 53), are of interest in their own right. But
they’re not strictly relevant here because Gödel’s sentence does not have the same status as the Liar
paradox of Epimenides. “I am lying” does indeed lead us around a useless circle, as Wittgenstein
says. But “this statement is not provable” (a rough translation of Gödel’s sentence) does not imply
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“this statement is provable”; there’s no circle, no paradox. It may be said that Gödel himself
muddied the waters by talking of an “analogy” between his argument and the Liar paradox in the
introduction of his 1931 paper (Gödel, 1986a, p. 149) but on reading the paper as whole23 it’s clear
that his self-referential sentence is neither intended as paradoxical nor in fact paradoxical.24

§13 just being an aside (a rumination on 12) I’ll proceed to the next point, on p. 52.

14. A proof of unprovability is as it were a geometrical proof; a proof concerning the
geometry of proofs. Quite analogous e.g. to a proof that such-and-such a construction is
impossible with ruler and compass. Now such a proof contains an element of prediction,
a physical element. For in consequence of such a proof we say to a man: “Don’t exert
yourself to find a construction (of the trisection of an angle, say)—it can be proved that
it can’t be done”. That is to say: it is essential that the proof of unprovability should
be capable of being applied in this way. It must—we might say—be a forcible reason
for giving up the search for a proof (i.e. for a construction of such-and-such a kind).

A contradiction is unusable as such a prediction.

Bernays (1959, p. 23) jumps on the last statement above: “As a matter of fact, such impossibility
proofs usually proceed via the derivation of a contradiction.” However, Steiner (2001, p. 272)
suggests that what Wittgenstein meant by “a contradiction” here was not a reductio but a paradox.
That would make his statement fair comment, had Gödel’s argument been built on a paradox as
Wittgenstein seems to have believed. Actually Gödel’s second proof, in particular, offers a nice
example of just the effect that Wittgenstein treats as paradigmatic: people did in fact give up
trying to find a consistency proof for S within S when Gödel showed it couldn’t be done.25

Wittgenstein’s §15 and §16 return to his claim that a proof (alone) makes clear what is proved. If “P
is unprovable” were proved, he says, that would show us the sense of the unprovability proposition.
But “if it is unproved then what is to count as a criterion of its truth is not yet clear, and—we may
say—its sense is still veiled.” To repeat what was said earlier, Gödel’s proof of the unprovability of
the sentence G (P in Wittgenstein’s notation) is a reductio, which depends on the assumption that
the system S is consistent and thereby rules out the possibility of a direct proof (which would ipso
facto prove a contradiction).

Elsewhere in RFM Wittgenstein expresses some worries about proof by reductio but seems in the
end to come to terms with the method. In Part IV (dated to 1942–3 by the editors) the worry is
put in this way:

The difficulty which is felt in connexion with with reductio ad absurdum in mathemat-
ics is this: what goes on in this proof? Something mathematically absurd, and hence
unmathematical? How—one would like to ask—can one so much as assume the math-

23Had Wittgenstein read the whole paper? Kreisel (1998, p. 119) speaks of an occasion in the 1940s when
Wittgenstein wanted Kreisel to “tell him Gödel’s proof”—which, Kreisel says, “Wittgenstein had never read, having
been put off by the introduction.”

24The title essay in Quine (1976) gives a broad definition of paradox, including what he calls “veridical paradox”,
i.e. an argument with a conclusion which at first seems impossible but nonetheless turns out to be correct. In that
sense only can Gödel’s incompleteness proof be termed a paradox.

25Nobody was forced to give up looking for a proof of the arithmetical Gödel sentence. Since nobody knew exactly
what it said, nobody was looking for a proof.
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ematically absurd at all? That I can assume what is physically false and reduce it ad
absurdum gives me no difficulty. But how to think the—so to speak—unthinkable?!

But this is immediately followed by what looks like a resolution:

What an indirect proof says, however, is: “If you want this then you cannot assume
that : for only the opposite of what you do not want to abandon would be combinable
with that.”

Very well; read “S is consistent” for this (which Gödel does not want to abandon) and “G is
provable” for that and you have the gist of Gödel’s argument.

Wittgenstein’s §17 and §18 attempt to explore the possibility that either G or its negation might
be proved directly (i.e. as theorems of “Russell’s system”). Since both of these cases are expressly
ruled out by Gödel’s formal argument I proceed to §19 (p. 53).

19. You say: “. . . , so P is true and unprovable”. That presumably means: “Therefore
P”. That is all right with me——but for what purpose do you write down this ‘asser-
tion’? It is as if someone had extracted from certain principles about natural forms and
architectural style that on Mount Everest, where no one can live, there belonged a châlet
in the Baroque style. And how could you make the truth of this assertion plausible to
me, since you can make no use of it except to do these bits of legerdemain?

This resembles a comment we’ve seen made by others, regarding the supposedly outlandish quality
of the arithmetical reading, A, of the Gödel sentence—the châlet on Mount Everest—although in
Wittgenstein’s case it is, so to speak, weaponized. However, as noted above, Gödel quickly developed
a good general idea of what his sentence could look like, namely a Diophantine equation. For sure,
not one that would ever have been the subject of a conjecture by any human mathematician, but
also not an unrecognizable sort of proposition. Anyway, the purpose of Gödel’s assertion was not
to respond to interest in A as such but to argue that a consistent S could not be complete.

8.3 Reflections on the remarks

It will by now be evident that I do not find Wittgenstein’s remarks on Gödel’s (first) proof to
be apt, either as a critique or a clarification. This is disappointing for one such as myself who
sees a great deal of value in other aspects of Wittgenstein’s philosophy of mathematics. I did not
embark on this project with a parti pris against Wittgenstein—far from it. I wished to attain
a better understanding of what Gödel proved, and hoped that Wittgenstein’s remarks might be
illuminating, but came to the conclusion that they were not.

I think I know “where Wittgenstein was coming from”: he was motivated by his antipathy to
platonism, to which he saw Gödel’s work as an on-ramp. I agree with Mark Steiner (2001) on this
point, and in the judgment that Wittgenstein was in this case led astray. Yes, there were those
who took Gödel’s proof as justifying platonism, but that was never a valid inference and it was not
seen as such by most of the logicians who actually verified and extended Gödel’s reasoning (Kleene,
Turing, Rosser, Post, et al)—who had all published relevant work by the time Wittgenstein was
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writing on this topic in 1937.26

Wittgenstein doesn’t mention platonism in his remarks on Gödel, by name or by description, but the
source of his worry seems clear: the idea that if the truth of Gödel’s “true but unprovable” sentence
were not relativized (and disarmed) as assertibility in a “different game” or “another system”, it
would have to be a platonistic truth, which could not be allowed.

On this matter of the truth of Gödel’s sentence I’d like to recruit some help from Torkel Franzén,
who articulates what is for my money a very sane view.

Very often in discussions of the incompleteness theorem it is regarded as unclear what
might be meant by saying that an arithmetical statement which is undecidable, say in
PA, is true. What, for example, are we to make of the reflection that the twin prime
conjecture may be true, but undecidable in PA? In saying that the twin prime conjecture
may be true, do we mean that it may be provable in some other theory, and if so which
one? Do we mean that we may be able to “perceive” the truth of [this] conjecture,
without a formal proof? Or are we invoking some metaphysical concept of truth, say in
the sense of correspondence with a mathematical reality? (Franzén, 2005, pp. 28–29)

While recognizing that this question is “a natural one”, Franzén’s answer is “none of the above”.
Mathematicians, he says, “easily speak of truth”, as in “If the generalized Riemann hypothesis is
true. . . ” or “There are strong grounds for believing that Goldbach’s conjecture is true”. In this
context, he continues,

the assumption that an arithmetical statement is true is not an assumption about what
can be proved in any formal system, or what can be “seen to be true,” and nor is it
an assumption presupposing any dubious metaphysics. Rather, the assumption that
Goldbach’s conjecture is true is exactly equivalent to the assumption that every even
number greater than 2 is the sum of two primes. Similarly, the assumption that the
twin prime conjecture is true means no more and no less than that are infinitely many
primes p such that p+ 2 is also a prime, and so on. (Franzén, 2005, p. 29)

In each case, saying that such-and-such a mathematical proposition is true is simply another way
of stating the content of the proposition. It is, Franzén says, “a mathematical statement, not a
statement about what can be known or proved, or about any relation between language and a
mathematical reality.”

In the special case of the Gödel sentence, one might say that it can be “seen” to be true—or rather,
seen that its truth is implied by consistency of S—in its metamathematical reading. The number-
theoretic reading A is opaque to us, but we know that it is Goldbach-like and, as per Franzen’s
account, saying that it’s true is really just a matter of saying “what A says” about the natural
numbers (whatever exactly that may be).

Returning to Wittgenstein’s “different game” claim, it seems to me that Feferman’s “reflection
principle” (1998, pp. 17–18) can ground the idea floated above, namely that Gödel’s arithmetization
of syntax amounted to a legitimate extension of “Russell’s game”—or more generally, of a formal

26Alonzo Church is sometimes described as a platonist but he was surely not a platonist of Gödel’s stripe, nor was
he influenced in a platonistic direction by Gödel’s work in particular.
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system employing the Peano axioms. If we accept a system S as a representation of elementary
arithmetic we can ask what commitments we thereby take on board, directly or indirectly. Clearly
we’re committed to the truth (or assertibility, if you prefer) of the axioms of S as well as its theorems.
But if someone comes along and constructs a Gödel sentence for S, are we not committed to its
truth (assertibility) too? If it were false that would imply that S is inconsistent, so we should have
to revise all our commitments in respect of S.

8.4 Defences and counters

Having delivered a negative verdict on Wittgenstein’s remarks on Gödel, it behoves me to say
something in response to defences of Wittgenstein.27 Much of the writing in this vein strikes me as
lacking in substance, offering paraphrase of the master and assertion rather than clear arguments
against the points made by Wittgenstein’s critics. I will confine myself to what I find to be the
most substantive defence, that of Juliet Floyd and Hilary Putnam (2000).

Floyd and Putnam (hereinafter FP) focus on §8 in Appendix I of RFM, Wittgenstein’s “notorious
paragraph” per Floyd (2001). To set the scene, recall that Wittgenstein had ascribed to Gödel the
following argument: “Must I not say that [the Gödel sentence] on the one hand is true, and on the
other is unprovable? For suppose it were false; then it is true that it is provable. And that surely
cannot be!” FP zoom in on Wittgenstein’s follow-up:

Now what does your “suppose it is false” mean? In the Russell sense it means ‘suppose
the opposite is proved in Russell’s system’; if that is your assumption, you will now
presumably give up the interpretation that it is unprovable.

FP refer to the Gödel sentence as P , following Wittgenstein, and in this context I’ll do the same. I
argued above that Gödel did not mean by “suppose it is false” that the negation of P was provable
in the system in question. However, one could argue that in assessing §8 it’s appropriate to follow
Wittgenstein’s logic—so, what would follow if ¬P could be proved in S?

Wittgenstein states that if ¬P could be proved, the interpretation of P as meaning “P is not
provable” would have to be given up. FP say that this statement contains “a philosophical claim
of great interest”, one that has been missed by other commentators and which casts doubt on the
received view that he misunderstood Gödel. Their argument gets quite technical in places, but I’ll
try to convey the gist.

For Gödel, the context in which the possibility of proving ¬P arises is his undecidability claim: to
clinch this he needs to show that neither P nor ¬P can be proved. He could rule out the provability
of P by assuming simple consistency of S, but to rule out the provability of ¬P he needed the
stronger assumption that S is ω-consistent (see Section 5.2 above). If the stronger assumption is
granted it follows that ¬P cannot be proved; conversely, provability of ¬P would imply that S is
ω-inconsistent. Grant Gödel his stronger assumption and Wittgenstein’s point is moot, but FP in
effect explore the implications of denying that assumption.

To see that Wittgenstein is on to something here, let us imagine that a proof of ¬P has
actually been discovered. Assume, for the time being, that [S] has not actually turned

27To be clear, I’m just talking about defences of his critique of Gödel; I don’t see him as in need of defence in most
other respects.

24



out to be inconsistent, however. Then, by the first Incompleteness Theorem, we know
that [S] is ω-inconsistent. But what does ω-inconsistency show? ω-inconsistency shows
that a system has no model in which the predicate we have been interpreting as ‘x is
a natural number’ possesses an extension that is isomorphic to the natural numbers.
(Floyd and Putnam, 2000, p. 625)

It seems there’s an editorial glitch here, in that “the predicate we have been interpreting as ‘x is a
natural number’ ” makes its first appearance in this very quotation; “we” haven’t been interpreting
any such predicate so far. However, it becomes apparent on the following page that FP are drawing
on an argument from Quine (1953), where a putative specification of what counts as a natural
number has indeed been supplied, and Quine diagnoses ω-inconsistency thus:

Where ω-inconsistency coexists with simple consistency, there is nothing outlandish
afoot; there is merely a predicate, misinterpreted as “is a natural number”, which has
proved to be true of some other things besides the natural numbers. (Quine, 1953, p.
121)

Quine coined the term ‘insegregativity’ for such cases: the system in question operates with a
specification of what constitutes a natural number that fails to segregate genuine natural numbers
from (so to speak) ‘look-alike’ objects. His diagnosis would seem to make intuitive sense. If we find
that a formal system proves ∀xφ(x) but also ∃x¬φ(x) a possible reconciliation is that ‘∀x’ refers
to the natural numbers while the contrary ‘∃x’ refers to some x that is not a natural number, but
is mistakenly classified as such by the system in question.

I don’t claim the capacity to judge this argument in formal terms, but if it’s granted we get the
following chain: the assumption that ¬P is proved implies that S is ω-inconsistent, which implies
that the specification in S of what defines a natural number is mistaken, which in turn means (per
Floyd and Putnam) that the English-language interpretation of P as saying “P is not provable” is
undermined:

In short, the “translation” of P as ‘P is not provable in [S]’ is untenable in this case—just
as Wittgenstein asserted! Floyd and Putnam (2000, p. 625)

What should we make of the FP argument? In the first place one might wonder if Wittgenstein’s
comment really bears such a sophisticated interpretation. The simplest interpretation would go
like this: since P purportedly says ‘P is not provable’, if ¬P were proved that would mean that
‘¬(P is unprovable)’ is proved, or in other words ‘P is provable’ is proved. And if one wanted to
maintain that P is true one would indeed have to give up the interpretation on which it says ‘P is
not provable’.

FP seek to fend off a deflationary reading of §8 with the aid of R. L. Goodstein, whom we have
already met in Section 8.1. Despite giving Wittgenstein’s remarks on Gödel a decidedly negative
review in 1957, Goodstein credited him with “remarkable insight” into certain matters of mathe-
matical logic. He said as much in his review of RFM, and returned to this point at greater length
in a paper of 1972 from which FP quote.

I do not think Wittgenstein heard of Gödel’s discovery before 1935; on hearing about
it his immediate reaction, with I think truly remarkable insight, was to observe that
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it showed that the formalization of arithmetic with mathematical induction and the
substitution of numerals for variables fails to capture the concept of natural number,
and the variables must admit values which are not natural numbers. For if, in a system
A , all the sentences G(n) with n a natural number are provable, but the universal
sentence (∀n)G(n) is not, then there must be an interpretation of A in which n takes
values other than natural numbers for which G(n) is not true (in fact in 1934 Th. Skolem
had shown that this was the case, independently of Gödel’s work). Goodstein (1972, p.
279)28

(As above, Goodstein is talking about an ω-inconsistent system A .) In his 1957 review Goodstein
wrote of “the mystery that what Wittgenstein said [about Gödel] in 1935 was far in advance of” what
appears in RFM (Goodstein, 1957, p. 551). FP suggest that Goodstein was missing something; on
a charitable reading the “notorious paragraph” might be seen as consistent with the sophisticated
understanding Wittgenstein had apparently evinced in 1935.

Besides Goodstein’s testimony, FP refer us to another of Wittgenstein’s students, Alister Watson.
Watson published in Mind a sure-footed paper on “Mathematics and its Foundations”, in which he
says that his treatment of Gödel’s incompleteness result “owes much to lengthy discussions with a
number of people, especially Mr. Turing and Dr. Wittgenstein” (Watson, 1938, p. 445). Watson’s
text raises the issue of ω-inconsistency and connects it with the point that “the notion of a cardinal
number, i.e. of a number in the everyday sense, is something that cannot be completely expressed in
the axiomatic system, and is essentially non-formal” (p. 447). Moreover, FP report that Watson’s
paper earned (a rare instance of) praise from Wittgenstein.

In fairness, then, it’s possible that Wittgenstein had a Skolem-type point in mind when he wrote
§8, even though there’s no hint of that in the text of RFM. Goodstein, it might be noted, goes on
to say that “failure to capture the concept of natural number” does not feature in Wittgenstein’s
discussion; rather he “concentrates upon the meaning of true when one says that Gödel discovered
a true but unprovable sentence.” Goodstein further opines that “Wittgenstein was misled by the
use of the word true in this connexion.” (Goodstein, 1972, p. 279)

Two more points are worth making in relation to Floyd and Putnam.

First, their discussion is premised on the idea that a proof of the negation of a Gödel sentence
might be found, which is counter to Gödel’s explicit assumption that the system he’s dealing with
is ω-consistent. One might wonder whether Gödel is really entitled to that assumption, but Rosser’s
strengthening of Gödel’s proof showed that it is not strictly necessary: the assumption of simple
consistency suffices, if we’re willing to substitute a somewhat more complex “true but unprovable”
sentence (see Section 5.2). The relevance of this point depends on how exactly we frame the topic
under discussion. If we’re just talking about Wittgenstein’s understanding of Gödel’s proof as of
1937, Rosser is not to the point.29 If we’re asking more broadly whether Wittgenstein’s remarks are
helpful in thinking about Gödel’s results today, Rosser’s proof would seem to make Wittgenstein’s
remarks somewhat less interesting (no matter how charitably we read them).

28Goodstein’s reference here is to Skolem (1933, 1934). Drawing on Vaught (1986), Skolem’s 1933 result can
be put this way. Let N = {0, 1, 2, 3, . . . } and let N be a structure comprising N along with the addition and
multiplication operators and the less-than relation. Then there exists a structure N′ not isomorphic to N which
has the same true (first-order) sentences as N. The non-isomorphism means that in addition to the ‘shared true’
first-order sentences there will be sentences true in the nonstandard model N′ that are not true in N. This issue is
inherent to axiomatizations of arithmetic; it may or may not ‘surface’ in the form of ω-inconsistency.

29In principle Wittgenstein could have read Rosser by 1937, but it seems clear he hadn’t.
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Second, Timothy Bays (2004) makes a good point (actually several good points but I’ll concentrate
on the one I think is most telling). FP assume that if a proof of ¬P were found in S, revealing
that S is ω-inconsistent, there would be no choice but to give up the idea that S has the system of
natural numbers (the ‘standard model’) as a model, and hence also give up the translation of P as
“P is unprovable”—the sequel envisaged by Wittgenstein. But Bays asks, would anyone with an
investment in S actually take that course? If S is supposed to have the natural numbers as model,
would it not be much more natural to seek a fix for S to achieve that object? He goes on to suggest
that a fix might be sought in the axiomatization of S, perhaps in the induction schema (which
I identified in Section 5.1 as the only one of the Peano axioms which seemed open to reasonable
doubt). As Bays puts it,

My guess is that mathematicians would initially focus on the uses of induction in the
proof. The hope would be that some well-motivated restriction of the induction scheme
would enable us both to restore ω-consistency and to understand why our initial scheme
went wrong (for example, perhaps we allowed induction on some subtly-paradoxical
predicate/formula). (Bays, 2004, p. 204)

From this perspective, accepting that S is satisfiable only by a nonstandard model would be the
last resort, not the default reaction.

At one point in RFM, in material written some years after the remarks discussed above, Wittgen-
stein says, “My task is, not to talk about (e.g.) Gödel’s proof, but to by-pass it.” (Wittgenstein,
1967, V §16) Many commentators, including FP, have quoted this sentence as if it somehow clarifies
his earlier remarks, but it strikes me that in 1937 Wittgenstein signally failed to “by-pass” Gödel.
His remarks from that time were clearly not intended as a formal refutation of Gödel, but all the
same Wittgenstein seems determined to find something wrong with his proof; the question is, what
exactly was wrong? As mentioned above, I think Steiner (2001) has it right: what Wittgenstein
really objected to was the whiff of platonism he scented in Gödel’s distinction between mathemat-
ical truth and provability. His remarks failed to hit a definite target because this distinction does
not actually depend on a platonistic premise. Or so I have argued. The points made by Floyd and
Putnam are surely of interest but they don’t lead me to materially revise my take on Wittgenstein’s
remarks on Gödel.

References

Bays, T. (2004) ‘On Floyd and Putnam on Wittgenstein on Gödel’, The Journal of Philosophy
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Hilbert, D. (1926) ‘Über das Unendliche’, Mathematische Annalen 95: 161–190.

Hilbert, D. and P. Bernays (1939) Grundlagen der Mathematik, Berlin and New York: Springer-
Verlag.

Keynes, J. M. (1933) Essays in Biography, London: Macmillan.
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